Entradas etiquetadas como ‘biología molecular’

El monstruo del lago Ness es, posiblemente, esto

La pasada madrugada regresábamos a casa en coche cuando algo extraño cruzó la carretera ante nuestros faros. Eran más de las tres, vivimos en la punta norte del Parque Regional del Guadarrama Medio, y por allí estamos acostumbrados a convivir con jabalíes, zorros, musarañas, culebras de escalera, ratas, ratones y otras criaturas variadas. Pero lo que cruzó delante del coche parecía una enorme tarántula como las que se encuentran en América y en las regiones tropicales.

Dado que las arañas de ese aspecto en España, como la lobo o la negra del alcornocal, no llegan ni de lejos a semejante tamaño, concluí que habría sido alguna ilusión provocada por el sueño o por los numerosos botellines de Mahou que me pareció conveniente enviar a reciclar (no, no conducía yo). Claro que, si yo hubiera vivido hace unos cientos de años y tuviera como amigo a algún monje iluminador de manuscritos, podría haberle visitado para narrarle mi avistamiento de la araña monstruosa del Guadarrama y que la incluyera en su bestiario junto a las mantícoras y catoblepas.

Y así es como suelen nacer las leyendas. Alguien ve algo, lo interpreta a su modo, lo cuenta a otros, de alguna manera acaba difundiéndose, e inevitablemente otros acabarán viendo lo mismo; inevitablemente, porque estas presuntas confirmaciones independientes ocurren incluso cuando lo avistado originalmente no es tal. Un caso especialmente llamativo es el de los platillos volantes: como he contado anteriormente aquí y en otros medios, el protagonista del primer avistamiento divulgado por la prensa en 1947 no dijo haber visto platillos volantes, sino objetos con forma de media luna que se movían en el aire como platillos saltando sobre el agua. El periodista lo entendió mal y publicó que aquel hombre había visto platillos volantes, y desde entonces empezaron a surgir infinidad de avistamientos de platillos volantes.

Así es también como surgió la leyenda del monstruo del lago Ness: un relato medieval de veracidad muy dudosa, presuntos avistamientos en siglos posteriores, y la imaginación popular acaba dando forma a una leyenda que se convierte en un fenómeno sociológico. Como conté recientemente en otro medio, la popularización de los hallazgos de fósiles en el siglo XIX hizo que los monstruos con forma de serpiente presentes en los relatos antiguos y medievales comenzaran a transformarse en animales parecidos a los plesiosaurios. Luego, con el tiempo, alguien decide fabricar pruebas fotográficas falsas, ya sea con ánimo de lucro o notoriedad, o como simple broma. Y entonces ya poco importan los desmentidos: una vez que hemos decidido lo que queremos creer, ni la propia confesión de labios del falsificador servirá para apearnos del burro.

Y pese a todo, estos no son fenómenos a los cuales la ciencia deba permanecer ajena. Más bien al contrario, uno de los poderes de la ciencia es resolver los misterios, y el estudio de leyendas como la de Nessie puede revelarnos mucho; no solo sobre nosotros mismos y nuestros mecanismos mentales, sino también sobre el mundo que nos rodea. Es altamente improbable que exista un animal prehistórico en el lago Ness, pero si la gente dice haber visto algo, ¿cuáles son los fenómenos reales que se han interpretado como avistamientos del monstruo?

Un equipo internacional de investigadores, dirigido por la Universidad de Otago en Nueva Zelanda, ha analizado las aguas del lago Ness en busca de la huella de ADN de las criaturas allí presentes. Las técnicas actuales permiten hacer un tipo de análisis llamado metabarcoding de ADN ambiental (eDNA), consistente en leer todo el revoltillo de ADN presente en una muestra heterogénea tomada de la naturaleza y buscar ciertas etiquetas genéticas que identifican a las especies presentes, actuando como una especie de códigos de barras.

Según publican los investigadores en la web de su proyecto (los resultados aún no se han publicado formalmente), entre los 500 millones de secuencias de ADN pescadas en el loch ha aparecido de todo, desde bacterias hasta humanos, pasando por varios tipos de mamíferos terrestres, domésticos y salvajes. Los científicos han identificado 19 especies de mamíferos, 22 aves, tres anfibios y 11 peces. La mayoría son animales cuya presencia en el lago ya era conocida.

¿Y qué hay de Nessie? Según escriben los investigadores, “una de las teorías más populares es que podría existir en el lago Ness un reptil del Jurásico o una población de reptiles del Jurásico, como los plesiosaurios”. “Desafortunadamente, no podemos encontrar ninguna prueba de una criatura ni remotamente parecida a eso en los datos de secuencias de nuestro ADN ambiental. Así que, basándonos en nuestros datos, no creemos que la idea del plesiosaurio se sostenga”, añaden.

Asimismo, los investigadores tampoco han encontrado ADN de otras especies que algunas hipótesis han asociado a los avistamientos, como tiburones, esturiones o siluros. Y sin embargo, otra criatura aparece de forma dominante y repetida en las muestras: “Hemos encontrado una gran cantidad de ADN de anguila. Las anguilas son muy abundantes en el lago Ness, y hemos encontrado su ADN en prácticamente todas las ubicaciones estudiadas; hay montones de ellas”, escriben.

Imagen de SuperNatural History.

Imagen de SuperNatural History.

Estos datos han llevado a los investigadores a rescatar una vieja hipótesis casi olvidada. La idea de que Nessie podría ser en realidad una anguila ya se había propuesto en los años 30, cuando la historia del monstruo comenzó a causar furor, pero se abandonó cuando se impuso la imagen del plesiosaurio que ha perdurado en la imaginación hasta nuestros días. Los científicos del proyecto, bajo la dirección del biólogo Neil Gemmell, creen que la anguila podría ser la respuesta: “La teoría restante que no podemos refutar basándonos en el ADN ambiental obtenido es que lo que la gente está viendo es una anguila muy grande”.

Naturalmente, el análisis de ADN no permite determinar el tamaño de los animales detectados, pero los investigadores mencionan que existen informes de grandes anguilas observadas en el lago. La anguila europea raramente crece más de un metro, aunque los científicos no descartan que en el lago pudiera haberse desarrollado una comunidad de ejemplares de gran tamaño.

Una anguila europea (Anguilla anguilla). Imagen de Lex 1 / Wikipedia.

Una anguila europea (Anguilla anguilla). Imagen de Lex 1 / Wikipedia.

Por supuesto, los resultados no pueden zanjar por completo la leyenda del monstruo, ni lo harán. Los propios investigadores reconocen que un monstruo totalmente desconocido hasta ahora pasaría inadvertido en el metabarcoding si su ADN no se ha catalogado previamente. “Sin embargo, tenemos una teoría más para testar, la de la anguila gigante, y puede merecer la pena explorarla con más detalle”, concluyen.

Los “Óscar de la ciencia” premian la primera foto de un agujero negro

El regreso de las vacaciones viene cada año con sus sempiternas rutinas: la vuelta al cole, el reingreso a la vida laboral, los anuncios de fascículos en televisión, la cuenta bancaria agonizando de inanición… Y para los que nos dedicamos a contar lo que pasa en el mundo de la ciencia, es temporada de premios. En un mes conoceremos quiénes añadirán a su lista de credenciales en la Wikipedia los laureles del Nobel. Pero por el momento, esta semana tenemos un enjundioso aperitivo con los Premios Brealthrough.

Enjundioso, porque en realidad los Breakthrough son mucho más que un aperitivo. De hecho, hoy son los premios científicos más sustanciosos del mundo, con una dotación de tres millones de dólares por galardón que triplica la de los Nobel. Por supuesto, los premios suecos continúan y continuarán siendo la cumbre soñada por todo científico (que trabaje en alguna de las categorías incluidas, claro). Pero en solo ocho ediciones, los Breakthrough han conseguido convertirse en un importante indicador en el cuadro de mandos de la actualidad científica.

Además de su generosa dotación, una clave del éxito de los Breakthrough es precisamente casi todo aquello que los diferencia de los Nobel. Frente a la pompa decimonónica de los premios suecos, con su olor a roble viejo, sus cascos de plumas y sus trajes de pingüino, los Breakthrough se presentan como “los Óscar de la ciencia”, y esta comparación basta para entender su carácter. La preferencia por uno u otro estilo puede ir en gustos, pero frente al arcaicismo de los Nobel, los Breakthrough son los premios de la era de internet, como corresponde a los nombres que los impulsan: Sergey Brin, Priscilla Chan, Mark Zuckerberg, Ma Huateng, Yuri y Julia Milner, o Anne Wojcicki.

También esta diferencia de estilo afecta al hecho de que los Breakthrough suelen concederse más en caliente que los Nobel, a hallazgos más recientes en el tiempo, premiando más los avances por sus posibilidades futuras que por las ya demostradas. Aunque Alfred Nobel consignó en su testamento que sus premios debían concederse a los descubrimientos más importantes del año precedente, lo cierto es que los Nobel tienden a distinguir hallazgos de hace varias décadas, y a menudo se ven lastrados por lo que parece una necesidad de otorgar premios escoba a trabajos que hasta ahora habían quedado sin reconocimiento. Los medios no especializados suelen presentar cada año los fallos de los Nobel como si premiaran ciencia de vanguardia, pero por lo general suele ser más bien de retaguardia –o más propiamente, de fondo de armario–, siempre que sus frutos hayan sido de gran trascendencia hasta el día de hoy.

Sin embargo y en lo que respecta a los premios de Física, este año la actualidad científica se lo ha puesto muy fácil a los jurados. El Breakthrough en esta categoría se ha concedido a los investigadores del Event Horizon Telescope (EHT), una colaboración internacional que ha empleado una red de telescopios para lograr la primera fotografía de un agujero negro.

Imagen del agujero negro supermasivo en el centro de la galaxia M87 resuelta por la red Event Horizon Telescope.

Imagen del agujero negro supermasivo en el centro de la galaxia M87 resuelta por la red Event Horizon Telescope.

El pasado 10 de abril todos los medios, incluyendo este blog, contaron la que hasta ahora ha sido la noticia científica más resonante de 2019. Más allá de su importancia, el hecho de que la noticia fuera gráfica le garantizaba el acceso a todos los telediarios, donde a menudo parece que algo no existe si no lleva foto.

