Ciencias mixtas Ciencias mixtas

Los secretos de las ciencias para
los que también son de letras

Entradas etiquetadas como ‘evolución’

Pasen y vean a la falsa araña con falsa cabeza de conejo

Uno piensa que ya lo había visto casi todo en formas extrañas de animales y que pocas cosas pueden sorprenderle… hasta que aparece Metagryne bicolumnata, la falsa araña con falsa cabeza de conejo; o de perro, o de lobo, según el gusto de cada cual. Pero para qué tratar de explicarlo. Se trata de esto:

Metagryne bicolumnata. Imagen de Andreas Kay / Flickr / CC.

Metagryne bicolumnata. Imagen de Andreas Kay / Flickr / CC.

No, no es un truco de Photoshop. Esta criatura realmente existe:

Metagryne bicolumnata. Imagen de Andreas Kay / Flickr / CC.

Metagryne bicolumnata. Imagen de Andreas Kay / Flickr / CC.

Y si quieren verla en acción, aquí está:

Todo ello por gentileza del biólogo Andreas Kay, que desde hace siete años se dedica a documentar y fotografiar la increíble biodiversidad de Ecuador, y a dejar el testimonio de su trabajo en Flickr.

Dibujo de Metagryne bicolumnata de Carl Friedrich Roewer, 1959.

Dibujo de Metagryne bicolumnata de Carl Friedrich Roewer, 1959.

En 2017 Kay fotografió en la selva amazónica a esta insólita criatura que sin embargo se conocía ya desde 1959, aunque el dibujo de Carl Friedrich Roewer, el aracnólogo alemán que la describió, era sin duda mucho menos espectacular.

La criatura en cuestión es un opilión; arácnido, pero no araña. Los opiliones están más estrechamente emparentados con los ácaros y los escorpiones, también arácnidos. Aunque a primera vista puedan confundirse con las arañas por sus ocho patas, un vistazo más detallado revela claras diferencias: las arañas tienen el cuerpo dividido en dos partes, cefalotórax y abdomen, mientras que los opiliones tienen ambos fusionados en un único bloque.

A mayor detalle, las arañas tienen varios pares de ojos, mientras que los opiliones solo tienen un par; que en el caso de Metagryne bicolumnata, al que llamaremos opilión conejo, no son los dos puntos amarillos en su falsa cabeza de conejo, sino que aparecen al frente del cefalotórax.

Otra diferencia esencial entre las arañas y los opiliones es que estos carecen de glándulas de seda, por lo que no fabrican tela. Y más importante para nosotros, tampoco tienen glándulas de veneno, por lo que son inofensivos. Para compensar esta falta de armamento, la evolución ha dotado a los opiliones de otras estrategias para defenderse de sus depredadores. Una de ellas, común en estos animalitos, es modificar su aspecto físico, ya sea para camuflarse en su entorno o para asustar.

Por ejemplo, algunos opiliones segregan un fluido defensivo amarillento que es nocivo para los depredadores. Otros, en cambio, carecen de esta defensa; pero alguno de ellos ha desarrollado en su caparazón dos manchas amarillas que simulan el fluido para disuadir a sus atacantes, aunque realmente no posean esta defensa. Estas coloraciones llamativas como advertencia de peligro se conocen en biología como aposemáticas; las serpientes coral, las avispas o las ranas venenosas tropicales avisan con sus colores llamativos de que no es una buena idea meterse con ellas.

En el caso del opilión conejo, el propósito de su estrambótico aspecto realmente no se conoce, aunque parece probable que se trate también de una defensa contra los depredadores. Entre las técnicas de mimetismo, algunas especies inofensivas desarrollan un aspecto parecido a otras peligrosas. Por ejemplo, hay moscas que parecen avispas, y la falsa coral es del todo inocua. Para estos opiliones, tener el aspecto de un temible mamífero puede ser la estrategia perfecta para que a nadie se le ocurra intentar comérselos. Aquellos ejemplares mejor disfrazados logran sobrevivir y pasar a sus descendientes los genes de ese perfecto disfraz, y la evolución sigue su curso.

Por qué los insectos resisten mejor el calor en invierno (sí, el calor)

Nos han acompañado durante todo el verano, para bien y para mal. Para bien, porque cumplen funciones esenciales en la naturaleza. Para mal, porque a veces pueden llegar a ser tremendamente irritantes, ya sea el trompeteo del mosquito en el oído cuando estás a punto de abrazar el sueño, la mosca cosquilleando la pierna en idéntica situación pero en la siesta, las hormigas en procesión a la alacena, o las avispas que por estas fechas del año se convierten en escuadrillas de flying dead (ya expliqué por qué).

Pero dentro de poco, se irán. Uno de los grandes misterios del universo es la desaparición de los insectos cuando empieza el frío. ¿A dónde se marchan? ¿De dónde vuelven? No, en la mayoría de los casos no mueren de frío, como sería fácil pensar. Es un misterio resuelto solo a medias, porque si bien los científicos saben exactamente qué hace cada tipo de bicho para salvar el invierno, los mecanismos biológicos que utilizan para ello aún son fuente de secretos y sorpresas.

Una mariquita en la nieve. Imagen de pxhere.

Una mariquita en la nieve. Imagen de pxhere.

Hace unos días he publicado un reportaje en el que explicaba las distintas estrategias que emplean diferentes tipos de insectos para sobrevivir al invierno. A los más curiosos les recomiendo su lectura si desean sorprenderse ante las maravillas que la evolución biológica puede operar incluso en criaturas (solo aparentemente) tan simples. A los más perezosos, les resumo que básicamente existen dos opciones, evitar el frío o soportar la congelación. Los primeros emigran o, más frecuentemente, se ocultan en lugares templados y cómodos a la espera de que vuelva el buen tiempo. En cuanto a los segundos, sus cuerpos experimentan transformaciones químicas que les permiten tolerar la congelación sin morir.

Esta transformación química es todavía uno de esos secretos parcialmente guardados en el cofre del tesoro de la naturaleza. Todos los insectos que se quedan a aguantar el tirón invernal producen algún tipo de compuesto que los protege del frío, también aquellos que lo evitan; pero los científicos aún están descubriendo cuáles son esos mecanismos y cómo funcionan.

Una muestra de que aún falta mucho por conocer sobre los insectos y el invierno es una curiosidad que me saltó a la atención: el año pasado, los investigadores Henry Vu y John Duman, de la Universidad de Notre Dame (EEUU), descubrieron que al menos tres especies de insectos, los escarabajos Dendroides canadensis y Cucujus clavipes, y la típula Tipula trivittata (esos bichos que muchos suelen aplastar por confundirlos con inmensos mosquitos, pero que son del todo inofensivos), toleran mejor el calor durante el invierno que en verano.

Un escarabajo Dendroides canadensis. Imagen de Robert Webster / xpda.com / Wikipedia.

Un escarabajo Dendroides canadensis. Imagen de Robert Webster / xpda.com / Wikipedia.

Como escriben los investigadores en su estudio, publicado en la revista Journal of Experimental Biology, es lógico pensar que los insectos aguantarán temperaturas más bajas durante el invierno, debido a que su cuerpo se defiende produciendo esas sustancias. De hecho, en la estación fría pueden sobrevivir incluso a temperaturas de entre 20 y 30 °C más bajas que en verano. Pero cuando Vu y Duman sospechaban que su tolerancia al calor sería menor en invierno, lo que descubrieron fue lo contrario: el Dendroides canadensis soporta en verano un máximo de 36 °C, pero en invierno puede aguantar hasta los 38 o 40 °C. El resultado es que en verano este escarabajo puede vivir en un rango de temperaturas que abarca 41 °C, mientras que en invierno esta franja se expande hasta los 64 °C.

¿Por qué los insectos resisten mejor el calor precisamente en la estación más fría del año? Los autores del estudio escriben que se trata de un “fenómeno inesperado” que “no ha sido previamente documentado”; según me cuenta Vu, “¡la gente no suele pensar en analizar qué pasa a altas temperaturas en invierno!”. Pero aunque aún no se sabe si es algo generalizado entre los insectos, el entomólogo apunta que el hecho de que las especies examinadas comprendan tanto los que evitan el frío como los que se congelan sugiere que podría ser un fenómeno común.

Aunque no era el objetivo del estudio, es inevitable preguntarse qué sentido o razón biológica tiene esta rareza, y cuál puede ser el mecanismo responsable. Vu me cuenta que aún no puede arriesgar una explicación, pero que “es posible que sea solo un efecto secundario de la adaptación a la tolerancia al frío”. Es decir, dado que esta adaptación al frío promueve la estabilidad de las membranas y las proteínas celulares, el resultado es que estos componentes están también mejor preparados entonces para aguantar el calor. “Estas adaptaciones al frío ayudan a temperaturas bajas, pero también pueden ayudar a estabilizar las proteínas y las membranas a temperaturas altas”, señala Vu.

Un escarabajo en invierno. Imagen de pixabay.

Un escarabajo en invierno. Imagen de pixabay.

Con respecto al mecanismo biológico concreto, la respuesta podría estar en un campo que ha investigado extensamente el entomólogo David Denlinger, de la Universidad Estatal de Ohio (EEUU). Hasta hace unos años se sabía que, entre los compuestos que protegen a los insectos del frío, se encontraban un par de proteínas de choque térmico (heat shock proteins o HSP), una clase de moléculas descritas en muchos otros organismos y que acuden al socorro de las células cuando las condiciones ambientales son amenazantes; no solo calor extremo, sino también frío glacial, radiación ultravioleta o heridas en los tejidos.

En 2007, Denlinger y sus colaboradores descubrieron que el arsenal de HSP de los insectos es mucho mayor de lo que se creía. Los investigadores descubrieron casi una docena de HSP adicionales que se activan cuando los insectos entran en diapausa, su versión de la hibernación que los deja en estado de reposo durante el invierno.

