BLOGS
Ciencias mixtas Ciencias mixtas

Los secretos de las ciencias para
los que también son de letras

Entradas etiquetadas como ‘astrobiología’

Diez reglas que debería cumplir todo alienígena (también los de ficción)

Hace cosa de un mes, un equipo de zoólogos de la Universidad de Oxford publicaba un estudio destinado a especular sobre cuál podría ser el retrato biológico de un alienígena. Como ya he contado aquí, los científicos no suelen arriesgarse a lanzar divagaciones de este tipo, y cuando lo hacen es en tiempo de extraescolares, después de quitarse la bata. Las revistas científicas tampoco son el lugar donde ponerse a inventar ciencia ficción.

Pero el estudio de Oxford era tan contenido que resultaba casi frustrante. El trabajo de los investigadores puede resumirse en dos ideas: los alienígenas estarán sometidos a evolución por selección natural, como nosotros los terrícolas, y estarán formados por partes más pequeñas en una jerarquía de niveles, como nosotros los terrícolas (genes, células, tejidos, órganos, individuos, sociedades…).

Tal vez no parezcan pistas como para parar las máquinas, aunque como guinda y gancho de cara a los medios, los autores se permitían adornarlo con una propina: el octomita, nombre que daban a un alienígena hipotético basado en estas reglas y que les presento aquí. Aclaro que su aspecto es puramente imaginario; lo esencial del octomita es el esquema basado en niveles crecientes de organización.

El octomita, un alienígena hipotético. Imagen de Levin et al., International Journal of Astrobiology 2017.

El octomita, un alienígena hipotético. Imagen de Levin et al., International Journal of Astrobiology 2017.

Si el estudio no llegaba más allá es porque un trabajo científico (también los teóricos) solo debe llegar hasta donde le deja el suelo bajo sus pies. Mirado de este modo, el hecho de que la argumentación teórica permita sostener estos dos requisitos de la vida extraterrestre cierra bastante el campo de lo que podríamos encontrarnos por ahí fuera, si es que existe algo y si es que algún día lo encontramos.

Como ya expliqué en dos entregas anteriores (aquí y aquí), no todo vale en biología, ni aquí ni en GN-z11 (la galaxia más lejana conocida, a 13.400 millones de años luz). Por tanto, no todo vale a la hora de imaginar la vida extraterrestre. Estudios como el de Oxford, que aplican las reglas de la biología, restringen el repertorio de opciones posibles para cualquier tipo de vida que pueda considerarse como tal, con independencia de cómo sea su planeta natal.

Es más: como les conté anteriormente, y por mucho que las ideas del biólogo y divulgador Stephen Jay Gould sobre la imprevisibilidad absoluta de la evolución hayan calado no solo en la comunidad científica, sino incluso entre el público interesado en estas cosas, los experimentos tienden a quitarle al menos una parte de razón: si nos fiamos de los datos reales que tenemos hasta hoy (y no podemos fiarnos de otra cosa), parece que la evolución tiene algo de margen para lo diferente, pero también algo de determinismo, convergencia y cánones comunes; lo que el biólogo Víctor Soria Carrasco llamaba “un tema central”.

Vida en la atmósfera de un planeta similar a Júpiter, según Carl Sagan. Imagen de la serie Cosmos (1980) / PBS.

Vida en la atmósfera de un planeta similar a Júpiter, según Carl Sagan. Imagen de la serie Cosmos (1980) / PBS.

En conclusión, la idea que por ahí circula sobre vida alienígena tan diferente de nosotros que tal vez ni siquiera la veríamos delante de nuestras narices es un buen argumento para el cine, los periódicos y las charlas de café, pero no se compadece con las reglas de la biología.

Así, recogiendo trocitos como el aportado por los investigadores de Oxford y otros, y añadiendo unas gotas de biología esencial, podemos armar una lista con unos cuantos requisitos que debería cumplir todo alienígena, por muy diferente que sea de la vida terrícola; también los de ficción, si pretenden ser plausibles. Por supuesto que esta es una lista en construcción y provisional, que trataré de ir actualizando-completando-rectificando con los datos que nos traigan los nuevos estudios.

