BLOGS
Ciencias mixtas Ciencias mixtas

Los secretos de las ciencias para
los que también son de letras

Entradas etiquetadas como ‘ciencia ficción’

No hay ovnis, según quien lleva toda la vida buscando a E.T., y estas son sus razones

Decíamos ayer que el Pentágono ha apoyado en secreto un programa (AATIP) para buscar ovnis en pleno siglo XXI, a pesar de que otros programas anteriores más ambiciosos y en varios países, por no hablar de las legiones de entusiastas, no han producido prueba alguna desde 1947, cuando el fenómeno comenzó sin razón aparente.

Sí, por supuesto, también hay quien sostiene que no empezó en 1947, sino que lleva existiendo desde el comienzo de los tiempos sin que se identificara como tal. Quienes defienden esta idea suelen citar el famoso pasaje de la visión celestial de Ezequiel, que creyó ver a Dios cuando en realidad estaba en mitad de un encuentro en la tercera fase. Claro que no he encontrado defensores de esta interpretación que expliquen lo siguiente: ¿por qué los alienígenas ordenaron a Ezequiel que cocinara el pan quemando heces humanas y, ante sus protestas, le permitieron que usara en su lugar boñigas de buey? ¿Cómo interpretamos este pasaje en clave alienígena? ¿O es que hay algún motivo que se me escapa para creer a pies juntillas en la visión de Ezequiel, pero no en su audición?

Grabado de la visión de Ezequiel, por Matthaeus (Matthäus) Merian (1593-1650). Imagen de Wikipedia.

Grabado de la visión de Ezequiel, por Matthaeus (Matthäus) Merian (1593-1650). Imagen de Wikipedia.

Respecto a la ausencia de pruebas, siempre hay también quien se escudará en el viejo aforismo, la ausencia de prueba no es prueba de ausencia. Pero cuidado: este argumento es tramposo cuando se refiere a algo que sencillamente no es razonable o de lo que deberían haberse encontrado pruebas si fuera cierto. Un ejemplo: la ausencia de pruebas de que actualmente tengo roedores en casa no es prueba de su ausencia, ya que es razonable que los tenga; los he tenido otras veces. Sin embargo, no puedo decir lo mismo de los dragones, porque no es razonable.

Los científicos suelen discutir los límites aceptables de argumentos como este para evaluar la validez de sus conclusiones, ya que en ciencia habitualmente es imposible demostrar un negativo. Por ejemplo, cuando los antivacunas piden a los científicos una demostración absoluta de que las vacunas no causan absolutamente ningún daño, o son muy tontos o muy listos: muy tontos si no saben que es imposible aportar tal demostración, o muy listos si lo saben y lo utilizan como argumento demagógico.

Aplicando todo esto al tema que nos ocupa, es obvio que no es posible demostrar la no existencia de los ovnis. Pero según lo visto, sencillamente no es razonable: su inexistencia puede justificarse sin siquiera abrir los ojos, simplemente pensando. Para justificarlo, traigo aquí las razones de Seth Shostak, que contó a Business Insider como reacción a la noticia sobre el programa AATIP del Pentágono.

Shostak es el astrónomo jefe del Instituto SETI (Búsqueda de Inteligencia Extraterrestre) en California. Nadie más interesado que él en estrechar la mano a E.T. Lleva casi toda su vida dedicado a intentarlo, y el éxito de esta búsqueda no solo sería una cumbre profesional que jamás antes se ha coronado, sino que además le convertiría en referencia ineludible del hallazgo más importante de la historia de la humanidad, aunque no lo descubriera él mismo.

Y sin embargo, estas son las razones de Shostak para no creer en los ovnis:

  • No ha habido tiempo suficiente para que nadie sepa que estamos aquí. “La única manera de que lo sepan sería, por ejemplo, captar señales de nuestros transmisores: televisión, radio, radar, todo eso”, dice Shostak. “Pero estas señales solo llevan enviándose desde la Segunda Guerra Mundial, así que, si están a más de 35 años luz de distancia, no ha habido tiempo suficiente para que nuestras señales les lleguen y para que ellos decidan: venga, vale la pena gastar el dinero para darnos una vuelta por allí”. La cifra de 35 años luz se explica porque la Segunda Guerra Mundial terminó hace más o menos 70 años, la suma de los 35 que tardaría nuestra señal en llegarles y otros 35 para que recibiéramos su respuesta o su visita. Esta última, solo si pudieran desplazarse a la velocidad de la luz. Pero naturalmente, prosigue Shostak…
  • “No pueden viajar más rápido que la luz, y probablemente tampoco a la velocidad de la luz”. Este límite, mientras nadie demuestre lo contrario (y refiero de nuevo al argumento de más arriba), es una imposibilidad física inapelable. O apelable, pero hasta ahora sin éxito.
  • En un radio de 50 años luz, advierte Shostak, solo hay unos 1.400 sistemas estelares. “Puede parecer mucho, pero es un número muy pequeño si estás buscando seres inteligentes; a menos que estén ahí mismo, lo que estadísticamente es muy improbable”.
Imagen de Pixabay / CC.

Imagen de Pixabay / CC.

  • ¿Por qué tomarse la molestia de venir hasta aquí para luego no hacer nada? Shostak razona que la inmensa mayoría de los casos reportados son avistamientos sin ninguna clase de interacción. “Son los mejores huéspedes de la historia, porque si están aquí, no están haciendo nada… Envían una inmensa flota de naves, preferiblemente con forma de plato de cena, solo para revolotear y agitar a la gente sin hacer nada más; es un poco raro”. Shostak suele citar el ejemplo de la llegada de los europeos a América: es evidente que los nativos americanos no tuvieron duda sobre la existencia de los europeos. Naturalmente, están los casos de presuntas abducciones, pero en estos, y volvemos una vez más al argumento de arriba, habría que refutar las hipótesis más razonables, como la parálisis del sueño (que ya conté aquí).
  • “¿Por qué están aquí ahora?”, continúa Shostak. “No estaban visitando a los padres fundadores en el siglo XVIII, pero sí a nosotros. A los romanos no les importunaban las visitas de los alienígenas”. Y ya he mencionado arriba el problema de interpretar avistamientos de ovnis en documentos de la antigüedad.
  • El hecho de que un 10% de los casos de avistamientos no puedan explicarse no significa que sean alienígenas. “Solo significa que no se han podido explicar”. Shostak razona que siempre habrá casos sin explicación, con independencia de la existencia o no de los alienígenas, por lo que estos casos no demuestran ni una cosa ni la contraria. Pero naturalmente, lo más razonable es no dar paso a las hipótesis improbables antes de haber descartado todas las probables; como decía Sherlock Holmes, “cuando todo aquello que es imposible ha sido eliminado, lo que quede, por muy improbable que parezca, es la verdad”.
  • Si fuera verdad que los gobiernos ocultan la existencia de los ovnis, como alegan los defensores de las teorías de la conspiración, ¿tiene mucho sentido que revelen voluntariamente la existencia de estos proyectos reconociendo que los han ocultado y simulando que no han descubierto nada? “El gobierno dice: bueno, sí, tuvimos un programa y lo encubrimos, pero no encontramos nada”, dice Shostak. Si alguien está realmente engañando a su pareja, ¿tiene sentido que le diga: “cariño, te comunico que he estado viéndome con X, pero no ha pasado nada”? ¿No tiene más sentido que simplemente sea verdad?

Las razones expuestas son demoledoramente razonables, como corresponde a un tipo con la lucidez de Seth Shostak. Pero si los alienígenas no se atienen a la razón ni a las leyes de la física, si pueden saber que estamos aquí solo por omnisciencia, materializarse y desmaterializarse a voluntad, estar en cualquier lugar que les apetezca en cada momento recorriendo distancias intergalácticas al instante, y no necesitar motivos para hacer algo o no hacerlo porque sus caminos son inescrutables… entonces no son alienígenas, sino otra cosa, y Ezequiel tenía razón.

…Y el Pentágono sigue investigando los ovnis

En diciembre, el New York Times publicaba una noticia insólita: de 2007 a 2012, el Pentágono financió con casi 22 millones de dólares de fondos reservados un programa llamado Identificación Avanzada de Amenazas Aeroespaciales (AATIP), dedicado a investigar… hombrecitos verdes: es decir, avistamientos de ovnis, presuntos contactos con alienígenas y artefactos recogidos a los que alguien atribuye un origen extraterrestre. La misma noticia aparecía también independientemente en la web de la revista Politico.

Imagen de Joe Ross / Flickr / CC.

Imagen de Joe Ross / Flickr / CC.

Pero ¿por qué esto ahora? ¿Después de décadas de ascensión y caída de la moda ovni, cuando varios países ya han desclasificado gran parte de sus investigaciones sobre esta materia sin ninguna prueba ni otro resultado que una montaña de, como decía Carl Sagan, casos interesantes que son poco fiables y casos fiables que son poco interesantes, cuando se destaparon fraudes como el de Roswell, cuando incluso investigadores científicos tiraron la toalla reconociendo que el fenómeno ovni no era físico, sino sociológico, y cuando al final de todo ello no ha ocurrido absolutamente nada?

La respuesta está en el hecho de que la política estadounidense parece funcionar a golpe de lobby, y el AATIP nació de uno de estos grupos de presión encabezado por dos personajes: el senador de Nevada Harry Reid, entonces líder de la mayoría demócrata en el Senado, y el empresario del New Space Robert Bigelow, un hotelero de Las Vegas que desde su compañía Bigelow Aerospace diseña y construye hábitats inflables para las órbitas terrestre y lunar.