Dado que las HSP se activan en respuesta a condiciones de estrés ambiental y preparan el organismo para resistir agresiones externas, ¿podrían ser las responsables de que el invierno induzca en los insectos una mayor tolerancia tanto al frío como al calor? “Sí, creo que las HSP pueden estar implicadas tanto en la tolerancia a temperaturas más altas como más bajas”, me cuenta Denlinger.

“Su papel a altas temperaturas es bien conocido, pero el hecho de que estas mismas HSP las utilicen los insectos en invierno sugiere puntos en común”. El entomólogo añade que otros compuestos producidos por los insectos en invierno, como el aminoácido prolina o el anticongelante glicerol, también pueden aparecer tanto a temperaturas demasiado altas como demasiado bajas, y que sus experimentos también han mostrado cómo un choque de calor puede proteger a los insectos contra el frío.

En resumen, y aunque suene a tópico, se trata de uno más de esos casi infinitos mecanismos de relojería biológica refinados a lo largo de millones de años de evolución, y que está perfectamente sincronizado con los ciclos naturales. Lo cual nos lleva a una pregunta. Por supuesto que las condiciones ambientales en este planeta no han sido siempre las actuales, sino que han variado salvajemente a lo largo de su historia, también desde que existen los insectos. Pero normalmente estas variaciones se producen a lo largo de las eras geológicas, dando tiempo suficiente a la vida para abrirse camino a través de un mundo cambiante. Ahora la situación es otra; y si las condiciones climáticas cambian bruscamente a lo largo de apenas un siglo, ¿qué les ocurrirá a los insectos? Mañana lo contaremos.

Westworld, la teoría bicameral y el fin del mundo según Elon Musk (I)

Hace unos días terminé de ver la primera temporada de Westworld, la serie de HBO. Dado que no soy un gran espectador de series, no creo que mi opinión crítica valga mucho, aunque debo decir que me pareció de lo mejor que he visto en los últimos años y que aguardo con ansiedad la segunda temporada. Se estrena a finales del próximo mes, pero yo tendré que esperar algunos meses más: no soy suscriptor de teles de pago, pero tampoco soy pirata; como autor defiendo los derechos de autor, y mis series las veo en DVD o Blu-ray comprados con todas las de la ley (un amigo se ríe de mí cuando le digo que compro series; me mira como si viniera de Saturno, o como si lo normal y corriente fuera robar los jerséis en Zara. ¿Verdad, Alfonso?).

Pero además de los guiones brillantes, interpretaciones sobresalientes, una línea narrativa tan tensa que puede pulsarse, una ambientación magnífica y unas sorpresas argumentales que le dan a uno ganas de aplaudir, puedo decirles que si, como a mí, les añade valor que se rasquen ciertas grandes preguntas, como en qué consiste un ser humano, o si el progreso tecnológico nos llevará a riesgos y encrucijadas éticas que no estaremos preparados para afrontar ni resolver, entonces Westworld es su serie.

Imagen de HBO.

Imagen de HBO.

Les resumo brevemente la historia por si aún no la conocen. Y sin spoilers, lo prometo. La serie está basada en una película del mismo título escrita y dirigida en 1973 por Michael Crichton, el autor de Parque Jurásico, y que aquí se tituló libremente como Almas de metal. Cuenta la existencia de un parque temático para adultos donde los visitantes se sumergen en la experiencia de vivir en otra época y lugar, concretamente en el Far West.

Este mundo ficticio creado para ellos está poblado por los llamados anfitriones, androides perfectos e imposibles de distinguir a simple vista de los humanos reales. Y ya pueden imaginar qué fines albergan los acaudalados visitantes: la versión original de Crichton era considerablemente más recatada, pero en la serie escrita por la pareja de guionistas Lisa Joy y Jonathan Nolan el propósito de los clientes del parque viene resumido en palabras de uno de los personajes: matar y follar. Y sí, se mata mucho y se folla mucho. El conflicto surge cuando los anfitriones comienzan a demostrar que son algo más que máquinas, y hasta ahí puedo leer.

Sí, en efecto no es ni mucho menos la primera obra de ficción que presenta este conflicto; de hecho, la adquisición de autonomía y consciencia por parte de la Inteligencia Artificial era el tema de la obra cumbre de este súbgenero, Yo, robot, de Asimov, y ha sido tratado infinidad de veces en la literatura, el cine y la televisión. Pero Westworld lo hace de una manera original y novedosa: es especialmente astuto por parte de Joy y Nolan el haber elegido basar su historia en una interesante y algo loca teoría sobre la evolución de la mente humana que se ajusta como unos leggings a la ficticia creación de los anfitriones. Y que podría estar más cerca del futuro real de lo que sospecharíamos.

La idea se remonta a 1976, cuando el psicólogo estadounidense Julian Jaynes publicó su libro The Origin of Consciousness in the Breakdown of the Bicameral Mind (está traducido al castellano, El origen de la conciencia en la ruptura de la mente bicameral), una obra muy popular que desde entonces ha motivado intensos debates entre psicólogos, filósofos, historiadores, neurocientíficos, psiquiatras, antropólogos, biólogos evolutivos y otros especialistas en cualquier otra disciplina que tenga algo que ver con lo que nos hace humanos a los humanos.

Julian Jaynes. Imagen de Wikipedia.

Julian Jaynes. Imagen de Wikipedia.

El libro de Jaynes trataba de responder a una de las preguntas más esenciales del pensamiento humano: ¿cómo surgió nuestra mente? Es obvio que no somos la única especie inteligente en este planeta, pero somos diferentes en algo. Un cuervo puede solucionar problemas relativamente complejos, idear estrategias, ensayarlas y recordarlas. Algunos científicos piensan que ciertos animales tienen capacidad de pensamiento abstracto. Otros no lo creen. Pero de lo que caben pocas dudas es de que ninguna otra especie como nosotros es consciente de su propia consciencia; podrán pensar, pero no pueden pensar sobre sus pensamientos. No tienen capacidad de introspección.

El proceso de aparición y evolución de la mente humana tal como hoy la conocemos aún nos oculta muchos secretos. ¿Nuestra especie ha sido siempre mentalmente como somos ahora? Si no es así, ¿desde cuándo lo es? ¿Hay algo esencial que diferencie nuestra mente actual de la de nuestros primeros antepasados? ¿Pensaban los neandertales como pensamos nosotros? Muchos expertos coinciden en que, en el ser humano, el lenguaje ha sido una condición necesaria para adquirir esa capacidad que nos diferencia de otros animales. Pero ¿es suficiente?

En su libro, Jaynes respondía a estas preguntas: no, desde hace unos pocos miles de años, sí, no y no. El psicólogo pensaba que no bastó con el desarrollo del lenguaje para que en nuestra mente surgiera esa forma superior de consciencia, la que es capaz de reflexionar sobre sí misma, sino que fue necesario un empujón propiciado por ciertos factores ambientales externos para que algo en nuestro interior hiciera “clic” y cambiara radicalmente la manera de funcionar de nuestro cerebro.

Lo que Jaynes proponía era esto: a partir de la aparición del lenguaje, la mente humana era bicameral, una metáfora tomada del sistema político de doble cámara que opera en muchos países, entre ellos el nuestro. Estas dos cámaras se correspondían con los dos hemisferios cerebrales: el derecho hablaba y ordenaba, mientras el izquierdo escuchaba y obedecía. Pero en este caso no hay metáforas: el hemisferio izquierdo literalmente oía voces procedentes de su mitad gemela que le instruían sobre qué debía hacer, en forma de “alucinaciones auditivas”. Durante milenios nuestra mente carecía de introspección porque las funciones estaban separadas entre la mitad que dictaba y la que actuaba; el cerebro no podía pensar sobre sí mismo.

Según Jaynes, esto fue así hasta hace algo más de unos 3.000 años. Entonces ocurrió algo: el colapso de la Edad del Bronce. Las antiguas grandes civilizaciones quedaron destruidas por las guerras, y comenzó la Edad Oscura Griega, que reemplazó las ciudades del período anterior por pequeñas comunidades dispersas. El ser humano se enfrentaba entonces a un nuevo entorno más hostil y desafiante, y fue esto lo que provocó ese clic: el cerebro necesitó volverse más flexible y creativo para encontrar soluciones a los nuevos problemas, y fue entonces cuando las dos cámaras de la mente se fusionaron en una, apareciendo así esa metaconsciencia y la capacidad introspectiva.

Así contada, la teoría podría parecer el producto de una noche de insomnio, por no decir algo peor. Pero por ello el psicólogo dedicó un libro a explicarse y sustentar su propuesta en una exhaustiva documentación histórica y en el conocimiento neuropsicológico de su época. Y entonces es cuando parece que las piezas comienzan a caer y encajar como en el Tetris.

Jaynes mostraba que los escritos anteriores al momento de esa supuesta evolución mental carecían de todo signo de introspección, y que en los casos en que no era así, como en el Poema de Gilgamesh, esos fragmentos había sido probablemente añadidos después. Las musas hablaban a los antiguos poetas. En el Antiguo Testamento bíblico y otras obras antiguas era frecuente que los personajes actuaran motivados por una voz de Dios o de sus antepasados que les hablaba, algo que luego comenzó a desaparecer, siendo sustituido por la oración, los oráculos y los adivinos; según Jaynes, aquellos que todavía conservaban la mente bicameral y a quienes se recurría para conocer los designios de los dioses. Los niños, que quizá desarrollaban su mente pasando por el estado bicameral, han sido frecuentes instrumentos de esa especie de voluntad divina. Y curiosamente, muchas apariciones milagrosas tienen a niños como protagonistas. La esquizofrenia y otros trastornos en los que el individuo oye voces serían para Jaynes vestigios evolutivos de la mente bicameral. Incluso la necesidad humana de la autoridad externa para tomar decisiones sería, según Jaynes, un resto del pasado en el que recibíamos órdenes del interior de nuestra propia cabeza.