Pero el Breakthrough es, además, un premio adaptado a una época en que la ciencia suele ser un esfuerzo colectivo, mientras que los Nobel siguen anclados a la idea obsoleta del genio individual. El premio lo recogerá el director de la colaboración EHT en el Centro de Astrofísica Harvard-Smithsonian, Shep Doeleman, pero el importe de tres millones de dólares se repartirá equitativamente entre los 347 investigadores firmantes de los seis estudios que presentaron los resultados. Así, cada uno de ellos tocará a algo más de 8.600 dólares. Y aunque la cantidad no sea como para bañarse en billetes, el hecho de que los y las becarias predoctorales vayan a percibir lo mismo que sus jefes y jefas es también un reconocimiento tan inusualmente raro como habitualmente merecido.

En lo que respecta al dólar, más suerte van a tener los premiados en Ciencias de la Vida y en Matemáticas, que serán menos a repartir. En la primera categoría se conceden cuatro premios, que este año irán respectivamente al genetista molecular Jeffrey Friedman por su descubrimiento de la hormona leptina y su papel en la obesidad, a los bioquímicos Franz-Ulrich Hartl y Arthur Horwich por sus hallazgos sobre el plegamiento de proteínas en la célula –un mecanismo implicado en enfermedades como las neurodegenerativas–, al fisiólogo David Julius por sus estudios sobre los mecanismos celulares y moleculares del dolor, y a la bioquímica Virginia Man-Yee Lee por sus descubrimientos de ciertos mecanismos moleculares implicados en las enfermedades neurodegenerativas.

En cuanto a la categoría de Matemáticas, cada año solo se concede un Premio Breakthrough, que en este caso ha sido para Alex Eskin, por sus descubrimientos en geometría que incluyen un trabajo desarrollado en colaboración con la iraní Maryam Mirzakhni (fallecida en 2017, por lo que no podrá recibir el premio) que resuelve un curioso problema: ¿puede un rayo de luz en una habitación cubierta de espejos alcanzar todos los puntos de la misma? Eskin y Mirzakhni demostraron que en habitaciones poligonales cuyos ángulos son fracciones de números enteros existe un número finito de puntos que no quedarían iluminados.

Por último, los Breakthrough conceden también seis premios denominados New Horizons y dotados cada uno con 100.000 dólares, tres en Física y tres en Matemáticas, a científicos jóvenes que ya han logrado avances notables; una buena manera de promocionar la consolidación de las carreras incipientes y prometedoras.

En resumen, el logro conseguido por la colaboración EHT podría dar pie a uno de esos raros casos en los que el Nobel se concede a ciencia de actualidad, como ocurrió en 2013 con la concesión del premio de Física a Peter Higgs y François Englert por el hallazgo largamente esperado del bosón de Higgs. Claro que, como también sucedió entonces, las arcaicas normas de los Nobel obligarían a seleccionar a un máximo de tres premiados. Es decir, que en este caso, 344 investigadores participantes en el hallazgo quedarían sin reconocimiento.

No, Pfizer no ha ocultado al mundo un fármaco que cura o previene el alzhéimer (II)

Como comencé a explicar ayer, desde hace años los investigadores han planteado la posibilidad de que los inhibidores de citoquinas proinflamatorias (moléculas que produce el cuerpo y que promueven la respuesta de inflamación contra las agresiones al organismo) podrían ser útiles en la lucha contra el alzhéimer, ya que la inflamación es uno de los síntomas de la enfermedad.

Sin embargo, y como también conté ayer, en realidad el proceso patológico del alzhéimer aún es desconocido, por lo que la inflamación podría no ser una causa, sino un efecto. De ser así, atacar la inflamación contra el alzhéimer sería como luchar contra un terremoto protegiendo la cristalería: se evitará que se rompan las copas y los vasos, pero nada más.

Es más, hasta tal punto se desconoce la patogénesis del alzhéimer que ni siquiera puede descartarse del todo que esta inflamación sea en realidad beneficiosa. Aunque la inflamación crónica suele tener efectos nocivos, en su origen es una respuesta del organismo contra una agresión. En el caso del alzhéimer, se ha propuesto incluso que la activación de la microglía (el sistema inmune propio del cerebro) podría ayudar a eliminar las placas de proteína beta-amiloide que tradicionalmente se han asociado con la muerte neuronal en los pacientes de alzhéimer.

Ilustración de anomalías neuronales en el alzhéimer: placas beta-amiloides (marrón) y ovillos neurofibrilares (azul). Imagen de NIH.

Ilustración de anomalías neuronales en el alzhéimer: placas beta-amiloides (marrón) y ovillos neurofibrilares (azul). Imagen de NIH.

El primer estudio piloto que evaluó el uso del etanercept de Amgen y Pfizer contra el alzhéimer se publicó en 2006, cuando el fármaco llevaba ya utilizándose contra la artritis reumatoide durante ocho años en EEUU, seis en Europa. En aquella ocasión, investigadores de la Universidad de California dirigidos por Edward Tobinick trataron a 15 pacientes de alzhéimer durante seis meses mediante inyecciones de etanercept en la médula espinal.

Al término del pequeño estudio, los investigadores observaron mejoras en los resultados de los test cognitivos de los pacientes. Esta fue su conclusión: “Un creciente volumen de ciencia básica y evidencias clínicas implica a los procesos inflamatorios y la resultante activación glial en la patogénesis del alzhéimer. Este pequeño estudio piloto sugiere que la inhibición de la citoquina inflamatoria TNF-α puede ser prometedora como enfoque potencial para el tratamiento del alzhéimer. Merece la pena emprender mayores ensayos clínicos aleatorizados y controlados con placebo”.

Es decir, que ya en 2006 la comunidad científica conocía la posible utilidad del etanercept en el tratamiento del alzhéimer. El estudio mereció un editorial en la revista que lo publicó, Medscape General Medicine, que subrayaba su carácter “altamente preliminar” y sus limitaciones, como la ausencia de controles con placebo y de un estudio farmacodinámico, pero que concluía: “No todos los días (o todos los años) se ven datos tan prometedores en el tratamiento del alzhéimer como los que se presentan en este artículo, y claramente se necesitan más estudios”.

En años posteriores, Tobinick continuaba publicando nuevos datos favorables, como un seguimiento de los pacientes y nuevos casos, también con resultados de mejoras cognitivas. A finales de la década pasada, los antiinflamatorios no esteroideos y en concreto los inhibidores de TNF-α, como el etanercept o el infliximab, ya estaban en el punto de mira de muchos investigadores del alzhéimer.

Conviene aclarar aquí algo que también se ha propagado estos días y que no es cierto. Algunos comentarios han aventurado que el etanercept no puede ser útil contra el alzhéimer porque no atraviesa la barrera hematoencefálica, el muro que separa el sistema nervioso central del resto del organismo. Pero algunos expertos piensan que el hecho de que el fármaco no atraviese esta barrera no tiene por qué impedir una posible acción beneficiosa: existen indicios de que un efecto antiinflamatorio en el sistema nervioso periférico puede reducir la inflamación en el cerebro. En el caso del TNF-α, la neutralización de esta citoquina fuera del cerebro podría reducir la cantidad de esta molécula que llega al propio cerebro.

Sin embargo, todo ello había que tomarlo con extrema cautela: además de que los datos de Tobinick no dejaban de ser anecdóticos (sin ensayos clínicos rigurosos), si por algo se distingue la investigación del alzhéimer es por la inmensa cantidad de cadáveres de fármacos prometedores que ha dejado en el camino. En ratones y ratas se ha logrado curar la enfermedad infinidad de veces. Pero en realidad los ratones y las ratas no padecen alzhéimer, por lo que se trata de modelos creados por los propios investigadores. Y dado que en realidad aún no se conoce cuál es la patogénesis del alzhéimer, los modelos animales no son réplicas verdaderas de la enfermedad, sino de algunos de sus síntomas. Se han creado empresas motivadas exclusivamente por un fármaco que curaba este falso alzhéimer en ratones. Y han cerrado empresas cuando se comprobaba que este fármaco no hacía absolutamente nada contra el alzhéimer real.

Modelo de alzhéimer en el cerebro de un ratón: placas beta-amiloides (rojo) entre las neuronas (verde). Imagen de NIH.

Modelo de alzhéimer en el cerebro de un ratón: placas beta-amiloides (rojo) entre las neuronas (verde). Imagen de NIH.

En el caso de los antiinflamatorios no esteroideos, muchos de ellos han curado el alzhéimer en ratones; ninguno de ellos ha funcionado en pacientes. También el etanercept y moléculas similares han mostrado eficacia en modelos animales, pero esto no es ni muchísimo menos una garantía de que servirán como fármaco.

Así las cosas, al mismo tiempo comenzaban a llegar otros datos no tan positivos. Dado que el etanercept por su propia naturaleza es un inmunosupresor, se reportaban casos de pacientes afectados por infecciones graves e incluso mortales por el uso de este medicamento contra la artritis reumatoide, lo que obligaba a la Agencia de Fármacos de EEUU a publicar una advertencia.

Esto tiene una implicación trascendental: el etanercept jamás será un fármaco para prevenir el alzhéimer. Sencillamente, tratar a personas sanas con un inmunosupresor durante largos periodos de su vida es algo que está fuera de toda discusión.

Por fin en 2015, el año en que la patente del etanercept expiró en Europa (no en EEUU), investigadores británicos emprendieron el primer ensayo clínico doble ciego, aleatorizado y controlado con placebos para evaluar el uso del fármaco contra el alzhéimer. Se trataba de un estudio aún muy pequeño, con 41 pacientes de alzhéimer, y en fase 2. La fase 1 de un ensayo clínico se centra en la seguridad del fármaco, mientras que la fase 2 confirma estos datos de tolerabilidad y empieza a valorar sus posibles efectos. Por cierto, y aunque en EEUU Amgen se había mostrado reticente a los ensayos clínicos del etanercept para otras indicaciones, este estudio fue financiado a través de una ayuda de Pfizer al investigador principal, Clive Holmes.

