Archivo de la categoría ‘botánica’

Los hongos se comunican por impulsos eléctricos parecidos a un lenguaje

Nosotros, animales, solemos contemplar las plantas y los hongos casi como seres de una misma categoría, la de los organismos de apariencia inerte que decoran el paisaje y nos sirven de alimento, o a veces crecen donde no deberían. En realidad estos dos grandes grupos son tan distintos entre sí como nosotros de cualquiera de ellos. Para muchos estudiantes de biología —salvo para los micólogos vocacionales, que por supuesto los hay—, los hongos son como esa pieza del puzle que se deja para el final porque no se sabe muy bien dónde va.

Pero, de hecho, los hongos se parecen más genéticamente a nosotros los animales que a las plantas: un humano y un champiñón, o el moho del pan, pertenecemos a la misma gran división biológica de los opistocontos, mientras que las plantas son arqueoplástidas, algo muy diferente. Como los animales (no nosotros, pero sí los insectos), los hongos tienen quitina en lugar de celulosa. Y al igual que todos los animales, los hongos tampoco producen su propia comida, sino que deben tomarla de otros seres; las plantas sí lo hacen mediante la fotosíntesis, ese gran invento de la evolución sin el cual no existiríamos.

Ocurre que nuestra mentalidad es naturalmente zoocéntrica, y sin duda hoy lo es más que nunca. Durante la mayor parte de la historia de la ciencia nos hemos acogido al paradigma de que las plantas eran seres insensibles sin la menor capacidad de interacción compleja entre sí o con su entorno, más allá de algunas respuestas básicas programadas, como las de una máquina de snacks.

Pero cuando algunos investigadores muy listos, muy atrevidos y sin el menor miedo al ridículo, comenzaron a medir cosas en las plantas que nadie había medido antes, los hallazgos fueron espectaculares: las plantas se comunican entre sí mediante señales químicas, transmiten señales eléctricas y utilizan neurotransmisores, se avisan unas a otras del ataque de sus depredadores —los herbívoros— y ponen en marcha sus respuestas de defensa, cooperan entre sí, aprenden de la experiencia y tienen memoria, reconocen a sus parientes, oyen sonidos y reaccionan a ellos, sienten el tacto, son sensibles al daño, ejecutan computaciones básicas en función de su entorno para tomar decisiones…

Este ha sido uno de los cambios de paradigma más revolucionarios y alucinantes de la ciencia reciente, que he seguido en este blog en los últimos años (aquí, aquí, aquí, aquí, aquí o aquí). Gracias a aquellos investigadores a los que otros miraban casi con pena, hoy ya es habitual encontrar estudios en las principales revistas científicas sobre eso que algunos llaman cognición vegetal, otros inteligencia vegetal, muchos neurobiología vegetal. Y esto último no es necesariamente un oxímoron si pensamos que la neurona se definió a partir de la neurología y no al revés; la neurología existe desde siglos antes del descubrimiento de las células nerviosas, y por lo tanto no hay motivo para no aceptar como neurología algo que no utiliza neuronas pero que cumple funciones similares en otros organismos.

Cualquiera que esté un poco al tanto de los avances de la ciencia ya no puede contemplar a las plantas como esos seres casi indiferentes y pasivos que antes creíamos. Hay en ellas mucho más de lo que vemos con nuestra mirada animal, otra forma de vida alternativa que ha optado por soluciones muy diferentes a las nuestras, y en algunos casos más ventajosas según para qué. Su sistema descentralizado evita la vulnerabilidad de nuestros órganos vitales. No padecen cáncer. ¿Y todavía pensamos que los privilegiados somos nosotros? La ciencia ficción ha jugado con estas ventajas de las plantas: en El enigma de otro mundo (¡alerta de spoiler!), la película de 1951 en la que se basó La cosa de John Carpenter, los alienígenas eran seres vegetales avanzados, virtualmente inmortales como lo son las propias plantas.

Y ¿qué hay de los hongos? Si las plantas y los animales somos capaces de interaccionar de formas tan complejas con otros seres vivos y con nuestro entorno, ¿no tendrán también los hongos sus propios sistemas cognitivos?

Hongos ‘Schizophyllum commune’ en la madera muerta. Imagen de Bernard Spragg from Christchurch, New Zealand / Wikipedia.

Pues, al parecer, sí. Hace ya casi medio siglo se descubrió que las hifas de los hongos, esos filamentos que forman su estructura, transmiten impulsos eléctricos mediante potenciales de acción, de forma similar a nuestras neuronas y a las plantas. El significado y la función de estas señales, solo los hongos lo saben. Pero en un nuevo estudio, un investigador de la Universidad del Oeste de Inglaterra en Bristol dice haber encontrado la presencia de lo que parece un lenguaje en los impulsos eléctricos de los hongos.

El científico computacional Andrew Adamatzky ha registrado los potenciales de acción en varias especies de hongos, insertando microelectrodos en las redes de hifas, y los ha introducido en un algoritmo para identificar patrones. Según su estudio, publicado en Royal Society Open Science, estos impulsos eléctricos no parecen en absoluto aleatorios. Se organizan en secuencias («trenes», en términos neuronales) y son distintos entre diferentes especies, como si cada una tuviera su propio sistema.