Jaynes ejemplificaba el paso de un estado mental a otro a través de dos obras atribuidas al mismo autor, Homero: en La Ilíada no hay signos de esa metaconsciencia, que sí aparecen en La Odisea, de elaboración posterior. Hoy muchos expertos no creen que Homero fuese un autor real, sino más bien una especie de marca para englobar una tradición narrativa.

Por otra parte, Jaynes aportó también ciertos argumentos neurocientíficos en defensa de la mente bicameral. Dos áreas de la corteza cerebral izquierda, llamadas de Wernicke y de Broca, están implicadas en la producción y la comprensión del lenguaje, mientras que sus homólogas en el hemisferio derecho tienen funciones menos definidas. El psicólogo señalaba que en ciertos estudios las alucinaciones auditivas se correspondían con un aumento de actividad en esas regiones derechas, que según su teoría serían las encargadas de dictar instrucciones al cerebro izquierdo.

Las pruebas presentadas por Jaynes resultan tan asombrosas que su libro fue recibido con una mezcla de incredulidad y aplauso. Quizá las reacciones a su audaz teoría se resumen mejor en esta cita del biólogo evolutivo Richard Dawkins en su obra de 2006 El espejismo de Dios: “es uno de esos libros que o bien es una completa basura o bien el trabajo de un genio consumado, ¡nada a medio camino! Probablemente sea lo primero, pero no apostaría muy fuerte”.

El libro de Jaynes y algunas obras influidas por él. Imagen de Steve Rainwater / Flickr / CC.

El libro de Jaynes y algunas obras influidas por él. Imagen de Steve Rainwater / Flickr / CC.

La teoría de la mente bicameral hoy no goza de aceptación general por parte de los expertos, pero cuenta con ardientes apoyos y con una sociedad dedicada a su memoria y sus estudios. Los críticos han señalado incoherencias y agujeros en el edificio argumental de Jaynes, que a su vez han sido contestados por sus defensores; el propio autor falleció en 1997. Desde el punto de vista biológico y aunque la selección natural favorecería variaciones en la estructura mental que ofrezcan una ventaja frente a un entorno nuevo y distinto, tal vez lo más difícil de creer sea que la mente humana pudiera experimentar ese cambio súbito de forma repentina y al mismo tiempo en todas las poblaciones, muchas de ellas totalmente aisladas entre sí; algunos grupos étnicos no han tenido contacto con otras culturas hasta el siglo XX.

En el fondo y según lo que contaba ayer, la teoría de la mente bicameral no deja de ser pseudociencia; es imposible probar que Jaynes tenía razón, pero sobre todo es imposible demostrar que no la tenía. Pero como también expliqué y al igual que no toda la no-ciencia llega a la categoría de pseudociencia, por mucho que se grite, tampoco todas las pseudociencias son iguales: la homeopatía está ampliamente desacreditada y no suscita el menor debate en la comunidad científica, mientras que por ejemplo el test de Rorschach aún es motivo de intensa discusión, e incluso quienes lo desautorizan también reconocen que tiene cierta utilidad en el diagnóstico de la esquizofrenia y los trastornos del pensamiento.

La obra de Jaynes ha dejado huella en la ficción. El autor de ciencia ficción Philip K. Dick, que padecía sus propios problemas de voces, le escribió al psicólogo una carta entusiasta: “su soberbio libro me ha hecho posible discutir abiertamente mis experiencias del 3 de 1974 sin ser llamado simplemente esquizofrénico”. David Bowie incluyó el libro de Jaynes entre sus lecturas imprescindibles y reconoció su influencia mientras trabajaba con Brian Eno en el álbum Low, que marcó un cambio de rumbo en su estilo hacia sonidos más experimentales.

Pero ¿qué tiene que ver la teoría bicameral con Westworld, con nuestro futuro, con Elon Musk y el fin del mundo? Mañana seguimos.

 

Nightwish y Darwin, música y ciencia, metal sinfónico y biología evolutiva

No es frecuente que el rock en general se ocupe de temas de ciencia, a pesar de que un puñado de músicos prominentes tienen formación científica e incluso se han doctorado. Uno de estos últimos, Greg Graffin de Bad Religion, suele salpicar sus temas con reflexiones antropológico-evolutivas. Están, por supuesto, las magníficas serenatas espaciales de Bowie, el Astronomy Domine de Pink Floyd, las referencias tecnocientíficas de Kraftwerk…

Mike Oldfield le dedicó un álbum a la novela de Arthur C. Clarke The Songs of Distant Earth. Y por supuesto, no olvidemos ’39, ese gran tema del astrofísico y guitarrista de Queen Brian May que cuenta cómo un grupo de colonos espaciales regresa a la Tierra para descubrir que el año transcurrido para ellos ha sido un siglo aquí, debido a la dilatación del tiempo según la relatividad especial de Einstein.

Pero no, The Scientist de Coldplay no cuenta: la tribulación de un científico arrepentido por abstraerse en sus números y en sus “preguntas de ciencia, ciencia y progreso”, mientras su chica se le escapa porque él no ha escuchado los gritos de su corazón, es, además de una sobredosis de azúcar, si acaso un tema anti-ciencia.

He sabido que el próximo 9 de marzo sale a la venta Decades, un doble álbum recopilatorio que celebra los 20 años de Nightwish, y es una buena ocasión para traerles aquí una recomendación músico-científica. Nightwish es el grupo finlandés que más discos vende en el mundo, una banda de metal sinfónico con toques folk, power y alguna gota gótica. Su estilo se caracteriza por una densa atmósfera sonora que construye capas sobre una base orquestal, coronada por una voz femenina que ya ha cambiado dos veces en la historia de la banda; la vocalista actual es la holandesa Floor Jansen. Pero el alma de Nightwish, su fundador, líder y compositor, es el multiinstrumentista Tuomas Holopainen, ese tipo con aire a lo Íñigo Montoya que se sienta a los teclados.

Imagen de Nightwish.

Imagen de Nightwish.

Hace unos años, Holopainen comenzó a interesarse por la obra de Charles Darwin y del biólogo evolutivo Richard Dawkins. Lo que descubrió de la historia y del funcionamiento de la naturaleza en aquellos libros le fascinó de tal modo que decidió dedicarle todo un álbum. El resultado fue Endless Forms Most Beautiful, el octavo disco de Nightwish, publicado en 2015 y que en palabras de Holopainen es un “tributo a la ciencia y el poder de la razón” a través de “la belleza de la vida, la belleza de la existencia, la naturaleza y la ciencia”.

El propio título del álbum está extraído de la última frase de El origen de las especies, el libro en el que Darwin sentó las bases de la selección natural. En este cierre, Darwin resumía el núcleo de su teoría, la evolución de todos los seres vivos a partir de un ancestro común. La cita sirvió también para titular un influyente libro de biología evolutiva publicado en 2005 por el biólogo molecular Sean Carroll.

There is grandeur in this view of life, with its several powers, having been originally breathed into a few forms or into one; and that, whilst this planet has gone cycling on according to the fixed law of gravity, from so simple a beginning endless forms most beautiful and most wonderful have been, and are being, evolved.

Hay grandeza en esta visión de que la vida, con sus diferentes fuerzas, ha sido originalmente alentada en unas pocas formas o en una; y de que, mientras este planeta ha continuado girando según la ley invariable de la gravedad, desde un comienzo tan simple infinidad de formas de lo más bello y maravilloso han evolucionado y están evolucionando.

Imagen de Nightwish.

Imagen de Nightwish.

El disco cuenta también con la colaboración estelar de Richard Dawkins, que ha leído citas de Darwin y de sus propias obras para abrir y acompañar algunos de los temas. En el single que da título al álbum se narra el viaje de la vida en la Tierra desde sus inicios, pasando por las células eucariotas y por el tiktaalik, un pez fósil que para algunos científicos representa una posible forma de transición hacia los anfibios.

El último tema, The Greatest Show on Earth, una expresión referida a la evolución e inspirada en un libro de Dawkins, es una pequeña joya sinfónica de 24 minutos que pone banda sonora épica y emocionante a la historia de la naturaleza terrestre. La única pega es que el CD no incluya el tema Sagan, dedicado al astrofísico Carl Sagan y que aparece únicamente en el single Élan.

En resumen, Endless Forms Most Beautiful es uno de los mayores homenajes que el rock ha rendido a la ciencia, y probablemente el más profundo que la biología evolutiva ha recibido de la música. Y la demostración de que, al contrario de lo que parecen creer los chicos de Coldplay, las emociones de una persona adulta se alimentan de algo más que el me-quiere-no-me-quiere; y que en concreto, la ciencia es capaz de transmitir emociones enormemente inspiradoras también a quienes se acercan a ella por simple curiosidad.

Les dejo con el clip oficial del tema que da título al álbum, y con un estupendo vídeo subtitulado en castellano que el YouTuber SynnöBlop ha montado para The Greatest Show on Earth. Pero les animo a que escuchen el disco entero –y en su orden, como le gusta a Holopainen– siguiendo este enlace. Y si tienen la fortuna de encontrarse cerca de Villena (Alicante) el próximo 9 de agosto, gozarán de la oportunidad de disfrutar en directo de Nightwish en el festival Leyendas del Rock. Quienes han podido hacerlo aseguran que tienen un directo espectacular.