Los resultados de tolerabilidad fueron positivos. Sin embargo, los de eficacia fueron decepcionantes: “No hubo cambios estadísticamente significativos en cognición, comportamiento o función global”, escribían los autores del estudio. No había diferencias entre el etanercept y el placebo. Lo cual suscitó una evidente pregunta: ¿y si los resultados reportados por Tobinick solo eran un efecto placebo?

Aquí es donde las cosas empiezan a complicarse aún más. Por un lado, el ensayo británico empleó etanercept por vía subcutánea, no espinal como en los estudios de Tobinick. Pero los investigadores concluían: “El presente estudio no debería verse como un apoyo al uso subcutáneo no aprobado de etanercept para el tratamiento del alzhéimer. El etanercept tiene reconocidos efectos adversos potencialmente serios en la población”.

Al mismo tiempo, los resultados del estadounidense comenzaban a cuestionarse seriamente. Tras ser amonestado por el Consejo Médico de California por conducta no profesional, Tobinick se mudó a Florida, un estado permisivo, donde montó una clínica en la que aseguraba tratar todo tipo de enfermedades neurológicas –incluidas las no autoinmunes– mediante sus inyecciones. Sin ensayos clínicos relevantes, Tobinick comenzaba a cargar a sus pacientes altas sumas por tratamientos con etanercept. Se revelaba además que el investigador no era un neurólogo, sino un internista que antes se dedicaba a la depilación por láser. Al parecer, y después de que sus tratamientos contra el alzhéimer fracasaran, Tobinick se centró en otras enfermedades.

Y en todo esto, ¿dónde entra el lío con Pfizer que ha hecho correr tanta tinta física y digital en los últimos días? El pasado martes, el diario The Washington Post publicaba una exclusiva según la cual, decía el titular, “Pfizer tenía pistas de que su fármaco superventas podía prevenir el alzhéimer” y las ocultó al mundo. En el texto, el periodista contaba que a sus manos había llegado un Power Point en el que se mostraban datos de cientos de miles de reclamaciones de seguros médicos que algunos investigadores de la compañía habían cruzado en 2015, y que se presentaron a la dirección en 2018. Según estos datos, de dos grupos iguales de 127.000 pacientes con alzhéimer y otros tantos sin esta enfermedad, todos ellos afectados por artritis reumatoide o dolencias similares, en el primer grupo (alzhéimer) 110 personas habían recibido etanercept, mientras que en el segundo (no alzhéimer) eran 302.

La crítica a Pfizer se basa en que no hizo públicos estos datos. Lo cual no implica que se mantuvieran en secreto: Holmes dispuso de ellos para su ensayo clínico. Pero si la pregunta es si la comunidad científica debería disponer de este tipo de datos, no creo que nadie objete que la respuesta es sí; la comunidad científica siempre tiene y debe tener hambre de datos, por lo que ningún indicio sobra, ninguno está de más. Ahora bien, si la pregunta es si los datos de Pfizer eran realmente relevantes…

En primer lugar, los datos de Pfizer no son novedosos. En 2016 se publicó un estudio similar: investigadores estadounidenses cruzaron datos de pacientes con artritis reumatoide, con o sin alzhéimer, con o sin tratamiento con etanercept, y concluyeron que “hay un riesgo mayor de alzhéimer en la población de artritis reumatoide estudiada”, y que “el riesgo relativo de alzhéimer entre los sujetos con artritis reumatoide era menor en los expuestos a etanercept”.

En segundo lugar, ¿qué revelan en realidad estos datos? Exactamente lo que dicen: que entre los enfermos de artritis reumatoide hay menos casos de alzhéimer entre los tratados con etanercept. No hay en absoluto una relación causa-efecto demostrada, y correlación nunca significa causalidad; nada descarta la posibilidad, por ejemplo, de que el etanercept, una medicación con efectos adversos serios, se administre con más frecuencia a los pacientes con un cuadro general menos grave. Para discernir entre las posibles hipótesis alternativas y relacionar causas y efectos con base científica son imprescindibles los ensayos clínicos rigurosos.

Por último, y dado que los datos se refieren exclusivamente a enfermos de artritis reumatoide, no hay absolutamente nada en ellos que sugiera una utilidad del etanercept contra el alzhéimer en personas sin artritis reumatoide. El único estudio riguroso que ha abordado esta cuestión hasta ahora, el pequeño ensayo de Holmes, fue negativo.

Estructura del TNF-alfa. Imagen de BQUB14-Jcanas / Wikipedia.

Estructura del TNF-alfa. Imagen de BQUB14-Jcanas / Wikipedia.

En resumen, ¿cuáles son las perspectivas de que se obtenga algo válido del etanercept contra el alzhéimer? Desde luego, nada invita a sospechar que este fármaco vaya a ser jamás la bala mágica contra el alzhéimer. Como ya he dicho arriba, es impensable que se plantee su uso como medicamento preventivo. Si acaso los enfermos de artritis reumatoide tratados con el fármaco pudieran beneficiarse de un posible efecto secundario en este sentido, bienvenido sea. Pero esto no aporta nada al resto de la población general, ni siquiera a la población de riesgo por su perfil genético.

El propio artículo del Washington Post, excelentemente trabajado a pesar de su desafortunado titular click-bait, dice: “Ninguno de los expertos entrevistados para esta historia dijo que tal indicación fuera de etiqueta del Enbrel [etanercept] contra el alzhéimer sería apropiada, dada la naturaleza muy limitada de los datos hasta ahora. Ni creen que esta prescripción vaya a producirse de manera significativa”.

En definitiva, si del etanercept, ya en el dominio público, o de sus muchos fármacos biosimilares ya existentes, podrá obtenerse algo positivo en el futuro contra el alzhéimer, solo el tiempo lo dirá; siempre, naturalmente, que este tiempo se dedique a emprender múltiples ensayos clínicos rigurosos. Que Amgen y Pfizer decidieran no abordar estos ensayos forma parte de su libre derecho como empresas. Que no publicaran un conjunto de datos que no aporta nada novedoso y cuya relevancia científica es relativamente escasa puede ser todo lo criticable que a cada uno le parezca, por supuesto.

Pero tirar de esta anécdota para apoyar una causa general contra estas compañías o contra la Big Pharma solo viene a demostrar una vez más que los pilares más fuertes en los que se sostiene dicha causa general suelen ser el odio irracional y el pensamiento conspiranoico. Que se alimentan solo de titulares, no de las noticias que van debajo. Y que por cierto, también son una industria muy rentable.

No, Pfizer no ha ocultado al mundo un fármaco que cura o previene el alzhéimer (I)

Si todo lo que se está publicando y tuiteando hoy fuera cierto, sería un día histórico para la humanidad: este 6 de junio de 2019 tendríamos por fin un fármaco para curar y prevenir el alzhéimer. Es decir, que una vez desaparecido todo el revuelo de los juicios de valor sobre las prácticas empresariales de Pfizer, lo que quedaría de todo ello sería una noticia de inmensa trascendencia: la cura del alzhéimer.

Solo que no es cierto. Pfizer no tiene un fármaco que cura el alzhéimer. Pfizer no tiene un fármaco que previene el alzhéimer. Pfizer no ha ocultado al mundo que tiene un fármaco que cura ni previene el alzhéimer; en primer lugar, porque no lo tiene, y en segundo lugar, porque no hay nada oculto: este fármaco es de sobra conocido desde hace años por la comunidad científica, que ya ha estado valorando su potencial contra el alzhéimer sin necesidad de que Pfizer revele o deje de revelar nada.

Imagen de Pixabay.

Imagen de Pixabay.

Por lo tanto, hoy no es día de buenas noticias, sino de malas. La primera mala noticia es que la cura del alzhéimer sigue sin existir; si es que puede llamarse noticia a algo que continúa no siendo, tal como no lo era ayer. Lo que sí es seguro una mala noticia es que lo ocurrido hoy es un triunfo más de la desinformación y la demagogia.

Esta es la desinformación y demagogia que circula: Pfizer creó un fármaco del que sabe que cura o previene el alzhéimer, y lo enterró para que nadie lo utilizara porque le resulta más rentable que la gente siga enferma.

Y esta es la información: existe un fármaco creado por investigadores básicos, ampliamente conocido y que se emplea en el tratamiento de la artritis reumatoide. Desde hace años, la comunidad científica piensa que los fármacos de este tipo quizá podrían aportar algún beneficio contra el alzhéimer. De hecho, se han hecho diversos estudios sobre ello, sin que aún exista una pista clara sobre su posible utilidad. Con el tiempo, han surgido otros fármacos biosimilares (casi idénticos, con el mismo efecto). Pfizer, que vende el fármaco original, se planteó si emprender un ensayo clínico a gran escala. Decidió no hacerlo. Con independencia de las explicaciones que Pfizer pueda ofrecer o haya ofrecido al respecto, existen razones perfectamente comprensibles para que una compañía decida no abordar un enorme gasto de resultados inciertos sobre un fármaco cuyas patentes están expirando, que otras entidades pueden ensayar libremente y del que además ya existen otros clones sometidos a investigaciones y a disposición de la comunidad científica.

Y ahora, la versión larga, por si a alguien le interesa conocer la verdad entre tanto espumarajo.

En 1991, el equipo dirigido por Bruce Beutler en el University of Texas Southwestern Medical Center publicó la creación de una proteína quimérica (formada por la unión de trozos de otras) compuesta por el receptor del factor de necrosis tumoral alfa (TNF-α) y un fragmento de anticuerpo.

Estructura del etanercept. Imagen de NEUROtiker / Wikipedia.

Estructura del etanercept. Imagen de NEUROtiker / Wikipedia.

El TNF-α es una molécula producida por el organismo que promueve los procesos inflamatorios. La proteína quimérica tenía por objeto inhibir la acción del TNF-α in vivo, uniéndose a este y secuestrándolo para neutralizar su función. Dado que ciertas enfermedades como las autoinmunes producen sus síntomas a través de una activación incorrecta del sistema inmunitario, en la que el TNF-α desempeña un papel relevante, la idea de Beutler y sus colegas era que la molécula por ellos diseñada podía sumarse a otras opciones disponibles en el tratamiento de dichas dolencias. Los experimentos mostraron que la proteína bloqueaba eficazmente la acción del TNF-α.