Aún más, Adamatzky ha encontrado que estos impulsos contienen patrones consistentes, como si fueran palabras, y que «las distribuciones de longitud de las palabras fúngicas simulan la de los lenguajes humanos», escribe en su estudio. Con esta información, el investigador ha construido un léxico de hasta 50 posibles palabras distintas, que el análisis computacional ha encontrado organizadas en frases con una apariencia de sintaxis. La especie que genera frases más complejas, dice el investigador, es Schizophyllum commune, ese hongo que suele crecer en abanicos sobre las cortezas de los árboles muertos. «Los dialectos de diferentes especies son diferentes», escribe.

Obviamente, no se puede aventurar a la ligera que exista un lenguaje definido en los hongos. Pero dado que estos impulsos existen y dadas sus características, la explicación más factible parece que de algún modo sirvan a un propósito de comunicación, ya que esta es la función de este tipo de actividad en otras especies. Se sabe, por ejemplo, que los impulsos eléctricos cambian cuando un hongo entra en contacto con alimento, y estos impulsos se transmiten a otras zonas de la misma colonia. «Especulamos que la actividad eléctrica de los hongos es una manifestación de la información comunicada entre partes distantes de las colonias fúngicas», escribe el autor.

Adamatzky ha abierto un camino que promete nuevas sorpresas, y en el que anima a otros investigadores a profundizar para descubrir si existe una gramática, unas reglas de construcción que organicen la sintaxis de los hongos, si esta varía entre distintas especies, y si existe en todo ello una semántica que podamos interpretar y entender. «Dicho esto, no deberíamos esperar resultados rápidos», advierte el investigador; «todavía no hemos descifrado el lenguaje de los perros y los gatos a pesar de vivir durante siglos con ellos, y la investigación de la comunicación eléctrica de los hongos está en estado puramente naciente». El traductor hongo-humano, si acaso, tardará, pero al menos hemos comenzado a escucharlos.

Las plantas no sienten dolor, pero sí son sensibles al daño

Ayer les hablé de cómo investigaciones recientes han descubierto que las plantas poseen sentidos como la vista, el oído, el olfato y el tacto, además de capacidades de comunicación, cooperación, aprendizaje por asociación, memoria, reconocimiento de especie o toma de decisiones; y que los investigadores han llegado a resumir todas estas sorprendentes habilidades como un comportamiento inteligente equiparable al de muchos animales simples. Olviden aquello de “como un vegetal”: los vegetales no son “como un vegetal”.

Les decía también que todas estas investigaciones se encuadran informalmente bajo el nombre de neurobiología vegetal, una denominación que no gusta a todos y que parece científicamente chirriante, dado que no existen neuronas en las plantas. Pero como verán unas cuantas líneas más abajo, si no tienen neuronas, en cambio sí poseen muchos de los mecanismos que permiten a las neuronas comportarse como tales. Así que, al menos mientras no se acuñe un nombre específico para los circuitos que actúan casi como neuronas en las plantas, lo de neurobiología vegetal cada vez suena menos inapropiado.

Esta neurobiología vegetal es “una revolución científica”, en opinión del filósofo Paco Calvo, uno de los expertos que estudian las proyecciones de esta nueva disciplina más allá de la ciencia; por ejemplo, sus implicaciones sociales. Porque si las plantas son seres sensibles, ¿cómo afecta esto a nuestra relación con ellas?

Evidentemente, nadie en su sano uso de razón sugiere que dejemos de comer vegetales; pero sí que tal vez debería replantearse la visión de las plantas como seres prácticamente inertes que podemos arrancar, talar, podar, dejar morir o pisotear a voluntad de forma arbitraria y sin una razón para ello. Antes incluso de muchos de estos descubrimientos recientes, la Constitución de Suiza ya reconocía la «dignidad de los seres vivos» con una mención a la protección de las plantas. Para el desarrollo de este artículo, el Comité Federal de Ética en Biotecnología No Humana dictaminó que es “moralmente inaceptable causar daño arbitrario a las plantas”; por ejemplo, “la decapitación de flores silvestres junto a la carretera sin un motivo racional”.

La nervadura de una hoja. Imagen de Jon Sullivan / Wikipedia.

La nervadura de una hoja. Imagen de Jon Sullivan / Wikipedia.

Lo cual nos lleva a una interesante pregunta: ¿pueden las plantas sentir dolor? Pero la respuesta es inmediata: el dolor es una sensación sensorial y emocional de malestar que actúa como mecanismo de defensa y como señal de alarma para que nos apartemos del estímulo doloroso, y que actúa a través de receptores específicos llamados nociceptores. Por lo tanto, la propia definición del dolor está cortada a medida de los animales con un cierto nivel de complejidad neuronal (vertebrados y algunos invertebrados); es un concepto zoocéntrico que no tiene sentido aplicar a otros seres vivos, sobre todo a aquellos que, como las plantas, carecen de nociceptores.

Pero a continuación vienen los matices: un caballo no puede comprender un chiste. Y sin embargo, que no podamos hablar del sentido del humor de un caballo no significa que estos animales no posean muchos de los mecanismos cerebrales que en nuestro caso están asociados a la risa. Y del mismo modo, las plantas son también sensibles al daño, a través de ciertas respuestas celulares que tienen algunos aspectos en común con los procesos neuronales de los animales.

Un experimento reciente ha mostrado cómo funcionan estos mecanismos, y los resultados son un argumento más para defender que en las plantas sí puede hablarse de neurobiología. Investigadores de EEUU y Japón han examinado cuál es el proceso de una respuesta ya conocida anteriormente en las plantas: si se induce un daño en un lugar, por ejemplo en una hoja, se genera una respuesta eléctrica que se propaga por toda la planta.