Diez reglas que debería cumplir todo alienígena (también los de ficción)

Hace cosa de un mes, un equipo de zoólogos de la Universidad de Oxford publicaba un estudio destinado a especular sobre cuál podría ser el retrato biológico de un alienígena. Como ya he contado aquí, los científicos no suelen arriesgarse a lanzar divagaciones de este tipo, y cuando lo hacen es en tiempo de extraescolares, después de quitarse la bata. Las revistas científicas tampoco son el lugar donde ponerse a inventar ciencia ficción.

Pero el estudio de Oxford era tan contenido que resultaba casi frustrante. El trabajo de los investigadores puede resumirse en dos ideas: los alienígenas estarán sometidos a evolución por selección natural, como nosotros los terrícolas, y estarán formados por partes más pequeñas en una jerarquía de niveles, como nosotros los terrícolas (genes, células, tejidos, órganos, individuos, sociedades…).

Tal vez no parezcan pistas como para parar las máquinas, aunque como guinda y gancho de cara a los medios, los autores se permitían adornarlo con una propina: el octomita, nombre que daban a un alienígena hipotético basado en estas reglas y que les presento aquí. Aclaro que su aspecto es puramente imaginario; lo esencial del octomita es el esquema basado en niveles crecientes de organización.

El octomita, un alienígena hipotético. Imagen de Levin et al., International Journal of Astrobiology 2017.

El octomita, un alienígena hipotético. Imagen de Levin et al., International Journal of Astrobiology 2017.

Si el estudio no llegaba más allá es porque un trabajo científico (también los teóricos) solo debe llegar hasta donde le deja el suelo bajo sus pies. Mirado de este modo, el hecho de que la argumentación teórica permita sostener estos dos requisitos de la vida extraterrestre cierra bastante el campo de lo que podríamos encontrarnos por ahí fuera, si es que existe algo y si es que algún día lo encontramos.

Como ya expliqué en dos entregas anteriores (aquí y aquí), no todo vale en biología, ni aquí ni en GN-z11 (la galaxia más lejana conocida, a 13.400 millones de años luz). Por tanto, no todo vale a la hora de imaginar la vida extraterrestre. Estudios como el de Oxford, que aplican las reglas de la biología, restringen el repertorio de opciones posibles para cualquier tipo de vida que pueda considerarse como tal, con independencia de cómo sea su planeta natal.

Es más: como les conté anteriormente, y por mucho que las ideas del biólogo y divulgador Stephen Jay Gould sobre la imprevisibilidad absoluta de la evolución hayan calado no solo en la comunidad científica, sino incluso entre el público interesado en estas cosas, los experimentos tienden a quitarle al menos una parte de razón: si nos fiamos de los datos reales que tenemos hasta hoy (y no podemos fiarnos de otra cosa), parece que la evolución tiene algo de margen para lo diferente, pero también algo de determinismo, convergencia y cánones comunes; lo que el biólogo Víctor Soria Carrasco llamaba “un tema central”.

Vida en la atmósfera de un planeta similar a Júpiter, según Carl Sagan. Imagen de la serie Cosmos (1980) / PBS.

Vida en la atmósfera de un planeta similar a Júpiter, según Carl Sagan. Imagen de la serie Cosmos (1980) / PBS.

En conclusión, la idea que por ahí circula sobre vida alienígena tan diferente de nosotros que tal vez ni siquiera la veríamos delante de nuestras narices es un buen argumento para el cine, los periódicos y las charlas de café, pero no se compadece con las reglas de la biología.

Así, recogiendo trocitos como el aportado por los investigadores de Oxford y otros, y añadiendo unas gotas de biología esencial, podemos armar una lista con unos cuantos requisitos que debería cumplir todo alienígena, por muy diferente que sea de la vida terrícola; también los de ficción, si pretenden ser plausibles. Por supuesto que esta es una lista en construcción y provisional, que trataré de ir actualizando-completando-rectificando con los datos que nos traigan los nuevos estudios.

  1. Todo ser vivo debe nacer, crecer, (tener capacidad de) reproducirse y morir. De acuerdo, esto es ponerlo muy fácil; pero es la definición más básica y clásica de la vida, aunque hoy se prefiere introducir criterios metabólicos y evolutivos. Qué menos que empezar por esto, pero también tiene su miga: algo tan aparentemente sencillo es uno de los motivos (el otro es el metabolismo, a lo que iré más abajo) por los cuales se discute si los virus son seres vivos. No solamente es que sean parásitos dependientes de piezas ajenas; muchos otros seres vivos también lo son. Es que los virus no crecen.
  2. Todo ser vivo está constituido por materia. Sí, también es fácil llegar a sacar un 2 en esta prueba. Pero ¿en cuántas películas los alienígenas se nos presentan como seres de energía pura que pueden adoptar cualquier forma que se les antoje? Si algo no está formado por materia no es un ser vivo, sino un poltergeist, por muy alienígena que sea. El payaso de It no es un ser vivo.
  3. Todo ser vivo debe estar formado por unidades elementales repetidas en varios niveles jerárquicos, la más básica de las cuales es un gen. La biología se basa en un principio de construcción según el cual hay una coherencia entre las partes pequeñas y el conjunto, o entre genes, células, órganos, individuos y sociedades. Por ejemplo, con células humanas no se puede construir un perro, ni con células alienígenas se puede construir un humano. Esto implica la existencia de genes en sentido amplio; no necesariamente como los terrestres, pero sí como unidades materiales mínimas que llevan la información esencial para construir el siguiente nivel jerárquico.
  4. Todo ser vivo debe respetar las leyes universales de la física. No es posible violar los principios de conservación de la materia, la energía o la cantidad de movimiento, o las leyes de la termodinámica en general.
  5. Todo ser vivo debe estar sujeto a evolución por selección natural y exhibir un cierto grado de adaptación a su entorno de origen. La evolución funciona a escalas temporales dependientes de los procesos biológicos, y estos a su vez dependen de la velocidad de los ritmos físicos y químicos. La evolución funciona en escalas espaciales que permitan la interacción entre un ser vivo y su entorno.
  6. Todo ser vivo debe estar enclavado en un ecosistema que lo sostenga. Una especie alienígena no puede ser la única forma de vida presente en su planeta, a no ser que sea la primera (esta sería una discusión interesante, pero lo cierto es que la abiogénesis aún es una caja negra para la biología) o la última superviviente, en cuyo caso está abocada a la extinción. Un ser vivo, incluso los quimio o fotosintéticos, es parte de la biomasa, pertenece a un ecosistema que lo alimenta pero también lo limita, actuando como cinta transportadora de la energía a lo largo de la cadena alimentaria.
  7. Todo ser vivo debe mantener poblaciones mínimas viables y conexas. La idea del Arca de Noé no permite la supervivencia de una especie. Debe existir un número suficiente de ejemplares en un mismo entorno físico que asegure un tamaño de diversidad genética capaz de sostener la supervivencia de la especie. Para los científicos esta es una estimación compleja que varía para cada especie y que hoy se calcula con simulaciones matemáticas por ordenador. Pero la naturaleza lo sabe.
  8. Todo ser vivo debe tener un metabolismo y una fisiología intrínsecamente plausibles y coherentes. Por ejemplo, los procesos metabólicos producen energía, y parte de esta energía se traduce en calor. Esto impone ciertas limitaciones de cara a construir un organismo, sin importar cómo sean las condiciones de su planeta de origen. Si un ser vivo es muy grande, también lo será el calor interno generado. Su temperatura de funcionamiento debe mantener el solvente biológico (en nuestro caso, el agua) en un estado que facilite las reacciones químicas y que permita a las biomoléculas conservar su configuración estructural nativa (en nuestro caso, el ADN y las proteínas pierden su estructura a temperaturas demasiado altas). Por tanto, toda forma de vida está limitada por su propio rango de temperaturas. Por otra parte, esta regla impone también la necesidad de un metabolismo, al menos durante alguna fase de la vida. Volvemos a lo mencionado antes sobre los virus: no tienen metabolismo cuando están en forma de virión (estado libre), pero sí cuando se activan en su célula hospedadora, aunque para ello utilicen piezas ajenas (algo que también necesitan otros parásitos). Desde este punto de vista, un virión puede entenderse como una fase de resistencia, como una espora o una semilla, y un virus puede caber en la definición de ser vivo. Incluso en cierto sentido, el hecho de subcontratar el metabolismo puede interpretarse como un refinamiento evolutivo que permite ahorrar energía, al menos si es que los virus se han desarrollado a partir de otros organismos que sí tenían metabolismo propio.
  9. Todo ser vivo debe tener un metabolismo y una fisiología plausibles en las condiciones de su entorno original. Por ejemplo, para que un parásito prospere, incluso aunque sea capaz de parasitar formas de vida como los humanos con las que nunca antes haya tenido contacto (lo cual puede ocurrir), ha tenido que coevolucionar con algún hospedador original en su entorno primitivo.
  10. Todo alienígena que baje a la Tierra y prospere debe tener una biología compatible con las restricciones impuestas por las condiciones terrestres. Por ejemplo, es posible que un ser de cincuenta kilos (medidos en condiciones de gravedad terrestre) pueda flotar sin esfuerzo en la atmósfera densa de su planeta de origen, como podría ocurrir en Venus si estuviera habitado. Pero en la Tierra no puede seguir haciendo lo mismo impunemente.

¿Son plausibles los alienígenas (parecidos a nosotros) de la ciencia ficción? (II)

Un humano es un organismo con forma de tubo (boca y ano), simetría bilateral, un bloque central que contiene los órganos internos flanqueado por pares de extremidades para la movilidad y la interacción, y un control centralizado (el cerebro) situado en un apéndice específico (la cabeza) que contiene además los principales mecanismos sensoriales.