  1. Todo ser vivo debe nacer, crecer, (tener capacidad de) reproducirse y morir. De acuerdo, esto es ponerlo muy fácil; pero es la definición más básica y clásica de la vida, aunque hoy se prefiere introducir criterios metabólicos y evolutivos. Qué menos que empezar por esto, pero también tiene su miga: algo tan aparentemente sencillo es uno de los motivos (el otro es el metabolismo, a lo que iré más abajo) por los cuales se discute si los virus son seres vivos. No solamente es que sean parásitos dependientes de piezas ajenas; muchos otros seres vivos también lo son. Es que los virus no crecen.
  2. Todo ser vivo está constituido por materia. Sí, también es fácil llegar a sacar un 2 en esta prueba. Pero ¿en cuántas películas los alienígenas se nos presentan como seres de energía pura que pueden adoptar cualquier forma que se les antoje? Si algo no está formado por materia no es un ser vivo, sino un poltergeist, por muy alienígena que sea. El payaso de It no es un ser vivo.
  3. Todo ser vivo debe estar formado por unidades elementales repetidas en varios niveles jerárquicos, la más básica de las cuales es un gen. La biología se basa en un principio de construcción según el cual hay una coherencia entre las partes pequeñas y el conjunto, o entre genes, células, órganos, individuos y sociedades. Por ejemplo, con células humanas no se puede construir un perro, ni con células alienígenas se puede construir un humano. Esto implica la existencia de genes en sentido amplio; no necesariamente como los terrestres, pero sí como unidades materiales mínimas que llevan la información esencial para construir el siguiente nivel jerárquico.
  4. Todo ser vivo debe respetar las leyes universales de la física. No es posible violar los principios de conservación de la materia, la energía o la cantidad de movimiento, o las leyes de la termodinámica en general.
  5. Todo ser vivo debe estar sujeto a evolución por selección natural y exhibir un cierto grado de adaptación a su entorno de origen. La evolución funciona a escalas temporales dependientes de los procesos biológicos, y estos a su vez dependen de la velocidad de los ritmos físicos y químicos. La evolución funciona en escalas espaciales que permitan la interacción entre un ser vivo y su entorno.
  6. Todo ser vivo debe estar enclavado en un ecosistema que lo sostenga. Una especie alienígena no puede ser la única forma de vida presente en su planeta, a no ser que sea la primera (esta sería una discusión interesante, pero lo cierto es que la abiogénesis aún es una caja negra para la biología) o la última superviviente, en cuyo caso está abocada a la extinción. Un ser vivo, incluso los quimio o fotosintéticos, es parte de la biomasa, pertenece a un ecosistema que lo alimenta pero también lo limita, actuando como cinta transportadora de la energía a lo largo de la cadena alimentaria.
  7. Todo ser vivo debe mantener poblaciones mínimas viables y conexas. La idea del Arca de Noé no permite la supervivencia de una especie. Debe existir un número suficiente de ejemplares en un mismo entorno físico que asegure un tamaño de diversidad genética capaz de sostener la supervivencia de la especie. Para los científicos esta es una estimación compleja que varía para cada especie y que hoy se calcula con simulaciones matemáticas por ordenador. Pero la naturaleza lo sabe.
  8. Todo ser vivo debe tener un metabolismo y una fisiología intrínsecamente plausibles y coherentes. Por ejemplo, los procesos metabólicos producen energía, y parte de esta energía se traduce en calor. Esto impone ciertas limitaciones de cara a construir un organismo, sin importar cómo sean las condiciones de su planeta de origen. Si un ser vivo es muy grande, también lo será el calor interno generado. Su temperatura de funcionamiento debe mantener el solvente biológico (en nuestro caso, el agua) en un estado que facilite las reacciones químicas y que permita a las biomoléculas conservar su configuración estructural nativa (en nuestro caso, el ADN y las proteínas pierden su estructura a temperaturas demasiado altas). Por tanto, toda forma de vida está limitada por su propio rango de temperaturas. Por otra parte, esta regla impone también la necesidad de un metabolismo, al menos durante alguna fase de la vida. Volvemos a lo mencionado antes sobre los virus: no tienen metabolismo cuando están en forma de virión (estado libre), pero sí cuando se activan en su célula hospedadora, aunque para ello utilicen piezas ajenas (algo que también necesitan otros parásitos). Desde este punto de vista, un virión puede entenderse como una fase de resistencia, como una espora o una semilla, y un virus puede caber en la definición de ser vivo. Incluso en cierto sentido, el hecho de subcontratar el metabolismo puede interpretarse como un refinamiento evolutivo que permite ahorrar energía, al menos si es que los virus se han desarrollado a partir de otros organismos que sí tenían metabolismo propio.
  9. Todo ser vivo debe tener un metabolismo y una fisiología plausibles en las condiciones de su entorno original. Por ejemplo, para que un parásito prospere, incluso aunque sea capaz de parasitar formas de vida como los humanos con las que nunca antes haya tenido contacto (lo cual puede ocurrir), ha tenido que coevolucionar con algún hospedador original en su entorno primitivo.
  10. Todo alienígena que baje a la Tierra y prospere debe tener una biología compatible con las restricciones impuestas por las condiciones terrestres. Por ejemplo, es posible que un ser de cincuenta kilos (medidos en condiciones de gravedad terrestre) pueda flotar sin esfuerzo en la atmósfera densa de su planeta de origen, como podría ocurrir en Venus si estuviera habitado. Pero en la Tierra no puede seguir haciendo lo mismo impunemente.

¿Son plausibles los alienígenas (parecidos a nosotros) de la ciencia ficción? (II)

Un humano es un organismo con forma de tubo (boca y ano), simetría bilateral, un bloque central que contiene los órganos internos flanqueado por pares de extremidades para la movilidad y la interacción, y un control centralizado (el cerebro) situado en un apéndice específico (la cabeza) que contiene además los principales mecanismos sensoriales.

Desde los hombrecillos verdes o grises hasta las variaciones como los xenomorfos de Alien, infinidad de películas nos presentan seres antropomorfos, que comparten con nosotros estos mismos planos generales de construcción. Pero ¿es esto posible? ¿Es plausible que un alienígena se parezca tanto a nosotros?

Alienígenas de 'Encuentros en la tercera fase'. Imagen de Columbia Pictures.

Alienígenas de ‘Encuentros en la tercera fase’. Imagen de Columbia Pictures.

La respuesta corta es que nadie lo sabe, dado que, una vez más, aún no conocemos alienígena. Para la respuesta larga, debemos comenzar respondiendo a otra pregunta: ¿la evolución es determinista o indeterminista? Es decir: a partir de una situación inicial y si jugamos la partida dos veces, en la Tierra y en otro planeta, ¿cuánto se parecerá el resultado final en los dos casos?

A su vez, la respuesta corta a esta pregunta es que nadie lo sabe. Hay quienes intuyen que un alienígena debería parecerse algo a nosotros, porque… ¿no? Y hay quienes intuyen que debería ser completamente distinto, porque… también, ¿no?

Pero la simple intuición no responde a la pregunta de hasta qué punto un experimento evolutivo paralelo encontraría o no algunas de las mismas soluciones como adaptaciones favorables en un medio parecido o diferente del terrestre. Haría falta repetir el experimento completo de la evolución, primero en nuestra propia Tierra, después en otros planetas habitables.

Por desgracia, esto no está a nuestro alcance. Tal vez algún día la Inteligencia Artificial logre refinar una simulación lo bastante completa como para darnos pistas reales, pero son tantas las variables implicadas que no será tarea fácil aproximarse lo suficiente a un escenario comparable a la realidad. Sería la simulación más complicada jamás emprendida.

A pesar de todo, tampoco estamos completamente perdidos. Tenemos teorías razonables, y tenemos también algunos datos experimentales que pueden tirar algún que otro raíl en el camino hacia estas respuestas. A continuación les cuento algunas de estas pistas, pero ya les adelanto que la conclusión nos devuelve a la respuesta corta: en realidad, nadie lo sabe.