Esta señal se transmite a una velocidad mucho menor que en nuestras neuronas; nuestros impulsos eléctricos corren por los nervios hasta a 120 metros por segundo, mientras que en las plantas la reacción avanza a solo un milímetro por segundo. Ya decíamos ayer que las plantas tienen otro ritmo. Pero para su medida del tiempo, es una velocidad de vértigo.

Para investigar cómo se genera y se propaga esta señal, los científicos crearon una planta transgénica que produce una proteína fluorescente sensible al calcio. De este modo, cuando aumenta la cantidad de calcio en las células, la proteína se ilumina. El motivo de centrarse en el calcio fue pura coherencia biológica: este elemento actúa como señal en innumerables procesos celulares, y gracias a su carga eléctrica es también uno de los responsables de los impulsos que corren por nuestras neuronas.

A continuación, los investigadores sometieron a estas plantas a una agresión, como la mordedura de una oruga o un corte en una hoja. Y esto fue lo que vieron:

En los vídeos se observa, en tiempo acelerado, cómo la mordedura de la oruga o un daño en una parte distante de la planta producen una señal de calcio que se propaga a través de los nervios de las hojas. Estos nervios normalmente sirven a la planta para transportar agua y nutrientes; pero como se ve, también actúan de manera parecida a nuestros propios nervios, propagando una señal eléctrica mediada por el movimiento de iones de calcio.

De hecho, aquí no acaban las semejanzas entre este peculiar sistema nervioso de las plantas y el nuestro. Los investigadores se preguntaron entonces cuál era la señal primaria, la molécula que inicia esta propagación eléctrica a través del calcio. Y una vez más optaron por una hipótesis plausible: en nuestras neuronas, la señal de calcio viene disparada por el glutamato, un neurotransmisor que actúa comunicando unas neuronas con otras.

Investigaciones anteriores ya habían demostrado que las plantas también producen glutamato y que esta molécula participa en la transmisión de las señales eléctricas. Y al repetir el experimento con plantas modificadas que tienen bloqueada la acción del glutamato, los investigadores descubrieron que en este caso no hay oleada luminosa; no hay calcio ni señal eléctrica. Es más, cuando los investigadores ponían simplemente una gotita de glutamato sobre una hoja de una planta normal, observaban esto:

Es decir, que el glutamato por sí solo es capaz de imitar la señal que el daño induce en las plantas, lo que también delata la responsabilidad de este neurotransmisor (una denominación que quizá debería cambiarse) en la respuesta de los vegetales a una agresión.

Finalmente, ¿para qué le sirve a la planta esta alerta de daños que se extiende por todo su organismo? Al fin y al cabo, no puede quitarse la oruga de encima de un manotazo. Sin embargo, hay otras cosas que sí puede hacer: la señal de calcio pone en marcha mecanismos hormonales que llevan a la producción de sustancias químicas tóxicas para los insectos.

Pero eso no es todo. Aún más pasmosa es la acción de otras sustancias que las plantas producen en respuesta a las agresiones. ¿Saben ese olor a césped recién cortado? Varios estudios han demostrado que se debe a un cóctel de sustancias volátiles cuya función es actuar como atrayente de avispas; no de cualquier tipo de avispa, sino de ciertas especies parasitarias que acostumbran a poner sus huevos dentro del cuerpo de insectos herbívoros como las orugas, los depredadores de las plantas. Así, el olor a hierba cortada es en realidad una llamada de auxilio de las plantas para pedir ayuda a sus aliados.

La ‘inteligencia’ de las plantas y mi glicina rebelde

Imaginemos un ser vivo que no muere aunque se le mutilen prácticamente todas las partes de su cuerpo. Que es capaz de responder creando partes nuevas asimétricas y en las que sus funciones están distribuidas en una arquitectura modular, de modo que carece de órganos vitales visibles como nuestro cerebro o nuestro corazón. Que es capaz de enterrar su única parte más esencial para protegerse y desaparecer de la vista, pero siendo al mismo tiempo muy perceptivo sobre el mundo que le rodea. Que se alimenta de radiación estelar y se reproduce gracias al viento. Que es capaz de clonarse. Y que, además, su reloj transcurre tan despacio para nuestra medida del tiempo que a nuestra vista se camufla como un objeto inanimado.

No es una especie alienígena imaginaria. Son las plantas. En buena medida, el reino vegetal es como una forma de vida alternativa a nosotros, los animales; como un experimento de la naturaleza empleando casi las opciones opuestas a las nuestras. Naturalmente, ellas y nosotros procedemos de un antepasado único común, y en el fondo somos muy parecidos si nos fijamos en los mecanismos celulares y moleculares básicos. De hecho, compartimos con las plantas más o menos la mitad de nuestros genes (más con un plátano, por ejemplo, que con un pepino).

(Nota: como ya expliqué aquí en otra ocasión a propósito de lo que suele decirse sobre el 99% de semejanza genética entre humanos y chimpancés, este tipo de datos hay que explicarlos bien para entender qué significan, o se cometen atrocidades: si con nuestros hijos compartimos el 50% de nuestro ADN, ¿cómo es que con los chimpancés compartimos un 99%? Evidentemente, no hablamos de lo mismo en ambos casos).