Basándose en su convencimiento de que, pese a todo, haberlos, haylos, Reid y Bigelow consiguieron decantar en su favor los apoyos suficientes como para que el programa se financiara, en secreto y con fondos opacos. Pero no perdamos de vista un detalle: los 22 millones de dólares no fueron a otro lugar que a Bigelow Aerospace, donde presuntamente el empresario los ha empleado para subcontratar investigaciones. Repito, fondos opacos; una tarjeta black interplanetaria.

Aunque el NYT pudo confirmar la existencia del AATIP, no se ha revelado cuáles han sido las conclusiones del programa; al parecer, parte de él continúa clasificado. Lo más chocante es que en 2009 Reid solicitó mayor seguridad para proteger “descubrimientos extraordinarios”. “Se han hecho muchos progresos en la identificación de varios hallazgos aeroespaciales altamente sensibles y no convencionales”, escribía Reid en una carta a un alto funcionario de Defensa. Según el NYT, Bigelow habría habilitado algunas instalaciones en Las Vegas para almacenar ciertos artefactos encontrados. También en 2009, un informe interno del programa decía que “lo que solía considerarse ciencia ficción ahora es hecho científico”, y que EEUU era incapaz de defenderse contra algunas de las tecnologías descubiertas.

Imagen de Pixabay / CC.

Imagen de Pixabay / CC.

Entonces, ¿debemos ya ponernos el sombrero de Albal? Todo lo anterior suena enigmático y emocionante. Pero antes de que los verdaderos expertos nos chafen el enigma y la emoción (sí, es un spoiler), detengámonos un momento en la inconsistencia de lo anterior con las declaraciones del oficial de la Inteligencia del Pentágono que estuvo a cargo del programa, Luis Elizondo. Elizondo dijo que los fenómenos estudiados no parecían proceder de ningún otro país, y añadió: “este hecho no es algo que ningún gobierno o institución debería clasificar para mantener en secreto”. Pero si por “este hecho” se refiere a las tecnologías presuntamente descubiertas, ¿por qué piensa Elizondo que ningún gobierno tendría motivos para clasificar avances extraordinarios contra los que no existe manera de defenderse y para los que los responsables del AATIP pidieron un mayor nivel de secreto? Algo no cuadra, ¿no creen?

Por su parte y una vez agotada la financiación del programa, Elizondo y otros implicados en el programa han montado una web sobre una iniciativa algo estrambótica llamada To the Stars… Academy of Arts & Science que pretende continuar investigando el fenómeno ovni, desarrollar tecnologías y producir contenido audiovisuales para, se supone, divulgar sus hallazgos e indagaciones… pero cuya lectura enciende el piloto rojo de la pseudociencia cuando llegamos a la parte de las tradiciones esotéricas, los templos mayas y la telepatía. Por no hablar de las típicas referencias a ir más allá de las fronteras de la ciencia, desfiar el conocimiento “convencional”, hacer realidad la ciencia ficción… En fin, todo eso que ya hemos leído tantas veces.

Pero al parecer y según el NYT, aunque el AATIP ya no tenga soporte financiero, esto no significa que se le haya dado carpetazo. Desde que se cerró el grifo black, funcionarios implicados en el programa han continuado entresacando ratos de su tiempo para recoger e investigar testimonios de experiencias y avistamientos de miembros del personal de Defensa. “El programa sigue existiendo”, dice el diario.

Pero noten que en toda esta historia hasta ahora no se ha mencionado el nombre de un solo científico. No estaría mal añadir unas gotas de ciencia por parte de quien está cualificado para hacerlo, es decir, un científico experto en la materia. El próximo día seguiremos con ello.

Diez reglas que debería cumplir todo alienígena (también los de ficción)

Hace cosa de un mes, un equipo de zoólogos de la Universidad de Oxford publicaba un estudio destinado a especular sobre cuál podría ser el retrato biológico de un alienígena. Como ya he contado aquí, los científicos no suelen arriesgarse a lanzar divagaciones de este tipo, y cuando lo hacen es en tiempo de extraescolares, después de quitarse la bata. Las revistas científicas tampoco son el lugar donde ponerse a inventar ciencia ficción.

Pero el estudio de Oxford era tan contenido que resultaba casi frustrante. El trabajo de los investigadores puede resumirse en dos ideas: los alienígenas estarán sometidos a evolución por selección natural, como nosotros los terrícolas, y estarán formados por partes más pequeñas en una jerarquía de niveles, como nosotros los terrícolas (genes, células, tejidos, órganos, individuos, sociedades…).

Tal vez no parezcan pistas como para parar las máquinas, aunque como guinda y gancho de cara a los medios, los autores se permitían adornarlo con una propina: el octomita, nombre que daban a un alienígena hipotético basado en estas reglas y que les presento aquí. Aclaro que su aspecto es puramente imaginario; lo esencial del octomita es el esquema basado en niveles crecientes de organización.

El octomita, un alienígena hipotético. Imagen de Levin et al., International Journal of Astrobiology 2017.

El octomita, un alienígena hipotético. Imagen de Levin et al., International Journal of Astrobiology 2017.

Si el estudio no llegaba más allá es porque un trabajo científico (también los teóricos) solo debe llegar hasta donde le deja el suelo bajo sus pies. Mirado de este modo, el hecho de que la argumentación teórica permita sostener estos dos requisitos de la vida extraterrestre cierra bastante el campo de lo que podríamos encontrarnos por ahí fuera, si es que existe algo y si es que algún día lo encontramos.

Como ya expliqué en dos entregas anteriores (aquí y aquí), no todo vale en biología, ni aquí ni en GN-z11 (la galaxia más lejana conocida, a 13.400 millones de años luz). Por tanto, no todo vale a la hora de imaginar la vida extraterrestre. Estudios como el de Oxford, que aplican las reglas de la biología, restringen el repertorio de opciones posibles para cualquier tipo de vida que pueda considerarse como tal, con independencia de cómo sea su planeta natal.

Es más: como les conté anteriormente, y por mucho que las ideas del biólogo y divulgador Stephen Jay Gould sobre la imprevisibilidad absoluta de la evolución hayan calado no solo en la comunidad científica, sino incluso entre el público interesado en estas cosas, los experimentos tienden a quitarle al menos una parte de razón: si nos fiamos de los datos reales que tenemos hasta hoy (y no podemos fiarnos de otra cosa), parece que la evolución tiene algo de margen para lo diferente, pero también algo de determinismo, convergencia y cánones comunes; lo que el biólogo Víctor Soria Carrasco llamaba “un tema central”.

Vida en la atmósfera de un planeta similar a Júpiter, según Carl Sagan. Imagen de la serie Cosmos (1980) / PBS.

Vida en la atmósfera de un planeta similar a Júpiter, según Carl Sagan. Imagen de la serie Cosmos (1980) / PBS.

En conclusión, la idea que por ahí circula sobre vida alienígena tan diferente de nosotros que tal vez ni siquiera la veríamos delante de nuestras narices es un buen argumento para el cine, los periódicos y las charlas de café, pero no se compadece con las reglas de la biología.

Así, recogiendo trocitos como el aportado por los investigadores de Oxford y otros, y añadiendo unas gotas de biología esencial, podemos armar una lista con unos cuantos requisitos que debería cumplir todo alienígena, por muy diferente que sea de la vida terrícola; también los de ficción, si pretenden ser plausibles. Por supuesto que esta es una lista en construcción y provisional, que trataré de ir actualizando-completando-rectificando con los datos que nos traigan los nuevos estudios.