Desde los hombrecillos verdes o grises hasta las variaciones como los xenomorfos de Alien, infinidad de películas nos presentan seres antropomorfos, que comparten con nosotros estos mismos planos generales de construcción. Pero ¿es esto posible? ¿Es plausible que un alienígena se parezca tanto a nosotros?

Alienígenas de 'Encuentros en la tercera fase'. Imagen de Columbia Pictures.

Alienígenas de ‘Encuentros en la tercera fase’. Imagen de Columbia Pictures.

La respuesta corta es que nadie lo sabe, dado que, una vez más, aún no conocemos alienígena. Para la respuesta larga, debemos comenzar respondiendo a otra pregunta: ¿la evolución es determinista o indeterminista? Es decir: a partir de una situación inicial y si jugamos la partida dos veces, en la Tierra y en otro planeta, ¿cuánto se parecerá el resultado final en los dos casos?

A su vez, la respuesta corta a esta pregunta es que nadie lo sabe. Hay quienes intuyen que un alienígena debería parecerse algo a nosotros, porque… ¿no? Y hay quienes intuyen que debería ser completamente distinto, porque… también, ¿no?

Pero la simple intuición no responde a la pregunta de hasta qué punto un experimento evolutivo paralelo encontraría o no algunas de las mismas soluciones como adaptaciones favorables en un medio parecido o diferente del terrestre. Haría falta repetir el experimento completo de la evolución, primero en nuestra propia Tierra, después en otros planetas habitables.

Por desgracia, esto no está a nuestro alcance. Tal vez algún día la Inteligencia Artificial logre refinar una simulación lo bastante completa como para darnos pistas reales, pero son tantas las variables implicadas que no será tarea fácil aproximarse lo suficiente a un escenario comparable a la realidad. Sería la simulación más complicada jamás emprendida.

A pesar de todo, tampoco estamos completamente perdidos. Tenemos teorías razonables, y tenemos también algunos datos experimentales que pueden tirar algún que otro raíl en el camino hacia estas respuestas. A continuación les cuento algunas de estas pistas, pero ya les adelanto que la conclusión nos devuelve a la respuesta corta: en realidad, nadie lo sabe.

E. T. Imagen de Universal Pictures.

E. T. Imagen de Universal Pictures.

Comencemos por la teoría. En los años 70 Stephen Jay Gould, una de las mentes más preclaras de la biología evolutiva del siglo XX, defendió la hipótesis de que la evolución no es determinista sino imprevisible, y que si pudiéramos rebobinar la cinta del planeta Tierra unos cuantos millones de años y volver a ejecutar el programa, los humanos ni siquiera estaríamos aquí.

Hay que tener en cuenta que toda la vida en la Tierra (al menos la que conocemos hasta ahora) procede de un antepasado común, el cual ya había adoptado ciertas opciones evolutivas que todos hemos heredado. Al ir diversificándose en ramas separadas, estas a su vez también fueron optando por determinadas soluciones que restringían el repertorio de configuraciones de sus descendientes. Pero según la hipótesis de Gould, que siguen muchos otros biólogos evolutivos, si pudiéramos regresar al comienzo quizá la segunda vez se elegirían soluciones diferentes y todos tendríamos, por ejemplo, simetría radial, como los equinodermos (estrellas y erizos de mar).

La teoría de Gould tendería a rechazar la posibilidad de alienígenas antropomorfos. Pero no todos los expertos están de acuerdo con él. Otros biólogos evolutivos, como Richard Dawkins o Simon Conway Morris, piensan que la evolución es al menos en parte un proceso determinista. Es decir, que desde la misma situación de partida, hay sucesos que tienden a repetirse.

Para comprender lo complicado que resulta teorizar sobre esto, tengamos en cuenta que incluso desde enfoques opuestos puede llegarse a conclusiones parecidas, pero también desde un mismo enfoque puede llegarse a conclusiones opuestas. Dos ejemplos: Conway Morris es creyente, Dawkins es ateo, y ambos son deterministas. Conway Morris es determinista, Gould lo contrario, y ambos se basan en las mismas pruebas, el esquisto de Burgess, un conjunto de fósiles hallado en Canadá a comienzos del siglo XX.

Un fósil de Anomalocaris del esquisto de Burgess. Imagen de Wikipedia / Keith Schengili-Roberts.

Un fósil de Anomalocaris del esquisto de Burgess. Imagen de Wikipedia / Keith Schengili-Roberts.

La razón principal que suelen esgrimir los deterministas es la evolución convergente. A lo largo de la historia de la vida en la Tierra, ha habido innumerables ocasiones en que la evolución ha encontrado las mismas soluciones en ramas independientes del árbol genealógico de los seres vivos.

Por ejemplo, los murciélagos y las aves tienen alas, pero las desarrollaron de forma independiente. Los ojos de los pulpos son pasmosamente parecidos a los nuestros, pero es evidente que ellos y nosotros no procedemos de un antepasado común con ojos. Este año un estudio descubrió que el apéndice, ese colgajo intestinal al que tradicionalmente no se le suponía otra función que llevarnos a Urgencias, ha surgido en la evolución más de 30 veces de forma independiente en unos animales y otros. ¡Más de 30 veces! Esto no solamente nos dice que muy probablemente el apéndice sirve para algo más, sino que es otro magnífico ejemplo de evolución convergente. El propio Conway Morris ha documentado muchos ejemplos en los fósiles de Burgess.

Así que la teoría no nos ofrece una respuesta clara. Pasemos ahora a la práctica: ¿qué nos dicen los experimentos? Obviamente, no podemos regresar al pasado, volver a jugar la partida de la evolución desde el principio y ver qué ocurre. Pero sí podemos hacer lo segundo mejor: ver qué hace la naturaleza en situaciones de evolución a corto plazo, y diseñar experimentos en condiciones controladas donde puedan estudiarse estos trocitos parciales de evolución.

Sobre lo primero, se han estudiado casos en animales como peces y lagartos. Respecto a lo segundo, hace tres años y medio les conté aquí un precioso ejemplo, un experimento con insectos palo llevado a cabo por el español Víctor Soria-Carrasco en la Universidad de Sheffield (Reino Unido). Los investigadores emplearon un tipo de insecto palo californiano que prácticamente nace, vive y muere en la misma planta, y del que existen dos variedades diferentes adaptadas al camuflaje en dos tipos de arbustos. Intercambiando los bichos de planta en unos lugares y otros, podían comparar los cambios genéticos que se producían entre dos de estos experimentos evolutivos independientes.

El resultado fue que en la evolución de estos bichos palo había un 80% de cambios diferentes y un 20% de cambios comunes. O sea, que a pesar de que mayoritariamente la evolución seguía caminos distintos en dos partidas diferentes, había un 20% de evolución convergente, o un 20% de determinismo evolutivo. Por supuesto que entre este caso y la evolución de la vida en otro planeta media un abismo, pero esta era la especulación de Soria-Carrasco sobre si los alienígenas podrían seguir caminos evolutivos parecidos a los nuestros: “muchas cosas serían diferentes, pero probablemente seríamos capaces de distinguir un tema central que siempre sería el mismo”.

El experimento más extenso de la historia de la ciencia para entender cómo funciona la evolución se desarrolla desde hace 30 años en la Universidad de Harvard. En febrero de 1988, el biólogo evolutivo Richard Lenski sembró bacterias Escherichia coli en 12 frascos con medio líquido de cultivo, algo habitual en muchos laboratorios de biología. Pero Lenski dejó a las bacterias la glucosa justa solo para sobrevivir durante la noche hasta la mañana siguiente, y por la tarde recogió a las supervivientes para trasvasarlas a un nuevo cultivo. Así, día tras día, durante más de 29 años.

Con la limitación de alimento, Lenski introducía un factor de presión para dirigir la evolución de las bacterias; tal como hace la selección natural, solo las bacterias mejor adaptadas al medio sobrevivirían. Cada 75 días, lo que equivale a unas 500 generaciones de E. coli, los investigadores congelan una parte de los cultivos para capturar una foto del proceso evolutivo. Analizando los genes de las bacterias en estos distintos momentos del proceso, pueden observar cómo están evolucionando, y comparar las 12 líneas entre sí para analizar si siguen los mismos caminos evolutivos o no. En total, en los casi 30 años del experimento se han sucedido más de 68.000 generaciones de bacterias, lo que equivale a más de un millón de años de evolución humana.

Y después de todo esto, el resultado es…

Durante los primeros miles de generaciones, los investigadores observaron que las bacterias seguían caminos al menos no totalmente separados. Los diferentes cultivos tendían a mostrar mutaciones diferentes, pero en los mismos genes. E incluso con las diferencias, todas mostraban un patrón común: las células se hacían más grandes, crecían más deprisa y aprovechaban mejor la glucosa. Esto parece un claro caso de evolución convergente.

Pero ¡oh, sorpresa! De repente, transcurridas unas 31.000 generaciones, una de las 12 líneas empezó a dejar de lado la glucosa y a comer citrato, otra fuente de carbono presente en el medio. Solo una de las 12 líneas. Dado que una característica de E. coli es la incapacidad de metabolizar el citrato, esta línea está evolucionando por el camino de convertirse en una nueva especie diferente. Y esto parece un claro caso de evolución no determinista.

Con todo esto, ¿qué opinan Lenski y sus colaboradores sobre el grado de determinismo de la evolución? Según su último estudio, esto: “nuestros resultados muestran que la adaptación a largo plazo a un ambiente constante puede ser un proceso más complejo y dinámico de lo que a menudo se asume”.

Sí, sí, vuelvan a leer la frase, y la segunda vez les dirá lo mismo: nada. Una paráfrasis para decir que, en realidad, no se sabe. Ya les advertí de que aún no tenemos una respuesta definitiva sobre si Gould o Conway Morris, y por tanto sobre si sería posible que en otro planeta evolucionara una especie básicamente similar a la nuestra. Pero quiero dejarles otro ejemplo de un experimento natural que nos ha permitido observar cómo funciona la evolución. Ese experimento se llama Australia.