Pero en la superficie, las plantas son biológicamente tan raras a nuestros ojos que durante siglos las hemos incomprendido. Había un episodio de Star Trek titulado El parpadeo de un ojo, en el que los tripulantes de la Enterprise se topaban con una raza alienígena de vida tan acelerada que los humanos apenas podían verlos. Para los scalosianos, éramos tan lentos que ni siquiera parecíamos auténticos seres vivos, motivo por el cual decidían emplear a los ocupantes de la nave como una especie de banco genético.

Del mismo modo, los humanos hemos contemplado a las plantas como seres pasivos y casi inertes, que ni sienten ni padecen. Por supuesto, sabemos que están vivas, que desempeñan funciones imprescindibles en los ecosistemas y que sin ellas no sería posible el resto de la vida terrestre, que descansa sobre ellas como escalón básico de la pirámide trófica. Pero en general, eso han sido para nosotros: alimento fresco que además decora el paisaje.

Jardín botánico en la Universidad de Friburgo. Imagen de pictures Jettcom / Wikipedia.

Jardín botánico en la Universidad de Friburgo. Imagen de pictures Jettcom / Wikipedia.

Todo esto comenzó a cambiar gracias a un puñado de investigadores que se atrevieron a preguntarse lo que nadie más osaba, y a diseñar experimentos arriesgados, como dejar caer plantas desde pequeñas alturas para medir sus reacciones. Y empezaron a aparecer resultados sorprendentes. O quizá deberíamos decir “investigadoras”; aunque hoy son varios los grupos que trabajan en esta línea, fueron mujeres como Heidi Appel, Monica Gagliano o Susan Dudley quienes comenzaron a abrir brecha en lo que hoy suele llamarse neurobiología vegetal, topándose al principio (como por otra parte debe ser) con el escepticismo de la comunidad científica.

Pero… ¿neurobiología vegetal? ¿No es esto un sinsentido tan grande como hablar del “bueno de Trump” o la “medicina homeopática”? Bueno, en cierto modo lo es. Para Gagliano, hablar de neurobiología en el caso de las plantas es “zoocéntrico”. Desde luego, es incuestionable que las plantas carecen de neuronas. Pero hasta ahora los científicos no se han puesto de acuerdo en un término mejor para designar a un conjunto de procesos físicos, químicos y biológicos responsables de funciones que hasta hace unos años eran insospechadas en las plantas, y que son análogas a las que en los animales desempeñan las neuronas: cognición, comunicación, percepción, aprendizaje, memoria, toma de decisiones o incluso inteligencia.

Sí, todo esto existe en las plantas. Diversas investigaciones (repasé algunas de ellas aquí y aquí) han demostrado que las plantas, por supuesto, ven la luz, pero también a sus vecinas gracias al resol infrarrojo de la fotosíntesis, y que tienen un reloj interno que sincronizan de vez en cuando con el sol; sienten el tacto, respondiendo con cambios en sus genes; saben diferenciar entre arriba y abajo; se comunican entre sí oliendo señales químicas; oyen los mordiscos de las orugas y reaccionan produciendo sustancias defensivas, advirtiendo con ellas a otras plantas; escuchan el ruido de las tuberías para buscar el agua (no solo siguen la humedad, sino también el sonido); recuerdan experiencias pasadas, aprenden por asociación de estímulos como los perros de Pavlov, pueden ser anestesiadas, reconocen a sus parientes y los ayudan…

Y lo más importante, todos estos procesos no generan respuestas automáticas programadas, sino que les sirven para tomar decisiones complejas en función de los estímulos externos. Con todo ello, los científicos están aceptando la idea de que las plantas muestran un “comportamiento inteligente” similar al de ciertos animales. Algunos incluso ya no tienen reparos en hablar de la “inteligencia de las plantas”.

Una oruga comiendo hojas de una planta. Imagen de pixabay.

Una oruga comiendo hojas de una planta. Imagen de pixabay.

Tengo una curiosa experiencia personal reciente que me trajo a la memoria todas estas asombrosas capacidades de las plantas. En la entrada de mi casa hay un pequeño arco de hierro que quería cubrir con los tallos de una glicina (Wisteria). Así que el pasado verano enrollé los brotes alrededor del arco. Pero a medida que crecían, observé que no seguían abrazando el arco de hierro, sino que en su lugar estaban tendiéndose hacia las ramas de un madroño que crece junto a la glicina. Volví a enrollar los tallos, y a los pocos días descubrí de nuevo lo mismo: la glicina crecía en línea recta sin curvarse, apartándose del arco y buscando el madroño. Y así, una y otra vez; solo logré que los tallos por fin cubrieran el arco enrollándolos a mano.

Según la teoría, la glicina debería obedecer mis órdenes y crecer enrollándose en la guía de hierro. Esta es una respuesta llamada tigmotropismo, que es otra consecuencia del sentido del tacto en algunas plantas. Cuando tocan una superficie, se producen ciertas reacciones en las células mediadas por hormonas vegetales como la auxina y el etileno, pero en las que también intervienen canales iónicos que modifican el potencial eléctrico de las membranas celulares (por cierto, lo mismo que ocurre en nuestras neuronas; va a ser que no es tan disparatado hablar de neurobiología vegetal).

Como resultado de estas reacciones, la cara del brote opuesta a la que está en contacto con la superficie crece más deprisa, lo que curva el tallo y lo hace enrollarse alrededor de la guía. Pero en el caso de mi glicina, se negaba a hacer lo que los libros dicen que debería hacer, como si otra influencia más potente estuviera inhibiendo el tigmotropismo. ¿Por qué parecía encaprichada en alcanzar el madroño? Y aún más, ¿cómo diablos sabía la glicina que el madroño estaba allí?

