BLOGS
Ciencias mixtas Ciencias mixtas

Los secretos de las ciencias para
los que también son de letras

Entradas etiquetadas como ‘biología molecular’

El Nobel de Química que murió en España

Los nombres de Santiago Ramón y Cajal y Severo Ochoa son hoy de sobra conocidos incluso para el ciudadano medio sin conocimientos de ciencia. Pero esto, más que un motivo para celebrar, es una razón para el sonrojo: son las dos únicas personas nacidas en España que han alcanzado el reconocimiento de un Nobel de ciencia.

El número de españoles ganadores de un Nobel de Literatura más que duplica esta cifra (cinco, para ser exactos). El historiador del CSIC Ricardo Campos, en un estudio sobre la eugenesia del franquismo (que conté en detalle aquí), escribía que el psiquiatra franquista Juan José López Ibor definía al hombre español como “estoico, sobrio, buscador de gloria militar y literaria, despectivo hacia la ciencia y la técnica e impasible frente la muerte”. Y así hemos llegado a donde estamos.

Para un estadounidense o un británico, aprenderse la lista de sus científicos laureados con el Nobel sería casi misión imposible. Y ni siquiera la diferencia entre su potencia científica y la nuestra es suficiente justificación: como conté aquí en una ocasión, España es el undécimo país en número de publicaciones científicas (de hecho, cuando lo conté éramos los décimos, pero la reciente edad oscura para la ciencia española nos ha hecho perder un puesto que será muy complicado volver a recuperar), pero se queda en un vergonzoso vigésimo séptimo lugar en número de premios Nobel de ciencia, a la altura de Luxemburgo o Lituania.

Wendell Meredith Stanley en 1946, el año en que ganó el Nobel de Química. Imagen de Wikipedia.

Wendell Meredith Stanley en 1946, el año en que ganó el Nobel de Química. Imagen de Wikipedia.

Todo lo anterior me ha venido al hilo del recuerdo de un episodio poco conocido, y es que si este país solo ha alumbrado dos Nobel de ciencia, en cambio ha matado a uno más. Es un decir, claro; en realidad fue su corazón lo que mató a Wendell Meredith Stanley el 15 de junio de 1971, unas horas después de pronunciar una conferencia en la Universidad de Salamanca. Al día siguiente, 16 de junio, el diario ABC (que daba la noticia a toda página bajo el epígrafe “vida cultural”) contaba que Stanley, profesor de la Universidad de Berkeley y Nobel de Química en 1946, había fallecido de madrugada a la edad de 67 años por un infarto de miocardio en su alojamiento, el Colegio Fonseca.

Stanley había viajado a Barcelona con motivo de un congreso científico en compañía de Severo Ochoa, con quien mantenía amistad, y había sido invitado a Salamanca por el bioquímico Julio Rodríguez Villanueva, quien antes de la conferencia de Stanley advirtió de que “las preguntas que formularan al premio Nobel se le hicieran despacio, a causa de que había sufrido varios ataques al corazón”, contaba ABC. La preocupación de Villanueva no pudo ser más premonitoria.

Pero ¿quién era Wendell Meredith Stanley? Resulta curioso que para un país como EEUU un Nobel de ciencia sea algo tan de andar por casa que algunos de ellos sean casi unos completos desconocidos. Fuera de los círculos de la microbiología y la biología molecular (y tal vez dentro), el nombre de Stanley solo invita a encoger los hombros, e incluso su página en la Wikipedia inglesa no le dedica más de cuatro o cinco párrafos.

Casi oculto, Wendell Stanley asoma la cabeza al fondo de esta foto tomada en la Casa Blanca en 1961, durante un encuentro con científicos del presidente John F. Kennedy. Imagen de White House / Wikipedia.

Casi oculto, Wendell Stanley asoma la cabeza al fondo de esta foto tomada en la Casa Blanca en 1961, durante un encuentro con científicos del presidente John F. Kennedy. Imagen de White House / Wikipedia.

Y sin embargo, podríamos decir que Wendell Stanley fue nada menos que el descubridor de los virus. Para los iniciados en el tema esta afirmación puede ser discutible, pero démosle la vuelta: si hubiera que nombrar a un solo científico/a como descubridor de los virus, ¿quién merecería este título más que Wendell Stanley?

En la segunda mitad del siglo XIX el francés Louis Pasteur y el alemán Robert Koch sentaron la teoría microbiana de la enfermedad, según la cual las infecciones estaban provocadas por los microbios. Pasteur, Koch y otros científicos comenzaron a identificar las bacterias responsables de numerosas enfermedades, y las infecciones dejaron de ser un misterio a medida que iban cayendo una tras otra bajo el microscopio de los investigadores.

Pero una se les resistía: la rabia. Nadie era capaz de aislar bajo las lentes una bacteria a la que culpar de la rabia. Lo mismo ocurría con ciertas enfermedades de las plantas, en las cuales los investigadores buscaban causas bacterianas al hilo de los trabajos de Pasteur y Koch, pero sin éxito. Uno de estos científicos era el químico alemán Adolf Mayer, que en 1886 describió una plaga a la que denominó mosaico del tabaco, que arruinaba las hojas de esta planta entonces tan apreciada. Mayer extraía savia de una planta afectada y la inoculaba en un ejemplar sano, observando que la enfermedad se transmitía. Pero cuando estudiaba la savia al microscopio, no encontraba nada.

Mayer y otros investigadores, como el ruso Dmitri Ivanovsky, descubrieron que el misterioso causante del mosaico del tabaco era algo capaz de atravesar no solo un papel de filtro, sino también unos filtros de porcelana inventados por el francés Charles Chamberland y que servían para limpiar un líquido de bacterias. ¿Qué era lo que causaba aquella infección del tabaco?

La teoría de la época suponía que se trataba de una toxina o de una bacteria diminuta, hasta que en 1898 el holandés Martinus Beijerinck se atrevió a aventurar que aquella enfermedad del tabaco estaba causada por otro tipo de agente infeccioso que no era una bacteria, al que llamó “virus”, “veneno” en latín, un término que ya se había empleado siglos antes en referencia a agentes contagiosos desconocidos. Beijerinck acertó al sugerir que el virus era algo más o menos vivo (no como una toxina), ya que solo afectaba a las células que se dividían. Pero se equivocó al proponer que era de naturaleza líquida.

A partir de los experimentos de Beijerinck, los microbiólogos comenzaron a llamar “virus” a todo agente infeccioso invisible al microscopio y que atravesaba los filtros. El primero en detectarse en animales fue el de la fiebre aftosa, y después llegaron los humanos, el de la fiebre amarilla, la rabia, la viruela y la poliomielitis. Pero aunque ya era de conocimiento común que todas estas enfermedades eran víricas, en realidad aún no se tenía la menor idea sobre qué y cómo eran estos virus. Aún se seguía admitiendo generalmente que no eran partículas, sino misteriosos líquidos infecciosos, una especie de veneno vivo.

Aquí es donde entra nuestro Stanley. En la década de los 30 apareció el microscopio electrónico, una herramienta que permitía hacer visible lo invisible al microscopio óptico tradicional. Y con el potencial que ofrecía esta nueva tecnología, en 1935 Stanley se propuso destripar de una vez por todas la naturaleza del virus del mosaico del tabaco, emprendiendo uno de esos trabajos penosos que alguien tenía que hacer en algún momento: despachurró una tonelada de hojas de tabaco, extrajo su jugo, lo purificó, y de todo ello finalmente obtuvo una exigua cucharadita de polvo blanco. Pero allí estaba el virus del mosaico del tabaco, una especie de minúsculo ser con forma alargada que seguía siendo infectivo incluso cuando estaba cristalizado; es decir, lo que llamaríamos más o menos muerto.

El virus del mosaico del tabaco al microscopio electrónico. Imagen de Wikipedia.

El virus del mosaico del tabaco al microscopio electrónico. Imagen de Wikipedia.

En realidad fueron otros investigadores los que después obtuvieron las primeras imágenes de microscopía electrónica del virus del mosaico del tabaco, y Stanley se equivocó en algunas de sus hipótesis, como cuando propuso que el virus solo estaba compuesto por proteínas. Pero no solo su virus fue realmente el primer virus que ya era algo más que un nombre, sino que aquella extraña capacidad de infectar incluso cuando estaba cristalizado descubrió para la ciencia el rasgo fundamental de los virus, y es que no son exactamente seres vivos, o al menos no como los demás. Pero esta ya es otra historia.

¿Podría hacerse un test de ADN a los presuntos restos del autor de ‘El principito’? (II)

Ayer conté aquí que hoy existen parientes vivos por línea materna de Antoine de Saint-Exupéry, el autor de El principito, y que por tanto el ADN mitocondrial de estos familiares serviría de patrón de comparación para estudiar si los restos del aviador desconocido enterrados en Carqueiranne (Francia) son los del escritor.

Antoine de Saint-Exupéry. Imagen de Zyephyrus / Wikipedia.

Antoine de Saint-Exupéry. Imagen de Zyephyrus / Wikipedia.

Pero ¿qué posibilidades habría de recuperar ADN mitocondrial viable de la tumba de Carqueiranne? Siempre que los restos del aviador desconocido no fueran incinerados, es posible que aún quede algún fragmento de hueso o algún diente que pudieran servir para la identificación. Una dificultad añadida es que probablemente el cuerpo se enterró junto a otros, ya que se trataba de una fosa común; en este caso un resultado positivo sería una confirmación, mientras que uno negativo no refutaría la posibilidad de que St-Ex fuera enterrado allí, ya que los restos analizados podrían ser los de otro cadáver sepultado en la misma tumba.

Respecto a la posibilidad de que quede algún fragmento del que pueda extraerse material, hay precedentes en los que se ha logrado rescatar y analizar ADN mitocondrial de restos aún más antiguos y conservados en condiciones parecidas. Uno de los casos más notables es el del “niño desconocido” del Titanic, el cadáver de un bebé que se recuperó del mar a los pocos días del naufragio y que fue enterrado en Halifax (Canadá), donde permaneció sin identificar hasta hace solo unos años.

Aunque el clima en Halifax es más frío que en el sur de Francia, lo que favorece la conservación, en su contra tenía el hallarse en una zona permeada por aguas subterráneas, que en combinación con los ácidos del suelo disolvieron la mayor parte de los restos. Cuando se abrió la tumba en 2001, se recuperaron tres piezas dentales y un fragmento de 6 centímetros de un hueso del brazo, suficiente material para extraer ADN mitocondrial que llevó a la identificación del niño como Sidney Leslie Goodwin, un bebé inglés de 19 meses (este estudio rectificaba un análisis anterior que resultó erróneo).