  1. Todo ser vivo debe nacer, crecer, (tener capacidad de) reproducirse y morir. De acuerdo, esto es ponerlo muy fácil; pero es la definición más básica y clásica de la vida, aunque hoy se prefiere introducir criterios metabólicos y evolutivos. Qué menos que empezar por esto, pero también tiene su miga: algo tan aparentemente sencillo es uno de los motivos (el otro es el metabolismo, a lo que iré más abajo) por los cuales se discute si los virus son seres vivos. No solamente es que sean parásitos dependientes de piezas ajenas; muchos otros seres vivos también lo son. Es que los virus no crecen.
  2. Todo ser vivo está constituido por materia. Sí, también es fácil llegar a sacar un 2 en esta prueba. Pero ¿en cuántas películas los alienígenas se nos presentan como seres de energía pura que pueden adoptar cualquier forma que se les antoje? Si algo no está formado por materia no es un ser vivo, sino un poltergeist, por muy alienígena que sea. El payaso de It no es un ser vivo.
  3. Todo ser vivo debe estar formado por unidades elementales repetidas en varios niveles jerárquicos, la más básica de las cuales es un gen. La biología se basa en un principio de construcción según el cual hay una coherencia entre las partes pequeñas y el conjunto, o entre genes, células, órganos, individuos y sociedades. Por ejemplo, con células humanas no se puede construir un perro, ni con células alienígenas se puede construir un humano. Esto implica la existencia de genes en sentido amplio; no necesariamente como los terrestres, pero sí como unidades materiales mínimas que llevan la información esencial para construir el siguiente nivel jerárquico.
  4. Todo ser vivo debe respetar las leyes universales de la física. No es posible violar los principios de conservación de la materia, la energía o la cantidad de movimiento, o las leyes de la termodinámica en general.
  5. Todo ser vivo debe estar sujeto a evolución por selección natural y exhibir un cierto grado de adaptación a su entorno de origen. La evolución funciona a escalas temporales dependientes de los procesos biológicos, y estos a su vez dependen de la velocidad de los ritmos físicos y químicos. La evolución funciona en escalas espaciales que permitan la interacción entre un ser vivo y su entorno.
  6. Todo ser vivo debe estar enclavado en un ecosistema que lo sostenga. Una especie alienígena no puede ser la única forma de vida presente en su planeta, a no ser que sea la primera (esta sería una discusión interesante, pero lo cierto es que la abiogénesis aún es una caja negra para la biología) o la última superviviente, en cuyo caso está abocada a la extinción. Un ser vivo, incluso los quimio o fotosintéticos, es parte de la biomasa, pertenece a un ecosistema que lo alimenta pero también lo limita, actuando como cinta transportadora de la energía a lo largo de la cadena alimentaria.
  7. Todo ser vivo debe mantener poblaciones mínimas viables y conexas. La idea del Arca de Noé no permite la supervivencia de una especie. Debe existir un número suficiente de ejemplares en un mismo entorno físico que asegure un tamaño de diversidad genética capaz de sostener la supervivencia de la especie. Para los científicos esta es una estimación compleja que varía para cada especie y que hoy se calcula con simulaciones matemáticas por ordenador. Pero la naturaleza lo sabe.
  8. Todo ser vivo debe tener un metabolismo y una fisiología intrínsecamente plausibles y coherentes. Por ejemplo, los procesos metabólicos producen energía, y parte de esta energía se traduce en calor. Esto impone ciertas limitaciones de cara a construir un organismo, sin importar cómo sean las condiciones de su planeta de origen. Si un ser vivo es muy grande, también lo será el calor interno generado. Su temperatura de funcionamiento debe mantener el solvente biológico (en nuestro caso, el agua) en un estado que facilite las reacciones químicas y que permita a las biomoléculas conservar su configuración estructural nativa (en nuestro caso, el ADN y las proteínas pierden su estructura a temperaturas demasiado altas). Por tanto, toda forma de vida está limitada por su propio rango de temperaturas. Por otra parte, esta regla impone también la necesidad de un metabolismo, al menos durante alguna fase de la vida. Volvemos a lo mencionado antes sobre los virus: no tienen metabolismo cuando están en forma de virión (estado libre), pero sí cuando se activan en su célula hospedadora, aunque para ello utilicen piezas ajenas (algo que también necesitan otros parásitos). Desde este punto de vista, un virión puede entenderse como una fase de resistencia, como una espora o una semilla, y un virus puede caber en la definición de ser vivo. Incluso en cierto sentido, el hecho de subcontratar el metabolismo puede interpretarse como un refinamiento evolutivo que permite ahorrar energía, al menos si es que los virus se han desarrollado a partir de otros organismos que sí tenían metabolismo propio.
  9. Todo ser vivo debe tener un metabolismo y una fisiología plausibles en las condiciones de su entorno original. Por ejemplo, para que un parásito prospere, incluso aunque sea capaz de parasitar formas de vida como los humanos con las que nunca antes haya tenido contacto (lo cual puede ocurrir), ha tenido que coevolucionar con algún hospedador original en su entorno primitivo.
  10. Todo alienígena que baje a la Tierra y prospere debe tener una biología compatible con las restricciones impuestas por las condiciones terrestres. Por ejemplo, es posible que un ser de cincuenta kilos (medidos en condiciones de gravedad terrestre) pueda flotar sin esfuerzo en la atmósfera densa de su planeta de origen, como podría ocurrir en Venus si estuviera habitado. Pero en la Tierra no puede seguir haciendo lo mismo impunemente.

¿Son plausibles los alienígenas (parecidos a nosotros) de la ciencia ficción? (II)

Un humano es un organismo con forma de tubo (boca y ano), simetría bilateral, un bloque central que contiene los órganos internos flanqueado por pares de extremidades para la movilidad y la interacción, y un control centralizado (el cerebro) situado en un apéndice específico (la cabeza) que contiene además los principales mecanismos sensoriales.

Desde los hombrecillos verdes o grises hasta las variaciones como los xenomorfos de Alien, infinidad de películas nos presentan seres antropomorfos, que comparten con nosotros estos mismos planos generales de construcción. Pero ¿es esto posible? ¿Es plausible que un alienígena se parezca tanto a nosotros?

Alienígenas de 'Encuentros en la tercera fase'. Imagen de Columbia Pictures.

Alienígenas de ‘Encuentros en la tercera fase’. Imagen de Columbia Pictures.

La respuesta corta es que nadie lo sabe, dado que, una vez más, aún no conocemos alienígena. Para la respuesta larga, debemos comenzar respondiendo a otra pregunta: ¿la evolución es determinista o indeterminista? Es decir: a partir de una situación inicial y si jugamos la partida dos veces, en la Tierra y en otro planeta, ¿cuánto se parecerá el resultado final en los dos casos?

A su vez, la respuesta corta a esta pregunta es que nadie lo sabe. Hay quienes intuyen que un alienígena debería parecerse algo a nosotros, porque… ¿no? Y hay quienes intuyen que debería ser completamente distinto, porque… también, ¿no?

Pero la simple intuición no responde a la pregunta de hasta qué punto un experimento evolutivo paralelo encontraría o no algunas de las mismas soluciones como adaptaciones favorables en un medio parecido o diferente del terrestre. Haría falta repetir el experimento completo de la evolución, primero en nuestra propia Tierra, después en otros planetas habitables.

Por desgracia, esto no está a nuestro alcance. Tal vez algún día la Inteligencia Artificial logre refinar una simulación lo bastante completa como para darnos pistas reales, pero son tantas las variables implicadas que no será tarea fácil aproximarse lo suficiente a un escenario comparable a la realidad. Sería la simulación más complicada jamás emprendida.

A pesar de todo, tampoco estamos completamente perdidos. Tenemos teorías razonables, y tenemos también algunos datos experimentales que pueden tirar algún que otro raíl en el camino hacia estas respuestas. A continuación les cuento algunas de estas pistas, pero ya les adelanto que la conclusión nos devuelve a la respuesta corta: en realidad, nadie lo sabe.

E. T. Imagen de Universal Pictures.

E. T. Imagen de Universal Pictures.

Comencemos por la teoría. En los años 70 Stephen Jay Gould, una de las mentes más preclaras de la biología evolutiva del siglo XX, defendió la hipótesis de que la evolución no es determinista sino imprevisible, y que si pudiéramos rebobinar la cinta del planeta Tierra unos cuantos millones de años y volver a ejecutar el programa, los humanos ni siquiera estaríamos aquí.

Hay que tener en cuenta que toda la vida en la Tierra (al menos la que conocemos hasta ahora) procede de un antepasado común, el cual ya había adoptado ciertas opciones evolutivas que todos hemos heredado. Al ir diversificándose en ramas separadas, estas a su vez también fueron optando por determinadas soluciones que restringían el repertorio de configuraciones de sus descendientes. Pero según la hipótesis de Gould, que siguen muchos otros biólogos evolutivos, si pudiéramos regresar al comienzo quizá la segunda vez se elegirían soluciones diferentes y todos tendríamos, por ejemplo, simetría radial, como los equinodermos (estrellas y erizos de mar).

La teoría de Gould tendería a rechazar la posibilidad de alienígenas antropomorfos. Pero no todos los expertos están de acuerdo con él. Otros biólogos evolutivos, como Richard Dawkins o Simon Conway Morris, piensan que la evolución es al menos en parte un proceso determinista. Es decir, que desde la misma situación de partida, hay sucesos que tienden a repetirse.

Para comprender lo complicado que resulta teorizar sobre esto, tengamos en cuenta que incluso desde enfoques opuestos puede llegarse a conclusiones parecidas, pero también desde un mismo enfoque puede llegarse a conclusiones opuestas. Dos ejemplos: Conway Morris es creyente, Dawkins es ateo, y ambos son deterministas. Conway Morris es determinista, Gould lo contrario, y ambos se basan en las mismas pruebas, el esquisto de Burgess, un conjunto de fósiles hallado en Canadá a comienzos del siglo XX.

Un fósil de Anomalocaris del esquisto de Burgess. Imagen de Wikipedia / Keith Schengili-Roberts.

Un fósil de Anomalocaris del esquisto de Burgess. Imagen de Wikipedia / Keith Schengili-Roberts.

La razón principal que suelen esgrimir los deterministas es la evolución convergente. A lo largo de la historia de la vida en la Tierra, ha habido innumerables ocasiones en que la evolución ha encontrado las mismas soluciones en ramas independientes del árbol genealógico de los seres vivos.

Por ejemplo, los murciélagos y las aves tienen alas, pero las desarrollaron de forma independiente. Los ojos de los pulpos son pasmosamente parecidos a los nuestros, pero es evidente que ellos y nosotros no procedemos de un antepasado común con ojos. Este año un estudio descubrió que el apéndice, ese colgajo intestinal al que tradicionalmente no se le suponía otra función que llevarnos a Urgencias, ha surgido en la evolución más de 30 veces de forma independiente en unos animales y otros. ¡Más de 30 veces! Esto no solamente nos dice que muy probablemente el apéndice sirve para algo más, sino que es otro magnífico ejemplo de evolución convergente. El propio Conway Morris ha documentado muchos ejemplos en los fósiles de Burgess.

Así que la teoría no nos ofrece una respuesta clara. Pasemos ahora a la práctica: ¿qué nos dicen los experimentos? Obviamente, no podemos regresar al pasado, volver a jugar la partida de la evolución desde el principio y ver qué ocurre. Pero sí podemos hacer lo segundo mejor: ver qué hace la naturaleza en situaciones de evolución a corto plazo, y diseñar experimentos en condiciones controladas donde puedan estudiarse estos trocitos parciales de evolución.

Sobre lo primero, se han estudiado casos en animales como peces y lagartos. Respecto a lo segundo, hace tres años y medio les conté aquí un precioso ejemplo, un experimento con insectos palo llevado a cabo por el español Víctor Soria-Carrasco en la Universidad de Sheffield (Reino Unido). Los investigadores emplearon un tipo de insecto palo californiano que prácticamente nace, vive y muere en la misma planta, y del que existen dos variedades diferentes adaptadas al camuflaje en dos tipos de arbustos. Intercambiando los bichos de planta en unos lugares y otros, podían comparar los cambios genéticos que se producían entre dos de estos experimentos evolutivos independientes.