Los investigadores patentaron su molécula y vendieron los derechos a la compañía biotecnológica Immunex, que en 1998 desarrolló el producto para el tratamiento de la artritis reumatoide. Su nombre es etanercept, y su marca comercial Enbrel. En 2002 Immunex fue absorbida por Amgen, que actualmente vende el etanercept en EEUU. En el resto del mundo (excepto Japón) la comercialización del fármaco corría a cargo de Wyeth, que en 2009 fue adquirida por Pfizer.

Desde entonces, el etanercept se ha venido utilizando para el tratamiento de la artritis reumatoide y otras enfermedades autoinmunes, no sin problemas: tanto este fármaco como otros similares son, por su propia definición, inmunosupresores, lo que ha llevado a que ciertos pacientes contraigan infecciones graves e incluso mortales.

Por otra parte, entra el alzhéimer, una enfermedad para la que no existe cura ni prevención y cuya causa primaria aún se ignora. Desde hace años se sabe que el cuadro inflamatorio forma parte del conjunto de síntomas del alzhéimer, pero sin que aún se conozca qué relevancia tiene este proceso en el desarrollo de la enfermedad. La posibilidad de que la inflamación pudiera ser un factor primario es solo una de las hipótesis que circulan en torno a la patología del alzhéimer, pero los investigadores consideran la posibilidad de que el tratamiento del cuadro inflamatorio pueda ayudar a paliar los síntomas o frenar su progresión.

Por ello, desde hace años los investigadores han comenzado a ensayar la posible acción de varios fármacos antiinflamatorios contra el alzhéimer, comenzando por los modelos animales. Uno de estos fármacos es el etanercept. La patente del fármaco expiró en Europa en 2015, mientras que en EEUU aún estará vigente hasta 2028 porque Amgen consiguió una extensión. En la práctica, esto implica que cualquier compañía puede producir etanercept fuera de EEUU. Incluso en aquel país, cualquier compañía puede producir otros inhibidores biosimilares, aunque probablemente (como de hecho ha ocurrido) se enfrente a demandas por parte de Amgen.

Lo que debe quedar claro con esto es que el etanercept, ni jamás ha sido secreto, ni jamás ha sido único, ni pertenece ya siquiera a Pfizer. Está publicado desde 1991, pertenece ya al dominio público (excepto en EEUU) y existen numerosas alternativas, desde los más generales antiinflamatorios no esteroideos hasta los más específicos inhibidores de TNF-α y, dentro de estos, los biosimilares; actualmente existe casi una veintena de fármacos biosimilares al etanercept en distintas fases de desarrollo y comercialización.

Y como es obvio, siendo un fármaco común –de hecho uno de los antiinflamatorios más vendidos del mundo–, tampoco ha estado guardado en un armario o en una caja fuerte. Mañana continuaremos contando qué dicen los ensayos emprendidos hasta ahora con este fármaco contra el alzhéimer, qué es lo que Pfizer sabía y no dijo, qué relevancia real tenía esto, y cómo un dato no científico en un Power Point que llega a manos de un periodista puede pintarse de amarillo para convertirse en una de las fake news más sonadas del momento.

¿Y si el virus de Lloviu no mató a los murciélagos?

En mi entrada anterior resumí la historia del virus de Lloviu, ese pariente próximo del ébola que se describió en 2011 en cadáveres de murciélagos de una cueva asturiana, aunque aún no se conoce dónde pudo originarse –tal vez en Francia, han propuesto los científicos–. Como ya conté, ocho años después aún son muchas las preguntas pendientes sobre este virus; la de interés más general, si supone una amenaza para nosotros.

Pero antes de continuar, uno debe reconocer sus propios errores u omisiones. En mis artículos anteriores sobre el virus he mencionado a Anabel Negredo y Antonio Tenorio, investigadores del Centro Nacional de Microbiología del Instituto de Salud Carlos III (CNM-ISCIII) que han llevado gran parte del protagonismo en la detección del virus. Pero pasé por alto otra referencia esencial de esta historia, o más bien su raíz: el proyecto VIROBAT.

O, mejor dicho, proyectos, ya que son cuatro los que hasta ahora se han encadenado desde 2007 bajo la dirección del virólogo Juan Emilio Echevarría, responsable del Laboratorio de Rabia del CNM-ISCIII. VIROBAT es un programa multidisciplinar de identificación de virus en murciélagos ibéricos que ha implicado a diversos laboratorios en sus distintas líneas. El propio laboratorio de Echevarría identificó en 2013 el lyssavirus de Lleida, una variante de la rabia, mientras que la línea que llevó a la detección del lloviu gracias a las muestras de VIROBAT fue desarrollada en el Laboratorio de Arbovirus y Enfermedades Víricas Importadas del CNM-ISCIII, dirigido entonces por Tenorio y posteriormente por Mari Paz Sánchez-Seco. No solo debemos reconocer públicamente el trabajo científico que se hace en este país, sino también los nombres de quienes lo hacen posible.

Un murciélago de cueva Miniopterus schreibersii, la especie en la que se encontró el virus de Lloviu. Imagen de Steve Bourne / Wikipedia.

Un murciélago de cueva Miniopterus schreibersii, la especie en la que se encontró el virus de Lloviu. Imagen de Steve Bourne / Wikipedia.

El penúltimo trabajo sobre el lloviu hasta la fecha nos llega también del ISCIII, en colaboración con los investigadores estadounidenses que participaron en la identificación inicial del virus. Y sus conclusiones son interesantes, aunque aún continúan dejando preguntas en el aire que deberán esperar a nuevos estudios.

Como expliqué anteriormente, varios de los filovirus –la familia del ébola y el lloviu– que son letales para los humanos se han encontrado en murciélagos vivos y sin síntomas de enfermedad, lo que ha permitido despejar una incógnita clave sobre estos virus: su reservorio, o los animales que mantienen los virus en circulación y de los que ocasionalmente surgen los brotes que afectan a nuestra especie.

En cambio, el lloviu se encontró en murciélagos muertos. Lo cual no implica necesariamente que el virus matara a estos animales, algo de lo que no existen pruebas. Pero si fuera así y el lloviu fuese letal para los murciélagos, este virus se convertiría en una rareza dentro de su familia, y su reservorio debería buscarse entonces en otras especies, tal vez insectos o garrapatas. Aclarar estas dudas seguiría sin aportar nada sobre los posibles efectos del lloviu en los humanos, pero sería un paso relevante para ir desvelando el ciclo vital del virus (si “vital” puede aplicarse a algo que muchos científicos no consideran realmente un ser vivo).

Para explorar estos interrogantes, en los últimos años los investigadores han tratado de encontrar rastros de la presencia del virus tanto en murciélagos vivos como en otras especies que están en contacto con ellos, desde los insectos hasta nosotros mismos. Sin embargo, el virus no ha vuelto a detectarse de forma directa en otros animales, ni vivos ni muertos, salvo en una única ocasión: en 2016 se localizó en cadáveres de murciélagos hallados en el otro extremo de Europa, en Hungría.

Pero existe otra posibilidad, y es la detección del rastro que el virus haya podido dejar en el sistema inmunitario de los animales que en algún momento han estado infectados. Utilizando esta vía, un nuevo estudio en la revista Viruses, encabezado por Eva Ramírez de Arellano y dirigido por Negredo, ofrece una respuesta: el virus está circulando en los murciélagos de cueva, pero no en otras especies de murciélagos ni en los humanos.

Los científicos han analizado la sangre de hasta 60 ejemplares vivos de la especie Miniopterus schrebersii, el murciélago de cueva en el que se encontró el virus. Para aumentar la probabilidad de que estos animales hubieran estado expuestos al virus, los ejemplares fueron recogidos en 2015 en las mismas cuevas de Asturias y Cantabria donde se descubrió el lloviu. Al mismo tiempo, han examinado la sangre de un grupo de personas que también han estado en contacto con estos murciélagos, se supone que científicos dedicados al estudio de estos animales. Como control negativo, se han añadido muestras de murciélagos de otra especie diferente capturados en Huelva, lejos del brote original de lloviu.

Los resultados muestran que uno de cada tres murciélagos de cueva analizados, el 36,5%, lleva anticuerpos contra el lloviu, lo que confirma que estos animales contrajeron la infección en algún momento y, sin embargo, continúan vivos. Por el contrario, esta respuesta inmunitaria contra el virus no se ha encontrado en los humanos ni en los murciélagos de Huelva.

Estos datos indican que el brote original del lloviu no fue una rareza, sino que el virus está circulando de forma habitual entre los murciélagos de cueva. Sin embargo, no puede afirmarse que la presencia de los anticuerpos en animales vivos demuestre la no letalidad del virus para los murciélagos; del mismo modo que las personas que han contraído el ébola y han vivido para contarlo llevan anticuerpos en su sangre, podría ser que los murciélagos analizados sean los afortunados supervivientes de una epidemia mortal de lloviu.

Así, los investigadores escriben en su estudio que los resultados “disocian la circulación del lloviu como la causa de las muertes previamente reportadas”, pero es ahí hasta donde pueden llegar con los datos actuales. No obstante, encuentran un sospechoso parecido entre la proporción de animales seropositivos en su población y los niveles en las especies de murciélagos que sirven como reservorios del ébola y el marburgo, por lo que dejan entrever la idea de que quizá la dinámica del lloviu sea similar a la de estos virus; es decir, que infecte a los murciélagos sin matarlos.

Reconstrucción del virus del ébola. Imagen de Wikipedia.

Reconstrucción del virus del ébola. Imagen de Wikipedia.

Por último, el hecho de que no se hayan encontrado anticuerpos contra el lloviu en las personas que están en contacto con los murciélagos nos ha dejado sin la respuesta a la principal pregunta sobre este virus. En 1989 se detectó en Reston, Virginia (EEUU), una enfermedad mortal que afectaba a unos monos importados de Filipinas. Los investigadores descubrieron que el culpable era un filovirus muy similar al ébola, pero pronto se descubrió que era inofensivo para los humanos. Se encontraron anticuerpos en algunas personas que habían manejado los animales y que obviamente habían contraído el virus sin padecer síntomas.