La idea, de la que también les hablé aquí, es del científico planetario Charley Lineweaver. Es lo que él llama “la falacia del planeta de los simios”, o la idea popular de que, como decía Carl Sagan, en otros planetas habitados debe llegarse a un equivalente funcional del ser humano. Lineweaver pone como ejemplo su propio país, una gran isla separada del resto de los continentes desde hace unos 100 millones de años.

De este modo, Australia ha sido un experimento natural de evolución independiente durante millones de años. Y como decía Lineweaver, ¿qué es lo que ha surgido allí? Canguros. La aparición de los humanos en el gran bloque Eurasiafricano no ha interferido absolutamente de ninguna manera en la evolución australiana. Y sin embargo, allí la evolución no ha producido nada similar a los seres humanos. Si Australia fuera la única tierra seca de todo el planeta, no estaríamos aquí. Y por tanto, no hay evolución convergente; si los canguros tienen brazos y piernas como nosotros, es solo porque el antepasado común que compartimos con ellos ya los tenía.

Por todo lo anterior, los científicos no suelen arriesgarse a inventar aliens, a riesgo de ver su credibilidad dañada. Hay excepciones: en los años 70, Carl Sagan propuso un ecosistema modelo para un planeta joviano, un gigante gaseoso como Júpiter. Sagan imaginó varios linajes de seres voladores que controlarían su flotación a través de los distintos niveles de densidad de la atmósfera, formando una cadena alimentaria cuya base estaría sustentada por una especie de plancton atmosférico que se alimentaría de los nutrientes moleculares presentes en el gas. Así lo contaba Sagan en su mítica serie Cosmos:

Como resumen de todo lo contado aquí, mejor quédense con esta cita del gran maestro Sagan:

La biología es más parecida a la historia que a la física. Hay que conocer el pasado para comprender el presente. No hay predicciones en la biología, igual que no hay predicciones en la historia. La razón es la misma: ambas materias son todavía demasiado complicadas para nosotros. Aunque podemos comprendernos mejor comprendiendo otros casos.

A pesar de todo, si es extremadamente difícil aventurar cómo podría ser un alienígena, en cambio es más posible predecir cómo no podría ser. Como les contaba en la entrega anterior, no todo vale, y con esto podríamos arriesgarnos a construir una lista de reglas que debería cumplir un alienígena de ficción para ser mínimamente plausible. Vuelvan otro día y se lo cuento.

¿Son plausibles los alienígenas de la ciencia ficción? (I)

En una ocasión ya conté aquí que ocurre algo muy curioso con la relación entre cine y ciencia. Mientras que múltiples expertos en mútiples webs suelen llevar las películas de ciencia ficción a la rueda de interrogatorios para destripar su plausibilidad científica y sacar a relucir sus errores, tanto los expertos como los errores suelen ceñirse a la física. En cambio, la biología suele olvidarse. Al fin y al cabo, como aún no tenemos la menor idea de cómo son los alienígenas –si es que existen–, todo vale. ¿No?

Pues no, no todo vale. De hecho, probablemente no valgan más cosas de las que valen. La biología tiene sus propias reglas. En último término, la biología es una aplicación de la física y la química, y aunque el mayor número de variables aumenta la cota de incertidumbre, está claro que hay cosas que no pueden ser de ninguna manera.

Por ejemplo, las críticas científicas de la saga Alien analizan los bocados relativos a las naves, el espacio, la presión, la gravedad y cosas por el estilo. Pero nunca he leído ninguna (aunque probablemente exista sin que yo la haya descubierto) que abra el siguiente y evidente melón: es enormemente cuestionable que un organismo pueda multiplicar su tamaño y peso de forma desmedida en horas o días; pero desde luego, es absolutamente imposible que lo haga sin alimentarse de la materia necesaria para ganar ese aumento de peso y volumen.

Alien: Covenant. Imagen de 20th Century Fox.

Alien: Covenant. Imagen de 20th Century Fox.

La materia no se crea ni se destruye; para que un ser vivo multiplique su peso por diez, necesita incorporar una cantidad de materia aún mayor, teniendo en cuenta que una gran parte de su alimento se excretará en forma de desechos o para mantener funciones básicas como la refrigeración (sudor). Conclusión: a no ser que se inflen simplemente con aire, ni un pulpo, ni un percebe ni un xenomorfo pueden crecer de la nada en unas horitas.

Plantear un alienígena plausible no es tarea fácil, dado que en efecto aún no conocemos ninguno. Pero son tantos los frentes a cubrir, el biofísico, el bioquímico, el bioenergético, el fisiológico, el ecológico o el evolutivo, que casi todo alienígena inventado corre el riesgo de hacer aguas por un lado u otro, incluso en aspectos tan aparentemente nimios como el que ya conté aquí a propósito de Chewbacca: dado que el folículo piloso y la glándula sudorípara son especializaciones de la piel mutuamente excluyentes, los animales peludos (salvo los caballos, un caso peculiar que también comenté) no sudan lo suficiente como para regular su temperatura, por lo que los wookies deberían pasarse toda la saga de Star Wars jadeando como los perros.

Ya, ya, es cierto que George Lucas nunca ha pretendido que Star Wars sea científicamente creíble. (Pero esperen: ¿no era este el mismo tipo que se inventó aquello de los midiclorianos en analogía con la teoría de la endosimbiosis para convertir la Fuerza en, según sus propias palabras, “una metáfora de una relación simbiótica que permite la existencia de vida”?)

Es más; incluso solucionar el problema del frío cubriendo a los alienígenas de una gruesa capa de pelo es cuando menos infundado. Hoy parece suficientemente demostrado que el pelo de los mamíferos y las plumas de las aves proceden evolutivamente de las escamas de los reptiles, y que los genes específicos para fabricar pelo ya existían en estos últimos antes de que engendraran las ramas que darían lugar a los otros dos grupos.

Por lo tanto, los mamíferos no inventaron realmente el material básico del pelo, sino que se limitaron a modificar algo que habían heredado de los reptiles para acomodarlo a sus necesidades (por decirlo de algún modo; entiéndase que la evolución no tiene propósitos ni intenciones); entre ellas, la protección térmica. Esto de aprovechar un invento de la evolución para otro fin diferente al original se conoce en biología como exaptación.

Pero los reptiles en los que surgió el material necesario para crear el pelo vivían en climas cálidos, por lo que originalmente este mecanismo no era un invento contra el frío. En resumen, es probable que una especie alienígena que ha evolucionado en un planeta helado no lleve pelo para abrigarse, sino algún otro tipo de ingenio evolutivo más específicamente adaptado a esa misión.

Recordando los alienígenas de casi cualquier película que nos venga a la mente, es inmediato que suelen fallar en un aspecto u otro, o en todos. Por ejemplo, todo ser complejo tiene una forma definida, ya que es una regla básica de la biología que la complejidad requiere un alto grado de especialización estructural. Así que no es posible cambiar de forma alegremente cada minuto o tomar el aspecto de otros organismos, salvo que seas algo tan poco inteligente como un moho mucilaginoso. Adiós a La cosa y a las múltiples versiones de La invasión de los ultracuerpos.

La cosa (versión de 1982). Imagen de Universal Pictures.

La cosa (versión de 1982). Imagen de Universal Pictures.

Tampoco existen los seres vivos aislados, ni como especies ni como individuos. En su día, el astrofísico Carl Sagan hizo un cálculo de cuántos monstruos del lago Ness podrían existir si existía alguno, aunque aplicó exclusivamente criterios de física de colisiones. Pero además todo organismo necesita lo que en biología se conoce como Población Mínima Viable, un número de ejemplares que permita la supervivencia de la especie con una diversidad genética suficiente como para perpetuarse sin acabar degenerando hasta la extinción. Y toda especie requiere un aporte de biomasa, así que un alienígena viable depende de un ecosistema que le sostiene.

Otro error frecuente es pasear a los alienígenas por el medio terrestre como si estuvieran en su casa. No se trata solo de la respiración de nuestra atmósfera, sino que la Tierra impone una multitud de condiciones ambientales que podrían resultar hostiles y hasta invivibles para una especie surgida en otro planeta diferente, desde nuestra gravedad hasta nuestros niveles de irradiación, o incluso las amenazas biológicas que nosotros hemos aprendido durante millones de años a mantener a raya.

Un ejemplo muy bien concebido de esto último eran los marcianos de H. G. Wells en La guerra de los mundos, que sucumbían a las bacterias terrestres al carecer de nuestra inmunidad. Wells era biólogo, así que ya hace un siglo predecía que el mayor riesgo para un marciano durante una invasión terrestre no serían los humanos, sino las infecciones.

La guerra de los mundos (versión de 2005). Imagen de Paramount Pictures / DreamWorks Pictures.

La guerra de los mundos (versión de 2005). Imagen de Paramount Pictures / DreamWorks Pictures.

En cuanto a las presuntas bioquímicas alternativas propuestas a menudo en la ciencia ficción, a veces son pura fantasía sin el menor sustento científico. El ejemplo más clásico es el silicio como alternativa al carbono. Una regla básica de la vida es que empleamos materia para alimentar nuestros procesos vitales gracias a la energía almacenada en los enlaces químicos de esas sustancias. Como resultado del proceso, generamos compuestos degradados con un nivel energético menor; es una simple resta. Cuando los organismos terrestres consumimos compuestos orgánicos para alimentarnos, producimos agua y dióxido de carbono (CO2) como productos finales. Son los residuos oxidados de la actividad biológica.