El resultado fue que en la evolución de estos bichos palo había un 80% de cambios diferentes y un 20% de cambios comunes. O sea, que a pesar de que mayoritariamente la evolución seguía caminos distintos en dos partidas diferentes, había un 20% de evolución convergente, o un 20% de determinismo evolutivo. Por supuesto que entre este caso y la evolución de la vida en otro planeta media un abismo, pero esta era la especulación de Soria-Carrasco sobre si los alienígenas podrían seguir caminos evolutivos parecidos a los nuestros: “muchas cosas serían diferentes, pero probablemente seríamos capaces de distinguir un tema central que siempre sería el mismo”.

El experimento más extenso de la historia de la ciencia para entender cómo funciona la evolución se desarrolla desde hace 30 años en la Universidad de Harvard. En febrero de 1988, el biólogo evolutivo Richard Lenski sembró bacterias Escherichia coli en 12 frascos con medio líquido de cultivo, algo habitual en muchos laboratorios de biología. Pero Lenski dejó a las bacterias la glucosa justa solo para sobrevivir durante la noche hasta la mañana siguiente, y por la tarde recogió a las supervivientes para trasvasarlas a un nuevo cultivo. Así, día tras día, durante más de 29 años.

Con la limitación de alimento, Lenski introducía un factor de presión para dirigir la evolución de las bacterias; tal como hace la selección natural, solo las bacterias mejor adaptadas al medio sobrevivirían. Cada 75 días, lo que equivale a unas 500 generaciones de E. coli, los investigadores congelan una parte de los cultivos para capturar una foto del proceso evolutivo. Analizando los genes de las bacterias en estos distintos momentos del proceso, pueden observar cómo están evolucionando, y comparar las 12 líneas entre sí para analizar si siguen los mismos caminos evolutivos o no. En total, en los casi 30 años del experimento se han sucedido más de 68.000 generaciones de bacterias, lo que equivale a más de un millón de años de evolución humana.

Y después de todo esto, el resultado es…

Durante los primeros miles de generaciones, los investigadores observaron que las bacterias seguían caminos al menos no totalmente separados. Los diferentes cultivos tendían a mostrar mutaciones diferentes, pero en los mismos genes. E incluso con las diferencias, todas mostraban un patrón común: las células se hacían más grandes, crecían más deprisa y aprovechaban mejor la glucosa. Esto parece un claro caso de evolución convergente.

Pero ¡oh, sorpresa! De repente, transcurridas unas 31.000 generaciones, una de las 12 líneas empezó a dejar de lado la glucosa y a comer citrato, otra fuente de carbono presente en el medio. Solo una de las 12 líneas. Dado que una característica de E. coli es la incapacidad de metabolizar el citrato, esta línea está evolucionando por el camino de convertirse en una nueva especie diferente. Y esto parece un claro caso de evolución no determinista.

Con todo esto, ¿qué opinan Lenski y sus colaboradores sobre el grado de determinismo de la evolución? Según su último estudio, esto: “nuestros resultados muestran que la adaptación a largo plazo a un ambiente constante puede ser un proceso más complejo y dinámico de lo que a menudo se asume”.

Sí, sí, vuelvan a leer la frase, y la segunda vez les dirá lo mismo: nada. Una paráfrasis para decir que, en realidad, no se sabe. Ya les advertí de que aún no tenemos una respuesta definitiva sobre si Gould o Conway Morris, y por tanto sobre si sería posible que en otro planeta evolucionara una especie básicamente similar a la nuestra. Pero quiero dejarles otro ejemplo de un experimento natural que nos ha permitido observar cómo funciona la evolución. Ese experimento se llama Australia.

La idea, de la que también les hablé aquí, es del científico planetario Charley Lineweaver. Es lo que él llama “la falacia del planeta de los simios”, o la idea popular de que, como decía Carl Sagan, en otros planetas habitados debe llegarse a un equivalente funcional del ser humano. Lineweaver pone como ejemplo su propio país, una gran isla separada del resto de los continentes desde hace unos 100 millones de años.

De este modo, Australia ha sido un experimento natural de evolución independiente durante millones de años. Y como decía Lineweaver, ¿qué es lo que ha surgido allí? Canguros. La aparición de los humanos en el gran bloque Eurasiafricano no ha interferido absolutamente de ninguna manera en la evolución australiana. Y sin embargo, allí la evolución no ha producido nada similar a los seres humanos. Si Australia fuera la única tierra seca de todo el planeta, no estaríamos aquí. Y por tanto, no hay evolución convergente; si los canguros tienen brazos y piernas como nosotros, es solo porque el antepasado común que compartimos con ellos ya los tenía.

Por todo lo anterior, los científicos no suelen arriesgarse a inventar aliens, a riesgo de ver su credibilidad dañada. Hay excepciones: en los años 70, Carl Sagan propuso un ecosistema modelo para un planeta joviano, un gigante gaseoso como Júpiter. Sagan imaginó varios linajes de seres voladores que controlarían su flotación a través de los distintos niveles de densidad de la atmósfera, formando una cadena alimentaria cuya base estaría sustentada por una especie de plancton atmosférico que se alimentaría de los nutrientes moleculares presentes en el gas. Así lo contaba Sagan en su mítica serie Cosmos:

Como resumen de todo lo contado aquí, mejor quédense con esta cita del gran maestro Sagan:

La biología es más parecida a la historia que a la física. Hay que conocer el pasado para comprender el presente. No hay predicciones en la biología, igual que no hay predicciones en la historia. La razón es la misma: ambas materias son todavía demasiado complicadas para nosotros. Aunque podemos comprendernos mejor comprendiendo otros casos.

A pesar de todo, si es extremadamente difícil aventurar cómo podría ser un alienígena, en cambio es más posible predecir cómo no podría ser. Como les contaba en la entrega anterior, no todo vale, y con esto podríamos arriesgarnos a construir una lista de reglas que debería cumplir un alienígena de ficción para ser mínimamente plausible. Vuelvan otro día y se lo cuento.

¿Son plausibles los alienígenas de la ciencia ficción? (I)

En una ocasión ya conté aquí que ocurre algo muy curioso con la relación entre cine y ciencia. Mientras que múltiples expertos en mútiples webs suelen llevar las películas de ciencia ficción a la rueda de interrogatorios para destripar su plausibilidad científica y sacar a relucir sus errores, tanto los expertos como los errores suelen ceñirse a la física. En cambio, la biología suele olvidarse. Al fin y al cabo, como aún no tenemos la menor idea de cómo son los alienígenas –si es que existen–, todo vale. ¿No?

Pues no, no todo vale. De hecho, probablemente no valgan más cosas de las que valen. La biología tiene sus propias reglas. En último término, la biología es una aplicación de la física y la química, y aunque el mayor número de variables aumenta la cota de incertidumbre, está claro que hay cosas que no pueden ser de ninguna manera.

Por ejemplo, las críticas científicas de la saga Alien analizan los bocados relativos a las naves, el espacio, la presión, la gravedad y cosas por el estilo. Pero nunca he leído ninguna (aunque probablemente exista sin que yo la haya descubierto) que abra el siguiente y evidente melón: es enormemente cuestionable que un organismo pueda multiplicar su tamaño y peso de forma desmedida en horas o días; pero desde luego, es absolutamente imposible que lo haga sin alimentarse de la materia necesaria para ganar ese aumento de peso y volumen.

Alien: Covenant. Imagen de 20th Century Fox.

Alien: Covenant. Imagen de 20th Century Fox.

La materia no se crea ni se destruye; para que un ser vivo multiplique su peso por diez, necesita incorporar una cantidad de materia aún mayor, teniendo en cuenta que una gran parte de su alimento se excretará en forma de desechos o para mantener funciones básicas como la refrigeración (sudor). Conclusión: a no ser que se inflen simplemente con aire, ni un pulpo, ni un percebe ni un xenomorfo pueden crecer de la nada en unas horitas.

Plantear un alienígena plausible no es tarea fácil, dado que en efecto aún no conocemos ninguno. Pero son tantos los frentes a cubrir, el biofísico, el bioquímico, el bioenergético, el fisiológico, el ecológico o el evolutivo, que casi todo alienígena inventado corre el riesgo de hacer aguas por un lado u otro, incluso en aspectos tan aparentemente nimios como el que ya conté aquí a propósito de Chewbacca: dado que el folículo piloso y la glándula sudorípara son especializaciones de la piel mutuamente excluyentes, los animales peludos (salvo los caballos, un caso peculiar que también comenté) no sudan lo suficiente como para regular su temperatura, por lo que los wookies deberían pasarse toda la saga de Star Wars jadeando como los perros.

Ya, ya, es cierto que George Lucas nunca ha pretendido que Star Wars sea científicamente creíble. (Pero esperen: ¿no era este el mismo tipo que se inventó aquello de los midiclorianos en analogía con la teoría de la endosimbiosis para convertir la Fuerza en, según sus propias palabras, “una metáfora de una relación simbiótica que permite la existencia de vida”?)

Es más; incluso solucionar el problema del frío cubriendo a los alienígenas de una gruesa capa de pelo es cuando menos infundado. Hoy parece suficientemente demostrado que el pelo de los mamíferos y las plumas de las aves proceden evolutivamente de las escamas de los reptiles, y que los genes específicos para fabricar pelo ya existían en estos últimos antes de que engendraran las ramas que darían lugar a los otros dos grupos.