Evidentemente, no lo sé, y al fin y al cabo es una mera observación puntual sin ningún valor más allá de lo anecdótico. Pero hay algo también evidente: las plantas trepadoras como la glicina han evolucionado aprendiendo a trepar sobre otras plantas, no sobre arcos de hierro. Y entre las diferencias entre una planta y un arco de hierro, destaca una fundamental que he mencionado arriba: las plantas son capaces de segregar sustancias volátiles para comunicarse, algo que no hacen los arcos de hierro.

Flores de glicina (Wisteria). Imagen de pixabay.

Flores de glicina (Wisteria). Imagen de pixabay.

¿Sería así como mi glicina estaba detectando el madroño? No tengo la menor idea, y es una simple especulación. Todavía es mucho lo que no se conoce sobre las plantas, que guardan sus secretos en silencio; incluso el tigmotropismo aún no se comprende del todo. Pero a poco que nos molestemos en contemplarlas con algo de paciencia, como comenzaron a hacer esas científicas pioneras y otros investigadores, descubriremos que no son los seres pasivos e inertes que creíamos, sino casi alienígenas de extrañas costumbres en nuestro propio planeta.

Mañana contaré otro sorprendente experimento reciente que nos adentra un poco más en esa alucinante vida secreta de las plantas. Y que responde a una sugerente pregunta: ¿pueden las plantas sentir dolor? Si les interesa saber la respuesta, vuelvan a por más.

«La neurobiología vegetal es una revolución científica»

El filósofo Paco Calvo es una de las voces de mayor relevancia mundial en torno al pujante campo de la neurobiología vegetal, el área de estudio que en los últimos años ha revelado una forma propia de inteligencia en las plantas. Calvo dirige el Minimal Intelligence Lab de la Universidad de Murcia, que cuenta con el apoyo de la Fundación Séneca, la Agencia de Ciencia y Tecnología de la Región de Murcia. El filósofo es también miembro del comité científico asesor del Laboratorio Internacional de Neurobiología de Plantas, un grupo global de expertos con un enfoque multidisciplinar. Calvo acaba de publicar en la revista de filosofía Synthese un artículo titulado The philosophy of plant neurobiology: a manifesto.

Para dejar claro de qué ciencia estamos hablando, ¿cuál es la forma correcta de denominarla?

El filósofo Paco Calvo. Imagen cortesía de Alfonso Durán/AGM.

El filósofo Paco Calvo. Imagen cortesía de Alfonso Durán/AGM.

Hay respuestas para todos los gustos. Unos prefieren hablar de neurobiología vegetal, otros de señalización y conducta vegetal. Yo me quedo con “neurobiología vegetal”. En cualquier caso, sea cual sea la etiqueta que le pongamos, lo importante es entender que no podemos trabajar en un marco reduccionista o monodisciplinario. Las disciplinas integrantes son la biología vegetal celular y molecular, la fisiología vegetal, la bioquímica, la biología evolutiva y del desarrollo, la ecología vegetal, y, tal y como propongo en el artículo, la filosofía de la neurobiología vegetal.

Pero no todo el mundo parece dispuesto a aceptar esta denominación. ¿Por qué algunos se oponen?

Hay una agria disputa por esta cuestión en la comunidad científica. ¿Por qué neurobiología vegetal? Bueno, fíjate hasta qué punto retrata nuestros complejos antropocéntricos que cuando en los años 70 se hablaba de neuroid conduction [conducción neuroide] para hacer referencia a la propagación de eventos eléctricos en las membranas de células no nerviosas y no musculares en especies no animales nadie puso el grito en el cielo. De hecho, las similitudes van mucho más allá: en las plantas encontramos también señalización eléctrica mediada por potenciales de acción, como en la bomba de sodio-potasio animal, pero con otros iones implicados. La similitud es tal que el perfil electrofisiológico que consta de las tres fases de depolarización-repolarización-hiperpolarización de los potenciales animales es virtualmente idéntico. Pero fíjate qué curioso, que ni siquiera en una obra de referencia en fisiología vegetal como es el Plant physiology de Taiz & Zeiger se hace mención alguna a los potenciales de acción vegetales.

Hoy sabemos también que las plantas emplean neurotransmisores, igual que nuestras neuronas.

En plantas encontramos serotonina, dopamina, glutamato, GABA, etc. Coge el caso de la sincronización de los relojes circadianos en animales y plantas (¡las plantas, por supuesto, también tienen jet-lag!). En plantas encontramos el rol equivalente de sincronización llevada a cabo por neuronas en el núcleo supraquiasmático. Las rutas vasculares de señalización en tejidos vegetales permiten a las células del ápice orquestar la sincronización de los relojes de la planta. Podríamos seguir y seguir con las similitudes neuronales planta-animal, pero la cuestión de fondo es otra. Va al corazón del problema kuhneano de la distinción entre Ciencia Normal y períodos de revolución. Desde la ciencia paradigmática nos resistimos a ver lo que para la neurobiología vegetal es elemental.

Entonces, ¿podemos hablar de inteligencia vegetal?