El "niño desconocido" del Titanic, Sidney Goodwin. Imagen de Wikipedia.

El “niño desconocido” del Titanic, Sidney Goodwin. Imagen de Wikipedia.

Por lo tanto, es posible que a pesar del tiempo transcurrido aún quede algún fragmento recuperable en la tumba de Carqueiranne que permitiera un análisis de ADN mitocondrial. Pero si persistiera algún resto, incluso no sería descartable que pudiera además extraerse algo de ADN nuclear. En 2013, un estudio estableció un protocolo para extraer y secuenciar ADN cromosómico de restos sumergidos en agua de mar durante ocho meses, a pesar de que el material se encontraba altamente degradado y con un número de copias muy escaso. Incluso en algún caso se ha logrado un análisis de ADN nuclear de restos hallados en el mar después de 10 años; concretamente, huesos del pie en una bota de goma.

Si pudiera extraerse algo de ADN nuclear, quizá podría compararse con los parientes vivos actuales, pero de esas secuencias también podría obtenerse información complementaria de cara a una identificación. Por ejemplo, hoy los genetistas tienen localizadas ciertas regiones del genoma que pueden relacionarse con rasgos físicos como el color del pelo o de los ojos.

Es más, el análisis de los restos antiguos hoy tampoco se limita al ADN, sino que el estudio de los isótopos (variantes concretas de los átomos) presentes en huesos y dientes puede revelar pistas que no bastan para una identificación, pero que pueden servir como indicios adicionales. Los isótopos presentes en el esmalte dental, que se forma durante la infancia, permiten conocer detalles sobre el lugar geográfico donde se crió el personaje y cuál era su dieta predominante durante sus primeros años de vida, mientras que los huesos desvelan datos sobre ubicación y alimentación también en la edad adulta, ya que el tejido óseo se renueva a lo largo de la vida.

Un ejemplo brillante del uso de estas técnicas fue la investigación que en 2014 llevó a la identificación de los huesos del rey inglés Ricardo III, que vivió en el siglo XV y cuyos restos yacían bajo un aparcamiento en Leicester. Gracias al análisis de isótopos los investigadores pudieron saber que el personaje allí enterrado se crió en Northamptonshire, que a los siete años había emigrado hacia el oeste del país y que en sus últimos años bebía mucho vino y comía sobre todo peces de río y aves de caza. Estos detalles cuadraban con los datos históricos, lo que sirvió para confirmar los resultados de las pruebas de ADN.

Claro que, para que todo esto pueda hacerse, es necesario que alguien esté interesado, y no parece que sea el caso: hasta donde he podido saber, no ha existido siquiera una insinuación de practicar un análisis a los restos del aviador desconocido enterrados en Carqueiranne. Aún más, y como conté hace unos días, parece que en varias ocasiones los herederos de Saint-Exupéry han tratado de boicotear las investigaciones encaminadas a esclarecer el misterio de su desaparición en el mar. En primer lugar trataron de desacreditar al pescador que halló la pulsera del escritor, y posteriormente lograron bloquear durante años el examen de los restos del avión.

¿Cuál es el motivo de esta oposición? En 2004, tras el hallazgo de los restos del avión en el Mediterráneo, uno de los buceadores que participaron en la operación dijo a la agencia France Press: “no había una hélice doblada ni agujeros de bala… Viendo los fragmentos, pensamos en una hipótesis de una caída casi vertical a alta velocidad. Pero es solo una conjetura”.

Dibujo del Lockheed P-38 F-5 Lightning que Saint-Exupéry pilotaba cuando desapareció. Imagen de Cédric Chevalier / Wikipedia.

Dibujo del Lockheed P-38 F-5 Lightning que Saint-Exupéry pilotaba cuando desapareció. Imagen de Cédric Chevalier / Wikipedia.

La teoría principal hasta entonces proponía que el avión de St-Ex, un aparato de reconocimiento sin armas, había sido abatido por un caza alemán. Por ello, en 1948 sus herederos obtuvieron para el escritor el reconocimiento legal de Mort pour la France, muerto por Francia. Sin embargo, a raíz de las pruebas halladas en 2004, cobró fuerza la hipótesis de que St-Ex había decidido poner fin a su vida, una idea defendida por el historiador de la aviación Bernard Mark.

Deprimido por los problemas con su esposa, las deudas y las falsas acusaciones de colaboracionismo con los nazis, bebía en exceso, y “ocho días antes de su última misión había dado pistas de que pensaba en el suicidio”, dijo Mark. La noche antes de aquel vuelo final no durmió. Había dejado sus papeles en orden, había regalado su máquina de escribir y su juego de ajedrez, y había escrito sobre su indiferencia hacia la vida. Cuando el comandante de su escuadrilla supo aquella mañana que había partido, reprendió al personal de tierra: “¿Por qué diablos le habéis dejado volar?”.

A raíz de todo aquel revuelo, un sobrino del escritor, Jean d’Agay, dijo que “las leyendas como Saint-Exupéry no deberían tocarse”. Al parecer, incomodaba la posibilidad de que la reputación del héroe quedara deteriorada. Para dar carpetazo al asunto, el gobierno francés se adhirió a la hipótesis de que St-Ex había caído al mar debido al agotamiento del suministro de oxígeno, una idea sin prueba alguna.

Pero la historia dio un curioso giro en 2008, cuando un expiloto de la Luftwaffe alemana llamado Horst Rippert dio un paso al frente afirmando que él había derribado a St-Ex aquel 31 de julio de 1944. La historia de Rippert fue entonces cuestionada por la prensa francesa. Sin embargo, en octubre del pasado año se publicaba el libro Saint-Exupéry, révélations sur sa disparition, en el que Luc Vanrell (el buceador que encontró los restos del avión) y tres colaboradores dicen presentar pruebas de que Rippert abatió el aparato del escritor. Los autores explican la ausencia de agujeros de proyectil alegando que la parte del avión que recibió los balazos no se ha conservado.

¿Caso resuelto? Tal vez. O tal vez no. Al menos el libro quizá contribuya a que la leyenda no se toque, como deseaba Jean d’Agay. Evidentemente, una eventual identificación de los restos de Carqueiranne no aportaría nada respecto a si St-Ex fue abatido o se suicidó, pero removería un pasado que algunos prefieren dejar como está.

Sin embargo, llama la atención que uno de los firmantes del nuevo libro sea François d’Agay, otro sobrino del escritor. A esto se le pueden poner muchos nombres, pero el más aséptico de ellos es “conflicto de intereses”. Aunque solo sea por el hecho de que, cuando a un artista se le concede la designación de Mort pour la France, sus herederos reciben una extensión de copyright de 30 años para sus obras en Francia. Lo que, sumado a los 70 años habituales, aún les deja a los d’Agay un par de décadas por delante para seguir percibiendo derechos por las ventas de El principito y por el uso del personaje en su país.

¿Podría hacerse un test de ADN a los presuntos restos del autor de ‘El principito’? (I)

Como conté hace unos días, en el cementerio de Carqueiranne (Francia) reposan los restos de un aviador desconocido que apareció muerto en la costa unos días después de la desaparición en vuelo del escritor y aviador Antoine de Saint-Exupéry. ¿Sería posible averiguar si aquel cuerpo era el del autor de El principito?

Y en primer lugar, ¿a alguien le importa? Las actitudes con respecto a esto son diversas: para algunos, más aferrados a una mentalidad tradicional, el análisis de los restos humanos es una quiebra del respeto al difunto, mientras otros opinan que precisamente el respeto a la persona fallecida exige la identificación de su cadáver por los medios técnicos disponibles.

En cualquier caso y como explicaré mañana, es improbable que alguien vaya a promover el examen de los restos de Carqueiranne. Y tal vez ni siquiera quede nada que analizar. Pero si lo hubiera, ¿sería posible practicar una prueba de ADN después de tantas décadas? ¿Habría alguien con quien compararla?

Antoine de Saint-Exupéry, en Canadá en mayo de 1942. Imagen de Wikipedia.

Antoine de Saint-Exupéry, en Canadá en mayo de 1942. Imagen de Wikipedia.

Hoy los expertos en ADN antiguo son capaces de recuperar material legible de miles de años, o incluso cientos de miles de años. Pero los científicos especializados en este campo suelen coincidir en dos cosas: una, que el éxito del test no depende tanto de la edad de las muestras como de su estado de conservación; las muestras más antiguas de ADN que han podido secuenciarse se extrajeron de cadáveres conservados en suelos congelados o de huesos encontrados en cuevas frescas y secas.

En el caso de St-Ex, como se le conoce en Francia, un cuerpo que flotó en el mar durante varios días y después permaneció enterrado durante más de siete décadas, con un traslado de restos incluido, no es desde luego la fuente óptima para obtener una muestra viable. Pero la segunda cosa en la que coinciden los expertos es: hasta que no se intenta, no se sabe si será posible; y si no se intenta, nunca se sabrá.

Una breve explicación sobre los test genéticos. Nuestras células contienen ADN en dos lugares distintos. Por un lado, el núcleo celular alberga los cromosomas que heredamos de nuestros progenitores, 22 del padre y 22 de la madre (llamados autosomas), y un par de cromosomas sexuales; XX en las mujeres, XY en los hombres.

Cromosomas humanos: pares de autosomas (1-22) y cromosomas sexuales (un par de X y una copia de Y). Los hombres llevan XY, las mujeres XX. Imagen de Nami-ja / Wikipedia.

Cromosomas humanos: pares de autosomas (1-22) y cromosomas sexuales (un par de X y una copia de Y). Los hombres llevan XY, las mujeres XX. Imagen de Nami-ja / Wikipedia.

Los test genéticos clásicos, inventados en los años 80 por el británico Alec Jeffreys y que se han empleado desde entonces para las pruebas de paternidad y los estudios forenses, se basan en el análisis de ciertas regiones de los autosomas –llamadas microsatélites– que varían en distintas personas, y que son muy diferentes entre los sujetos no emparentados. Pero este método, llamado Huella Genética o DNA Fingerprinting, es poco útil cuando se trata de muestras antiguas; en los espermatozoides y los óvulos, los pares de cromosomas paterno-materno se intercambian fragmentos entre sí, por lo que la huella genética de una persona se va diluyendo en las generaciones sucesivas.