Por lo tanto, los mamíferos no inventaron realmente el material básico del pelo, sino que se limitaron a modificar algo que habían heredado de los reptiles para acomodarlo a sus necesidades (por decirlo de algún modo; entiéndase que la evolución no tiene propósitos ni intenciones); entre ellas, la protección térmica. Esto de aprovechar un invento de la evolución para otro fin diferente al original se conoce en biología como exaptación.

Pero los reptiles en los que surgió el material necesario para crear el pelo vivían en climas cálidos, por lo que originalmente este mecanismo no era un invento contra el frío. En resumen, es probable que una especie alienígena que ha evolucionado en un planeta helado no lleve pelo para abrigarse, sino algún otro tipo de ingenio evolutivo más específicamente adaptado a esa misión.

Recordando los alienígenas de casi cualquier película que nos venga a la mente, es inmediato que suelen fallar en un aspecto u otro, o en todos. Por ejemplo, todo ser complejo tiene una forma definida, ya que es una regla básica de la biología que la complejidad requiere un alto grado de especialización estructural. Así que no es posible cambiar de forma alegremente cada minuto o tomar el aspecto de otros organismos, salvo que seas algo tan poco inteligente como un moho mucilaginoso. Adiós a La cosa y a las múltiples versiones de La invasión de los ultracuerpos.

La cosa (versión de 1982). Imagen de Universal Pictures.

La cosa (versión de 1982). Imagen de Universal Pictures.

Tampoco existen los seres vivos aislados, ni como especies ni como individuos. En su día, el astrofísico Carl Sagan hizo un cálculo de cuántos monstruos del lago Ness podrían existir si existía alguno, aunque aplicó exclusivamente criterios de física de colisiones. Pero además todo organismo necesita lo que en biología se conoce como Población Mínima Viable, un número de ejemplares que permita la supervivencia de la especie con una diversidad genética suficiente como para perpetuarse sin acabar degenerando hasta la extinción. Y toda especie requiere un aporte de biomasa, así que un alienígena viable depende de un ecosistema que le sostiene.

Otro error frecuente es pasear a los alienígenas por el medio terrestre como si estuvieran en su casa. No se trata solo de la respiración de nuestra atmósfera, sino que la Tierra impone una multitud de condiciones ambientales que podrían resultar hostiles y hasta invivibles para una especie surgida en otro planeta diferente, desde nuestra gravedad hasta nuestros niveles de irradiación, o incluso las amenazas biológicas que nosotros hemos aprendido durante millones de años a mantener a raya.

Un ejemplo muy bien concebido de esto último eran los marcianos de H. G. Wells en La guerra de los mundos, que sucumbían a las bacterias terrestres al carecer de nuestra inmunidad. Wells era biólogo, así que ya hace un siglo predecía que el mayor riesgo para un marciano durante una invasión terrestre no serían los humanos, sino las infecciones.

La guerra de los mundos (versión de 2005). Imagen de Paramount Pictures / DreamWorks Pictures.

La guerra de los mundos (versión de 2005). Imagen de Paramount Pictures / DreamWorks Pictures.

En cuanto a las presuntas bioquímicas alternativas propuestas a menudo en la ciencia ficción, a veces son pura fantasía sin el menor sustento científico. El ejemplo más clásico es el silicio como alternativa al carbono. Una regla básica de la vida es que empleamos materia para alimentar nuestros procesos vitales gracias a la energía almacenada en los enlaces químicos de esas sustancias. Como resultado del proceso, generamos compuestos degradados con un nivel energético menor; es una simple resta. Cuando los organismos terrestres consumimos compuestos orgánicos para alimentarnos, producimos agua y dióxido de carbono (CO2) como productos finales. Son los residuos oxidados de la actividad biológica.

El CO2 es un gas a temperatura ambiente, motivo por el cual lo evacuamos fácilmente. Pero aunque el silicio ofrezca una estructura atómica equiparable a la del carbono en sus posibilidades de formar enlaces, algunos de sus compuestos tienen propiedades químicas notablemente diferentes.

Por ejemplo, el dióxido de silicio (SiO2) es sólido; para entendernos, básicamente es arena. Su temperatura de fusión es de 1.713 ºC, y la de ebullición es de 2.950 ºC; nos pongamos como nos pongamos, temperaturas incompatibles con cualquier forma de vida. En la Tierra, muchos organismos emplean SiO2 precisamente por su dureza, como material de construcción o defensa contra depredadores. Pero una situación muy diferente sería producirlo como residuo metabólico, ya que sería muy difícil eliminarlo de forma constante y en grandes cantidades. ¿Imaginan cómo podríamos estar continuamente expulsando arena de nuestros pulmones?

Un alienígena basado en el silicio en el episodio 'The Devil in the Dark' de la serie 'Star Trek' (1967). Imagen de CBS Television Distribution.

Un alienígena basado en el silicio en el episodio ‘The Devil in the Dark’ de la serie ‘Star Trek’ (1967). Imagen de CBS Television Distribution.

En la próxima entrega seguiremos hablando de esta cuestión, entrando en otro de los clásicos de la ciencia ficción: los alienígenas con forma más o menos humana. ¿Es plausible que en un planeta muy diferente del nuestro evolucionen seres antropomorfos?

¿Y si en realidad no somos reales, sino personajes de un videojuego?

Cuando Trump ganó las elecciones en EEUU y triunfó el Brexit, hubo muchos que se dijeron: esto no puede estar pasando. Pero entre estos, hay algunos para los que no es simplemente una frase hecha, sino que realmente creen que esto no pude estar pasando. O sea, que no es real. Que es una simulación. Que somos una simulación. O dicho de otro modo, un videojuego carísimo e increíblemente complejo. Y si añadimos todo lo que está ocurriendo últimamente por nuestros pagos, los defensores de esta hipótesis pueden frotarse las manos.

Mario Bros. Imagen de Nintendo.

Mario Bros. Imagen de Nintendo.

En efecto, como en Matrix. Tal vez ya hayan oído hablar de lo que corre en ciertos círculos como la hipótesis de la simulación. O si es la primera vez que leen sobre ello, puede que les parezca el mayor hallazgo intelectual de la historia de la humanidad, o todo lo contrario, una pura masturbación mental a la que no merece la pena dedicar ni medio segundo y que provoca risa con esa flojera del sonrojo. Incluso a lo largo de un mismo día, dependiendo de si pierden el autobús o se les queman las tostadas, puede que piensen ambas cosas indistintamente. A mí me ocurre.

Los antecedentes de esta loca idea son ilustres, desde la caverna de Platón a La vida es sueño de Calderón. Cuatro siglos antes de nuestra era, el filósofo chino Zhuang Zhou se enfrentaba a la imposibilidad de distinguir cuál era la verdadera realidad, si la que entendemos como real o la que experimentamos durante nuestros sueños, que nos parece igualmente real cuando estamos inmersos en ella. Bertrand Russell inventó una idea llamada Tierra de Cinco Minutos, según la cual el universo podría haberse creado hace cinco minutos y nosotros sin enterarnos, creyendo recordar un pasado que podría ser totalmente ficticio. En los años 70, el genial Philip K. Dick también planteó la posibilidad de que vivamos en una realidad programada por ordenador.

Pero el responsable de haberla liado definitivamente es Nick Bostrom, filósofo sueco de la Universidad de Oxford. En 2003 Bostrom publicó un trabajo en el que desarrollaba la hipótesis más o menos según la siguiente línea lógica: el desarrollo tecnológico es imparable y nos lleva a construir simulaciones informatizadas cada vez más complejas. En un futuro con una tecnología infinitamente superior a la actual, los posthumanos llegarán a ser capaces de crear simulaciones a cuyos personajes se les pueda dotar incluso de consciencia.

Estos posthumanos crearán simulaciones del pasado, de sus antepasados, de nosotros. Dado que en el futuro esto será un ejercicio tan corriente y extendido como lo son hoy nuestros videojuegos, se crearán millones de estas simulaciones; al fin y al cabo, ¿cuántas copias de juegos como Los Sims existen en el mundo? Y si existen millones de estas simulaciones y solo una única realidad, la probabilidad de que nosotros seamos reales, que vivamos en la “realidad base”, es ínfima: tenemos una posibilidad contra millones de no ser una simulación.

Todo esto, argumentaba Bostrom, siempre que la humanidad no se extinga antes de llegar al estado posthumano, y a no ser que por algún motivo nuestros futuros descendientes decidan no crear simulaciones. Resumiendo, Bostrom afirmaba que al menos una de estas tres proposiciones tiene que ser cierta: a) La humanidad queda aniquilada antes de alcanzar la fase posthumana. b) Los posthumanos no están interesados en construir simulaciones. c) Vivimos en una simulación.

El gusanillo de la simulación ha cautivado a un buen número de científicos y tecnólogos. Elon Musk, multimagnate tecnológico y en quien confiamos para que algún día nos lleve a Marte, está completamente convencido de que, en efecto, vivimos en una simulación. La idea ha llegado a cautivar tan obsesivamente a algunos que, según contaba la revista The New Yorker el año pasado, dos millonarios del Silicon Valley cuyos nombres no se revelaban habrían contratado a un equipo de científicos para tratar de “sacarnos de la simulación”.

Pero naturalmente, los filósofos se mueven en un plano diferente al de los científicos. Los científicos trabajan en la realidad, mientras que el deber de un filósofo es calzarse las botas, ponerse el casco y bajar al sótano para inspeccionar los cimientos de esa realidad. Por desgracia, suelen alegar Bostrom y otros, es prácticamente imposible que científicamente lleguemos a conocer la verdad. Demostrar que no vivimos en una simulación es por definición impracticable: cualquier indicio que pudiera aportarse podría formar parte de la simulación. En ciencia a menudo suele ser inviable demostrar un negativo.