No me cabe la menor duda. Ahora bien, me resisto a dar definiciones encorsetadas. Basta que propongas una definición para que te lluevan cien contraejemplos, siempre, claro, obviando contraejemplos análogos en inteligencia animal que servirían de reductio ad absurdum de la estrategia de ridiculización de la inteligencia vegetal. Para mí es mejor hablar de competencias particulares que caen bajo el paraguas de conductas observables inteligentes: patrones de coordinación sensoriomotora, formas básicas de aprendizaje y memorización, toma de decisiones, resolución de problemas.

¿No estaremos fabricando otro concepto de inteligencia a medida para las plantas?

Podemos pensar en la inteligencia como el seguimiento de reglas explícitas y la manipulación de estados representacionales por parte del sujeto en su cabeza, y claro, esto cuesta encajarlo con la inteligencia vegetal: ¿dónde está la “cabeza”? ¿En qué puede consistir el seguimiento de reglas? Pero hay otra forma de abordar la inteligencia tanto animal como vegetal: el resultado emergente del modo en que un organismo se acopla a un entorno que es significativo sólo en la medida en que el organismo interactúa con elementos en su medio. Aquí sí encajan bien tanto animales como plantas.

¿Qué aporta la filosofía en este campo? ¿Es tan importante poner nombres?

Es fundamental. De hecho yo ahora mismo me encuentro en el proceso de escribir un libro sobre cognición vegetal (Plant Cognition: the next revolution) y me niego a sacrificar la expresión “cognición vegetal”. Creo que nos hacemos un flaco favor barriendo debajo de la alfombra lo que nos incomoda. ¿No es mejor aplicarnos el mismo rasero a nosotros mismos? Pero no es una cuestión de cabezonerías: aquí no estamos haciendo como que queremos negociar para formar gobierno. Se trata más bien de entender que si no cogemos el toro por los cuernos y nos acercamos al estudio de la inteligencia de esta otra manera no seremos ni tan siquiera capaces de hacer conjeturas o de lanzar hipótesis empíricas y testarlas experimentalmente. Los presupuestos teóricos son fundamentales.

¿No será problemático reconocer a los vegetales como seres inteligentes? ¿Tendremos que empezar a pensar en la dignidad de las plantas, como dice la Constitución de Suiza?

Creo que esto es algo que debemos plantearnos sin extremismos y sobre todo sin prisas. Vivimos tiempos acelerados en los que el titular de ayer ya es prehistoria. Debemos recuperar un espíritu darwiniano y trabajar con muuuucha caaaalma. Necesitamos recabar muchos más datos, tomarnos muy en serio la replicabilidad y el control experimental, y no lanzar las campanas al vuelo con titulares efectistas o grandilocuentes, pero de corto recorrido. Es un trabajo de la sociedad en su conjunto, con el asesoramiento de la comunidad científica, por supuesto, pero de todos los agentes implicados en la generación de conocimiento.

Prohibido oler las flores: este es el jardín más venenoso del mundo

En ciertos jardines es frecuente que las plantas estén separadas de los humanos para proteger a aquellas de estos. Pero en el castillo de Alnwick, en el condado inglés de Northumberland, ocurre al revés: las plantas están enjauladas para que no maten a los visitantes. Más de cien especies tóxicas, desde las moderadamente peligrosas a las letales de necesidad, crecen en el jardín venenoso de Alnwick, el mayor espacio del mundo dedicado al morbo vegetal. O al menos, el mayor abierto al público y que no se emplea con fines criminales.

El castillo de Alnwick, cerca de la frontera escocesa y a pocos kilómetros de la costa oriental de Gran Bretaña, ha pertenecido desde comienzos del siglo XIV a la familia Percy, titulares del ducado de Nothumberland. Hoy es el segundo castillo habitado más grande de Inglaterra, después de la residencia real de Windsor, y el escenario de una larga lista de películas y series, incluyendo la saga de Harry Potter, más de una versión de Robin Hood y la televisiva Downton Abbey. Desde el siglo XVIII el castillo albergó un jardín exquisitamente conservado, pero la Segunda Guerra Mundial provocó su abandono y posterior cierre.

El actual duque heredó el título de su hermano, fallecido en 1995. Su mujer, Jane Percy, no es de familia aristocrática y, al parecer, le aburría la vida ociosa. Su marido le sugirió entonces que se ocupara de los jardines, y ella no pudo tomarlo más en serio. En 1997 decidió cambiar su papel de florero decorativo por 17 hectáreas de jardines con un coste de 42 millones de libras, un desarrollo que ha convertido a Alnwick en una de las atracciones turísticas más visitadas del país. A pesar de ello, y de que los duques enajenaron los jardines del resto de la finca para donarlos a una entidad sin ánimo de lucro, el tradicionalismo británico emprendió una feroz campaña contra lo que consideraban un atentado a un enclave histórico.

Entrada al Poison Garden en los jardines de Alnwick. Imagen de geograph.org.uk / Wikipedia.

Entrada al Poison Garden en los jardines de Alnwick. Imagen de geograph.org.uk / Wikipedia.

Desde la apertura de la primera fase en 2001 hasta hoy, a los jardines de Alnwick se han ido incorporando nuevas instalaciones, actividades y espectáculos, pero ninguno atrae tanta atención como el Poison Garden, el Jardín del Veneno, inaugurado en 2005. En su web, la duquesa explica: “Me preguntaba por qué tantos jardines en todo el mundo se centran en el poder medicinal de las plantas y no en su capacidad de matar… Me pareció que la mayoría de los niños que conocía estarían más interesados en escuchar cómo una planta mata, cuánto tiempo tardarías en morir si la comieras y cómo de grotesca y dolorosa sería la muerte”.