E. T. Imagen de Universal Pictures.

E. T. Imagen de Universal Pictures.

Comencemos por la teoría. En los años 70 Stephen Jay Gould, una de las mentes más preclaras de la biología evolutiva del siglo XX, defendió la hipótesis de que la evolución no es determinista sino imprevisible, y que si pudiéramos rebobinar la cinta del planeta Tierra unos cuantos millones de años y volver a ejecutar el programa, los humanos ni siquiera estaríamos aquí.

Hay que tener en cuenta que toda la vida en la Tierra (al menos la que conocemos hasta ahora) procede de un antepasado común, el cual ya había adoptado ciertas opciones evolutivas que todos hemos heredado. Al ir diversificándose en ramas separadas, estas a su vez también fueron optando por determinadas soluciones que restringían el repertorio de configuraciones de sus descendientes. Pero según la hipótesis de Gould, que siguen muchos otros biólogos evolutivos, si pudiéramos regresar al comienzo quizá la segunda vez se elegirían soluciones diferentes y todos tendríamos, por ejemplo, simetría radial, como los equinodermos (estrellas y erizos de mar).

La teoría de Gould tendería a rechazar la posibilidad de alienígenas antropomorfos. Pero no todos los expertos están de acuerdo con él. Otros biólogos evolutivos, como Richard Dawkins o Simon Conway Morris, piensan que la evolución es al menos en parte un proceso determinista. Es decir, que desde la misma situación de partida, hay sucesos que tienden a repetirse.

Para comprender lo complicado que resulta teorizar sobre esto, tengamos en cuenta que incluso desde enfoques opuestos puede llegarse a conclusiones parecidas, pero también desde un mismo enfoque puede llegarse a conclusiones opuestas. Dos ejemplos: Conway Morris es creyente, Dawkins es ateo, y ambos son deterministas. Conway Morris es determinista, Gould lo contrario, y ambos se basan en las mismas pruebas, el esquisto de Burgess, un conjunto de fósiles hallado en Canadá a comienzos del siglo XX.

Un fósil de Anomalocaris del esquisto de Burgess. Imagen de Wikipedia / Keith Schengili-Roberts.

Un fósil de Anomalocaris del esquisto de Burgess. Imagen de Wikipedia / Keith Schengili-Roberts.

La razón principal que suelen esgrimir los deterministas es la evolución convergente. A lo largo de la historia de la vida en la Tierra, ha habido innumerables ocasiones en que la evolución ha encontrado las mismas soluciones en ramas independientes del árbol genealógico de los seres vivos.

Por ejemplo, los murciélagos y las aves tienen alas, pero las desarrollaron de forma independiente. Los ojos de los pulpos son pasmosamente parecidos a los nuestros, pero es evidente que ellos y nosotros no procedemos de un antepasado común con ojos. Este año un estudio descubrió que el apéndice, ese colgajo intestinal al que tradicionalmente no se le suponía otra función que llevarnos a Urgencias, ha surgido en la evolución más de 30 veces de forma independiente en unos animales y otros. ¡Más de 30 veces! Esto no solamente nos dice que muy probablemente el apéndice sirve para algo más, sino que es otro magnífico ejemplo de evolución convergente. El propio Conway Morris ha documentado muchos ejemplos en los fósiles de Burgess.

Así que la teoría no nos ofrece una respuesta clara. Pasemos ahora a la práctica: ¿qué nos dicen los experimentos? Obviamente, no podemos regresar al pasado, volver a jugar la partida de la evolución desde el principio y ver qué ocurre. Pero sí podemos hacer lo segundo mejor: ver qué hace la naturaleza en situaciones de evolución a corto plazo, y diseñar experimentos en condiciones controladas donde puedan estudiarse estos trocitos parciales de evolución.

Sobre lo primero, se han estudiado casos en animales como peces y lagartos. Respecto a lo segundo, hace tres años y medio les conté aquí un precioso ejemplo, un experimento con insectos palo llevado a cabo por el español Víctor Soria-Carrasco en la Universidad de Sheffield (Reino Unido). Los investigadores emplearon un tipo de insecto palo californiano que prácticamente nace, vive y muere en la misma planta, y del que existen dos variedades diferentes adaptadas al camuflaje en dos tipos de arbustos. Intercambiando los bichos de planta en unos lugares y otros, podían comparar los cambios genéticos que se producían entre dos de estos experimentos evolutivos independientes.

El resultado fue que en la evolución de estos bichos palo había un 80% de cambios diferentes y un 20% de cambios comunes. O sea, que a pesar de que mayoritariamente la evolución seguía caminos distintos en dos partidas diferentes, había un 20% de evolución convergente, o un 20% de determinismo evolutivo. Por supuesto que entre este caso y la evolución de la vida en otro planeta media un abismo, pero esta era la especulación de Soria-Carrasco sobre si los alienígenas podrían seguir caminos evolutivos parecidos a los nuestros: “muchas cosas serían diferentes, pero probablemente seríamos capaces de distinguir un tema central que siempre sería el mismo”.

El experimento más extenso de la historia de la ciencia para entender cómo funciona la evolución se desarrolla desde hace 30 años en la Universidad de Harvard. En febrero de 1988, el biólogo evolutivo Richard Lenski sembró bacterias Escherichia coli en 12 frascos con medio líquido de cultivo, algo habitual en muchos laboratorios de biología. Pero Lenski dejó a las bacterias la glucosa justa solo para sobrevivir durante la noche hasta la mañana siguiente, y por la tarde recogió a las supervivientes para trasvasarlas a un nuevo cultivo. Así, día tras día, durante más de 29 años.