Y en cuanto a probar que vivimos en una simulación, y por mucho que algunas de las mejores mentes del mundo se ocupen en tratar de sacarnos de ella… Admitámoslo: si realmente fuéramos una simulación, salir de ella parece algo tan factible como que, de repente, Mario abandone la pantalla y comience a saltar por encima de los champiñones de nuestra pizza.

Aquí les dejo un vídeo que lo explica muy certeramente. En inglés, pero con subtítulos. Que disfruten de su cena simulada.

Teleinvasión biológica: imprimir seres vivos a distancia en otros mundos

El otro día adelanté que les contaría otra fantasía sobre teleinvasiones, palabra que designa una invasión alienígena a distancia sin que los invasores estén presentes en persona, o en lo que sea, sobre el terreno del planeta invadido.

Como les expliqué, un concepto hoy plausible es el de emplear máquinas teledirigidas; tan plausible que ya se utiliza para nuestras invasiones locales, mediante drones y otros aparatos controlados a distancia. Un paso más allá será recurrir a máquinas inteligentes capaces de tomar sus propias decisiones, no necesariamente más crueles e inhumanas que las de un comandante de carne y hueso, como demuestran las pruebas que es innecesario citar.

Pero imaginen lo siguiente, y explótenlo si les apetece para escribir una historia: la población mundial está siendo exterminada por un extraño y letal patógeno, cuyo análisis revela que no se trata de un microorganismo natural terrestre. Cuando los epidemiólogos rastrean el patrón de propagación en busca del foco inicial, encuentran que no se localiza en una zona densamente poblada, sino muy al contrario, en una región extremadamente remota, desde la cual el patógeno ha podido propagarse por la circulación atmosférica. Cuando una expedición llega al lugar, encuentra un artefacto de procedencia desconocida. Al estudiarlo, los científicos descubren que no es una nave, sino una fábrica automatizada: un sintetizador biológico que ha creado el agente invasor a partir de materias primas moleculares. Los expedicionarios destruyen el aparato, pero ya es demasiado tarde para la humanidad. Mientras, los seres que enviaron la máquina esperan a que se complete la limpieza de su nuevo hogar.

¿Pura fantasía? Hoy sí. Pero sepan que el primer prototipo de una máquina controlable a distancia y capaz de crear un patógeno a partir de componentes moleculares básicos ya existe. Se llama Convertidor de Digital a Biológico (DBC, en inglés), se ha descrito hace pocas semanas en la revista Nature Biotechnology, y se ha utilizado ya para fabricar un virus de la gripe A H1N1 y un virus que infecta a las bacterias llamado ΦX174.

Este es el aspecto del prototipo del DBC. Imagen de Craig Venter et al. / Nature Biotechnology.

Este es el aspecto del prototipo del DBC. Imagen de Craig Venter et al. / Nature Biotechnology.

El autor de este prodigio es el biólogo, empresario y millonario J. Craig Venter, en su día artífice del Proyecto Genoma Humano en su rama privada, y uno de los líderes mundiales en el campo de la biología sintética. Entre sus últimos logros figura, en marzo de 2016, la creación de una bacteria con el genoma artificial mínimo necesario para la vida, que conté aquí.

Venter lleva unos años trabajando en torno a la idea de lo que él mismo llama “teletransporte biológico”, aunque la denominación puede ser engañosa, dado que lo único que se transporta en este caso es la información. El DBC puede recibir a distancia, por internet o radio, una secuencia genética o la secuencia de aminoácidos de una proteína. Después la máquina imprime la molécula utilizando sus componentes básicos. Tampoco “imprimir” es quizá el término más adecuado, pero Venter lo emplea del mismo modo que hoy se usa para hablar de impresión en 3D. En lugar de cartuchos con tinta de colores, el DBC utiliza depósitos con los ladrillos del ADN: adenina (A), guanina (G), timina (T) y citosina (C).

El DBC es todavía un prototipo, una máquina formada por piezas sueltas. Pero funciona, y ya ha sido capaz de imprimir cadenas de ADN y ARN, proteínas y partículas virales. Y naturalmente, más allá del argumento fantástico de la teleinvasión biológica, todo esto tiene un propósito. Pero sobre el ruido de fondo del rasgado de vestiduras de los anticiencia, déjenme hundir una idea hacia el fondo: el primer propósito de la ciencia, y el único necesario para justificarla, es el conocimiento, porque el conocimiento es cultura.

Pero sí, hay aplicaciones prácticas. La idea que inspira la biología sintética es dominar la creación de la vida para obtener beneficios de una manera mejor que la actual, o que simplemente no son alcanzables de otro modo. Los microorganismos sintéticos pueden descontaminar el medio ambiente, fabricar energía o compuestos de interés, como medicamentos, alimentos, productos industriales o vacunas.

Volviendo al DBC, Venter imagina un futuro en el que estas máquinas estarán repartidas por el mundo para fabricar, por ejemplo, vacunas o fármacos. Ante una futura pandemia, y una vez que se logre obtener un remedio, no será necesario transportarlo a todas las zonas afectadas; bastará con transmitir las instrucciones a los DBC, y estos se encargarán de producirlo in situ.

Hasta aquí, tal vez algún lector biólogo replicará que los sintetizadores de oligonucleótidos existen desde hace décadas, aunque necesiten un operador humano para introducir las órdenes. Noten la diferencia, más allá de que antes se hablaba de “sintetizar” y hoy de “imprimir”: el DBC no solo crea cadenas cortas de ADN o ARN, sino genomas sencillos completos y proteínas, y los ensambla en partículas funcionales, todo ello sin que un humano esté presente. Pero el verdadero salto viene de las posibilidades futuras de esta tecnología cuando se conjuga con otros trabajos previos en biología sintética: concretamente, la posibilidad de imprimir microbios con genomas sintéticos diseñados a voluntad.

Venter es un tipo propenso a mirar de lejos que no se ha resistido a fantasear con la futura evolución de esta tecnología. Y uno de sus posibles usos, dice, sería producir microbios en Marte capaces de modificar el entorno para hacerlo más habitable para el ser humano; es lo que se conoce como terraformación, y es una posibilidad que Venter ya ha discutido con otro genio visionario embarcado en el proyecto de fundar una colonia marciana, Elon Musk.

Aquí entramos de nuevo en el terreno de la ciencia ficción, pero en una que no es teóricamente imposible. Venter quiere llegar a obtener una “célula receptora universal”, una bacteria vacía similar a la que él rellenó con un genoma artificial, pero que sea capaz de aceptar cualquier secuencia genética que se le quiera implantar para hacer lo que uno quiera que haga, o… convertirse en lo que uno quiera que se convierta. Incluso, tal vez, en un humano.

Sí, sí, un humano. Esta es la idea lanzada por George Church y Gary Ruvkun, biólogos sintéticos de la Universidad de Harvard. Church, Ruvkun y otros piensan que es ilusorio e inútil tratar de viajar a otras estrellas, y que en su lugar la expansión de la humanidad por el universo se llevará a cabo enviando bacterias cargadas con el genoma humano y utilizándolas después para imprimir humanos en el destino elegido.

Al fin y al cabo, una célula es lo que dice su genoma; una célula A puede transformarse en otra célula B si se le insertan los genes de la célula B. Y así, célula a celula, creciendo, dividiéndose y diferenciándose, una sola célula acaba creando un organismo humano completo. Esto ocurre en cada gestación. Pero también ha ocurrido a lo largo de nuestra evolución desde que éramos bacterias (o arqueas).

De hecho, si podría ocurrir, ¿cómo podemos saber que no ha ocurrido ya? Esta es la idea de Adam Steltzner, ingeniero jefe del rover marciano Curiosity en la NASA. “Puede que sea así como nosotros llegamos aquí”, dice Steltzner. ¿Y si nosotros, todos, la vida en la Tierra, fuéramos el producto de un DBC que alguien trajo aquí hace miles de millones de años?

¿Por qué invadir otro planeta, si se puede ‘teleinvadir’?

Dado que no tengo plan de escribir próximamente ninguna historia de ciencia ficción (mi Tulipanes de Marte era una novela con ciencia ficción, no de ciencia ficción), de vez en cuando dejo caer aquí alguna idea por si a alguien le apetece explorarla.

Tampoco pretendo colgarme ninguna medalla a la originalidad, dado que en general es difícil encontrar algo nuevo bajo el sol, o cualquier otra estrella bajo la cual haya alguien, si es que hay alguien bajo otra estrella. Imagino que ya se habrán escrito historias que no recuerdo o no conozco, y que plantean este enfoque. Pero en general, las ficciones sobre invasiones alienígenas se basan en la presencia física de los invasores en el territorio de los invadidos.

¿Por qué unos alienígenas sumamente avanzados iban a tomarse la molestia, poniendo en riesgo incluso sus propias vidas, de invadir ellos mismos?

Imagen de 'Mars Attacks!' (1996), de Tim Burton. Warner Bros.

Imagen de ‘Mars Attacks!’ (1996), de Tim Burton. Warner Bros.

Futurólogos como Ray Kurzweil pronostican un mañana en que los humanos cargaremos nuestras mentes en máquinas, llámense internet o la nube, y podremos alcanzar la inmortalidad prescindiendo de nuestros cuerpos biológicos. Descontando el hecho de que sería una inmortalidad insoportablemente aburrida, y de que los biólogos nos quedaríamos sin tarea, lo cierto es que hoy son muchos los investigadores en inteligencia artificial que trabajan inspirados por este horizonte. Así que sus razones tendrán.

Imaginemos una civilización que ha alcanzado semejante nivel de desarrollo. ¿No sería lógico que evitaran el riesgo de mancharse las manos (o sus apéndices equivalentes) con una invasión presencial, y que en su lugar teleinvadieran, sirviéndose de máquinas controladas a distancia o capaces de razonar y actuar de forma autónoma?