Si el nuevo estudio sobre el lloviu hubiera detectado anticuerpos en algunas de las personas analizadas, probablemente podría concluirse que es un caso similar al virus de Reston: un patógeno para otras especies que no entraña riesgo para los humanos. Pero dado que no ha sido así, aún seguimos a oscuras sobre la peligrosidad del virus. Estudios anteriores sugieren que aparentemente el lloviu sería capaz de infectar células humanas por un mecanismo similar al ébola, por lo que hasta ahora no hay motivos para pensar que pueda ser un virus de contagio más difícil que su primo africano.

A falta de aislar el virus para poder trabajar directamente con él y responder a las preguntas pendientes, por el momento la única vía posible es fabricar sus trocitos a partir de su secuencia genética y estudiar qué hacen y cómo funcionan en sistemas in vitro. Decía más arriba que el nuevo estudio del ISCIII es el penúltimo, no el último; en días recientes se ha publicado además otro trabajo que ahonda un poco más en este prisma molecular del virus de Lloviu, y que aporta también una novedad sugerente. Próximamente, en este mismo canal.

Virus de Lloviu, el ‘primo europeo’ del ébola: aún más preguntas que respuestas

En 2002 comenzó una auténtica saga científica que todavía hoy tiene más preguntas que respuestas. El 17 de junio de aquel año, el biólogo Isidoro Fombellida informaba a sus compañeros de la Sociedad Española para la Conservación y el Estudio de los Murciélagos (Secemu) del hallazgo de numerosos cadáveres de estos animales en una cueva de Cantabria. De inmediato, a este primer informe se unían otros similares de Asturias, Portugal y Francia, en lo que parecía una enigmática y devastadora epidemia que afectaba específicamente a la especie Miniopterus schreibersii, el murciélago de cueva.

Unos meses después, en enero de 2003, el suceso quedaba reflejado en la revista Quercus. Los autores de aquel artículo, los miembros de la Secemu Juan Quetglas. Félix González y Óscar de Paz, contaban que la reunión entre los expertos y las autoridades estatales había resuelto dejar el caso en manos del laboratorio de referencia en enfermedades animales transmisibles a los humanos, el Centro Nacional de Microbiología del Instituto de Salud Carlos III (CNM-ISCIII), en Majadahonda.

En un primer momento los científicos del CNM-ISCIII sospecharon de un brote de rabia, pero los resultados de los análisis fueron negativos. Sin otra pista que olfatear, la misteriosa enfermedad de los murciélagos quedó en suspenso.

Un murciélago de cueva 'Miniopterus schreibersii', especie en la que se descubrió el virus de Lloviu. Imagen de Wikipedia.

Un murciélago de cueva ‘Miniopterus schreibersii’, especie en la que se descubrió el virus de Lloviu. Imagen de Wikipedia.

Un par de años después, el 30 de noviembre de 2005, la revista Nature publicaba un breve estudio dando cuenta de importantes novedades sobre un temible virus, el ébola. Por entonces este patógeno aún era casi un desconocido para el público. Desde 1976 se habían sucedido los brotes con terribles consecuencias para los afectados, pero muchos lo consideraban un problema africano. Por suerte, no todos: gracias a que el gobierno canadiense trabajaba en ello en 2003, cuando casi nadie más lo hacía, hoy tenemos una vacuna que ya se ha administrado a más de 90.000 personas, y sin la cual el brote iniciado en agosto de 2018 en la República Democrática del Congo, aún activo, podría haber sido mucho peor. Las vacunas no se crean de la noche a la mañana cuando el público las pide.

Uno de los interrogantes sobre el ébola era su reservorio animal, es decir, la especie en la que se oculta sin provocar graves síntomas cuando no está matando simios o humanos. Conocer el reservorio de los virus es clave de cara a su control, y en el caso del ébola aún era un misterio.

En Gabón y la República del Congo, un equipo internacional de científicos emprendió la laboriosa y arriesgada tarea de situar trampas en las zonas donde habían aparecido cadáveres de simios infectados por el ébola, con el fin de recoger los animales que podían actuar como reservorio y analizar la presencia del virus. Después de examinar más de 1.000 pequeños vertebrados, los científicos localizaron el reservorio del ébola en tres especies de mamíferos de la fruta, aportando un paso de gigante para poner cerco al virus letal.

Partícula del virus del Ébola fotografiada al microscopio electrónico y coloreada artificialmente. Imagen de NIH / dominio público.

Partícula del virus del Ébola fotografiada al microscopio electrónico y coloreada artificialmente. Imagen de NIH / dominio público.

Entre quienes leyeron aquel estudio se encontraba Antonio Tenorio, por entonces director del Laboratorio de Arbovirus y Enfermedades Víricas Importadas del CNM-ISCIII, donde se habían analizado los cadáveres de los murciélagos hallados en Cantabria y Asturias. Al desvelarse que estos mamíferos podían transmitir más enfermedades de las que hasta entonces se creía, Tenorio tuvo la idea de rescatar las muestras de aquellos animales y escrutarlas en busca de un posible material genético vírico que se pareciera a algo de lo ya conocido.

Pero Tenorio y su principal colaboradora, Anabel Negredo, jamás habrían sospechado lo que iban a encontrar en aquellos murciélagos: ébola. O eso parecía entonces: al comparar las secuencias parciales obtenidas con las bases de datos online de genomas virales, el resultado fue que eran idénticas a la del siniestro virus en un 75%; bastaba un 50% de semejanza genética para que un virus se considerara ébola. Sin embargo, aún era preciso secuenciar en su totalidad el virus de los murciélagos para establecer cuál era su grado de parecido general con el africano.

Aquello era mucho más que una alarmante rareza; era una auténtica bomba. Ni en Europa ni en ningún otro lugar fuera de África y Filipinas se había detectado en la naturaleza nada parecido al ébola (algunos virus de esta familia se descubrieron en Europa y EEUU, pero procedían de monos importados). Y sin embargo, aquel era también el momento en que el laboratorio español debía perder la exclusividad de su descubrimiento. El hallazgo de los científicos del CNM-ISCIII había dado un nuevo cariz a su investigación, pero ni su laboratorio ni ningún otro en este país estaba acreditado con el nivel de seguridad biológica 4, imprescindible para trabajar con patógenos tan peligrosos como el ébola. Así pues, Tenorio y Negredo se veían obligados a compartir su descubrimiento con otro centro en el extranjero que dispusiera de las instalaciones necesarias.

Gracias a la colaboración de los investigadores Ian Lipkin y Gustavo Palacios, entonces en la Escuela Mailman de Salud Pública de la Universidad de Columbia (EEUU), fue posible secuenciar casi en su totalidad el genoma de algo que finalmente resultaba ser diferente del ébola en solo una pizca más del 50%, lo suficiente para darle una identidad propia. Siguiendo la norma habitual en virología, el nuevo virus debía recibir el nombre del lugar donde fue descubierto; los cadáveres de murciélagos utilizados procedían de la cueva del Lloviu, en Asturias.

Por fin en octubre de 2011 un estudio encabezado por Negredo y Palacios como coautores principales, y codirigido por Lipkin y Tenorio, presentaba en sociedad el virus de Lloviu o LLOV, el primer filovirus –la familia del ébola– supuestamente originado fuera de África y Asia, el único en el nuevo género de los Cuevavirus, y más parecido al ébola que sus primos el marburgo y el ravn.

Desde entonces, tanto los descubridores originales del lloviu como otros investigadores han continuado avanzando hacia la conquista de los secretos de este intrigante patógeno, como he venido narrando en este blog con cada nuevo estudio que se publica. Pero la pregunta más acuciante aún sigue pendiente de respuesta: ¿es el lloviu una amenaza para los humanos?

La dificultad para responder a esta y otras innumerables preguntas sobre el lloviu estriba en que el camino de estas investigaciones es enormemente anfractuoso. Para estudiar un virus es indispensable poder manejarlo, pero los científicos estadounidenses no lograron aislarlo, y apenas queda algo de las muestras originales. Hace ahora un año, científicos húngaros describieron la reaparición del lloviu en el otro extremo de Europa, en cadáveres de murciélagos hallados en cavernas de Hungría en 2016. Pero una vez más, el virus asturiano se resistió a su aislamiento.

Así las cosas, los investigadores deben limitarse a reconstruir sus piezas moleculares a partir de la secuencia genómica conocida para después disfrazar con ellas a otros virus disponibles, como el ébola o incluso el VIH. El problema es que estos métodos no suelen ser suficientes para resolver incógnitas como la posible peligrosidad del virus para nuestra especie; no basta con fijarse en qué grado de parecido tienen esas diversas partes para predecir cómo se comportará un filovirus en los humanos o en otros animales. Para entender lo difícil que resulta responder a esta pregunta, conviene detenerse un momento en el complicado rompecabezas de los filovirus.

En los últimos años, esta familia se ha ampliado ya a seis géneros: a los Ebolavirus (ébola, sudán, taï forest, bundibugyo y reston), Marburgvirus (marburgo y ravn) y Cuevavirus (lloviu) han venido a añadirse los Striavirus (xilang) y Thamnovirus (huangjiao), que parecen infectar a los peces, y los Dianlovirus, representados hasta ahora solo por el virus de Mengla, descubierto en murciélagos chinos. Por otra parte, a los cinco Ebolavirus mencionados se ha sumado uno nuevo, el virus de Bombali, hallado en murciélagos de Sierra Leona.

Árbol evolutivo (filogenético) de la familia de los filovirus. Imagen de ICTV.

Árbol evolutivo (filogenético) de la familia de los filovirus. Imagen de ICTV.

Naturalmente, los distintos grupos representan un mayor o menor parecido genético: dos Ebolavirus se parecen más entre sí que un Ebolavirus y un Marburgvirus. Pero en cambio, estos grados de similitud no se aplican a los efectos o las enfermedades que provocan. Por ejemplo, los Ebolavirus son potencialmente letales para humanos y monos, pero no todos: el reston parece inofensivo para nosotros, no así para otros primates ni para los cerdos. Por otro lado, los Marburgvirus, más diferentes del ébola que el reston, son incluso más mortales para nosotros y los monos que el propio ébola.

En lo que respecta a los murciélagos, distintas especies parecen servir de reservorios tanto para los Ebolavirus como para los Marburgvirus. Los recientemente descubiertos mengla y bombali se han detectado en murciélagos vivos, lo que sugiere que estos virus pueden tener también su reservorio en estos animales. De modo que esto parecería una norma general para los filovirus… si no fuera porque el lloviu se encontró en murciélagos muertos, tanto en Asturias como en Hungría.