En cambio, esto no sucede con el cromosoma sexual masculino Y, que no tiene pareja y por tanto no intercambia fragmentos con otro. Por ello, este cromosoma suele servir como referencia válida para comprobar el parentesco incluso entre dos personas separadas por muchas generaciones. Pero para que este análisis sea posible, es necesario que esas dos personas compartan el mismo cromosoma Y. Dado que este se hereda de padre a hijos varones, se incluyen en este caso los hermanos y sus ascendientes y descendientes por línea paterna masculina.

St-Ex no tuvo hijos, y su único hermano varón, François, murió a los 15 años; por cierto, sirviendo de inspiración para el personaje del principito. Para comprobar si existe hoy algún patrón de comparación del cromosoma Y sería necesario estudiar si queda algún otro descendiente masculino de sus ancestros por línea paterna; básicamente se trataría de buscar a algún pariente varón que hoy lleve el Saint-Exupéry como primer apellido. De lo contrario, si no existe, el cromosoma Y del escritor se habría extinguido con él, por lo que no habría hoy ningún familiar que sirviera como patrón de comparación.

De todos modos, la mayor dificultad con el ADN antiguo es recuperar muestras viables de los cromosomas nucleares, ya que solo hay una copia por cada célula y el material genético tiende a degradarse con el tiempo. En cambio, la probabilidad de obtener una muestra válida aumenta enormemente con el segundo lugar de nuestras células que alberga ADN, las mitocondrias.

Esquema de la célula, la mitocondria y el ADN mitocondrial. Imagen de National Human Genome Research Institute / Wikipedia.

Esquema de la célula, la mitocondria y el ADN mitocondrial. Imagen de National Human Genome Research Institute / Wikipedia.

Las mitocondrias son las pilas de la célula. Son los orgánulos que proporcionan la energía necesaria para todos los procesos celulares. Hoy se piensa que originalmente, hace miles de millones de años, eran bacterias de vida libre, que en algún momento se fusionaron con otras células para vivir en simbiosis, aportando energía y recibiendo cobijo a cambio. Como herencia de aquel pasado independiente, las mitocondrias conservan su propio ADN, que sirve para producir componentes de consumo propio. Dado que cada célula contiene cientos o incluso miles de mitocondrias, y que cada una de ellas lleva entre 2 y 10 copias de su ADN, esto significa cientos o miles de copias del ADN mitocondrial en una sola célula, lo que mejora inmensamente las perspectivas de conseguir una muestra analizable.

Sin embargo, como ocurre con el cromosoma Y, el ADN mitocondrial tampoco sirve para estudiar el parentesco entre dos personas cualesquiera, sino que deben estar relacionadas por las reglas de la herencia de este material genético. Cuando un espermatozoide fecunda un óvulo, del primero solo se conserva el núcleo, mientras que el segundo aporta la mayor parte de las estructuras celulares. Por lo tanto, hombres y mujeres llevamos el ADN mitocondrial de nuestra madre. Así, para que este genoma secundario confirme el parentesco entre dos personas, es necesario que ambas estén relacionadas por línea materna.

St-Ex tuvo tres hermanas, Marie-Madeleine, Simone y Gabrielle, con quienes compartía el ADN mitocondrial de su madre. Que yo haya podido encontrar, al menos una de ellas, Gabrielle, tuvo dos hijas, Marie Magdeleine y Mireille, y estas a su vez han tenido un total de cinco hijas (además de algún varón que, de seguir vivo, llevaría también el mismo ADN mitocondrial), por lo que parece que el ADN mitocondrial del escritor sigue vivo y que por tanto en este caso sí habría un patrón de comparación.

(Continuará mañana)

El virus asturiano de Lloviu reaparece en Hungría 14 años después

En 2013, investigadores húngaros encontraron medio millar de murciélagos muertos en las montañas de Bükk, una sección de los Cárpatos al noreste del país donde se conocen más de 1.000 cavernas. Los animales eran murciélagos de cueva Miniopterus schreibersii, una especie distribuida sobre todo por el centro-sur de Europa, Oriente Próximo y norte de África, y que suele concentrarse en colonias de miles de individuos en cavidades naturales o artificiales.

En aquella ocasión los investigadores no lograron determinar qué había matado a aquellos animales debido al mal estado de los restos, pero observaron que tenían sangre coagulada en la nariz, como si hubieran sufrido una hemorragia respiratoria. Como resultado de la vigilancia en la zona, en 2016 y 2017 se hallaron nuevos cadáveres con iguales síntomas. Uno de los ejemplares recogidos en 2016 aún estaba lo suficientemente intacto como para analizar sus tejidos en busca de una posible causa de la muerte.

Colonia de murciélagos de cueva ('Miniopterus schreibersii'), la especie en la que se descubrió el virus de Lloviu. Imagen de Wikipedia.

Colonia de murciélagos de cueva (‘Miniopterus schreibersii’), la especie en la que se descubrió el virus de Lloviu. Imagen de Wikipedia.

Los investigadores llevaron aquel y otros murciélagos al laboratorio de nivel de bioseguridad 4 (sí, en Hungría tienen lo que nosotros no tenemos) del Centro de Investigación de Szentágothai, en la Universidad de Pécs, y allí sometieron los restos a una prueba destinada a pescar genomas de posibles virus. En el animal menos dañado estaba la respuesta: allí encontraron un genoma igual en un 98% al del virus de Lloviu, lo más parecido al ébola que se conoce, identificado en 2011 en España y EEUU a partir de murciélagos muertos hallados unos años antes en la cueva asturiana del Lloviu (y cuya historia resumí ayer). Teniendo en cuenta el grado de variación de los virus, un 98% equivale a decir prácticamente idéntico: es el mismo virus, que ha reaparecido 14 años después en el otro extremo de Europa.

Según el estudio, dirigido por los virólogos Ferenc Jakab y Gábor Kemenesi, y publicado en la revista del grupo Nature Emerging Microbes & Infections, los investigadores han detectado el virus en los pulmones y en el bazo del animal, pero no en otros órganos como el riñón, el cerebro o el hígado, ni en una garrapata que encontraron en el cuerpo del murciélago. Aún no pueden saber con certeza en qué tejidos del murciélago se instala preferentemente el lloviu ni si fue la causa de la muerte de los animales, pero su detección en los pulmones y los síntomas de hemorragia respiratoria son indicios que apoyan lo que ya se sospechaba sobre el virus asturiano.

Por desgracia y a pesar de disponer de un laboratorio adecuado para trabajar con el virus, los científicos húngaros tampoco han logrado aislarlo. Los intentos de infectar un cultivo celular para crecerlo y recolectarlo han sido infructuosos, por lo que el lloviu continúa en la naturaleza sin dejarse atrapar para un estudio a fondo, más allá de los experimentos que han reconstruido algunas de sus piezas moleculares.

Respecto a cómo ha llegado el lloviu desde España hasta Hungría, los investigadores tampoco pueden arriesgar ninguna explicación. “Esta incidencia suscita la pregunta de si ha sido una segunda introducción del lloviu en Europa [no puede descartarse que proceda de otro continente, aunque por el momento no se ha hallado en otros lugares] o una circulación silenciosa que ha tenido lugar entre los murciélagos europeos”, escriben en el estudio.

Cadáveres de murciélagos de cueva con signos de hemorragia respiratoria en Hungría, en febrero de 2016. En el ejemplar de la izquierda, el más intacto, se detectó el virus de Lloviu. Imagen de S. Boldogh / Kemenesi et al, Emerg Microbes Infect 2018.

Cadáveres de murciélagos de cueva con signos de hemorragia respiratoria en Hungría, en febrero de 2016. En el ejemplar de la izquierda, el más intacto, se detectó el virus de Lloviu. Imagen de S. Boldogh / Kemenesi et al, Emerg Microbes Infect 2018.

Pero como es obvio, es muy plausible es que el virus se haya expandido por Europa. Los murciélagos de cueva son animales migratorios. Según escribe el ecólogo de la Universidad de Murcia Fulgencio Lisón en la Enciclopedia Virtual de los Vertebrados Españoles del CSIC, se han registrado migraciones de 800 kilómetros en España, y estos animales son capaces incluso de cruzar el mar para volar entre Mallorca y Menorca.

Aún se ignora por completo si el lloviu puede representar una amenaza para el ser humano, pero el nuevo estudio alerta de la necesidad de mantener una adecuada vigilancia de los ecosistemas para detectar posibles riesgos de enfermedades emergentes que pudieran afectar a animales o humanos. El año pasado, un estudio descubría que al menos tres grupos distintos de filovirus, incluyendo el ébola, están circulando entre los murciélagos de la fruta en China, muy lejos de los remotos rincones africanos en los que normalmente se les supone. Antes de que un nuevo brote vuelva a desatar la histeria que ocasionó el ébola en 2014, y como suelen decir los expertos, el trabajo más importante es el que se lleva a cabo cuando (aún) no hay epidemia.

Un nuevo hardware para estudiar el virus de Lloviu, primo asturiano del ébola

En 2011 un equipo de investigadores de España y EEUU identificaba el primer virus de la familia del ébola hallado en Europa, detectado en cadáveres de murciélagos recogidos nueve años antes en la cueva asturiana del Lloviu. Siete años después, el bautizado como virus de Lloviu, o LLOV, aún no ha podido ser aislado en el laboratorio. Apenas quedan muestras originales del virus. No sabemos si fue el verdadero responsable de la muerte de los animales. Pero sobre todo, no sabemos hasta qué punto podría ser peligroso para los humanos; aunque todas las pruebas experimentales apuntan que se parece mucho, muchísimo, al ébola.

Nos encontramos en mitad de una apasionante historia científica que desde este blog vengo siguiendo y narrando desde 2014, cada vez que surge alguna de las muy esporádicas y aún fragmentarias novedades sobre el lloviu. Resumiendo lo ocurrido hasta ahora, el virus fue identificado en los murciélagos pescando su genoma en los tejidos de los animales muertos. El análisis de dicho genoma reveló que se trataba de un nuevo filovirus, la familia que hasta entonces comprendía siete virus: ébola, reston, bundibugyo, sudán, taï forest, marbugo y ravn. De todos ellos, el lloviu entraba como el más semejante al ébola en sus genes.

Aunque el virus recibió el nombre del lugar donde se halló, se sospecha que, si realmente fue el responsable de las muertes de los murciélagos –se descartaron otras posibles causas–, podía haber estado también presente en otras cuevas de España, Portugal y Francia, donde al mismo tiempo se observó una similar mortalidad en esta especie concreta, Miniopterus schreibersii, o murciélago de cueva.