Una buena razón para ello aparecía ya en la novela que comenzó a popularizar el género en 1897. En La guerra de los mundos de H. G. Wells, los marcianos llegaban a la Tierra a bordo de sus naves, un esquema copiado después una y otra vez. La última versión para el cine, la que dirigió Spielberg en 2005, aportaba una interesante variación: las máquinas de guerra ya estaban presentes en la Tierra desde tiempos antiguos. Pero también en este caso, sus creadores se desplazaban hasta nuestro planeta para pilotarlas.

Como biólogo que era, Wells resolvió la historia con un desenlace científico genial para su época. Aunque el concepto de inmunidad venía circulando desde antiguo, no fue hasta finales del XIX cuando Pasteur y Koch le dieron forma moderna. Wells tiró de esta ciencia entonces innovadora para matar a sus marcianos por una infección de bacterias terrestres, contra las cuales los invasores no estaban inmunizados. La idea era enormemente avanzada en tiempos de Wells, y si hoy parece casi obvia, no olvidemos que prácticamente todas las ficciones actuales sobre alienígenas la pasan por alto (una razón más que hace biológicamente implausibles la mayoría de las películas de ciencia ficción).

Marciano moribundo en 'La guerra de los mundos' (2005). Imagen de Paramount Pictures.

Marciano moribundo en ‘La guerra de los mundos’ (2005). Imagen de Paramount Pictures.

Así, cualquier especie alienígena invasora preferiría evitar riesgos como el de servir de comida a una legión de microbios extraños y agresivos, lo que refuerza la opción de la teleinvasión. Pero hay una limitación para esta idea: la distancia a la que se puede teleinvadir.

Dado que la velocidad máxima de las transmisiones es la de la luz, una teleinvasión en tiempo real obligaría a los alienígenas a acercarse lo más posible a la Tierra. Ya a la distancia de la Luna, una transmisión de ida y vuelta requiere 2,6 segundos, un tiempo de reacción demasiado largo. Probablemente les interesaría mantenerse en una órbita lo suficientemente alejada para evitar una respuesta de la Tierra en forma de misiles.

Y lo mismo que sirve para una invasión alienígena, podría aplicarse a la visita humana a otros mundos. Precisamente esta telepresencia es el motivo de un artículo que hoy publica la revista Science Robotics, y cuyos autores proponen esta estrategia para explorar Marte. Naturalmente, esta ha sido hasta ahora la fórmula utilizada en todas las misiones marcianas. Pero el retraso en las comunicaciones entre la Tierra y su vecino, que oscila entre 5 y 40 minutos según las posiciones de ambos planetas en sus órbitas, impide que los controladores de la misión puedan operar los robots en tiempo real.

Los autores proponen situar un hábitat no en la superficie marciana, sino en la órbita, lo que reduciría los costes de la misión y los riesgos para sus tripulantes. Los astronautas de esta estación espacial marciana podrían controlar al mismo tiempo un gran número de robots en la superficie, que les ofrecerían visión y capacidad de acción inmediatas, casi como si ellos mismos estuvieran pisando Marte. Las posibilidades son casi infinitas, por ejemplo de cara a la ejecución de experimentos biológicos destinados a buscar rastros de vida pasada o presente. Los autores apuntan que ya hay un grupo en el Instituto Keck de Estudios Espaciales dedicado a evaluar la teleexploración de Marte.

Concepto para una exploración de Marte por telepresencia desde un hábitat en órbita. Imagen de NASA.

Concepto para una exploración de Marte por telepresencia desde un hábitat en órbita. Imagen de NASA.

Claro que otra posibilidad, quizá más lejana en el futuro, es que estas máquinas puedan pensar por sí mismas sin necesidad de que nadie las controle a distancia. En el mismo número de Science Robotics se publica otro artículo que evalúa un software inteligente llamado AEGIS, instalado en el rover marciano Curiosity y que le ha permitido seleccionar de forma autónoma las rocas y suelos más interesantes para su estudio, con un 93% de precisión.

Pero esto es solo el principio. En un tercer artículo, dos científicos de la NASA reflexionan sobre cómo las futuras sondas espaciales inteligentes podrán trabajar sin intervención humana para la observación de la Tierra desde el espacio, para la exploración de otros mundos del Sistema Solar e incluso para viajar a otras estrellas. Escriben los investigadores:

El último desafío para los exploradores científicos robóticos sería visitar nuestro sistema solar vecino más próximo, Alfa Centauri (por ejemplo, Breakthrough Starshot). Para recorrer una distancia de más de 4 años luz, un explorador a este sistema probablemente se enfrentaría a una travesía de más de 60 años. A su llegada, la sonda tendría que operar de forma independiente durante años, incluso décadas, explorando múltiples planetas en el sistema. Las innovaciones actuales en Inteligencia Artificial están abriendo el camino para hacer realidad este tipo de autonomía.

Y eso no es todo. Hay un paso más en la telepresencia en otros planetas que aún es decididamente ciencia ficción, pero que hoy lo es un poco menos, dado que ya se ha colocado la primera piedra de lo que puede ser una tecnología futura casi impensable. Si les intriga saber de qué se trata, vuelvan mañana por aquí.

¿Es creíble el New Space? Dos autores de ciencia ficción opinan

El fundador de SpaceX, Elon Musk, pretende llevar el año próximo a una pareja de pasajeros en un vuelo alredor de la Luna, además de fundar una colonia en Marte en la próxima década. Otras empresas del llamado New Space, del que hablé hace unos días, quieren popularizar los vuelos espaciales, extraer recursos minerales extraterrestres o limpiar la órbita terrestre de la basura espacial acumulada. Pero ¿son creíbles todas estas promesas?

Hay quienes ya han hecho realidad objetivos como estos, aunque solo en las páginas de sus libros. Dicen que el papel lo aguanta todo, pero ciertos autores de ciencia ficción asientan sus obras sobre una formación y experiencia científicas que les convierten en augures privilegiados del futuro que nos espera.

Lo cual no implica que mi pregunta sobre el New Space tenga una respuesta inmediata y única. Prueba de ello es esta muestra de dos autores escogidos a los que he preguntado, y que les traigo hoy: David Brin y B. V. Larson. Ambos, escritores de ciencia ficción y científicos de formación. Brin es, además de ganador de premios como el Hugo y el Nebula (autor, entre otras, de Mensajero del Futuro, llevada al cine por Kevin Costner), astrofísico, asesor de la NASA y consultor futurólogo para varias corporaciones y agencias del gobierno de EEUU. Por su parte, Larson es una presencia habitual en la lista de los más vendidos de ciencia ficción de Amazon, pero además es profesor de ciencias de la  computación y antiguo consultor de DARPA, la agencia de investigación avanzada del Departamento de Defensa de EEUU.

Los escritores David Brin (izquierda) y B. V. Larson (derecha). Imágenes de Wikipedia y YouTube.

Los escritores David Brin (izquierda) y B. V. Larson (derecha). Imágenes de Wikipedia y YouTube.

Ambos sostienen opiniones opuestas sobre el futuro del New Space. Brin considera que la evolución de la aventura espacial desde los gobiernos a los operadores privados es algo natural que ya hemos visto antes en nuestra historia. “El príncipe Enrique el Navegante subvencionó la exploración naval portuguesa, y después las iniciativas privadas tomaron el relevo”, me dice. El autor recuerda otros ejemplos, como la aviación, y pronostica que “estamos entrando en una era en la que 50 años de inversión gubernamental en el espacio por fin van a dejar paso a una actividad motivada por el comercio, la ambición e incluso la diversión”.

Y no solo se trata de un proceso históricamente repetido, opina Brin, sino repetido con éxito. El autor destaca la reutilización de naves y cohetes como un hito conseguido por las compañías del New Space que facilitará enormemente el acceso al espacio en el futuro, aunque “nadie ha dicho que vaya a ser fácil”. Brin reconoce que los más entusiastas están prometiendo demasiado, pero afirma que “el progreso es indiscutible”.

En cambio, más pesimista se muestra Larson. Este autor admite que las promesas del New Space están captando eficazmente la atención de los medios y del público; “pero eso no cambiará los resultados”, añade.

¿Y cuáles serán para Larson estos resultados? “Yo diría que todas las ambiciones del New Space probablemente fracasarán”, sugiere. Como Brin, Larson también basa su argumento en la trayectoria histórica, pero en un sentido diferente. Según este autor, los cambios tecnológicos comienzan con una edad dorada de rápida innovación durante unos 50 años, seguida por un estancamiento que solo puede superarse con un gran nuevo descubrimiento o aplicación capaz de impulsar de nuevo el desarrollo tecnológico. “Hay incontables ejemplos”, sostiene Larson: la aviación avanzó de forma espectacular desde los hermanos Wright en 1903 hasta la aviación comercial. Pero “una vez que los aviones se hicieron comunes en los años 50, el progreso frenó; un avión de pasajeros hoy vuela a la misma velocidad y altitud que hace 50 años”.

Larson cita también el ejemplo de los ordenadores. “¿Qué hemos hecho con ellos en la última década? Los hemos hecho un poco más pequeños, un poco más rápidos, más conectados y más portátiles, pero eso es todo, solo refinamientos; el iPhone debutó en 2007, el portátil en los años 90, y funcionan esencialmente hoy igual que entonces”.

Lo mismo ocurre con los viajes espaciales, prosigue Larson. Desde la carrera espacial de los años 60 no han surgido innovaciones radicales; los propulsores de los cohetes y otros elementos son básicamente similares a como eran entonces. “Estamos estancados en un tiempo de espera”, dice, y solo podremos avanzar a la siguiente casilla, la popularización y el abaratamiento de los vuelos al espacio, con un cambio de enfoque o una nueva motivación económica que nos empuje hacia el espacio. Hasta entonces, “el coste superará al beneficio”, asegura el autor. “Este es el motivo por el que estas ideas sobre el New Space de las que oyes hablar siempre parecen desvanecerse”.