Pero ¿significa esto que el lloviu mata a los murciélagos, y que los animales hallados en las diferentes cuevas europeas murieron a causa del virus? ¿Significa que el lloviu es una rareza dentro de su familia al no utilizar estos animales como reservorio? ¿Significa que su reservorio debe buscarse en otras especies como los insectos o las garrapatas, una hipótesis que han manejado los investigadores del CNM-ISCIII? Y sobre todo, ¿qué significa todo esto de cara a los posibles efectos del lloviu en humanos?

Más preguntas que respuestas. El próximo día comentaré un par de nuevos estudios que no llegan a esclarecer las muchas incógnitas pendientes, pero que al menos apuntan nuevos datos sobre este virus aún tan desconocido, pero tan cercano a nosotros.

Qué significa el nuevo hallazgo de Barbacid contra el cáncer

Imaginemos que un grupo de climatólogos construye un modelo de simulación computacional del cambio climático. Los científicos ponen su modelo a trabajar e imponen una condición: mañana, a las 9 en punto, cesan todas las emisiones antropogénicas de gases de efecto invernadero en la Tierra. Después de ejecutar la simulación, el resultado es que pasado el tiempo no solo se revierten los efectos del cambio climático hasta ahora, sino que desaparece la amenaza del calentamiento en las décadas venideras (es solo un ejemplo hipotético).

Naturalmente, los científicos estimaban que los resultados podían ser favorables, ya que están actuando sobre la causa raíz, pero resultan ser más espectaculares incluso de lo que sospechaban. Sin embargo, es solo una simulación; no existe manera humana de que mañana a las 9 cesen las emisiones de gases de efecto invernadero. Y aunque de alguna manera fuera posible, los daños colaterales superarían a los beneficios: no tendríamos transporte, energía, comunicaciones, comercio, industria, agricultura… Los centros de trabajo se vaciarían, las fábricas pararían, no habría alimentos en las tiendas, ni tendríamos electricidad, telefonía, internet. Sería un apocalipsis, un colapso de la civilización.

Este caso imaginario sirve como ejemplo para ilustrar lo que ha logrado el equipo del investigador Mariano Barbacid, y que ayer se presentó en rueda de prensa en el Centro Nacional de Investigaciones Oncológicas (CNIO). Barbacid y sus colaboradores han creado un modelo de simulación del cáncer de páncreas, solo que en lugar de tratarse de un algoritmo, es un modelo biológico en ratones. A continuación han impuesto a su modelo una condición drástica, la anulación de ciertos genes implicados en el cáncer y cuya inactivación, esperaban los investigadores, podía revertir el proceso canceroso. Los resultados han superado sus expectativas, logrando en varios casos una curación total.

Pero es solo una simulación. Incluso en el caso de que fuera posible anular dichos genes en los pacientes con cáncer, que hoy por hoy no lo es, los efectos secundarios serían peores que la propia enfermedad, ya que se trata de genes que desempeñan funciones esenciales en el organismo.

Imagen de archivo del investigador Mariano Barbacid. Imagen de Chema Moya / EFE.

Imagen de archivo del investigador Mariano Barbacid. Imagen de Chema Moya / EFE.

Durante la rueda de prensa, Barbacid insistió en que sus nuevos resultados, publicados en Cancer Cell, no deben despertar falsas esperanzas entre los enfermos de cáncer, y así lo han reflejado los medios. Pero también se ha dicho que el tratamiento podría estar disponible para humanos en unos cinco años. Solo que en este caso no existe ningún tratamiento.

En los centros de investigación del cáncer no es raro recibir llamadas de familiares de pacientes, amargamente rotos y deseando agarrarse al menor resquicio de esperanza, dispuestos a abrazar cualquier posible terapia, por experimental y peligrosa que sea. Pero en este caso no hay ninguna terapia que deba demorarse unos años por el proceso de ensayos clínicos. No existe ningún fármaco nuevo, sino solo una posible estrategia, un indicio de enfoque, que es y será por mucho tiempo totalmente inaplicable en humanos.

Con todo, por supuesto que la investigación de Barbacid aporta novedades enormemente valiosas. La principal, la regresión total de este tipo de cáncer en algunos casos, algo que se ha conseguido por primera vez en un modelo experimental; hasta ahora, en los modelos de cáncer de páncreas solo se habían logrado remisiones temporales. Es especialmente destacable que se haya obtenido una paralización del proceso canceroso en los ratones trasplantados con tumores humanos, ya que el cáncer de páncreas en nuestra especie es más complejo que los modelos genéticamente modificados en ratones.

De hecho, este es el dato más intrigante del estudio de Barbacid; los investigadores aún no están seguros de por qué las células tumorales humanas resultan ser tan sensibles en los ratones a esta modificación genética, ni de por qué los efectos tóxicos son mucho más leves de lo esperado.

Curiosamente, esto último parece deberse a que la supresión de uno de los genes (c-Raf) no ha anulado la función que esta enzima desempeña en los sistemas esenciales para la supervivencia celular, algo que sí sucede cuando se emplea un fármaco que inhibe dicha enzima. Lo cual sugiere que el efecto beneficioso observado en los ratones cuando se suprime este gen no está mediado por esa actividad enzimática, sino por alguna otra función de c-Raf que aún es un misterio, y que delata lo mucho que queda por conocer sobre los mecanismos moleculares del cáncer.

Si fuera posible reproducir este último efecto en humanos, se abriría una nueva vía hacia futuros tratamientos. Pero aún quedaría por superar el escollo de cómo conseguir esta inhibición selectiva, inocua para el funcionamiento de las células normales. Esto implica obtener no solo los agentes o fármacos adecuados, sino diseñar una estrategia para su acción específica en los tumores.

Actualmente se ensayan enfoques como la inmunoterapia o la optogenética (controlar funciones de los genes con luz) que pueden lograr esta acción específica. Estudios como el de Barbacid pueden dibujar la equis sobre los genes en los que sería necesario aplicar estas nuevas técnicas para aplacar la furia proliferativa de los tumores. Aún queda mucho camino por recorrer, pero al menos ya se está recorriendo.

Los piojos han inventado uno de los pegamentos más potentes del mundo

Ayer les decía que el verdadero problema de los piojos no son los propios bichos, sino las liendres. Si estos huevos, que la hembra pone a razón de hasta 10 al día, se eliminaran fácilmente con un lavado o un cepillado, cualquier intruso en nuestras cabezas acabaría muriendo tarde o temprano sin dejar herederos a los que legar ese paisaje capilar hasta donde se extiende la vista. Sería enormemente sencillo librarnos de ellos, y probablemente los piojos se habrían extinguido mucho tiempo atrás.

Así, la mayor parte del éxito de la estrategia evolutiva del piojo, la que le ha permitido seguir infestando cada año a cientos de millones de humanos, descansa en ese firme agarre de la liendre al pelo que lo resiste casi todo, y contra el que poco pueden hacer incluso los insecticidas: el huevo solo está comunicado con el aire exterior por un poro llamado opérculo, en el que nuestras lociones apenas consiguen entrar. Digan lo que digan las campañas publicitarias, los expertos aseguran que ningún producto mata el 100% de las liendres, y ninguno de ellos es capaz de desprenderlas del pelo eficazmente.

Una liendre muerta en un pelo humano. Imagen de Gilles San Martin / Flickr / CC.

Una liendre muerta en un pelo humano. Imagen de Gilles San Martin / Flickr / CC.

Por este motivo, conocer el sistema de adhesión de la liendre al cabello es un buen primer paso para lograr, tal vez, diseñar nuevos productos antipiojos que ataquen el problema desde su raíz. Ahora, gracias a un grupo de investigadores coreanos y a su estudio publicado en la revista Scientific Reports, conocemos mucho mejor la respuesta a esta incógnita. Y la respuesta es esta: la fuerte unión de la liendre al pelo se debe a un increíble pegamento producido por los piojos hembras, y que no se parece a ningún otro conocido hasta ahora.

Analizar los componentes de la cubierta de la liendre no ha resultado tan fácil como podría preverse. Cuando los científicos quieren hacer un estudio de este tipo, lo que hacen es disolver el material de base, en este caso las liendres, utilizando algún disolvente apropiado, y después se determina la composición de la muestra líquida utilizando un aparato llamado espectrómetro de masas.

Antes se creía que la cubierta de las liendres estaba compuesta por quitina, el polisacárido (azúcar) que forma el exoesqueleto de los insectos y los crustáceos; la cáscara de la gamba, digamos. Sin embargo, estudios recientes sugerían que en su lugar parecía más bien de naturaleza proteica, así que los investigadores sumergieron las liendres en un disolvente de proteínas: la urea.

Después de este tratamiento, comprobaron que todos los embriones de los huevos habían muerto y que sus proteínas se habían disuelto en la solución de urea. Pero en cambio, las cubiertas de las liendres seguían sin inmutarse. Así que probaron con otro tratamiento más fuerte, y luego con otro, y otro. Todos fallaron. Ni los disolventes orgánicos como el DMSO (dimetilsulfóxido), el etanol o el ciclohexano, ni los detergentes de laboratorio como el SDS (dodecil sulfato sódico), el Triton X-100 o el DDAO (N-óxido de N,N-dimetildodecilamina) lograron destruir los huevos.

Ante esta especie de adamantium piojil, a los investigadores solo les quedó la opción de analizar las liendres por otros métodos indirectos y luego tratar de encajar las piezas del puzle. En primer lugar, confirmaron la naturaleza proteica de la liendre empleando una técnica llamada espectroscopía de infrarrojos de transformada de Fourier (FTIR), que es capaz de revelar las estructuras de las proteínas intactas incluso en una muestra sólida. Utilizando una sola liendre, consiguieron verificar que su cemento estaba hecho de proteínas, aunque no lograron desentrañar la estructura de estas.

A continuación pasaron al método radical: ácido clorhídrico concentrado. Por suerte, los piojos aún no han completado el camino para convertirse en los aliens de Ridley Scott. El ácido destruyó los huevos, pero también las proteínas. El resultado de este tratamiento fue una sopa de aminoácidos, los eslabones que forman las proteínas. Pero esta sopa solo contiene los eslabones sueltos, como si al agitar un libro todas sus palabras se mezclaran; imposible conocer cómo son las proteínas originales.