Un murciélago de cueva 'Miniopterus schreibersii', especie en la que se descubrió el virus de Lloviu. Imagen de Wikipedia.

Un murciélago de cueva ‘Miniopterus schreibersii’, especie en la que se descubrió el virus de Lloviu. Imagen de Wikipedia.

El hallazgo fue obra del equipo del Laboratorio de Arbovirus y Enfermedades Víricas Importadas del Centro Nacional de Microbiología del Instituto de Salud Carlos III (ISCIII), en Majadahonda (Madrid), dirigido entonces por el químico Antonio Tenorio, uno de esos nombres que deberían obtener un mayor reconocimiento en este país tan ignorante de sus brillantes científicos. Sin embargo, dado que en España no existe ni un solo laboratorio de nivel de bioseguridad 4, requerido para trabajar con patógenos tan peligrosos como el ébola (sí, hay quienes dicen: “no los necesitamos”; o sea, que no los necesitan ellos), los experimentos se han realizado en otros centros de EEUU.

Esos experimentos no han logrado aislar el virus; es decir, sacarlo entero de los murciélagos, echarlo a un cultivo de células para que se reproduzca y guardarlo después en un tubo. Como conté hace un par de años, de las muestras originales de los murciélagos en los que se detectó el lloviu, ya apenas queda nada aprovechable. Pero esto no implica que no pueda seguir investigándose: dado que se conoce su genoma, los científicos pueden reconstruir algunas partes de él y utilizarlas para ensayar qué hacen esas partes a los cultivos celulares; por ejemplo, colocar esas partes en un virus del Ébola para comprobar en qué cambia su manera de actuar. Algo así como tener el motor de un Ford y colocárselo a un Renault para ver cómo funciona.

Gracias a este tipo de experimentos con los llamados pseudovirus (un virus disfrazado de otro), científicos de EEUU, Japón, Australia y Alemania, en algún caso con la colaboración del ISCIII, han podido descubrir que teóricamente el lloviu sería capaz de infectar células humanas y de monos, que podría bloquear la respuesta inmunitaria del mismo modo que lo hace el ébola, que posiblemente actúa del mismo modo que el ébola en células de murciélago (aunque ciertos detalles aún están por estudiar), y que parece capaz de escapar de ciertos mecanismos celulares de control del mismo modo que lo hace el ébola.

En resumen, los experimentos no han hecho sino confirmar que el lloviu es una criatura extremadamente parecida al ébola. Lo cual, siempre insisto, no implica que el virus asturiano tenga por qué provocar los mismos efectos que el africano. Se sabe que el ébola mata a humanos y monos, pero no a murciélagos. En virología se dice que estos últimos animales sirven como reservorio del virus, ya que este se mantiene y se reproduce en ellos sin causarles daño. El reston, algo más diferente del ébola que el lloviu, es casi inofensivo para los humanos, pero no para los monos. Y sin embargo el marburgo y el ravn, más diferentes del ébola que el reston, son letales para nosotros y nuestros parientes primates.

De lo anterior se concluye que ciertos virus son capaces de derribar por completo el organismo de una especie sin apenas provocarle molestias a otra, mientras que otros virus muy similares pueden causar efectos diferentes o incluso opuestos. Lo cual solo es una muestra de lo mucho que aún falta por conocer en el campo de los virus y sus mecanismos. En cuanto al lloviu, se supone que podría ser mortal para los murciélagos, aunque no se ha confirmado, y que su reservorio podría estar en los insectos. Su peligrosidad para los humanos es una completa incógnita.

Las últimas novedades sobre el lloviu acaban de llegar en forma de dos nuevos estudios. En el primero de ellos, investigadores de la Academia China de Ciencias Médicas dirigidos por Ying Guo han logrado fabricar nueve pseudovirus que utilizan como base el virus del sida VIH (sería la carrocería del Renault, en el ejemplo anterior), al que le han puesto distintos disfraces para asemejarlo a cada uno de los filovirus conocidos, incluido el lloviu.

Con estos pseudovirus han logrado simular la infección in vitro –en células en cultivo–, pero además con tres de ellos, el pseudoébola, el pseudomarbugo y el pseudolloviu, han infectado ratones de laboratorio en los que pueden seguir el proceso de la infección gracias a que al VIH utilizado se le ha añadido un gen que produce luz.

El estudio chino no aporta un nuevo descubrimiento, sino un nuevo hardware para la investigación, un sistema de estudio que permitirá a los científicos ensayar posibles antivirales contra el ébola, el marburgo y el lloviu. La ventaja de este modelo es que permite trabajar en laboratorios de nivel de bioseguridad 2, menos exigente que el 4, ya que el VIH es un virus de contagio más difícil que el ébola. Por el momento, los autores del trabajo ya han comprobado que dos fármacos llamados clomifeno y toremifeno, anteriormente identificados como inhibidores de la infección por filovirus, protegen a los ratones de la infección por estos pseudovirus.

El segundo estudio sí nos descubre un nuevo dato interesante, pero ya es tarde por hoy. Mañana seguimos.

¿Fue Rosalind Franklin, codescubridora de la hélice de ADN, discriminada por ser mujer?

Rosalind Franklin, la mujer cuya aportación fue esencial para el descubrimiento de la estructura de la doble hélice de ADN, sufrió discriminación por ser mujer. Dicho esto, pensarán que este va a ser el artículo más corto en la historia de este blog. Pero lo cierto es que la historia de Franklin, de cuya muerte hoy se cumplen 60 años, es más complicada de lo que una simple afirmación categórica puede dar a entender.

Rosalind Franklin.

Rosalind Franklin.

Conviene detenerse un poco en los detalles para comprender hasta qué punto la contribución de Franklin fue infravalorada, y si en ello existió una discriminación de género o si se debió a otras causas más relacionadas con el (mal) proceso científico. Sobre todo por evitar la frivolización que lleva a reconstruir la historia como una fábula de buenos y malos; y que especialmente en las redes sociales a veces tiende a prender las antorchas hasta los extremos delirantes –como he podido leer hoy– de escribirse barbaridades tales como calificar al resto de los implicados en la historia de “celosos” y “mediocres”.

En los años 50 la discriminación hacia las mujeres era indudablemente mayor que hoy, y la ciencia no escapaba a este estado de cosas. En el terreno científico, inumerables mujeres fueron históricamente apartadas o menospreciadas. Incluso aquellas que conseguían superar los impedimentos sociales para labrarse una carrera científica difícilmente conseguían hacerse ver tras la sombra de sus colegas masculinos; un ejemplo clamoroso es el de Marie Curie, quien nunca habría recibido su primer Nobel en 1903 de no haber sido porque su marido Pierre, que sí estaba nominado, presionó con la ayuda de un miembro del comité para que a su esposa se le reconociera el que legítimamente era su trabajo.

Sin embargo, es esencial distinguir entre la discriminación de una mujer por el hecho de ser mujer, y por otros motivos diferentes de su género. Para ilustrarlo, traigo de nuevo un ejemplo que ya he contado aquí extensamente: el de Jocelyn Bell Burnell, la codescubridora del primer púlsar. Cuando el hallazgo trascendió y los medios se interesaron por este nuevo objeto astronómico, Bell Burnell fue tratada por los periodistas con un sesgo (hoy) intolerablemente machista, como cuando le preguntaban si tenía muchos novios o si era más alta que la princesa Margarita.

Pero cuando en 1974 el premio Nobel de Física distinguió únicamente a su supervisor, Antony Hewish, aquello no fue discriminación sexista, sino científica. Bell Burnell era la becaria, y los Nobel no se conceden a los becarios. Esta norma se aplica no solo en los premios suecos, sino de forma general, salvo excepciones, en todo el mundo de la ciencia. La propia Bell Burnell (con la humildad que suele distinguir a muchos de los grandes científicos) tuvo que salir al paso de ciertas manipulaciones sesgadas: “Pienso que los premios Nobel quedarían degradados si se concedieran a estudiantes de investigación, excepto en casos muy excepcionales, y no creo que este sea uno de ellos”, dijo.

El caso de Franklin es aún más complicado, porque concurrieron otros numerosos factores, incluyendo una mala gestión por parte de los responsables, algún malentendido, cierto juego sucio y una dosis de enemistades personales. Para no extenderme demasiado voy a ahorrarles los antecedentes de la historia del descubrimiento de la estructura del ADN para ir directamente al grano.

Debo comenzar desmontando la crítica de trazo más grueso, aunque este dato es ya conocido y evidente para los informados: si Watson, Crick y Wilkins recibieron el Nobel de Química en 1962, y Franklin no, fue porque Franklin había fallecido de cáncer en 1958, y el premio nunca se concede a título póstumo. Es más: los tres científicos fueron nominados por primera vez para el premio en 1960, dos años después de la muerte de Franklin. En ciencia nunca se conceden los premios en caliente, sino que los hallazgos deben dejarse reposar no solamente para corroborar su veracidad, sino para que pueda comprobarse su impacto posterior.

¿Habría recibido Franklin el Nobel de no haber quedado su vida prematuramente segada por el cáncer? Nunca lo sabremos. El premio sueco solo puede partirse en tres. De haberse tenido que establecer un rango de contribuciones exclusivamente a la estructura del ADN, creo que pocos cuestionarán que Franklin tendría que haber figurado en tercer lugar por encima de Wilkins. Pero aquí regresamos a la cuestión de las jerarquías y explicamos lo dicho más arriba sobre la gestión deficiente y los malentendidos.

Cuando Franklin dejó París para incorporarse al King’s College de Londres, lo hizo bajo la invitación de John Randall, el director del grupo de biofísica, y ante la insistencia de Wilkins, quien deseaba contar con la participación de la brillante investigadora. De hecho, Wilkins insistió en que Franklin debía dejar su trabajo en proteínas para centrarse en el ADN.

Pero Randall cometió una enorme torpeza: al escribir a Franklin, la informó de que la línea del ADN sería de su exclusiva competencia, lo cual equivalía a equipararla con Wilkins en la jerarquía del laboratorio. Sin embargo, Randall jamás planteó esta situación a Wilkins, quien pensaba que la investigadora trabajaría en su equipo. Lo que siguió era lo esperable: Franklin pensaba que Wilkins se inmiscuía en su trabajo, y este que ella pretendía quitarle su línea.

Añadimos ahora el ingrediente de las enemistades personales: Wilkins y Franklin no se soportaban. Él era tímido, y ella tenía un carácter difícil. Según escribió Matthew Cobb en su libro Life’s Greatest Secret: The Race to Crack the Genetic Code, una amiga de Franklin decía de ella que “sus maneras eran bruscas y a veces buscaba la confrontación; suscitó bastante hostilidad entre la gente con la que se trataba y parecía bastante insensible a ello”.