Dos expertos, dos posturas distintas. Pero nadie ha dicho que pronosticar el porvenir sea fácil. Por el momento, solo podemos preparar un bol de palomitas, sentarnos en el sofá y mirar cómo el futuro va pasando por nuestra pantalla.

150 años de H. G. Wells, biólogo y profeta de la biología

Dicen que a H. G. Wells, que hoy cumpliría 150 años, en realidad no le interesaba demasiado la tecnología como tema principal de sus novelas; muchos autores de ciencia ficción suelen aclarar que les interesa más el impacto de la tecnología en la sociedad. Pese a ello, en su ejercicio profético, Wells tuvo algunos aciertos notables; probablemente el mayor de ellos fue la bomba atómica, como ya conté aquí. En cuanto a sus ensayos de futurología, repartió tiros con puntería dispar.

H. G. Wells en torno a 1922. Imagen de Wikipedia.

H. G. Wells en torno a 1922. Imagen de Wikipedia.

Sin embargo, hay un aspecto menos citado: Wells era biólogo. Y eso le diferencia (junto con Asimov) de otros autores de ciencia-ficción con formación científica o tecnológica que suelen provenir de los campos de la física, la ingeniería o la computación (véase el ejemplo de B. V. Larson que traje aquí ayer).

Wells fue además un biólogo educado en una época en la que sumarse a la teoría elaborada por aquel Charles Darwin aún tenía algo de apuesta arriesgada. Fue alumno de Thomas Henry Huxley, conocido como el Bulldog de Darwin por su fiera defensa de las tesis darwinistas. Esta formación evolucionista caló en el joven aspirante a escritor, manifestándose después en su obra: los marcianos de La guerra de los mundos mueren por selección natural, incapaces de adaptarse al medio hostil terrestre que los elimina con sus infecciones. La hipotética biología de Marte fue un interés constante para Wells, que siguió reflexionando y escribiendo sobre ello hasta varios años después de la publicación de su invasión marciana.

Pero antes de La guerra de los mundos y después de su primera novela, La máquina del tiempo, Wells escribió un segundo “scientific romance“, como por entonces se conocía lo que después se llamaría ciencia-ficción. En La isla del Doctor Moreau (1896), el autor británico relataba la historia de un fisiólogo exiliado en una isla y dedicado a la creación de seres híbridos entre humanos y animales mediante vivisección, la cirugía experimental en organismos vivos.

Aunque hoy se ha convertido en otro de los clásicos inmortales de Wells, en su día la novela no tuvo buena acogida, siendo calificada de indecente y morbosa. Según me cuenta el profesor emérito de la Universidad Kingston de Londres Peter Beck, autor del recién publicado libro The War of the Worlds: From H. G. Wells to Orson Welles, Jeff Wayne, Steven Spielberg and Beyond (Bloomsbury Publishing, 2016), “muchos críticos pensaron que nunca debió publicarse por su temática truculenta”. El propio Wells la calificó como “un ejercicio de blasfemia de juventud”.

Según Beck, temiendo caer en desgracia ante la crítica, Wells cambió de rumbo en su siguiente novela, La guerra de los mundos, que describió como “una gran historia científica semejante a La máquina del tiempo“. “Fue una manera de enderezar su carrera y su reputación, y sobre todo de mantener sus finanzas a flote; temía fracasar como escritor y tener que regresar al periodismo”, dice Beck.

Cartel de la adaptación al cine de 'La isla del Dr. Moreau' realizada en 1977.

Cartel de la adaptación al cine de ‘La isla del Dr. Moreau’ realizada en 1977.

Es evidente que hoy La isla del Doctor Moreau es casi un cuento infantil en comparación con las temáticas exploradas ahora por el terror y la ciencia-ficción. Lo cual nos revela una conclusión: si resultaba repugnante en su día, es porque se adelantó a su época. Wells no fue el primer autor que escribió sobre viajes en el tiempo o sobre alienígenas. En cambio, difícilmente encontraremos muchas referencias anteriores (Frankenstein y poco más) sobre lo que el futuro de la biología podría deparar. Y naturalmente, por entonces se consideraba algo demasiado escabroso.

En tiempos de Wells, el debate en torno a la experimentación biológica se centraba en la vivisección, un término hoy obsoleto que no se emplea en el ámbito científico. Pero hasta llegar aquí, lo cierto es que en épocas pasadas la cirugía agresiva en seres vivos y sin anestesia era práctica común, y siguió siéndolo después de Wells, incluso en humanos. El caso más dramático fue la infame Unidad 731, la división del ejército japonés que durante la Segunda Guerra Mundial creó una auténtica Casa del Dolor (en terminología de Wells) donde se experimentó brutalmente y se asesinó con enorme sufrimiento hasta a 250.000 personas, incluyendo niños y bebés. A diferencia de los campos nazis, la Unidad 731 estaba específicamente dedicada por entero a la experimentación.

El Dr. Moreau explicaba a su horrorizado huésped, el también científico Prendick, cómo había dedicado su vida al estudio de la “plasticidad” de los seres vivos, creando lo que el visitante describía como “animales humanizados” a través de la vivisección y el trasplante. “Las criaturas que usted ha visto son animales tallados y forjados en nuevas formas”, decía Moreau.

En lo que respecta a lo estrictamente científico, Wells fue visionario al entrever fronteras de la biología más allá de los objetivos de la experimentación de entonces. En el contexto científico de la época, Darwin había escrito sobre “variaciones” cuyo sustrato físico aún no se conocía. Las leyes de Mendel sobre la herencia, aunque publicadas en 1866, pasaron prácticamente inadvertidas hasta que fueron redescubiertas por la ciencia oficial al borde del cambio de siglo. La palabra “gen” no se acuñaría hasta 1909, y hasta casi mitad del siglo pasado no se confirmaría que el ADN era la sede de la información genética.

Sin embargo, Wells logró atisbar el futuro de la creación de los animales humanizados tal como hoy se entienden; no los monstruos de Moreau, sino ratones que contienen genes o tejidos humanos y que han sido cruciales en el avance de la medicina regenerativa y de los tratamientos contra el cáncer o las enfermedades infecciosas.

Incluso aún sin conocimientos de genética, Wells tuvo una intuición brillante al sugerir que los rasgos fenotípicos de los animales modificados por Moreau no se transmitían a la descendencia; hasta el propio Darwin cayó en la confusión de creer que ciertos caracteres adquiridos podían heredarse (fue su errada teoría de la pangénesis, de la que ya hablé aquí).

Pero al mismo tiempo, Wells intuyó correctamente que estos caracteres adquiridos sí podían modificar otros rasgos fenotípicos; esta es hoy la idea central de la epigenética (cuyas variaciones en realidad sí pueden heredarse, pero esa es otra historia). Y la plasticidad fenotípica, la variación de los rasgos según un fondo genético esté expuesto a un entorno o a otro diferente, es también una noción muy actual de la biología.

Claro que los textos sobre la obra de Wells no suelen centrarse en este tipo de cosas, sino en lo que realmente quiso decir con todo ello. ¿Los peligros de la ciencia desbocada? ¿La monstruosa naturaleza oculta en la condición humana? ¿O en la ambición de los científicos sin corazón? Las interpretaciones son libres. Pero deberían serlo un poco menos cuando el propio autor explicó de qué iba su libro: un año antes de la publicación de la novela (por tanto, se supone que mientras trabajaba en ella), Wells escribió un ensayo titulado The Limits of Individual Plasticity (1895). Curiosamente, algunos párrafos del artículo aparecerían replicados literalmente en la novela.

En aquel ensayo, Wells advertía del horror que supondría el uso de la vivisección para crear monstruos. Pero no se quedaba ahí; el ensayo concluye así:

Hemos dicho lo suficiente para desarrollar esta curiosa proposición. Puede ser que los límites fijos de la estructura y la capacidad psíquica sean más estrechos de lo que aquí se supone. Pero mientras exista la posibilidad, este tratamiento artístico de las cosas vivas, este modelado del individuo común hacia lo bello o lo grotesco, ciertamente parece tan creíble hoy como para merecer un lugar en nuestras mentes entre las cosas que algún día podrían ser.

Es decir, que Wells reconocía el potencial de aquella línea de experimentación para crear también “the beautiful“. Claro que esto no está presente en La isla del Dr. Moreau. Pero ¿quién habría comprado una novela sobre un doctor dedicado a crear lo “beautiful“? Pensemos en el caso de Aldous Huxley: su novela distópica Un mundo feliz (1932) es inmensamente popular; en cambio, lo es mucho menos La isla (1962), la contrapartida utópica que escribió al final de su carrera.

En su intento de provocar, la “blasfemia de juventud” de Wells se pasó de la raya, pero logró mantener la suficiente atención sobre su trabajo como para que su posterior invasión marciana fuera ampliamente leída. Al fin y al cabo, como dice Beck, Wells simplemente quería vivir de lo que escribía. Y parece claro que los lectores sentimos más atracción por el morbo de la distopía que por la hermosura de la utopía. Será nuestra monstruosa naturaleza.

PD. Si alguno de ustedes tiene la suerte de dejarse caer estos días por Woking, la localidad inglesa donde Wells residió durante una parte de su vida, tendrá la oportunidad de disfrutar de un buen puñado de actividades de conmemoración, incluyendo el descubrimiento de una nueva estatua de Wells. Más información en @wellsinwoking y en wellsinwoking.info.