Con la limitación de alimento, Lenski introducía un factor de presión para dirigir la evolución de las bacterias; tal como hace la selección natural, solo las bacterias mejor adaptadas al medio sobrevivirían. Cada 75 días, lo que equivale a unas 500 generaciones de E. coli, los investigadores congelan una parte de los cultivos para capturar una foto del proceso evolutivo. Analizando los genes de las bacterias en estos distintos momentos del proceso, pueden observar cómo están evolucionando, y comparar las 12 líneas entre sí para analizar si siguen los mismos caminos evolutivos o no. En total, en los casi 30 años del experimento se han sucedido más de 68.000 generaciones de bacterias, lo que equivale a más de un millón de años de evolución humana.

Y después de todo esto, el resultado es…

Durante los primeros miles de generaciones, los investigadores observaron que las bacterias seguían caminos al menos no totalmente separados. Los diferentes cultivos tendían a mostrar mutaciones diferentes, pero en los mismos genes. E incluso con las diferencias, todas mostraban un patrón común: las células se hacían más grandes, crecían más deprisa y aprovechaban mejor la glucosa. Esto parece un claro caso de evolución convergente.

Pero ¡oh, sorpresa! De repente, transcurridas unas 31.000 generaciones, una de las 12 líneas empezó a dejar de lado la glucosa y a comer citrato, otra fuente de carbono presente en el medio. Solo una de las 12 líneas. Dado que una característica de E. coli es la incapacidad de metabolizar el citrato, esta línea está evolucionando por el camino de convertirse en una nueva especie diferente. Y esto parece un claro caso de evolución no determinista.

Con todo esto, ¿qué opinan Lenski y sus colaboradores sobre el grado de determinismo de la evolución? Según su último estudio, esto: “nuestros resultados muestran que la adaptación a largo plazo a un ambiente constante puede ser un proceso más complejo y dinámico de lo que a menudo se asume”.

Sí, sí, vuelvan a leer la frase, y la segunda vez les dirá lo mismo: nada. Una paráfrasis para decir que, en realidad, no se sabe. Ya les advertí de que aún no tenemos una respuesta definitiva sobre si Gould o Conway Morris, y por tanto sobre si sería posible que en otro planeta evolucionara una especie básicamente similar a la nuestra. Pero quiero dejarles otro ejemplo de un experimento natural que nos ha permitido observar cómo funciona la evolución. Ese experimento se llama Australia.

La idea, de la que también les hablé aquí, es del científico planetario Charley Lineweaver. Es lo que él llama “la falacia del planeta de los simios”, o la idea popular de que, como decía Carl Sagan, en otros planetas habitados debe llegarse a un equivalente funcional del ser humano. Lineweaver pone como ejemplo su propio país, una gran isla separada del resto de los continentes desde hace unos 100 millones de años.

De este modo, Australia ha sido un experimento natural de evolución independiente durante millones de años. Y como decía Lineweaver, ¿qué es lo que ha surgido allí? Canguros. La aparición de los humanos en el gran bloque Eurasiafricano no ha interferido absolutamente de ninguna manera en la evolución australiana. Y sin embargo, allí la evolución no ha producido nada similar a los seres humanos. Si Australia fuera la única tierra seca de todo el planeta, no estaríamos aquí. Y por tanto, no hay evolución convergente; si los canguros tienen brazos y piernas como nosotros, es solo porque el antepasado común que compartimos con ellos ya los tenía.

Por todo lo anterior, los científicos no suelen arriesgarse a inventar aliens, a riesgo de ver su credibilidad dañada. Hay excepciones: en los años 70, Carl Sagan propuso un ecosistema modelo para un planeta joviano, un gigante gaseoso como Júpiter. Sagan imaginó varios linajes de seres voladores que controlarían su flotación a través de los distintos niveles de densidad de la atmósfera, formando una cadena alimentaria cuya base estaría sustentada por una especie de plancton atmosférico que se alimentaría de los nutrientes moleculares presentes en el gas. Así lo contaba Sagan en su mítica serie Cosmos:

Como resumen de todo lo contado aquí, mejor quédense con esta cita del gran maestro Sagan:

La biología es más parecida a la historia que a la física. Hay que conocer el pasado para comprender el presente. No hay predicciones en la biología, igual que no hay predicciones en la historia. La razón es la misma: ambas materias son todavía demasiado complicadas para nosotros. Aunque podemos comprendernos mejor comprendiendo otros casos.

A pesar de todo, si es extremadamente difícil aventurar cómo podría ser un alienígena, en cambio es más posible predecir cómo no podría ser. Como les contaba en la entrega anterior, no todo vale, y con esto podríamos arriesgarnos a construir una lista de reglas que debería cumplir un alienígena de ficción para ser mínimamente plausible. Vuelvan otro día y se lo cuento.

¿Son plausibles los alienígenas de la ciencia ficción? (I)

En una ocasión ya conté aquí que ocurre algo muy curioso con la relación entre cine y ciencia. Mientras que múltiples expertos en mútiples webs suelen llevar las películas de ciencia ficción a la rueda de interrogatorios para destripar su plausibilidad científica y sacar a relucir sus errores, tanto los expertos como los errores suelen ceñirse a la física. En cambio, la biología suele olvidarse. Al fin y al cabo, como aún no tenemos la menor idea de cómo son los alienígenas –si es que existen–, todo vale. ¿No?

Pues no, no todo vale. De hecho, probablemente no valgan más cosas de las que valen. La biología tiene sus propias reglas. En último término, la biología es una aplicación de la física y la química, y aunque el mayor número de variables aumenta la cota de incertidumbre, está claro que hay cosas que no pueden ser de ninguna manera.

Por ejemplo, las críticas científicas de la saga Alien analizan los bocados relativos a las naves, el espacio, la presión, la gravedad y cosas por el estilo. Pero nunca he leído ninguna (aunque probablemente exista sin que yo la haya descubierto) que abra el siguiente y evidente melón: es enormemente cuestionable que un organismo pueda multiplicar su tamaño y peso de forma desmedida en horas o días; pero desde luego, es absolutamente imposible que lo haga sin alimentarse de la materia necesaria para ganar ese aumento de peso y volumen.

Alien: Covenant. Imagen de 20th Century Fox.

Alien: Covenant. Imagen de 20th Century Fox.