En medio de todo este embrollo, el becario de Wilkins, Raymond Gosling, quedó en un extraño limbo entre ambos investigadores; una situación (y doy fe de ello en primera persona porque viví algo similar) tremendamente incómoda y difícil de manejar. Y entonces, sucedió que Gosling tomó la famosa Foto 51, la que más claramente mostraba la estructura helicoidal del ADN. Es importante insistir en este detalle: fue el becario Gosling quien obtuvo la imagen; aunque naturalmente y como ya he explicado, el éxito debía apuntarse en el haber de su supervisor. Pero ¿cuál de ellos? Gosling había sido reasignado a Franklin por Randall sin el conocimiento de Wilkins, pero según cuenta Cobb, para entonces había sido devuelto de nuevo a Wilkins cuando Franklin ya preparaba su nuevo traslado a otro laboratorio. Probablemente Gosling ya no sabía realmente a quién debía reportar, pero era perfectamente natural que mostrara la imagen también a Wilkins.

Llegamos ahora al juego sucio: Wilkins mostró a Watson una imagen tomada por quien él creía su becario, pero que se había obtenido bajo la dirección de Franklin. ¿Hubo mala intención por parte de Wilkins? No puede descartarse. ¿Fue sexismo? No hay ningún motivo de peso para creerlo. Sin embargo, la foto es solo una parte de la historia: la imagen revelaba claramente una estructura helicoidal, pero para definirla con precisión fueron necesarios los datos numéricos del King’s College que fueron proporcionados por este laboratorio al de Watson y Crick en la Universidad de Cambridge, y que la propia Franklin había presentado antes en un seminario.

Pero seguimos con el juego sucio. Dado que Watson y Crick basaron su modelo teórico en gran medida en los datos de Franklin, debieron hacerla partícipe de ello desde el principio. No la informaron, pero tampoco a Wilkins, que era quien les había mostrado la imagen. Los investigadores de Cambridge desarrollaron su trabajo gracias en buena parte a los datos del King’s College, pero a espaldas del King’s College. Es mala práctica científica, pero de nuevo no hay motivos para una acusación de discriminación sexista.

Rosalind Franklin. Imagen de Jewish Chronicle Archive / Heritage-Images / Wikipedia.

Rosalind Franklin. Imagen de Jewish Chronicle Archive / Heritage-Images / Wikipedia.

Con todo, Franklin casi logró llegar en solitario y por su cuenta a las mismas conclusiones que Watson y Crick, lo que demuestra el enorme talento de la investigadora. Pero los dos de Cambridge se adelantaron con un modelo completo. Cuando finalmente Watson y Crick revelaron su estructura a sus rivales del King’s College, la carrera hacia el ADN ya era historia. Finalmente la solución de compromiso fue publicar tres artículos independientes en Nature, uno firmado por Watson y Crick, otro por Wilkins y sus colaboradores, y el tercero por Franklin y Gosling.

Este resumen de la historia muestra que no puede achacarse justificadamente una falta de reconocimiento científico a Franklin por el hecho específico de ser mujer. Durante su confección del modelo, Watson y Crick dejaron de lado tanto a Franklin como a Wilkins, y no digamos al becario Gosling, autor material de la Foto 51. Cuando llegó el momento de las nominaciones al Nobel, Franklin ya había fallecido. De no haber sido así, a menudo se ha sugerido la hipótesis de que Watson y Crick podrían haber recibido el Nobel de Medicina, y Wilkins y Franklin el de Química. La científica podría además haber optado a un segundo galardón: en 1982 se concedió el Nobel a Aaron Klug por su trabajo en los cristales de proteínas y ácidos nucleicos en los virus, una línea que Klug había iniciado como becario de Franklin después de su etapa en el King’s College.

Pero como he sugerido al comienzo, esto tampoco implica que la científica no sufriera discriminación de género. En su época, las mujeres investigadoras eran una minoría. Muchas de ellas debían demostrar mucho más que los hombres para ganarse el respeto de sus colegas masculinos. El King’s College heredaba la apolillada tradición anglosajona de los gentlemen’s clubs, y tenía un comedor solo para hombres. Durante aquellos años, Watson mostró una actitud desdeñosa hacia Franklin que era incuestionablemente machista, y que solo rectificó años después. Sí, Franklin fue víctima del machismo, como muchas otras mujeres de su época e incluso de la nuestra. Pero lo que cercenó su carrera no fue el machismo, sino el cáncer.

Diez ideas para entender la clonación (6-10)

Les traigo hoy la segunda parte de las diez ideas para entender qué es y para qué sirve la clonación, con el fin de evitar esa desinformación que, como les decía ayer, solo lleva al lado oscuro… Empiezo con algo que contradice lo que quizá hayan escuchado muchas veces:

6. Dolly no fue el primer animal clonado, ni el primer mamífero, y ni siquiera la primera oveja.

Como les conté ayer, entre finales del siglo XIX y principios del XX se clonaron erizos de mar y tritones, y en 1938 el alemán Hans Spemann propuso por primera vez (hay quienes lo sugirieron incluso antes, como el francés Yves Delage) la Transferencia Nuclear de Células Somáticas (SCNT en inglés), lo que hoy conocemos como el “método Dolly”. Spemann nunca lo puso en práctica, y fueron los estadounidenses Robert Briggs y Thomas King quienes primero lo aplicaron con éxito en 1952 para obtener ranas clónicas.

Suele decirse que Briggs y King no conocían las ideas de Spemann, lo que resulta difícil de creer teniendo en cuenta que Spemann había ganado un Nobel. En efecto no hay ninguna referencia al alemán en el estudio de los americanos. Pero hay que tener en cuenta que, como expliqué ayer, Spemann era un científico trabajando para el Tercer Reich, por lo que no habría sido adecuado citarle.

Aún había una diferencia entre el experimento de Briggs y King y el “método Dolly”: para clonar la oveja en 1996 se utilizó el núcleo de una célula adulta (ayer expliqué brevemente el proceso), pero los dos estadounidenses tuvieron que emplear una célula embrionaria porque no lograron que funcionara con células adultas. Sin embargo, este obstáculo fue superado en 1958 por el inglés John Gurdon, que consiguió clonar ranas a partir de células adultas del intestino de un renacuajo.

El salto a los mamíferos llegó en 1975, cuando el también inglés Derek Bromhall obtuvo embriones clónicos de conejo. Dada la mayor dificultad de trabajar con células de mamíferos, Bromhall lo hizo solo con células embrionarias, y se detuvo en el paso de los embriones sin llegar a intentar producir conejos clónicos. En su día el trabajo de Bromhall fue muy divulgado, motivo por el cual el director de cine Franklin J. Schaffner solicitó la asesoría científica del británico para su película Los niños del Brasil, en la que se contaba la ficticia historia de la creación de clones de Hitler (y de la que hablé recientemente en otro medio).

La película ayudó a espolear el debate sobre la clonación humana, que tomó fuerza cuando en 1981 un investigador en Ginebra publicó la clonación de ratones, un experimento que hoy muchos consideran fraudulento. Pero poco después el danés Steen Willadsen obtuvo ovejas clónicas a partir de células embrionarias. Las de Willadsen, y no Dolly, fueron las primeras ovejas y los primeros mamíferos clonados.

Curiosamente, los experimentos del danés no fueron recibidos con tanto bombo y platillo como Dolly en la década posterior. Incluso se lee por ahí que Willadsen no llegó más allá de los embriones, a pesar de que su estudio de 1986 dice: “tres de los cuatro blastocistos [embriones] transferidos a ovejas receptoras durante la temporada de cría 1983-84 se desarrollaron hasta ovejas completas”. Seguramente le faltó algo de marketing y relaciones públicas. Además de bautizarlas con nombres pegadizos.

No, no es Dolly. Primeras ovejas clonadas en 1984 por el danés Steen Willadsen. Imagen de Willadsen, Nature 1986.

No, no es Dolly. Primeras ovejas clonadas en 1984 por el danés Steen Willadsen. Imagen de Willadsen, Nature 1986.

Antes de Dolly aún hubo un paso más, el que en 1987 lograron Neal First, Randal Prather y Willard Eyestone clonando dos terneros a partir de células embrionarias. Y por fin, en 1996 llegó Dolly, creada por Ian Wilmut y Keith Campbell en el Instituto Roslin de Edimburgo. La novedad que aportó Dolly fue que por primera vez se empleó el núcleo de una célula adulta cultivada. Es decir, que Dolly fue el primer mamífero clonado a partir de una célula adulta, en concreto de la glándula mamaria. Lo cual inspiró a los científicos para bautizarla en honor a los grandes pechos de la cantante Dolly Parton; esto sí es marketing, aunque la broma no fue bien recibida por todo el mundo.

Después de Dolly llegaría la clonación en otras especies, incluyendo los primeros monos clónicos creados con células embrionarias y los primeros embriones de monos clonados con células adultas. El nuevo estudio chino que comenté ayer ha conseguido los primeros monos clonados con células adultas. Entiendo que lo de células adultas, células embrionarias y embriones puede parecer un trabalenguas, pero quédense con este mensaje: todo lo contado hasta aquí se refiere a la clonación llamada reproductiva. El fin que se busca en humanos, la clonación terapéutica (que ahora explicaré), requiere poder utilizar células adultas. Esto lo logró por primera vez en 2013 el investigador ruso en EEUU Shoukrat Mitalipov.

7. Hay dos tipos de clonación, reproductiva y terapéutica.

La clonación reproductiva consiste en obtener un organismo clónico de otro. El interés en humanos es otro, la clonación terapéutica. Consiste en utilizar el núcleo de la célula adulta de una persona, por ejemplo de la piel, para producir un embrión clónico de esa persona. El embrión no se utiliza entonces para crear un bebé, sino para obtener células madre embrionarias con las cuales puedan fabricarse tejidos y órganos de reemplazo que puedan trasplantarse al paciente con un 100% de compatibilidad, ya que son sus propias células.

8. La clonación en animales es una valiosa herramienta de investigación.

Experimentos como el de Dolly y otros que he mencionado no se hacen por diversión o por un “mira lo que sé hacer”, sino que son parte de algo mucho mayor, un paso en el camino hacia un objetivo: disponer de modelos animales con los que investigar nuevos tratamientos para enfermedades hoy incurables. Aunque la clonación, como ya expliqué, no es ingeniería genética, combinándola con métodos de modificación del ADN (lo que se conoce como edición genómica) pueden crearse animales idénticos excepto en un gen, por ejemplo el causante de una enfermedad.