El CO2 es un gas a temperatura ambiente, motivo por el cual lo evacuamos fácilmente. Pero aunque el silicio ofrezca una estructura atómica equiparable a la del carbono en sus posibilidades de formar enlaces, algunos de sus compuestos tienen propiedades químicas notablemente diferentes.

Por ejemplo, el dióxido de silicio (SiO2) es sólido; para entendernos, básicamente es arena. Su temperatura de fusión es de 1.713 ºC, y la de ebullición es de 2.950 ºC; nos pongamos como nos pongamos, temperaturas incompatibles con cualquier forma de vida. En la Tierra, muchos organismos emplean SiO2 precisamente por su dureza, como material de construcción o defensa contra depredadores. Pero una situación muy diferente sería producirlo como residuo metabólico, ya que sería muy difícil eliminarlo de forma constante y en grandes cantidades. ¿Imaginan cómo podríamos estar continuamente expulsando arena de nuestros pulmones?

Un alienígena basado en el silicio en el episodio 'The Devil in the Dark' de la serie 'Star Trek' (1967). Imagen de CBS Television Distribution.

Un alienígena basado en el silicio en el episodio ‘The Devil in the Dark’ de la serie ‘Star Trek’ (1967). Imagen de CBS Television Distribution.

En la próxima entrega seguiremos hablando de esta cuestión, entrando en otro de los clásicos de la ciencia ficción: los alienígenas con forma más o menos humana. ¿Es plausible que en un planeta muy diferente del nuestro evolucionen seres antropomorfos?

La historia humana se complica: a cambiar los libros de texto

Los libros de texto de ciencias deberían imprimirse a lápiz, para que el profesor pudiera indicar a los alumnos qué deberían borrar y qué deberían escribir sobre lo borrado. No, es broma, pero no lo es tanto. Lo cierto es que el conocimiento científico avanza todos los días, a veces matizando o incluso rectificando ideas básicas, y sería de esperar que cada año se revisaran las ediciones de los libros de texto para incluir lo nuevo.

Esto justificaría que los hermanos no puedan heredar los libros y que deban comprarse nuevos cada año. Pero lamentablemente, no parece que sea el caso. Ya conté aquí que al menos un libro de texto de primaria de una de las principales editoriales, aunque imagino que ocurrirá lo mismo con otros, emplea una clasificación de los seres vivos en cinco reinos que está obsoleta desde hace décadas.

Otra de esas ideas básicas es: ¿desde hace cuánto tiempo existe nuestra especie? Cuando yo era estudiante, aprendíamos que el Homo sapiens surgió hace unos 100.000 años en África. Después, nuevos descubrimientos en Etiopía duplicaron la historia de los humanos modernos: 200.000 años. Y cuando ya nos habíamos acostumbrado a esta cifra, se nos cae de nuevo.

Esta semana, dos estudios publicados en Nature (uno y dos) describen nuevos huesos humanos y restos de industria lítica hallados en un enclave conocido desde los años 60, Jebel Irhoud, un afloramiento rocoso unos 100 kilómetros al oeste de Marrakech que antiguamente formaba una cueva. Los huesos incluyen parte de un cráneo con ciertos rasgos arcaicos, como la forma de la caja encefálica, pero cuyos rostro y dientes son inequívocamente Homo sapiens.

Reconstrucción del cráneo de Homo sapiens de 300.000 años de edad hallado en Jebel Irhoud (Marruecos). Imagen de Philipp Gunz / MPI EVA.

Reconstrucción del cráneo de Homo sapiens de 300.000 años de edad hallado en Jebel Irhoud (Marruecos). Imagen de Philipp Gunz / MPI EVA.

La clave de los resultados está en la datación de los restos. La nuevas tecnologías de fechado por métodos físicos avanzados están permitiendo datar muestras allí donde la cronología de los estratos del terreno no es una referencia fiable. Hace unas semanas conté aquí cómo estas técnicas han revelado que el Homo naledi, una especie hallada en Suráfrica, vivió hasta hace algo más de 200.000 años, y que este posible solapamiento histórico de una especie humana primitiva con los sapiens en África era hasta entonces algo totalmente inesperado.

Ahora parece confirmarse que los sapiens y los naledi coincidieron en África: según las técnicas de datación utilizadas por los investigadores, los restos de Jebel Irhoud tienen una antigüedad de unos 300.000 años. Esta es la nueva cifra que desde ahora deberemos citar sobre la edad de nuestra especie.

Pero sus implicaciones van mucho más allá: no solo tendremos que acostumbrarnos a la nueva idea de que nuestros ancestros sapiens compartían el continente africano al menos con otra especie humana más, si no con varias; además, los restos de Marruecos, los más antiguos de Homo sapiens conocidos ahora, están muy lejos de África Oriental, que se consideraba la cuna de la humanidad. ¿Qué hacían aquellos sapiens precoces tan lejos de su presunta cuna?

Obviamente, la respuesta es que la idea de la cuna, otro de los pilares clásicos de la paleoantropología, también se tambalea. Según escriben los investigadores, encabezados por el Instituto de Antropología Evolutiva Max Planck de Alemania y el Instituto Nacional de Ciencias de la Arqueología y el Patrimonio de Marruecos, los resultados “muestran que los procesos evolutivos detrás de la aparición del Homo sapiens implicaron a todo el continente africano”. “Estos datos sugieren un origen a mayor escala, potencialmente panafricano”, concluyen.

Y eso, si es que nuestro origen africano no acaba también cayéndose. Hoy está generalmente aceptado que el Homo sapiens surgió en África (a diferencia del neandertal, de origen europeo), y nadie podrá defender algo diferente con pruebas en la mano mientras no se hallen claros restos de nuestra especie anteriores a los 300.000 años de antigüedad fuera de aquel continente.

Pero otra cosa es que sus ancestros también fueran africanos. Hasta ahora se asumía que era así; al menos hasta que el mes pasado dos controvertidos estudios (uno y dos) afirmaran que el hominino más antiguo conocido hasta hoy (los homininos incluyen a los humanos y sus parientes antiguos más próximos que no eran simios) es una especie llamada Graecopithecus freybergi, de más de siete millones de años de antigüedad y hallada en un lugar tan inesperado como Grecia.

En resumen, y si añadimos otros estudios que he comentado recientemente aquí, como el que atribuye al hobbit de Flores un origen africano y el que ha empujado la edad de los primeros restos humanos en América desde los 24.000 años a los 130.000, este está siendo un año especialmente intenso para la paleoantropología, con descubrimientos que están resquebrajando algunos de los muros que hasta ahora sostenían el edificio de la evolución humana.

Hace tiempo, un eminente genetista evolutivo se me quejaba de la aparente tendencia que tenemos los periodistas de ciencia a caer en ese tópico de “esto obligará a reescribir…”. Pero qué le vamos a hacer: con cierta frecuencia, en ciencia hay que demoler lo resquebrajado para construir algo nuevo. Podemos llamarlo reconstruir, reconfigurar, reformular, o todos los res que a uno se le puedan ocurrir, pero en el fondo no dejan de ser lo mismo: reescribir. Y por eso, la ciencia hay que escribirla a lápiz.

Ciencia semanal: el “planeta corchopán” y el eslabón perdido de las ballenas

Repasamos algunas noticias científicas que ha dejado esta tercera semana de mayo.

Un planeta ligero como el corchopán

Incluso entre los científicos hay quienes tienen ojo para el marketing, y quienes no. Si este amplio equipo de investigadores de varios países, dirigido por la Universidad Lehigh (EEUU), se hubiese limitado a presentar su hallazgo como el tercer exoplaneta de menor densidad bien caracterizado hasta ahora, nadie les habría prestado atención.

Pero se les ocurrió publicitarlo comparando su densidad con la del poliexpán (más correctamente, poliestireno expandido; el corcho blanco de toda la vida, aunque personalmente me gusta más llamarlo corchopán en homenaje a los geniales Gomaespuma). Y ¡bang!: el estudio se ha comentado esta semana en todos los medios de ciencia, lo que me obliga a mencionarlo también aquí.

El planeta KELT-11b, a 320 años luz de nosotros, es un 40% mayor que Júpiter, pero pesa solo la quinta parte. Los científicos aún tratan de entender qué proceso lleva a algunos de estos gigantes gaseosos a inflarse como globos. La hipótesis de los autores del estudio es que se debe a la alta dosis de radiación que KELT-11b recibe de su estrella, a la que se encuentra muy próximo y que se está expandiendo al convertirse en una gigante roja.

Ilustración del exoplaneta KELT-11b. Imagen de Walter Robinson/Lehigh University.

Ilustración del exoplaneta KELT-11b. Imagen de Walter Robinson/Lehigh University.

La ballena que perdió las patas

Aunque todos los descubrimientos de fósiles revelan datos valiosos para entender qué pasaba en nuestro planeta cuando aún no estábamos aquí, son especialmente preciados los que nos presentan una foto de la evolución en acción; lo que popularmente se conoce como eslabones perdidos, aunque esta expresión no gusta a muchos paleontólogos.

Este es el caso de Mystacodon selenensis, la ballena de hace 36,4 millones de años descrita esta semana por investigadores de Bélgica, Francia, Italia y Perú, y que es ahora la especie más próxima al momento en que los cetáceos se dividieron en dos grupos que perduran hasta hoy: los que tienen dientes (odontocetos), como el cachalote o la orca, y los que filtran su alimento del agua mediante esos filamentos llamados precisamente ballenas (misticetos).

Los científicos estiman que hace 55 millones de años un grupo de mamíferos comenzó a adaptarse a la vida acuática. Unos 14 millones de años después, sus patas delanteras se habían transformado en aletas, mientras las traseras se iban atrofiando. Hace 38 o 39 millones de años comenzaron a diferenciarse dos grupos que 15 millones de años después se definieron como hoy los conocemos, odontocetos y misticetos. Ambos fueron perdiendo las patas traseras al mismo tiempo.