Al jardín se accede a través de unas cancelas metálicas negras que aportan el dramatismo necesario: “estas plantas pueden matar”, rezan dos letreros adornados con el símbolo internacional de la amenaza de muerte, calavera y tibias cruzadas. La visita, siempre guiada, recorre espacios en los que crecen cicutas, ricinos, belladonas, digitales, mandrágoras, laburnos, lirios de los valles, trompetas de ángel, beleños, perejil gigante, o la nuez vómica de la que se obtiene la estricnina.

Los guías explican su historia, su mitología y su ciencia. El jardín incluye también las fuentes clásicas de los narcóticos, como el cannabis, la coca y la adormidera de la que se extrae el opio. Estas y otras plantas sirven para explicar un concepto básico que suele malinterpretarse y tergiversarse, y es que la dosis hace el veneno, una máxima atribuida al médico suizo Paracelso, padre de la toxicología. Algunas plantas venenosas se han empleado tradicionalmente como remedios naturales en pequeñas dosis, y en muchos casos el aumento de la cantidad marca el salto desde la medicina al narcótico, y de este al veneno.

La mala interpretación consiste en la creencia de que esta es una capacidad intrínseca de las plantas medicinales, pero en realidad sucede lo mismo con casi cualquier sustancia: el oxígeno e incluso el agua pueden ser tóxicos en grandes dosis. Las hormonas como la insulina o los neurotransmisores como el glutamato son esenciales para el funcionamiento normal del organismo, pero pueden ser fatales en dosis excesivas. Y lo mismo se aplica a cualquier fármaco; en realidad, muchas plantas son tanto fármacos en bruto como venenos en bruto, como lo expresaba el término griego clásico pharmakon, traducible al mismo tiempo como remedio y como veneno.

En cuanto a la tergiversación, tiene nombre propio: homeopatía. Esta pseudociencia, alimentada por una industria no menos poderosa que la farmacéutica, maneja de forma interesada un falso concepto de medicina natural, de forma que ambas ideas quedan confundidas en la mente de muchos consumidores desprevenidos; pero una cosa es la preparación de hierbas con propiedades curativas, y otra muy diferente la venta de viales de agua y cápsulas de azúcar.

La homeopatía no es medicina natural, sino que se basa en la creencia, absolutamente contraria a los principios físicos y químicos, de que el agua recuerda un compuesto que contuvo una vez que este ha sido eliminado por diluciones sucesivas. Un ejemplo: imaginemos que vertemos un vaso de leche en un cubo de agua, luego llenamos un vaso en este recipiente y lo pasamos a otro lleno también de agua, y así sucesivamente hasta que la leche ha desaparecido por completo. Se trata del principio de dilución límite en el que se basa la homeopatía: el agua tiene memoria, y este es el presunto principio curativo. En muchos casos las sustancias empleadas para ello ni siquiera son de origen natural, pero poco importa: el producto final es solo agua, o azúcar cuando se trata de píldoras.

Regresando al jardín de Alnwick, quien viaje este verano por el norte de Inglaterra tiene la oportunidad de conocer un lugar casi único en el mundo. Durante los meses de estío, los jardines abren de 10 de la mañana a 6 de la tarde. Los precios y la posibilidad de comprar las entradas por anticipado están disponibles en la web de Alnwick. Pero recuerden, aunque ya se ocuparán los guías de insistirles sobre ello: no huelan las flores.

Y estas son las plantas más temibles si eres humano (incluyendo la patata)

Por suerte para nosotros, no existen plantas carnívoras lo suficientemente grandes como para devorar a un ser humano. En la edad de oro de las exploraciones geográficas, en los siglos XVIII y XIX, circularon leyendas sobre árboles y arbustos que atrapaban grandes presas y a los que los indígenas ofrecían víctimas humanas como sacrificio ritual. Algunas de estas historias perduraron como ciertas durante décadas, hasta que alguien se tomó la molestia de indagar en las fuentes originales y descubrió que se trataba solo de fantasías pergeñadas para vender periódicos o revistas a un público ávido de relatos de aventuras. Hoy estos vegetales mitológicos tienen su propio hábitat, pero solo en la fértil imaginación humana, junto al yeti y el monstruo del lago Ness.

Pese a todo, sabemos con certeza que aún queda mucho por descubrir en las selvas más tupidas y remotas, sobre todo en lugares como Borneo, Nueva Guinea o la Amazonia. Incluso de cuando en cuando salta a los medios alguna historia que nos devuelve aquella emoción de la exploración que se diluyó en la sopa global del turismo de masas. En 2009 se describió una nueva especie de planta carnívora que figura entre las mayores conocidas y que fue descubierta en el monte Victoria, en Filipinas, por una expedición organizada a raíz del relato de dos misioneros que nueve años antes habían intentado escalar la montaña. Los misioneros se extraviaron y a punto estuvieron de no contarlo, pero a los 13 días fueron rescatados e informaron de la observación de una planta carnívora inusualmente grande. Los científicos la llamaron Nepenthes attenboroughii en honor al naturalista inglés David Attenborough.

Pero el hecho de que las mayores plantas carnívoras conocidas, del tamaño aproximado de un balón de rugby, solo puedan aspirar como máximo a llevarse al buche una rata o un sapo en lugar de un suculento Homo sapiens, no significa que el mundo vegetal sea inofensivo para los humanos. Quien más, quien menos, ha oído hablar de plantas venenosas; lo que tal vez no sea tan popular es que están más a mano de lo que muchos sospecharían. Y que, en algunos casos, tenerlas tan a mano puede entrañar un grave riesgo.