La materia no se crea ni se destruye; para que un ser vivo multiplique su peso por diez, necesita incorporar una cantidad de materia aún mayor, teniendo en cuenta que una gran parte de su alimento se excretará en forma de desechos o para mantener funciones básicas como la refrigeración (sudor). Conclusión: a no ser que se inflen simplemente con aire, ni un pulpo, ni un percebe ni un xenomorfo pueden crecer de la nada en unas horitas.

Plantear un alienígena plausible no es tarea fácil, dado que en efecto aún no conocemos ninguno. Pero son tantos los frentes a cubrir, el biofísico, el bioquímico, el bioenergético, el fisiológico, el ecológico o el evolutivo, que casi todo alienígena inventado corre el riesgo de hacer aguas por un lado u otro, incluso en aspectos tan aparentemente nimios como el que ya conté aquí a propósito de Chewbacca: dado que el folículo piloso y la glándula sudorípara son especializaciones de la piel mutuamente excluyentes, los animales peludos (salvo los caballos, un caso peculiar que también comenté) no sudan lo suficiente como para regular su temperatura, por lo que los wookies deberían pasarse toda la saga de Star Wars jadeando como los perros.

Ya, ya, es cierto que George Lucas nunca ha pretendido que Star Wars sea científicamente creíble. (Pero esperen: ¿no era este el mismo tipo que se inventó aquello de los midiclorianos en analogía con la teoría de la endosimbiosis para convertir la Fuerza en, según sus propias palabras, “una metáfora de una relación simbiótica que permite la existencia de vida”?)

Es más; incluso solucionar el problema del frío cubriendo a los alienígenas de una gruesa capa de pelo es cuando menos infundado. Hoy parece suficientemente demostrado que el pelo de los mamíferos y las plumas de las aves proceden evolutivamente de las escamas de los reptiles, y que los genes específicos para fabricar pelo ya existían en estos últimos antes de que engendraran las ramas que darían lugar a los otros dos grupos.

Por lo tanto, los mamíferos no inventaron realmente el material básico del pelo, sino que se limitaron a modificar algo que habían heredado de los reptiles para acomodarlo a sus necesidades (por decirlo de algún modo; entiéndase que la evolución no tiene propósitos ni intenciones); entre ellas, la protección térmica. Esto de aprovechar un invento de la evolución para otro fin diferente al original se conoce en biología como exaptación.

Pero los reptiles en los que surgió el material necesario para crear el pelo vivían en climas cálidos, por lo que originalmente este mecanismo no era un invento contra el frío. En resumen, es probable que una especie alienígena que ha evolucionado en un planeta helado no lleve pelo para abrigarse, sino algún otro tipo de ingenio evolutivo más específicamente adaptado a esa misión.

Recordando los alienígenas de casi cualquier película que nos venga a la mente, es inmediato que suelen fallar en un aspecto u otro, o en todos. Por ejemplo, todo ser complejo tiene una forma definida, ya que es una regla básica de la biología que la complejidad requiere un alto grado de especialización estructural. Así que no es posible cambiar de forma alegremente cada minuto o tomar el aspecto de otros organismos, salvo que seas algo tan poco inteligente como un moho mucilaginoso. Adiós a La cosa y a las múltiples versiones de La invasión de los ultracuerpos.

La cosa (versión de 1982). Imagen de Universal Pictures.

La cosa (versión de 1982). Imagen de Universal Pictures.

Tampoco existen los seres vivos aislados, ni como especies ni como individuos. En su día, el astrofísico Carl Sagan hizo un cálculo de cuántos monstruos del lago Ness podrían existir si existía alguno, aunque aplicó exclusivamente criterios de física de colisiones. Pero además todo organismo necesita lo que en biología se conoce como Población Mínima Viable, un número de ejemplares que permita la supervivencia de la especie con una diversidad genética suficiente como para perpetuarse sin acabar degenerando hasta la extinción. Y toda especie requiere un aporte de biomasa, así que un alienígena viable depende de un ecosistema que le sostiene.

Otro error frecuente es pasear a los alienígenas por el medio terrestre como si estuvieran en su casa. No se trata solo de la respiración de nuestra atmósfera, sino que la Tierra impone una multitud de condiciones ambientales que podrían resultar hostiles y hasta invivibles para una especie surgida en otro planeta diferente, desde nuestra gravedad hasta nuestros niveles de irradiación, o incluso las amenazas biológicas que nosotros hemos aprendido durante millones de años a mantener a raya.

Un ejemplo muy bien concebido de esto último eran los marcianos de H. G. Wells en La guerra de los mundos, que sucumbían a las bacterias terrestres al carecer de nuestra inmunidad. Wells era biólogo, así que ya hace un siglo predecía que el mayor riesgo para un marciano durante una invasión terrestre no serían los humanos, sino las infecciones.

La guerra de los mundos (versión de 2005). Imagen de Paramount Pictures / DreamWorks Pictures.

La guerra de los mundos (versión de 2005). Imagen de Paramount Pictures / DreamWorks Pictures.

En cuanto a las presuntas bioquímicas alternativas propuestas a menudo en la ciencia ficción, a veces son pura fantasía sin el menor sustento científico. El ejemplo más clásico es el silicio como alternativa al carbono. Una regla básica de la vida es que empleamos materia para alimentar nuestros procesos vitales gracias a la energía almacenada en los enlaces químicos de esas sustancias. Como resultado del proceso, generamos compuestos degradados con un nivel energético menor; es una simple resta. Cuando los organismos terrestres consumimos compuestos orgánicos para alimentarnos, producimos agua y dióxido de carbono (CO2) como productos finales. Son los residuos oxidados de la actividad biológica.

El CO2 es un gas a temperatura ambiente, motivo por el cual lo evacuamos fácilmente. Pero aunque el silicio ofrezca una estructura atómica equiparable a la del carbono en sus posibilidades de formar enlaces, algunos de sus compuestos tienen propiedades químicas notablemente diferentes.