La nueva especie, descubierta en la costa de Perú, se convierte ahora en la más próxima a ese momento en que las dos ramas se separaron, acercándose un par de millones de años más que la especie más antigua conocida hasta ahora. Esta ballena, del tamaño de un delfín, aún tenía patas traseras residuales. También conservaba los dientes, pero según los científicos estaba especializada en alimentarse sorbiendo pequeñas presas del fondo marino, abriendo el camino hacia la alimentación por filtración que se impondría en los misticetos hace unos 23 millones de años.

Ilustración de 'Mystacodon selenensis'. Imagen de Alberto Gennari.

Ilustración de ‘Mystacodon selenensis’. Imagen de Alberto Gennari.

El continente blanco se vuelve verde

A estas alturas los signos del cambio climático ya no deberían ser una sorpresa para nadie, pero cada nuevo estudio es una oportunidad para transmitirnos una llamada de urgencia ante lo que está ocurriendo. En otros lugares del mundo un paisaje que verdea es una buena noticia, pero no en la Antártida, donde la proliferación de musgo observada por investigadores británicos es un hecho preocupante, consecuencia de la desaparición progresiva de los hielos. Y si a esto añadimos que otras regiones del planeta se están calentando a un ritmo mucho más rápido que la Antártida, el panorama es aún más alarmante.

Bancos de musgo en la Antártida. Imagen de Matt Amesbury.

Bancos de musgo en la Antártida. Imagen de Matt Amesbury.

El mordisco catastrófico del T-rex

Con la desaparición de los dinosaurios no aviares perdimos joyas de la naturaleza, pero el mundo sería un lugar mucho más complicado para nosotros si tuviéramos que compartirlo con el tiranosaurio rex. Un nuevo estudio de dos investigadores de EEUU pone cifras a lo incómodo que habría resultado el mordisco de un T-rex: el dinosaurio más mítico ejercía una presión con las mandíbulas de más de 3.600 kilos, más del doble que los cocodrilos, los actuales campeones del bocado. Esta presión transmitía a sus dientes una fuerza de casi 200.000 kilos por pulgada cuadrada. Con tales mordiscos el tiranosaurio era capaz de provocar en sus víctimas lo que los investigadores definen como una “catastrófica explosión de los huesos” para comerse la médula, como hoy hacen las hienas.

Imagen de Florida State University.

Imagen de Florida State University.

Ciencia semanal: los ‘Homo erectus’ podrían haber tocado el piano

Una ronda rápida de las noticias científicas más destacadas de esta semana que termina.

Pensando como humanos desde hace 1,8 millones de años

¿Desde cuándo los humanos somos humanos? Si pudiéramos de repente introducirnos en la mente de un individuo perteneciente a una especie ancestral de la familia humana, como un australopiteco o un Homo erectus, ¿a partir de cuál de ellos nos reconoceríamos a nosotros mismos como humanos, con nuestra autoconsciencia y nuestra capacidad de raciocinio?

Esta es una de las preguntas más interesantes de la paleoantropología, y también de las más difíciles de responder. Ni siquiera podemos precisar del todo cómo siente y piensa hoy uno de nuestros parientes vivos más próximos, como el bonobo o el chimpancé; ¿cómo hacerlo para una especie que desapareció hace miles de años?

Las nuevas tecnologías y la creatividad de los científicos hoy están logrando adentrarse en terrenos que antes parecían impenetrables. En muchos casos la clave de estos avances está en la interdisciplinariedad, la comunicación entre especialistas de ramas científicas muy diversas, tanto que hasta hace unos años no podría imaginarse para qué los conocimientos de uno podrían servir al otro. Por ejemplo, y como he contado aquí en alguna ocasión, hoy los arqueólogos ya no solo emplean libros y herramientas de campo, sino que aprovechan la capacidad de herramientas físicas avanzadas como los aceleradores de partículas para desentrañar secretos de sus hallazgos que serían inaccesibles por otros medios.

La investigadora de la Universidad de Indiana (EEUU) Shelby Putt es neuroarqueóloga, una especialidad que habría parecido absurda hace unos años, ya que ni el pensamiento ni su sustrato biológico, las neuronas, dejan huellas en el registro fósil. Pero Putt ha ideado un precioso experimento para tratar de entender cómo nuestros parientes ancestrales se parecían a nosotros en sus capacidades mentales.

La neuroarqueóloga de la Universidad de Indiana Shelby Putt. Imagen de U of Iowa.

La neuroarqueóloga de la Universidad de Indiana Shelby Putt. Imagen de U of Iowa.

Putt y sus colaboradores pusieron a un grupo de voluntarios a fabricar herramientas de piedra como lo hacían los antiguos homininos en dos etapas distintas de la evolución: según la industria olduvayense, que comenzó a utilizarse hace 2,6 millones de años, o la achelense, más avanzada, cuyos primeros restos se remontan a hace 1,8 millones de años con el Homo erectus, y que se han fabricado hasta hace unos 100.000 años. Mientras los voluntarios se dedicaban a esta artesanía prehistórica, se registraba su actividad cerebral mediante una técnica avanzada no invasiva llamada espectroscopía funcional de infrarrojo cercano.

Los resultados, publicados en Nature Human Behaviour, muestran que la fabricación de las herramientas olduvayenses, más primitivas, solo requiere la actividad de regiones cerebrales implicadas en la atención visual y el control motor. Por el contrario, las achelenses activan una parte del cerebro mucho mayor, incluyendo áreas de alto nivel intelectual implicadas en la planificación. “Sorprendentemente, estas partes del cerebro son las mismas implicadas en actividades modernas como tocar el piano”, dice Putt. El estudio concluye: “La fabricación de herramientas achelenses puede tener más vínculos evolutivos con interpretar a Mozart que con citar a Shakespeare”.

Los superbichos son anteriores a los dinosaurios

Las bacterias multirresistentes, inmunes a todos los antibióticos conocidos, son hoy una de las mayores preocupaciones de epidemiólogos y especialistas en salud pública. Conocidos coloquialmente como superbichos (superbugs en inglés), estos microbios suelen anidar en los hospitales y en numerosas ocasiones provocan la muerte de pacientes ingresados por otras causas. Algunos expertos llegan incluso a dibujar un futuro atemorizador, en el que nuestros antibióticos actuales serán del todo inservibles y regresaremos a la época en que no teníamos herramientas para combatir las infecciones bacterianas.

Un nuevo estudio dirigido por Michael Gilmore, de la Facultad de Medicina de Harvard (EEUU), y publicado en la revista Cell, ha rastreado los orígenes evolutivos de un tipo de superbichos, los enterococos. Los resultados son sorprendentes: el origen de estos seres se remonta a hace 450 millones de años, en una época anterior a los dinosaurios, cuando los primeros animales estaban saliendo del agua para colonizar el medio terrestre.

Imagen de Mark Witton.

Imagen de Mark Witton.

Según los investigadores, cuando aquellos animales comenzaron a abandonar el medio acuático, llevaron con ellos los ancestros de los enterococos, y aquel cambio de hábitat fue seleccionando los genes necesarios para hacerlos resistentes a la desecación, a la falta de nutrientes y a las sustancias antimicrobianas, en lo cual está el origen de su extraordinaria resistencia a todo tipo de agresiones del medio externo. Cuatrocientos cincuenta millones de años después, es evidente que su estrategia evolutiva ha sido todo un éxito para ellos, y una seria amenaza para nosotros.

Un médico pronosticó el ciberataque

El premio al profeta de la semana se lo lleva Krishna Chinthapalli, neurólogo del Hospital Nacional de Neurología y Neurocirugía de Londres. El pasado miércoles, Chinthapalli recordaba en la revista British Medical Journal un reciente ciberataque a un hospital de Los Ángeles en el que se utilizó un virus de ransomware, que obliga a los atacados a pagar un rescate para recuperar el control de sus sistemas informáticos. El neurólogo escribía: “Deberíamos estar preparados: casi con seguridad este año más hospitales sufrirán ataques de ransomware“. Solo dos días después, un ataque con el ransomware WannaCry secuestraba el sistema británico de salud pública, entre otras muchas instituciones de varios países.

La Nebulosa del Cangrejo, vista como nunca

Les dejo con esta nueva y espectacular imagen de la Nebulosa del Cangrejo, publicada esta semana. La nebulosa es el resto de la violenta explosión de una supernova que pudo verse en el cielo en el año 1054 de nuestra era. Esta nueva imagen se ha construido superponiendo capturas en todo el espectro de luz tomadas por cinco instrumentos astronómicos: ondas de radio en rojo por el VLA, infrarrojo en amarillo por el telescopio espacial Spitzer, luz visible en verde por el Hubble, ultravioleta en azul por el XMM-Newton y rayos X en morado por el Chandra.

Nueva imagen de la Nebulosa del Cangrejo. Imagen de NASA, ESA, G. Dubner (IAFE, CONICET-University of Buenos Aires) et al.; A. Loll et al.; T. Temim et al.; F. Seward et al.; VLA/NRAO/AUI/NSF; Chandra/CXC; Spitzer/JPL-Caltech; XMM-Newton/ESA; y Hubble/STScI.

Nueva imagen de la Nebulosa del Cangrejo. Imagen de NASA, ESA, G. Dubner (IAFE, CONICET-University of Buenos Aires) et al.; A. Loll et al.; T. Temim et al.; F. Seward et al.; VLA/NRAO/AUI/NSF; Chandra/CXC; Spitzer/JPL-Caltech; XMM-Newton/ESA; y Hubble/STScI.