Actualmente esto se logra con cepas puras de animales, por ejemplo de ratones, ratas o moscas, obtenidas mediante cruces endogámicos hasta que todos los individuos son genéticamente muy parecidos. Esta semejanza genética es necesaria para experimentar sobre un fondo genético conocido y uniforme, sin variables desconocidas que puedan afectar a los resultados, y con animales de control muy similares a los del ensayo. Los investigadores llevan décadas empleando estos modelos para simular enfermedades humanas, desde la diabetes al cáncer pasando por las neurodegenerativas, y estos experimentos han aportado inmensos avances a la medicina. La posibilidad de crear animales clónicos, idénticos excepto en los genes responsables de ciertas enfermedades, permitirá evitar pasos en falso y reducir los controles necesarios, lo que acelerará las investigaciones.

Algunas áreas de investigación se bastan con cultivos celulares, como era el caso de mi campo durante mi época de investigador, los procesos moleculares en células inmunitarias. Pero para estudiar la respuesta inmune in vivo o la neurodegeneración en el cerebro, o para las investigaciones farmacológicas, los animales son irremplazables. Oigan lo que oigan por ahí, es extremadamente improbable que en el futuro un sistema in vitro o in silico (informatizado) pueda sustituir por completo a un sistema vivo. Hoy las autoridades y los propios centros de investigación manejan normativas muy estrictas de bienestar animal que tratan de evitar todo sufrimiento innecesario, pero si queremos medicina, la experimentación animal continúa siendo imprescindible y probablemente siempre lo será.

Quienes se oponen a la experimentación con animales tienen todo el derecho a sostener sus convicciones, pero no tienen derecho a privar al resto de la población de los beneficios que estos ensayos aportan a la medicina. Tampoco parecería sensato que tuvieran que acogerse a la opción personal de la objeción de conciencia, renunciando a todo tratamiento médico obtenido por experimentación animal, lo que más o menos equivale a decir todo tratamiento médico. Y a falta de esta renuncia, el argumento pierde toda fuerza.

9. En humanos, la clonación terapéutica puede ser una herramienta curativa insustituible.

La clonación terapéutica en humanos es una de las líneas más prometedoras de la medicina regenerativa personalizada, aquella en la que podrán crearse órganos y tejidos a demanda para un paciente concreto con sus propias células; serán como los repuestos “de la casa”.

Este procedimiento provoca rechazo por parte de ciertos grupos religiosos, ya que supone destruir un embrión viable para obtener sus células sueltas y cultivarlas. Pero la creación de embriones que no se llevan a término no es ni mucho menos una novedad: los centros de fertilidad congelan embriones que en muchos casos se desechan sin encontrar ningún fin beneficioso. Negar la posibilidad de que un embrión creado sirva para dar la vida a un paciente incurable por otras vías no parece demasiado compatible con los principios básicos del humanismo.

Extracción del ADN de un cigoto humano para introducirle después el de una célula somática. Imagen de Cell / Tachibana et al.

Extracción del ADN de un cigoto humano para introducirle después el de una célula somática. Imagen de Cell / Tachibana et al.

Existe una posible alternativa sin objeciones éticas, y es la reprogramación de células adultas; por ejemplo, tomar una célula de la piel y obligarla a que se desdiferencie, a que rejuvenezca para que pueda producir células cardíacas o hepáticas. Se está avanzando mucho en esta línea, y ya se han anunciado procedimientos que consiguen células reprogramadas muy similares a las embrionarias. En la práctica, unos métodos tendrán que medirse con otros no solo por su eficacia, sino también por su coste, para que la medicina regenerativa personalizada no sea algo reservado solo para los más pudientes.

10. Nadie en la comunidad científica está intentando crear bebés clónicos.

A lo largo de los últimos años, varios presuntos investigadores han anunciado la supuesta clonación de bebés humanos. En todos los casos se trataba de personajes pintorescos que no formaban parte de la comunidad científica, que no han publicado sus resultados ni los han puesto a disposición de otros investigadores. La clonación humana con fines reproductivos ha sido rechazada abiertamente por la comunidad científica en bloque, y no existe ningún indicio de que ningún investigador reconocido esté trabajando en esta línea.

Insisto en que esto se refiere a la comunidad científica. En China, una potencia científica creciente, muchas investigaciones aún son opacas hasta el momento en que se publican. Y esto por no hablar de casos como el de Corea del Norte, que están fuera no ya de la comunidad científica, sino casi de este planeta.

¿Una vacuna para dominarlos a todos (los virus de la gripe)?

Si leyeron mi artículo de ayer, se habrán quedado con la firme impresión de que es imposible fabricar una vacuna única, un comodín que, como el anillo de Tolkien, pueda dominar a todos los virus de la gripe con independencia de si son orcos o enanos. Pero no, no lo es. Posible, sí; fácil, no. Ya tenemos una en pruebas que podría llegar a su brazo preferido en unos años.

Como les contaba ayer, el problema con la inmunización contra la gripe es que las vacunas van dirigidas contra unos pinchos con forma de arbolito en la superficie del virus, formados por dos proteínas llamadas hemaglutinina (H) y neuraminidasa (N), que tienen una pasmosa facilidad para cambiar de forma.

Ilustración del virus de la gripe disponiéndose a infectar una célula a la que se une a través de su proteína hemaglutinina. Imagen de CSIRO / Wikipedia.

Ilustración del virus de la gripe disponiéndose a infectar una célula a la que se une a través de su proteína hemaglutinina. Imagen de CSIRO / Wikipedia.

La acción de las vacunas se basa en crear una memoria inmunológica que prepare la respuesta contra futuros ataques del mismo enemigo. Estimulando el sistema inmunitario con un virus muerto (ya he contado aquí que –y por qué– soy partidario de calificar a los virus como seres vivos, pero si no están de acuerdo, cambien “muerto” por “inactivado”) o con esas proteínas sueltas, creamos esa memoria que después repelerá un ataque real con fiereza. Si no creamos antes esa memoria, el organismo también reaccionará contra el invasor, pero padeciendo la enfermedad que este le provoca.

Así, y dado que el perfil grabado por la vacuna en la memoria inmunológica viene determinado por H y N, cuando estas cambian es como si el organismo se enfrentara a un virus casi completamente nuevo, aunque todo lo que haya por debajo de esos pinchos variables sea básicamente lo mismo que antes.

La pregunta entonces es: ¿no sería posible dirigir la vacuna contra algo que no cambie tanto en el virus de la gripe? La respuesta es que sí, sí lo es, pero encontrar la estrategia perfecta es complicado. Numerosos equipos de investigación en todo el mundo están trabajando en la creación de una vacuna universal contra la gripe, que pueda protegernos de una vez y para siempre (o al menos, para un buen número de años) no solo contra la estacional de cada año, sino contra cepas más raras de las que provocan pandemias como la mal llamada “gripe española” de 1918.

Como conté aquí hace un par de años, los expertos temen que en cualquier momento pueda brotar una cepa de un tipo exótico de gripe, como H9N2 o H10N8, que de repente convierta nuestra semanita de malestar y baja laboral en una amenaza muy seria para la vida. Y la posibilidad de contar con una inmunización que actúe a largo plazo permitiría aplicar la vacuna a los niños, cuando la respuesta es más fuerte, y no como ahora a edades avanzadas cuando el sistema inmunitario ya sufre de los mismos achaques que el resto del cuerpo.

Así, los intentos actuales de los investigadores por diseñar una vacuna universal contra la gripe se resumen en estas dos líneas:

1. Utilizar la base de los pinchos, menos variable que la cabeza

Las proteínas H y N del virus de la gripe varían mucho en sus cabezas, la parte más expuesta al exterior, pero no tanto en sus tallos, la parte que está unida a la cubierta del virus. Algunos grupos de investigación están tratando de lograr que el sistema inmunitario pueda reaccionar contra la base de los pinchos; pero dado que es menos accesible que la cabeza, está menos expuesta al reconocimiento de los anticuerpos de nuestro organismo, así que el desafío consiste en encontrar la manera de que sea más visible para el sistema inmune.

Un equipo de EEUU lo está intentando con nanopartículas cubiertas de pinchos a los que se les han cortado las cabezas para dejar sus tallos expuestos. Utilizando de este modo un pincho basado en la proteína H1, los científicos han conseguido proteger totalmente a los ratones y parcialmente a los hurones (dos modelos animales muy utilizados para los estudios de gripe) contra una infección letal de otro virus, el H5N1, llamado gripe aviar. Con una idea parecida, pero con los tallos de H1 en pequeños grupos como aparecen en el virus, el Instituto de Vacunas Crucell de Leiden (Países Bajos) ha logrado también neutralizar el H5N1 en ratones y monos.

Partículas del virus de la gripe al microscopio electrónico. Imagen de Pixnio.

Partículas del virus de la gripe al microscopio electrónico. Imagen de Pixnio.

2. Utilizar antígenos internos del virus

Un antígeno es todo aquello contra lo que nuestro organismo es capaz de producir anticuerpos, moléculas en forma de Y cuyos extremos encajan con la forma del antígeno como las piezas de un puzle. Nuestras venas y arterias están continuamente patrulladas por una inmensa legión de linfocitos, células del sistema inmunitario. Uno de sus tipos, las células B, están especializadas en producir cada una un tipo de anticuerpo capaz de reconocer y unirse a un antígeno concreto, llevando este anticuerpo en la superficie. Cuando por casualidad una célula B se topa con el antígeno que encaja en sus anticuerpos, lo captura y se lo traga, rompiéndolo en trozos que luego expone de nuevo en su superficie.

Esta célula espera entonces la ayuda de otras llamadas células T helper o Th (colaboradoras). Cuando una célula Th reconoce los trozos de antígeno expuestos en la cubierta de la célula B, produce una serie de moléculas llamadas linfoquinas que obligan a la célula B a multiplicarse. Algunas de las células resultantes de esta multiplicación se convierten en células de memoria, que se quedan a la espera, preparadas para responder a una futura infección (este es uno de los mecanismos que aprovechan las vacunas), mientras que otras se convierten en células plasmáticas, capaces de producir anticuerpos en masa que se liberan a la sangre.

Una vez circulando por la sangre, estos anticuerpos esperarán a encontrarse con su antígeno diana para unirse a él, recubriendo el virus y neutralizándolo. A menudo, los virus así recubiertos de antígenos serán después engullidos y eliminados por otros tipos de células llamadas fagocitos.