Por ejemplo, el dióxido de silicio (SiO2) es sólido; para entendernos, básicamente es arena. Su temperatura de fusión es de 1.713 ºC, y la de ebullición es de 2.950 ºC; nos pongamos como nos pongamos, temperaturas incompatibles con cualquier forma de vida. En la Tierra, muchos organismos emplean SiO2 precisamente por su dureza, como material de construcción o defensa contra depredadores. Pero una situación muy diferente sería producirlo como residuo metabólico, ya que sería muy difícil eliminarlo de forma constante y en grandes cantidades. ¿Imaginan cómo podríamos estar continuamente expulsando arena de nuestros pulmones?

Un alienígena basado en el silicio en el episodio 'The Devil in the Dark' de la serie 'Star Trek' (1967). Imagen de CBS Television Distribution.

Un alienígena basado en el silicio en el episodio ‘The Devil in the Dark’ de la serie ‘Star Trek’ (1967). Imagen de CBS Television Distribution.

En la próxima entrega seguiremos hablando de esta cuestión, entrando en otro de los clásicos de la ciencia ficción: los alienígenas con forma más o menos humana. ¿Es plausible que en un planeta muy diferente del nuestro evolucionen seres antropomorfos?

¿Nos extinguiremos antes de encontrar vida alienígena?

Decíamos ayer que los tardígrados, esos minúsculos animalitos de ocho patas que viven en el musgo o el césped, pero también en la Antártida, los volcanes y las fosas oceánicas, son los más firmes candidatos para sobrevivir a cualquier cataclismo global y acompañar a la Tierra hasta su destrucción final, esperemos que dentro de miles de millones de años.

Pero la historia de los tardígrados tiene además otro enfoque, no en lo que se refiere a la vida en la Tierra, sino fuera de ella. Si nuestro planeta ha llegado a criar unos seres tan asombrosamente resistentes a cualquier extinción, ¿qué hay de otros lugares del universo? Hoy nadie alberga grandes esperanzas de encontrar algún microbio vivo en Marte; menos aún después de los recientes experimentos que han revelado las condiciones marcianas como más letales de lo esperado para una bacteria especialmente dura como Bacillus subtilis.

Imagen de NASA.

Imagen de NASA.

Pero si el planeta rojo y el planeta azul fueron en sus comienzos mucho más parecidos que hoy; y si, como defienden los biooptimistas (entre los que no me cuento, como ya he explicado aquí), la vida podría ser un fenómeno frecuente en el universo… No olvidemos que Marte es mucho más pequeño que la Tierra y por tanto pudo enfriarse lo suficiente para alcanzar condiciones habitables antes que nuestro planeta. Los tardígrados existen aquí desde el Cámbrico, hace 530 millones de años, pero tal vez en Marte un organismo de este tipo pudo aparecer en una época más temprana, antes de que aquel planeta comenzara a convertirse en un mundo inhóspito.

De hecho, los autores del estudio que conté ayer sobre los cataclismos cósmicos y los tardígrados sugieren que criaturas como estas podrían ser vestigios perdurables de la presencia de vida en otros planetas; incluso aquí, en nuestro Sistema Solar, en mundos con océanos bajo el hielo como las lunas Europa y Encélado.

Quizá también en Marte, bajo la superficie. El subsuelo marciano es todo un misterio, pero por desgracia todo indica que continuará siéndolo, tras el reconocimiento de la NASA (nada sorprendente, por otra parte) de que no tiene dinero para enviar astronautas a Marte. Así que la perspectiva de poner allí un equipo de ¿astroespeleólogos? ¿espeleoastronautas? hoy solo existe en la ciencia ficción y, si acaso, en la imaginación de Elon Musk.

Pero claro, que si existen versiones alienígenas de los tardígrados en otros sistemas estelares, es algo que probablemente jamás lleguemos a saber. Y las esperanzas de que haya algo más evolucionado son solo conjeturas. Últimamente parece haber muchos científicos que se apuntan a la hipótesis del Gran Filtro, la idea de que algo siempre se tuerce antes de que una civilización llegue a estar tecnológicamente preparada para explorar el cosmos.

En nuestro caso, sostienen algunos, el Gran Filtro puede ser el cambio climático, el comienzo del fin de la habitabilidad terrestre causado por la destrucción de la estabilidad del ciclo de carbonatos-silicatos. Una vez que este equilibrio se rompe, sostienen algunos expertos, la Tierra puede entrar en una espiral catastrófica de efecto invernadero como la que sufrió Venus por causas naturales.

No sabemos cuánto tiempo le queda a la humanidad. Nuestra especie tiene 300.000 años de antigüedad, pero para ponernos al borde de nuestra autodestrucción han bastado apenas tres siglos, si consideramos la Revolución Industrial como el momento en que comenzamos a emprender un camino sin retorno. Hoy sería muy optimista pensar que vayamos a seguir aquí dentro de otros 300.000 años. Y aunque fuera así, 600.000 años son un instante en la historia del universo. Algunos proponentes del Gran Filtro piensan que nunca vamos a contactar con otras civilizaciones porque sencillamente es casi imposible que coincidamos en el tiempo; nos abocamos a nuestra propia extinción demasiado aprisa, y no hay motivos evidentes para pensar que otros seres tecnológicos sean más sensatos que nosotros.

Pese a todo, no vamos a darnos por vencidos. El pasado miércoles 12 de julio, el blog del Laboratorio de Habitabilidad Planetaria de la Universidad de Puerto Rico en Arecibo contó que el inmenso radiotelescopio puertorriqueño detectó el 12 de mayo una extraña señal procedente de la estrella Ross 128, a unos 11 años luz de nosotros. “En caso de que os estéis preguntando, la hipótesis recurrente de los alienígenas está al final de muchas otras explicaciones mejores”, escribían los investigadores. Por ejemplo, no es descartable que en realidad la señal no proceda de la estrella, sino de algo en la misma línea de visión pero mucho más cercano, tal vez un satélite terrestre.