Sin embargo, lo que sí puede conocerse de este caldo es su lista de ingredientes, los aminoácidos concretos presentes (como glicina, alanina, valina…), y sus porcentajes. Con estos datos, los investigadores se fueron a la base de datos que contiene la secuencia del genoma del piojo. Dado que el ADN se traduce en proteínas, la tarea consistía en buscar genes de cuyas secuencias pudieran predecirse proteínas con la misma composición de aminoácidos y los mismos porcentajes que los obtenidos en la sopa de aminoácidos de liendres.

Y allí aparecieron dos genes, que los investigadores coreanos han denominado Proteína de la Cubierta de la Liendre del Piojo 1 y 2, respectivamente (en inglés, Louse Nit Sheath Protein o LNSP 1 y 2). Por último, se trataba de comprobar si efectivamente estas proteínas existían en el piojo, y de producirlas in vitro para estudiar qué hacían.

En cuanto a lo primero, el resultado mostró que los investigadores habían dado en el clavo: las LNSP 1 y 2 existen en los piojos, pero más concretamente en las hembras adultas en fase de puesta de huevos, y aún más concretamente están presentes en su glándula accesoria, la que segrega el pegamento encargado de fijar la liendre al pelo.

Para lo segundo, los autores del estudio introdujeron un fragmento del gen de la LNSP 1 en bacterias Escherichia coli, utilizadas en los laboratorios como diminutas vacas lecheras para producir cualquier proteína que se desee. De este modo, las bacterias fabricaban una LNSP 1 parcial, que luego podía purificarse para estudiar sus propiedades.

Ya al estudiar la secuencia de aminoácidos de LNSP 1 y 2, los modelos bioinformáticos utilizados por los investigadores habían pronosticado que se trataría de proteínas con una tendencia a formar cadenas β que se compactarían fuertemente en láminas β; dicho de otro modo, que serían bastante pegajosas.

Esto se confirmó al poner en marcha la producción en bacterias: a medida que aumentaba la concentración de la proteína en la solución, los investigadores vieron que se volvía pringosa, y que al evaporarse el agua era capaz de adherir un pelo humano a un tapón de plástico, o un tubo de plástico a una placa Petri.

La proteína de la liendre LNSP 1 adhiere el pelo a un tapón de plástico y un tubo a una placa Petri. Imagen de Park et al, Scientific Reports 2019 / CC.

La proteína de la liendre LNSP 1 adhiere el pelo a un tapón de plástico y un tubo a una placa Petri. Imagen de Park et al, Scientific Reports 2019 / CC.

Para evaluar el poder adhesivo de LNSP 1, los científicos lo compararon con el Tisseel, un pegamento biológico comercial que se usa en cirugía para cerrar heridas y que está compuesto por fibrina, una proteína implicada en la coagulación de la sangre. El resultado fue que el pegamento de la liendre es unas 500 veces más potente que el Tisseel, y esto solo para el fragmento parcial producido en las bacterias; según los modelos, la proteína completa será aún más potente. Y a esto se añade que probablemente el pegamento del piojo contenga otras proteínas además de LNSP 1 y 2.

De hecho, y aunque en algunos aspectos estas proteínas se parecen a la tela de araña, otras peculiaridades de sus secuencias las diferencian de cualquier otro adhesivo biológico conocido, asemejándolas más a las proteínas que se acumulan y forman grumos en el cerebro en ciertas enfermedades neurodegenerativas como el Huntington.

En resumen, todo indica que los piojos han inventado uno de los pegamentos más potentes que existen. Los investigadores sugieren que, una vez se conozca su composición con más detalle, podría desarrollarse industrialmente como adhesivo biológico de alto rendimiento. Esto ya se ha hecho, por ejemplo, con el pegamento que utilizan los mejillones para aferrarse a las rocas y a partir del cual se ha creado un adhesivo más potente que el Super Glue y resistente al agua. Al menos tal vez acabemos sacando algo aprovechable de la lacra de los piojos.

El sexo no solo está en los cromosomas sexuales

Hay una razón biológica para que tengamos sexo, aunque todavía no estamos seguros de si la comprendemos en su totalidad. Imaginemos que pudiéramos tener descendencia a voluntad sin intervención de otra persona. Sin duda la vida sería mucho más aburrida, pero también nos evitaría innumerables quebraderos de cabeza y un inmenso gasto de energía.

Evidentemente, es difícil concebir cómo sería la vida sin el sexo; no sin practicarlo (que también), sino sin que existiera. Pero nosotros, los humanos, no hemos elegido que las cosas sean como son. Nos han venido dadas de esta manera, y lo único que podemos hacer es intentar comprender por qué. Bueno, por supuesto y mientras lo intentamos, también podemos disfrutar de los mecanismos que lo hacen posible.

Los organismos que se reproducen asexualmente tienen una gran ventaja sobre nosotros, y es que pueden aumentar sus poblaciones con mucha más facilidad y rapidez, evitando además el engorro y el coste energético de tener que encontrar una pareja adecuada. Queda claro que hablamos desde un punto de vista biológico, desde el cual nuestras células germinales –óvulos y espermatozoides– son tan importantes como nosotros, o incluso más; si tenemos en cuenta las generaciones celulares, entre nuestra generación y la de nuestros hijos hay otra más, la de nuestras células germinales. De hecho, nosotros no somos más que instrumentos al servicio de nuestros genitales para producir descendencia. No es una idea provocadora, simplemente es biología.

Parece claro que entonces, para que la reproducción sexual haya perdurado, debe aportar alguna ventaja a ciertos organismos –en realidad somos una minoría los que utilizamos esta estrategia reproductiva–. La más obvia es que nos confiere una mayor diversidad genética gracias a la mezcla de genes entre el padre y la madre; cada uno de nosotros solo legamos a nuestros hijos la mitad de nuestro genoma, y así fabricamos genomas híbridos que son completamente inéditos, nunca antes aparecidos en la historia de la humanidad.

Cromosomas humanos. Imagen de Public Domain Files.

Cromosomas humanos. Imagen de Public Domain Files.

Esta diversidad genética es el medio para conseguir fines prácticos: nos ayuda a diluir el efecto y la acumulación de mutaciones perjudiciales, que los seres asexuales se ven condenados a arrastrar generación tras generación. Y al haber genomas muy diversos en una población lo suficientemente grande, aumentan las posibilidades de supervivencia de la especie frente a las agresiones del entorno, cuando las condiciones ambientales cambian: si llega una glaciación, siempre hay quienes la soportarán.

Para que todo esto se produzca es necesario que existan dos sexos, con un dimorfismo sexual característico –lo que nos diferencia físicamente– que nos permite reconocernos mutuamente. Y según la norma más general, lo que genera esas disparidades entre los cuerpos de hombres y mujeres también determina otros parámetros, como nuestra identidad sexual (sentirnos hombres o mujeres) y nuestra orientación sexual (que nos atraigan los hombres o las mujeres).

En tiempos pasados, cuando aún no se comprendían los mecanismos responsables de todo esto –y, todo hay que decirlo, cuando los prejuicios sociales y religiosos eran mucho más prevalentes que hoy–, se interpretaba que la naturaleza humana era forzosamente binaria, valga la insistencia, por naturaleza: hombre y mujer, macho y hembra, sexo donador y sexo aceptor, cada uno atraído por el opuesto. Todo lo que se saliera de esta norma mayoritaria se consideraba anormal, y por lo tanto patológico. Para algunos, incluso satánico.

Naturalmente, hoy los criterios sociales han cambiado, y los religiosos ya no determinan el funcionamiento de la sociedad. Pero aunque sin duda esto debe agradecerse principalmente a todas las personas que han entregado sus mayores esfuerzos a esta causa, es esencial no olvidar algo: cuando el Papa Francisco, en sus recientes y decepcionantes declaraciones, atribuía la homosexualidad a una moda (o al menos su mayor visibilidad actual), está ignorando un siglo de conocimiento científico.

Está ignorando que, con independencia de las tendencias y los cambios en la realidad social y del empeño de quienes los han impulsado, el hecho biológico es que la homosexualidad, la bisexualidad, la transexualidad, la intersexualidad y las discrepancias entre fenotipo e identidad u orientación sexual son situaciones completamente NATURALES, que forman parte de la distribución normal (en sentido matemático; es decir, campana de Gauss) de la variabilidad sexual humana.

Y el hecho de que ya no se consideren patologías ni siquiera se debe a la necesidad de crear una sociedad más inclusiva, como sí ocurre para el caso de ciertos trastornos mentales que hoy se pretende desestigmatizar; la variabilidad sexual no es patológica, sencillamente porque en esta categoría entran las condiciones que perturban gravemente a las propias personas o a las cercanas a ellas. Y el único motivo por el que la variabilidad sexual ha creado perturbaciones a tantas personas durante tantos siglos es por esos antiguos prejuicios sociales y religiosos, no por nada inherente a esas propias condiciones, que en sí misma son tan patológicas como el hecho de que dos padres rubios tengan un hijo moreno.

Como ilustración de todo esto, llega un nuevo estudio que descubre uno más de los factores genéticos involucrados en la determinación del fenotipo sexual humano. Desde hace años se conoce el gen SRY, presente en el cromosoma sexual masculino Y, cuya entrada en funcionamiento durante el desarrollo embrionario es fundamental para la aparición de los genitales masculinos. Como ya expliqué aquí y en contra de ese mito tan extendido, esto no implica que todos comencemos nuestro desarrollo como embriones femeninos; la ausencia del cromosoma Y con su gen SRY solo resulta en una diferenciación completa de la anatomía femenina cuando existen dos cromosomas X, no solo uno de ellos. Antes de la puesta en marcha del Y, el embrión no es femenino, sino un proyecto de hermafrodita.