He explicado esto para que se entienda cuál es el problema: los virus también llevan antígenos en su interior, pero dado que están ocultos cuando el virus circula por el organismo, no pueden disparar esta respuesta que se conoce como humoral, llamada así por los anticuerpos que viajan libres por el humor o fluido sanguíneo. Pero por suerte, nuestro sistema inmunitario cuenta con otra respuesta llamada celular. Algunas células se tragan los virus y rompen todos sus componentes, incluyendo los internos, en pedazos que después exponen en su superficie. Ciertas células T reconocerán estos trozos para poner en marcha la respuesta de anticuerpos, como he explicado arriba, pero también se activan otras llamadas T citotóxicas o Tc que matan las células infectadas por el virus.

Por lo tanto, los antígenos internos del virus también pueden disparar la respuesta celular. Pero en general las vacunas se diseñan para provocar una fuerte respuesta humoral de memoria, y en cambio son poco eficaces en la respuesta celular. Actualmente muchas investigaciones sobre vacunas buscan precisamente esto, aumentar la respuesta celular para mejorar la reacción inmunitaria y ofrecer protección a más largo plazo.

Vacuna contra la gripe. Imagen de CDC.

Vacuna contra la gripe. Imagen de CDC.

Así, si fuera posible diseñar una vacuna capaz de poner en marcha una fuerte respuesta celular contra algún antígeno interno que varíe poco a lo largo del tiempo y entre unos virus y otros, tendríamos el anillo único, la vacuna universal contra la gripe. Para provocar una mayor respuesta celular, se ensayan vacunas con virus vivos debilitados en lugar de virus muertos o trozos sueltos como en las actuales, con la idea de que dispararán una buena respuesta celular.

Aunque la perspectiva de inyectarse un virus vivo pueda sonar alarmante, las vacunas con virus atenuados son muy comunes y funcionan maravillosamente; la triple vírica que se aplica a los niños contra el sarampión, las paperas y la rubeola es una vacuna de virus atenuados, lo mismo que la de la fiebre amarilla que nos ponemos los viajeros. Una ventaja adicional de las vacunas con virus atenuados es que algunas pueden administrarse por la boca o la nariz; la vacuna oral de la polio pudo distribuirse masivamente en los países en desarrollo, y es un factor decisivo en el esfuerzo hacia la erradicación de esta enfermedad.

De hecho, ya existe la vacuna nasal de virus atenuado contra la gripe, pero no ha sido muy eficaz. Esta semana se ha publicado en la revista Science un nuevo diseño que parece muy prometedor. Investigadores de China y EEUU han obtenido un virus mutante que tiene todo lo deseable en una gripe para vacuna: se multiplica bien, lo que le permite ser muy visible para el sistema inmunitario, pero apenas produce síntomas y en cambio dispara una fuerte respuesta de células T; además, es hipersensible al interferón, un antivirus natural de nuestro organismo que el virus normal de la gripe consigue eludir. Aún le queda mucho recorrido hasta demostrar su utilidad, pero por el momento ha funcionado muy bien en ratones y hurones.

He dejado para el final la vacuna que está más cerca de llegar a convertirse en una realidad. La compañía Vaccitech, un spin-off de la Universidad de Oxford, ha montado antígenos internos de la gripe en un virus falso que se utiliza como vehículo. El objetivo de esta vacuna es combatir absolutamente todos los tipos de gripe A, la más preocupante y la que provoca mayor número de muertes.

De las tres fases de ensayos clínicos que deben cubrirse antes de que un producto farmacéutico llegue al mercado, Vaccitech está ahora en la segunda. En la primera ya probaron que la vacuna es segura, después de demostrar su eficacia en animales. Actualmente la fase II está testando si es capaz de proteger contra la gripe en combinación con las vacunas estacionales. Esta etapa terminará en octubre de 2019. Si todo funciona según lo esperado, la fase III emprendería las pruebas finales antes de que la vacuna esté disponible, lo que podría ocurrir dentro de 5 a 7 años. Tal vez esta sea una carrera que podamos ganar antes de que llegue la próxima gran pandemia de gripe.

La cara es el espejo de los genes, pero ¿cómo se produce ese reflejo?

La cara es el espejo del alma, dice un viejo refrán. El problema es que lo mismo decía la frenología, una ciencia muy popular en la primera mitad del siglo XIX que asociaba rasgos de personalidad con la forma del cráneo, de modo que era posible, por ejemplo, descubrir las tendencias criminales en la cara de alguien. Evidentemente esto no funciona así, y es que la frenología no era una ciencia, sino una pseudociencia. En realidad, la cara no es el espejo del alma: creo que todos conocemos a algún que otro cabrón cuyo rostro podría coronar la efigie de un angelito en cualquier friso catedralicio.

Si de algo es espejo la cara, es de nuestros genes. Es una obviedad, pero nos parecemos a nuestros padres, y nuestros hijos se nos parecen, debido a esa herencia que se transmite sin pasar por Hacienda ni pagar impuestos, la genética. Es otra obviedad, pero si no somos idénticos a nuestro padre o a nuestra madre es porque no somos clones, sino que procedemos en un 50% de papá y en el otro 50% de mamá. ¿Y por qué entonces no somos idénticos a nuestros hermanos?, tal vez se pregunten.

Imagen de Max Pixel / CC.

Imagen de Max Pixel / CC.

La respuesta está en dos mecanismos. En primer lugar, nuestros hermanos y nosotros recibimos ese reparto genético de nuestros progenitores al 50/50, pero esto significa que no recibimos el otro 50% de cada uno de ellos, y por tanto significa también que mi 50% de mi madre no tiene por qué ser el mismo 50% que el de mi hermano. Por ejemplo, tanto mi hermano como yo recibimos un cromosoma 5 de mi madre y otro de mi padre. Pero dado que mi madre tiene dos cromosomas 5, que ella a su vez heredó respectivamente de su padre y de su madre, mis abuelos maternos, tal vez el que yo he recibido procede de mi abuelo, mientras que a mi hermano le ha tocado el de mi abuela.

El segundo mecanismo complica aún más las cosas. Los espermatozoides y los óvulos son las células que solo tienen ese 50% del equipamiento genético total de quien los produce. Pero en realidad ese 50% que tiene, por ejemplo, el óvulo de una mujer, tampoco es una copia idéntica de un 50% de su genoma, debido a algo llamado recombinación genética.

Cuando se produce el óvulo, como hemos dicho llevará únicamente un cromosoma 5, ya sea el paterno o el materno. Imaginemos que ambos son bolas en un bombo de lotería y que elegimos una de ellas al azar. Pues bien, esta comparación no sirve, porque en realidad las dos bolas se intercambian pedazos entre sí antes de que una de ellas salga por el pitorro del bombo (disculpen mi desconocimiento del lenguaje técnico de los bombos de lotería).

En su lugar, nos sirve mejor el ejemplo de las cartas: los cromosomas 5 paterno y materno son dos barajas que se mezclan entre sí y luego vuelven a separarse en dos mazos para elegir solo uno de ellos. Así, los genes se barajan, de modo que el cromosoma 5 que recibo de mi madre no es idéntico a ninguno de los que ella recibió de su padre ni de su madre, sino una combinación de ambos, una nueva versión, un remix; una recombinación.

En realidad la historia tampoco acaba aquí, porque además existen mutaciones espontáneas, es decir, cambios que surgen porque sí (o por fallos en la maquinaria de los genes, o vaya usted a saber por qué). Y por último, existe además la epigenética, que es como un topping en los genes: el helado (gen) es el mismo, pero se le pueden echar encima virutas de chocolate o trocitos de cacahuete, y el sabor final cambia. La ración que recibimos de papá o mamá puede venir ya con esos toppings, pero también creamos los nuestros propios dependiendo de los factores ambientales a los que estamos expuestos.

Si dejamos de lado estos dos últimos efectos, la mutación espontánea y la epigenética (no es que carezcan de importancia, pero dejarlos de lado es una forma de facilitar y simplificar la aproximación teórica), hay un caso en el que sí existen dos personas clónicas entre sí, y es el de los gemelos idénticos.

Los astronautas gemelos Mark y Scott Kelly han servido para estudios genéticos sobre la influencia de las condiciones del espacio. Imagen de NASA.

Los astronautas gemelos Mark y Scott Kelly han servido para estudios genéticos sobre la influencia de las condiciones del espacio. Imagen de NASA.

A diferencia de los mellizos, que proceden de dos pares distintos de espermatozoide/óvulo y por tanto solo se parecen entre sí lo mismo que dos hermanos cualesquiera, los gemelos idénticos o monocigóticos proceden de un solo par espermatozoide/óvulo, un único huevo fecundado que se divide en dos embriones separados, ambos con exactamente la misma información genética. Este es el motivo por el que los gemelos son un recurso tan valioso para los estudios que tratan de relacionar genotipos (genes) con fenotipos (rasgos observables): son un experimento natural que permite estimar si un fenotipo concreto deriva exclusivamente de los genes o si también está influido por el ambiente, en función de que los gemelos se hayan criado juntos o no. Y si es lo primero, facilita llegar a saber cuáles son los genes implicados.

Respecto a esto último, no se fíen de todo lo que lean u oigan. Aunque coloquialmente todos, y me incluyo, tendemos a decir cosas como “este no tiene el gen de la simpatía”, lo cierto es que relacionar genes con rasgos es algo extremadamente complicado. Lo único que producen los genes son proteínas, no simpatía, instinto asesino ni habilidad para el bádminton.

Solo en unos pocos casos se ha podido correlacionar directamente un rasgo con un gen concreto como causa y efecto. Un ejemplo, y no es coña, es si el cerumen de los oídos es seco o húmedo. Ciertas enfermedades genéticas también siguen este patrón que se denomina herencia mendeliana. Pero la inmensa mayoría de los rasgos dependen de muchos genes, sin contar la influencia ambiental, y hallar relaciones con variantes génicas concretas requiere estudiar poblaciones muy grandes, obtener sus genomas, y procesar enormes volúmenes de datos con algoritmos sofisticados en ordenadores muy potentes. Estos estudios se conocen como Genome-Wide Association Studies (GWAS), o estudios de asociación en genomas completos.

Y volvemos al caso de la cara. El de los rasgos faciales es un buen ejemplo. Todos conocemos familias a cuyos miembros los sacaron del mismo molde, pero también casos contrarios en los que cada uno parece, nunca mejor dicho, de su padre o de su madre. Uno de los deportes no olímpicos más populares es sacar parecidos a cada bebé recién nacido, algo en lo que participa hasta el frutero de la esquina. Pero ¿cuáles son los genes que determinan esos parecidos familiares?