Acónito. ¡Cuidado, no tocar! Imagen de Tobe Deprez / Wikipedia.

Acónito. ¡Cuidado, no tocar! Imagen de Tobe Deprez / Wikipedia.

He aquí otra historia, y esta no es leyenda sino hecho: el pasado septiembre, un jardinero británico llamado Nathan Greenaway falleció en el hospital debido a un fallo multiorgánico sin que los médicos pudieran entonces comprender cuál era el origen de su mal. Se supo después que Greenaway trabajaba en la propiedad de un millonario surafricano afincado en Inglaterra llamado Christopher Ogilvie Thompson, y que la causa probable de su muerte fue el contacto con el acónito, una planta que puede matar si se toca sin guantes.

El acónito, llamado matalobos en algunos lugares, es una planta ranunculácea que crece en las praderas de montaña del hemisferio norte. Está formada por largos tallos rectos coronados por racimos de flores de color morado, azul, rosa, amarillo o blanco. Es la planta más venenosa de Europa; su toxina, la aconitina, puede matar incluso por contacto, ya que se absorbe a través de la piel. En algunos lugares de Asia se ha empleado tradicionalmente para envenenar puntas de flecha. El acónito ha sido popular en la mitología, la literatura y la historia: Cleopatra lo empleó para envenenar a su hermano, Ptolomeo XIV.

Sin embargo, el acónito no es el único peligro que podemos encontrarnos en el campo o en los jardines ornamentales; por suerte, la mayoría de las plantas tóxicas para nosotros solo lo son si las comemos. Dos ejemplos son la adelfa, casi omnipresente en España, y el tejo (Taxus baccata), común en el norte de la Península y en las sierras. También son venenosas las bayas negras de los aligustres (Ligustrum) que se utilizan para los setos. Otra especie que puede ser fatal para los humanos es la dulcamara (Solanum dulcamara), una trepadora de flores moradas con estambres amarillos que produce unas llamativas bayas rojas con el aspecto y el olor de diminutos tomates, lo que las hace especialmente peligrosas para los niños. Las hojas también son tóxicas.

La dulcamara es una solanácea, del mismo género que la patata, el tomate y la berenjena. De hecho, algunas de estas especies también producen la misma toxina, la solanina; en especial, la patata: “Las patatas son un elemento tan común en la dieta occidental que la mayoría de la gente se sorprende al saber que son el producto de una planta venenosa”, decía un artículo publicado al respecto en 1979 en la revista British Medical Journal.

Es ciertamente raro que las patatas maten, pero pueden provocar intoxicaciones graves, como sucedió en 1979 en un colegio de Gran Bretaña. La dosis letal media de la solanina es de unos 5 miligramos por kilo de peso; dado que la concentración media en la patata es de 0,075 miligramos por gramo de tubérculo, comer unos cinco kilos de patatas crudas y sin pelar puede ser mortal. Sin pelar, porque la mayoría se acumula en la piel o cerca de ella; y crudas, porque parte de la toxina se transfiere al aceite o al agua cuando se fríen o cuecen. Pero en algunos casos, como en las patatas enfermas, viejas o las que verdean por exposición a la luz, el nivel de toxina puede aumentar drásticamente. ¿Alguna vez se preguntaron por qué su abuela almacenaba las patatas en la oscuridad y les quitaba esos “ojos” que a veces les aparecen? Este es el motivo.

La familia de las solanáceas es especialmente pródiga en venenos: a ella pertenece también la belladona (Atropa belladonna), otro veneno clásico, así llamada porque las mujeres del Renacimiento se lo aplicaban en los ojos para dilatarse las pupilas con fines cosméticos. La toxina de la belladona es la atropina, mientras que el beleño (Hyoscyamus) produce la escopolamina, más conocida como burundanga. Otras plantas venenosas de esta familia son la Brugmansia o trompeta de ángel, llamada así por sus flores colgantes con forma de campana o trompeta; también el estramonio (Datura) y la famosa mandrágora.

Semillas de regaliz americano ('Abrus precatorius'). Letales. Imagen de USDA.

Semillas de regaliz americano (‘Abrus precatorius’). Letales. Imagen de USDA.

Pero fuera ya de las solanáceas, la lista de especies tóxicas prosigue: la cimífuga o hierba de San Cristóbal, la digital, muy utilizada en jardines; la famosa cicuta, la hierba de ballesteros o eléboro fétido, la nueza negra… Sin olvidar el ricino (Ricinus communis), cuya toxina, la ricina, es una de las más potentes que se conocen; o lo era, antes de que comenzaran a venderse clandestinamente las pulseras confeccionadas con semillas rojas y negras del regaliz americano (Abrus precatorius), capaces de matar a una persona con una dosis casi indetectable.

En resumen: si al campo se le aplicaran las normativas sanitarias habituales en las ciudades, no podríamos ni salir a pasear. Por fortuna, ahí fuera aún somos libres. Pero no está de más recordar las recomendaciones de los Institutos Nacionales de la Salud de Estados Unidos respecto a las plantas tóxicas: “No toque o coma ninguna planta con la que no esté familiarizado. Lávese las manos después de trabajar en el jardín o pasear por el campo”. Y sobre todo, añado, cuidado con los niños.