Ayer mismo los investigadores han publicado una actualización en la que cuentan que han vuelto a observar la estrella este pasado fin de semana, y que a ellos se han unido los radiotelescopios de los proyectos SETI (Búsqueda de Inteligencia Extraterrestre) de la Universidad de Berkeley y del Instituto SETI, ambos en EEUU. “Necesitamos tener todos los datos de los otro observatorios para ponerlo todo junto y sacar una conclusión, probablemente al final de esta semana”, han escrito. Esperaremos hasta entonces, pero sin contener la respiración.

Biología sintética y los ingenieros de Alien: ¿vuelven los ‘carros de los dioses’?

Aún no he tenido ocasión de ver el nuevo fascículo de la saga Alien. Los que aún tenemos polluelos estamos un poco limitados en nuestras salidas, así que más allá de lo puramente cinematográfico, todavía ignoro qué nuevos hilos aporta Alien: Covenant sobre la trama básica de la serie que comenzó a desvelarse en Prometheus, y que planteaba el argumento de una civilización alienígena autora de nuestra existencia, a la que se daba el nombre de “los ingenieros”.

Uno de los ingenieros de 'Prometheus'. Imagen de 20th Century Fox.

Uno de los ingenieros de ‘Prometheus’. Imagen de 20th Century Fox.

La idea de que podríamos ser las criaturas de algo superior es posiblemente tan antigua como el pensamiento humano, algo natural en una especie capaz de intentar comprenderse a sí misma. Para algunos académicos, es un ejemplo de lo que el biólogo evolutivo Stephen Jay Gould llamó exaptación, una característica que surge como subproducto de una adaptación favorable: nuestra capacidad cognitiva nos resulta útil para la supervivencia, pero también nos mete en camisas de once varas a la hora de tratar de explicar la naturaleza, incluido nuestro propio origen.

Así, para algunos expertos, ideas como Dios o los llamados antiguos astronautas tienen orígenes psicológicamente parecidos. Hay quienes en la misma línea añaden otros fenómenos, como las teorías de la conspiración o lo que se conoce entre sus adeptos como el Nuevo Orden Mundial: en todos los casos se supone la existencia de una inteligencia oculta que es responsable de las cosas que ocurren, las cuales ocurren con un propósito diseñado por esa inteligencia oculta.

Es curioso, porque la idea ha ido tomando diversas formas en función del estado del conocimiento humano en cada época y de lo que se denomina el Zeitgeist, el signo de los tiempos, o lo que la gente piensa en cada momento histórico. En tiempos antiguos era lo sobrenatural: los dioses o el Dios; más modernamente la ciencia introdujo el positivismo natural; y en el siglo XX hubo quienes trataron de crear una narrativa continua entre ambas formas de pensamiento: los antiguos astronautas, popularizados en los años 70 por autores como el suizo Erich von Däniken y sus “carros de los dioses”, que para este autor y otros eran un fenómeno natural –alienígenas– interpretado por sus presuntos testigos como uno sobrenatural –dioses–.

Hay quienes han situado el origen de las ideas de von Däniken en fuentes muy dispares, desde la mitología de Cthulhu de H. P. Lovecraft y su escalofriante novela En las montañas de la locura (por cierto, mitos que el escritor inventó como simple ficción), hasta las especulaciones del mismísimo Carl Sagan sobre antiguos contactos alienígenas. También se acusó al autor suizo de haber plagiado las ideas de otros.

Pero naturalmente, la hipótesis de von Däniken es pseudociencia, no corroborable ni refutable por métodos científicos, y que por tanto puede perpetuarse en la mente de quienes creen en ello sin tener que rendirse jamás a ninguna evidencia contraria. Lo cual, entre otras cosas y unido a lo provocador de la idea, mantuvo un rentable nicho de mercado para su autor, con independencia de que él realmente creyera en ello. Otros también han encontrado su filón en argumentos similares, como el español J. J. Benítez.

Paralelamente, dentro del ámbito de la ciencia hay también una larga tradición en la propuesta de que la vida pudo llegar a la Tierra desde el espacio; se conoce como panspermia. De hecho, suele atribuirse al filósofo griego Anaxágoras la primera mención de este término, al que en el siglo XIX se le dio una definición más científica como la siembra de vida a través del universo mediante microbios presentes en cuerpos viajeros; por ejemplo, asteroides y cometas.

La panspermia ha tenido sus defensores más significados en dos astrónomos, el británico Fred Hoyle y su alumno, el ceilanés Chandra Wickramasinghe. El primero, ya fallecido, aportó valiosos hallazgos sobre los procesos físico-químicos en las estrellas, además de acuñar el término Big Bang, aunque fuera con una intención irónica hacia una teoría en la que no creía. Pero tanto Hoyle como Wickramasinghe se han distinguido por sus propuestas estrambóticas y contrarias al conocimiento científico, como el rechazo a la evolución biológica o la afirmación de que la llamada gripe española de 1918 y otras graves pandemias llegaron a la Tierra desde el espacio. Hoyle llegó a decir que la posibilidad de que surja una célula a partir de sus componentes básicos es como si un tornado barre una chatarrería y ensambla un Boeing 747.

Entre la comunidad científica, la panspermia como la definieron Hoyle y Wickramasinghe provoca ceños fruncidos, cuando no reacciones más airadas. Lo cierto es que no existe ningún indicio para pensar que un microbio pueda sobrevivir a un largo viaje espacial en una roca, ni siquiera en estados de latencia como las esporas. Por el contrario, en los últimos años se han encontrado pruebas de que ciertas moléculas orgánicas propias de la vida sí pueden hacer tales viajes, una versión más débil de la panspermia que sí cuenta con el apoyo de algunos científicos. Y que no solo es diferente, sino casi opuesta a lo defendido por Hoyle y Wickramasinghe, ya que para estos no puede surgir la vida a partir de componentes simples.