Es un caso muy difícil para los detectives genéticos; no solo porque probablemente sean muchos los genes implicados, sino porque además es difícil cuantificar lo que llamamos el parecido. Cuando Harry Potter creció, se convirtió en Frodo. Me confieso prácticamente incapaz de diferenciar por separado al tipo que hace de Capitán América del de Guardianes de la galaxia y Jurassic World. Incluso confundo a Natalie Portman con Keira Nightley, aunque probablemente sea un problema solo mío. En cambio, y como ya conté aquí, puedo distinguir fácilmente a Brian May de Isaac Newton porque del segundo solo tenemos pinturas al óleo y, además, está muerto. Pero ¿en qué parámetros concretos medibles se basan estos parecidos?

Imagen de Pixabay / CC.

Imagen de Pixabay / CC.

Por suerte, hoy la tecnología viene a echar una mano. Utilizando sistemas de imagen y algoritmos de procesamiento, es posible cuantificar los parámetros de los rostros tomando puntos y distancias en, por ejemplo, la punta de la nariz o las comisuras de los ojos. Esto es lo que ha hecho ahora un equipo de investigadores de las Universidades de Oxford y Surrey dirigido por Walter Bodmer, un genetista de largo prestigio. Los científicos han procesado de esta manera casi 3.500 caras de personas británicas, asiáticas y gemelos. Tras obtener sus parámetros faciales y sus genomas, han metido todos los datos en un sistema para hacer un GWAS, y de todo ello han podido identificar tres variantes de genes que influyen en los rasgos de la cara.

Según el estudio, publicado en la revista PNAS, dos de esos genes están ligados a los perfiles faciales en las mujeres, mientras que el tercero aparece vinculado a la forma de los ojos (es decir, a la forma de la parte de la cara que rodea los ojos) tanto en mujeres como en hombres. Así, ya tenemos nuevas pistas sobre cómo nuestros genes nos dan el aspecto que tenemos.

Pero como he dicho arriba, cuidado con hablar del “gen de la nariz respingona”: insisto, los genes solo producen proteínas, y son complejas interacciones bioquímicas posteriores las que llevan al rasgo. En concreto, una de las variantes identificadas por los investigadores produce una proteína implicada en la síntesis de esteroides, lo que da una idea que del gen al rasgo hay un largo trecho.

Y esto es solo el principio: según escriben los investigadores en el estudio, “utilizando métodos como los descritos, en el futuro podrán encontrarse muchos más efectos específicos y relativamente grandes de variantes genéticas en los rasgos faciales humanos”.

Una conclusión interesante del estudio es algo que ya podíamos intuir, pero que es necesario demostrar. Según Bodmer, “los gemelos idénticos criados juntos o por separado muestran parecidos faciales asombrosos, lo que sugiere que el control de los rasgos faciales humanos es mayoritariamente genético”. En otras palabras, que con más estudios de este tipo, en el futuro tal vez sea posible hacer un retrato robot de una persona conociendo solo sus genes, lo cual sería de inmensa utilidad para el trabajo de la policía científica. Sin contar que algún día las madres recién paridas no solo recibirán en el hospital la visita de los fotógrafos de bebés, sino también la del morfogenetista: sepa qué aspecto tendrá su bebé con 40 años…

El ébola puede esconderse en el semen durante dos años

Hace unos días conté que un oscuro tipo de virus, cuyos efectos reales en el ser humano aún son inciertos, podría convertirse en un protagonista de la investigación en los próximos años, ya que un estudio lo revela como el principal invasor vírico desconocido de nuestro organismo.

Popularmente la palabra virus se asocia con enfermedad, y es lógico que así sea; al fin y al cabo su nombre procede del latín veneno, y se denominaron así por sus efectos antes de saberse qué eran realmente.

Pero aquí hay un biólogo que opina que la designación de un tipo de programas informáticos como virus, en analogía con los biológicos, es engañosa, ya que lleva a una idea equivocada. Los virus informáticos son maliciosos, creados ex profeso para hacer daño, corromper otros programas y sistemas. Hay una intencionalidad destructiva en su acción, y este propósito que sus creadores les otorgan es su única razón de ser.

Reconstrucción del virus del ébola. Imagen de Wikipedia.

Reconstrucción del virus del ébola. Imagen de Wikipedia.

Por el contrario, y dejando claro que en la naturaleza no existe una finalidad, si pudiera hablarse de un “objetivo” de los virus biológicos este no sería destruir, sino simplemente perdurar. Un virus es un parásito, y la lógica bio-lógica de un parásito es utilizar a su anfitrión para perpetuarse; matar es solo un efecto secundario, pero uno generalmente perjudicial para el propio parásito si muere con su hospedador antes de poder infectar a otro.

Esta es la razón de que los virus extremadamente y rápidamente letales tengan unas perspectivas de perpetuación bajas. Los expertos en bioterrorismo no suelen considerarlos una principal amenaza, y en contra de lo que cuentan todas y cada una de las películas del género, si alguna vez la humanidad se extingue debido a un virus, no será por uno de estos.

En biología existe un tradicional y entretenido debate sobre si los virus pueden considerarse seres vivos. Por supuesto, todo depende de la definición de ser vivo, que algunos biólogos simplemente consideran entre innecesaria e inaplicable. Respecto a los virus, la objeción más común para llamarlos seres vivos es que carecen de metabolismo. Otros reparos, como el hecho de que no pueden reproducirse de forma autónoma, dejarían también fuera del club de los seres vivos a muchos otros parásitos celulares.

Pero respecto al metabolismo, hay distintas formas de verlo. Dado que en realidad nadie sabe qué fue antes, si huevo o gallina, virus o célula anfitriona, nadie puede descartar que los virus nacieran como entidades vivas completas para después prescindir de la carga de un metabolismo propio que les lleva a consumir energía y por tanto les pone en riesgo de morir de hambre. Según esta idea, los virus no solo serían seres vivos; serían de hecho las formas de vida más sofisticadas y perfeccionadas que existen, aquellas que se las han ingeniado para prescindir de todo lo que no es necesario llevar encima.

Todo esto que he contado tiene un propósito, y es explicar que los virus no existen para fastidiarnos. Simplemente, existen porque han logrado existir. Desde el punto de vista de un virus, sus hospedadores no somos más que maquinaria de repuesto para utilizar por el camino. Pero dado que tradicionalmente los hemos estudiado por su condición de patógenos infecciosos, muchas de las cosas que pueden hacer probablemente se nos hayan escapado.

Y como consecuencia, cuando nos topamos con alguna de esas cosas inesperadas que pueden hacer, nos preguntamos: ¿por qué? ¿Por qué algunos virus nos infectan sin provocarnos ningún síntoma aparente? La respuesta está en el argumento anterior: un virus que logra instalarse en la mayor parte de la población y perdurar a lo largo de toda la vida del individuo sin causarle ningún daño es un triunfador de la evolución. Un ejemplo podría ser el TTV que comenté el otro día. Y otro ejemplo, aunque tal vez con una estrategia alternativa, podría ser ahora el ébola.

Pero el ébola sí mata, dirán ustedes. Cierto, pero nos mata a nosotros; no a otras especies. Olvidemos nuestro punto de vista antropocéntrico y aprendamos a pensar como un virus, si se me permite la incongruencia. Los virus tienen lo que se conoce como reservorios, especies en las que habitan indefinidamente sin causarles ningún daño. En el caso del ébola, son los murciélagos; nosotros somos solo un accidente en su camino, así que el virus no pierde nada matándonos.

Así, la infección del ébola es crónica y aparentemente asintomática en los murciélagos, mientras que es aguda y a menudo letal en los humanos. O así lo creíamos hasta ahora, cuando un nuevo estudio viene a plantearnos nuevos porqués. Un equipo de investigadores de la Universidad de Carolina del Norte (EEUU) ha descubierto que el semen de algunos supervivientes a la enfermedad del ébola sigue conteniendo ARN del virus (el soporte de su material genético) hasta dos años después de la infección.

Hasta ahora, y para evitar un posible contagio por vía sexual debido a posibles restos del virus en el esperma, las directrices de la Organización Mundial de la Salud (OMS) dictadas en 2016 aconsejaban a los hombres que han sobrevivido a la infección no mantener relaciones sexuales sin preservativo durante 12 meses después de la enfermedad, o hasta que los análisis de su semen hayan resultado negativos para el ARN del virus al menos dos veces.

Los autores del estudio, publicado en la revista Open Forum Infectious Diseases, examinaron el semen de 149 hombres en Monrovia, la capital de Liberia, uno de los países afectados por el brote de 2014. De este grupo, 13 dieron resultado positivo de ARN del ébola, y 11 de ellos habían pasado la infección hace ya dos años. Aún más preocupante, algunos de estos voluntarios ya habían obtenido un resultado negativo en análisis anteriores.

“Parece claro que en algunos supervivientes pueden quedar restos del virus en el tracto genital masculino durante largos períodos de tiempo, lo que tiene posibles implicaciones importantes para la transmisión”, ha dicho el primer autor del estudio, William Fischer.

Lo cierto es que estas implicaciones aún son una incógnita. Se conocen casos de transmisión sexual del ébola al poco tiempo de terminar la fase aguda, pero los investigadores ignoran si la detección de ARN dos años después de la infección puede corresponderse o no con la presencia de virus activo capaz de transmitir la enfermedad. En cualquier caso, tal vez este nuevo hallazgo podría invitar a una revisión de las directrices de la OMS como medida de precaución.

Todo lo cual nos lleva de vuelta al punto de vista del virus. Según Fischer, esta persistencia del ARN, que en algunos casos parece intermitente, “sugiere que necesitamos cambiar nuestra manera de pensar sobre el ébola, ya que ahora no es solo una enfermedad aguda, sino también una con posibles efectos a largo plazo”. De hecho, los autores del estudio descubrieron que la presencia del ARN a largo plazo parece estar asociada a problemas de visión.

Por el momento, la conclusión de todo ello no es una respuesta, sino varias preguntas: ¿por qué? ¿Por qué hace esto el ébola en nosotros? ¿Es una estrategia de supervivencia? ¿Ha aprendido el virus a hacerse un reservorio en algunos de sus huéspedes accidentales? ¿Cómo logra cronificarse sin los estragos de la fase aguda? Solo aprendiendo a pensar como un virus lograremos obtener las respuestas.