Pero ¿cómo actúa SRY? Los genes en realidad no producen caracteres, sino solo proteínas. Muchas de estas proteínas a su vez estimulan la actividad de otros genes, cuyos productos activan otros genes, y así. Estas cadenas llevan en algún momento a la fabricación de proteínas que participan en rutas metabólicas de la célula, las cuales modifican la producción de otras moléculas involucradas en otras rutas o en la activación de otros genes… El proceso en conjunto podría asemejarse a esos inmensos montajes de fichas de dominó que hace unos años tanto parecían gustar a los japoneses, donde las líneas se ramificaban y se volvían a unir para al final disparar pirotecnia o hacer caer un coche. Los montajes de dominó de la célula pueden resultar finalmente en varios efectos diferentes y en apariencia no relacionados entre sí, como el color de la piel y el funcionamiento del páncreas.

El nuevo estudio, publicado en Nature Communications por investigadores del Instituto de Investigación Infantil Murdoch (Australia), ha identificado el mecanismo de uno de esos mediadores de la acción del gen SRY. Se trata del gen SOX9, activado por SRY y que produce un factor de transcripción, es decir, un estimulador de la expresión de otros genes. Así, SOX9 es un eslabón en una de esas cadenas, en concreto la que lleva al desarrollo de los genitales masculinos. Si se rompe ese eslabón, la cadena no funciona y los testículos no se desarrollan. Si por el contrario ese eslabón se multiplica, se favorece el desarrollo de los testículos cuando no debería ocurrir.

En concreto, toda la magia ocurre no en el propio gen SOX9, sino en una región del genoma adyacente a él. Cuando a comienzos de siglo se terminó de secuenciar el genoma humano, a los investigadores les sorprendió descubrir que solo una pequeña parte de él contiene genes; el resto se denominó ADN basura, pero fue un nombre desafortunado, ya que en realidad esta materia oscura del genoma (una denominación más adecuada) contiene secuencias esenciales para que los genes se activen. Esas partes que no producen proteínas albergan promotores y enhancers (potenciadores), segmentos de ADN a los que se unen esos factores de transcripción y otras proteínas reguladoras para ordenar a los genes que fabriquen proteínas. Son los semáforos de los genes: cuando están en rojo, el gen está inactivo; necesitan que una proteína reguladora se una a ellos y los ponga en verde para que el gen funcione.

Los investigadores australianos han descubierto que el gen SOX9 está bajo el control de tres semáforos, o enhancers, que dependen de SRY para ponerse en verde y dar paso a la producción de una proteína que actúa como eslabón crítico en la cadena que lleva al desarrollo de los testículos. Cuando estos enhancers aparecen en mayor número de lo habitual, el resultado es que se forman testículos, incluso cuando la persona tiene cromosomas XX, es decir, es genéticamente femenina. Y al contrario, cuando los enhancers de SOX9 son deficitarios, aparecen ovarios, incluso si la persona es XY, genéticamente masculina.

En resumen, las variaciones en el control de SOX9 por medio de sus enhancers explican muchos casos de intersexualidad: personas cromosómicamente femeninas que poseen testículos, o cromosómicamente masculinas que poseen ovarios. El gen SOX9 no se ubica en los cromosomas sexuales sino en el cromosoma 17. Por supuesto no es el primer caso conocido de control del sexo a través de genes situados en cromosomas que no son los sexuales, pero sirve para reforzar la idea de que el sexo no solo está en los cromosomas sexuales.

Y naturalmente, las variaciones en el control de los enhancers de SOX9 no son enfermedades. No son trastornos (aunque, por desgracia, la terminología todavía debe adaptarse a esta realidad). Y dado que los procesos genéticos y bioquímicos que controlan la definición de la identidad y la orientación sexual en el cerebro (es decir, si nos sentimos más hombres, más mujeres o ninguno de ambos en particular, o si nos atraen más los hombres, las mujeres o ambos) dependen de sus propias cadenas dentro esos inmensos montajes de dominó, puede ocurrir que las personas XX que son fenotípicamente hombres, o las XY que son fenotípicamente mujeres, se sientan hombres o mujeres, y les atraigan los hombres o las mujeres.

Son simplemente casos minoritarios, que caen en las partes más delgadas de la campana de Gauss de la variabilidad sexual humana. Pero no sufren ningún mal, salvo aquellos que la sociedad quiera cargar sobre ellos por el hecho de no haber caído en la parte más alta de la campana de Gauss.

Muchos científicos apoyan la edición genómica en bebés con fines terapéuticos

El hecho de que la comunidad científica haya condenado de forma casi unánime el experimento de He Jiankui –el investigador que dice haber utilizado la herramienta de edición genética CRISPR para modificar los genomas de al menos tres bebés (dos de ellos ya nacidos)–, como conté ayer, no implica que la misma comunidad científica condene de forma igualmente unánime cualquier experimento de obtención de bebés con sus genomas modificados por edición genética. Aunque así lo hayan interpretado esta semana muchos medios, que solo se han molestado en recoger las opiniones de científicos contrarios a la edición genómica de la línea germinal, esta interpretación sencillamente no se corresponde con la realidad.

Obviamente, sí hay quienes suscriben una causa general. Tanto en los medios generalistas como en las revistas científicas, ciertos investigadores han dejado su visión de que la modificación genética de la línea germinal humana (las células de la reproducción) es una línea roja que jamás debería cruzarse. Dejando aparte las dudas éticas (que son razonables, pero opinables) y los reparos morales (ideológicos y religiosos, que son personales y ahí deben quedarse), la objeción científica fundamental se resume en que las consecuencias de estos experimentos podrían tener “consecuencias impredecibles para las futuras generaciones”, como escribía un grupo de investigadores en 2015 en la revista Nature.

En breve, el argumento podría resumirse en que actualmente no es posible disponer de un análisis riguroso sobre los riesgos y los beneficios. Es decir, que incluso algunos defensores de la causa general basan su oposición no en lo que se conoce, sino en lo que aún no se conoce (y se irá conociendo cada vez más). Pero incluso los detractores admiten: “Si en algún momento surgiera un caso realmente convincente de beneficio terapéutico para la modificación de la línea germinal, invitamos a un debate abierto sobre el curso de acción más adecuado”.

Fecundación in vitro. Imagen de pixabay.

Fecundación in vitro. Imagen de pixabay.

Pero esta opinión no es ni mucho menos unánime. En el extremo opuesto se encuentran científicos como George Church, genetista de la Universidad de Harvard y del Instituto Tecnológico de Massachusetts, uno de los promotores del Proyecto Genoma Humano y una de las máximas autoridades mundiales en nuevas fronteras de la biología molecular, como la biología sintética.

En una entrevista publicada esta semana en la revista Science, se diría que Church casi ha tenido que morderse la lengua para mantener la templanza y no defender abiertamente el experimento de He. Aunque parece medir sus palabras, juzga la reacción general contra He como “bullying“, alegando que las acusaciones contra el investigador chino se resumen en que no cumplió correctamente con el papeleo. Y aunque reconoce que en un caso como este las consecuencias de este incumplimiento pueden ser especialmente graves y sonoras, compara el caso con el de Louise Brown, la primera niña nacida por fecundación in vitro, que en su día recibió el alias peyorativo de “bebé probeta” y también fue fuertemente reprobado por numerosos sectores, incluyendo muchos científicos.

Church recuerda que existe actualmente una moratoria autoimpuesta por los científicos sobre la edición de la línea germinal humana, pero también que “una moratoria no es una prohibición permanente para siempre”. Y aunque admite que quizá el riesgo nunca llegue a ser cero, subraya que tampoco lo es para otros muchos procedimientos médicos aplicados hoy de forma habitual, ni para otras decisiones científicas que suscitan debates éticos; como ejemplo, dice que él jamás hubiera puesto en el dominio público las secuencias genéticas de los virus de la viruela o de la gripe de 1918.

Sin embargo y respecto al riesgo, Church aclara también un aspecto que probablemente debería divulgarse más, y es que el experimento de He no ha sido tanto un salto al vacío como se ha querido presentar. “Tenemos que decir que hemos hecho cientos de estudios en animales y algunos estudios en embriones humanos”, señala. “Tenemos cerdos que tienen docenas de mutaciones CRISPR y una cepa de ratones que tiene 40 sitios CRISPR, y hay efectos off-target [cambios genéticos causados por CRISPR diferentes al pretendido] en estos animales, pero no tenemos pruebas de consecuencias negativas”. “Seamos cuantitativos antes de ser acusatorios; puden ser detectables pero sin efecto clínico”, concluye Church.

Entre los científicos, Church representa la postura más a contracorriente de lo que ha pretendido transmitirse esta semana en diversos medios. Pero Church no está solo en la defensa del uso de CRISPR como herramienta terapéutica para la eliminación de enfermedades genéticas en embriones; eso sí, avanzando con cautela y sin saltarse pasos imprescindibles como He ha hecho.

Al término de la segunda cumbre internacional sobre edición del genoma humano, celebrada esta semana en Hong Kong y en la que He presentó sus resultados (solo después de que se filtraran a la prensa, y aún sin una publicación formal), los miembros del comité organizador han emitido un comunicado criticando el experimento de He como “irresponsable” y señalando su “falta de adhesión a los estándares éticos”, su “falta de transparencia” o su “inadecuada indicación médica”. Pero al mismo tiempo añaden:

La comprensión científica y los requerimientos técnicos para la práctica clínica aún son demasiado inciertos, y los riesgos demasiado grandes para permitir ensayos clínicos de edición de la línea germinal en este momento. Sin embargo, el progreso en los últimos tres años y los debates en la presente cumbre sugieren que es hora de definir un camino riguroso y responsable hacia dichos ensayos.

Según los científicos firmantes, ese camino pasa por la “adhesión a estándares ampliamente aceptados para la investigación clínica”, la definición de “estándares sobre las evidencias preclínicas”, la “evaluación de competencia de los experimentadores”, “estándares obligatorios de conducta profesional” y “fuertes alianzas con pacientes y grupos de defensa de los pacientes”.

Entre estos últimos se han encontrado también algunos de los apoyos más entusiastas al desarrollo de CRISPR como herramienta terapéutica para prevenir enfermedades genéticas en los bebés. Comprensiblemente, muchos padres de niños con enfermedades genéticas letales o altamente incapacitantes ven en CRISPR el posible fin de una pesadilla; no para ellos, a quienes la solución ya les llegaría tarde, sino para otros futuros padres y madres de niños y niñas que hoy no esperarían verse jamás en esa situación, y entre los cuales sin duda se encontrarán muchos de quienes hoy califican la edición genómica de la línea germinal como una monstruosidad.