Hay una tercera modalidad de panspermia aún más arriesgada, que es la dirigida: la idea de que la vida en la Tierra ha sido deliberadamente sembrada. Así volvemos a los antiguos astronautas de von Däniken o los ingenieros de Prometheus. Lo curioso es que esta idea también pseudocientífica ha obtenido casi más interés por parte de algunos científicos que la panspermia de Hoyle y Wickramasinghe. Uno de sus proponentes más notables fue Francis Crick, el codescubridor de la doble hélice de ADN; aunque en su descargo debe aclararse que Crick publicó su hipótesis en 1973, antes de saberse que el ARN es capaz de replicarse por sí mismo sin la intervención de otras moléculas.

Ya he mencionado arriba que Sagan, sin proponérselo, inspiró a autores como von Däniken al especular sobre posibles antiguas visitas alienígenas a la Tierra. El astrofísico y divulgador fue devastadoramente crítico con las ideas del suizo, y sobre la hipótesis de Crick escribió: “aunque no sabemos de nada que rigurosamente excluya la idea de la panspermia dirigida, de igual modo no hay nada que la apoye fuertemente”. A pesar de lo que circula por internet, no hay ninguna prueba de que Sagan creyera en teorías de antiguos astronautas, y en cambio sí hay pruebas de lo contrario.

Lo más llamativo de todo esto es que, según conté ayer, hoy podemos encontrar científicos reputados como Adam Steltzner, ingeniero jefe del rover marciano Curiosity, reflexionando públicamente y sin rubor sobre ideas que no son otra cosa que panspermia dirigida, antiguos astronautas e ingenieros. Por supuesto que Steltzner no estaba sentando cátedra cuando lo dijo, pero tampoco era una charla de café, sino una conferencia anual en Washington dedicada a explorar las fronteras de la ciencia. Y Steltzner es un ejemplo, pero no el único. Los biólogos sintéticos trabajan bajo la premisa de que esta tecnología puede avanzar espectacularmente en la recreación de múltiples procesos naturales de la vida. Y como también conté ayer, algunos no son contrarios a la idea de que estos avances, tal vez conseguidos ya por civilizaciones más avanzadas, puedan propagarse a través del universo. Dos y dos son cuatro.

Cuando Elon Musk, el magnate de SpaceX que quiere llevarnos a Marte, afirma que muy probablemente seamos el resultado de una simulación informatizada de nuestros futuros descendientes, en el fondo no es más que una nueva versión digital de la panspermia dirigida. Una diferencia esencial entre gente como von Däniken y gente como Musk es que los segundos se ganan el respeto con sus progresos reales. Y con ello, están extendiendo ideas audaces que están calando entre la comunidad científica, aunque solo sea como ciencia-espectáculo.

No creo que a Ridley Scott, artífice de la saga Alien, le haya pasado por alto el hecho de que con sus ingenieros tal vez haya pinchado en una veta de renovada actualidad. Es difícil determinar cuáles son causas y cuáles efectos. Pero en fin, todo esto está bien en la medida en que favorece la reflexión, la discusión y la creación de historias para que pasemos un buen rato en el cine. Siempre que no olvidemos que a día de hoy no tenemos absolutamente ningún indicio de que realmente haya alguien más en el universo.

Teleinvasión biológica: imprimir seres vivos a distancia en otros mundos

El otro día adelanté que les contaría otra fantasía sobre teleinvasiones, palabra que designa una invasión alienígena a distancia sin que los invasores estén presentes en persona, o en lo que sea, sobre el terreno del planeta invadido.

Como les expliqué, un concepto hoy plausible es el de emplear máquinas teledirigidas; tan plausible que ya se utiliza para nuestras invasiones locales, mediante drones y otros aparatos controlados a distancia. Un paso más allá será recurrir a máquinas inteligentes capaces de tomar sus propias decisiones, no necesariamente más crueles e inhumanas que las de un comandante de carne y hueso, como demuestran las pruebas que es innecesario citar.

Pero imaginen lo siguiente, y explótenlo si les apetece para escribir una historia: la población mundial está siendo exterminada por un extraño y letal patógeno, cuyo análisis revela que no se trata de un microorganismo natural terrestre. Cuando los epidemiólogos rastrean el patrón de propagación en busca del foco inicial, encuentran que no se localiza en una zona densamente poblada, sino muy al contrario, en una región extremadamente remota, desde la cual el patógeno ha podido propagarse por la circulación atmosférica. Cuando una expedición llega al lugar, encuentra un artefacto de procedencia desconocida. Al estudiarlo, los científicos descubren que no es una nave, sino una fábrica automatizada: un sintetizador biológico que ha creado el agente invasor a partir de materias primas moleculares. Los expedicionarios destruyen el aparato, pero ya es demasiado tarde para la humanidad. Mientras, los seres que enviaron la máquina esperan a que se complete la limpieza de su nuevo hogar.

¿Pura fantasía? Hoy sí. Pero sepan que el primer prototipo de una máquina controlable a distancia y capaz de crear un patógeno a partir de componentes moleculares básicos ya existe. Se llama Convertidor de Digital a Biológico (DBC, en inglés), se ha descrito hace pocas semanas en la revista Nature Biotechnology, y se ha utilizado ya para fabricar un virus de la gripe A H1N1 y un virus que infecta a las bacterias llamado ΦX174.

Este es el aspecto del prototipo del DBC. Imagen de Craig Venter et al. / Nature Biotechnology.

Este es el aspecto del prototipo del DBC. Imagen de Craig Venter et al. / Nature Biotechnology.

El autor de este prodigio es el biólogo, empresario y millonario J. Craig Venter, en su día artífice del Proyecto Genoma Humano en su rama privada, y uno de los líderes mundiales en el campo de la biología sintética. Entre sus últimos logros figura, en marzo de 2016, la creación de una bacteria con el genoma artificial mínimo necesario para la vida, que conté aquí.

Venter lleva unos años trabajando en torno a la idea de lo que él mismo llama “teletransporte biológico”, aunque la denominación puede ser engañosa, dado que lo único que se transporta en este caso es la información. El DBC puede recibir a distancia, por internet o radio, una secuencia genética o la secuencia de aminoácidos de una proteína. Después la máquina imprime la molécula utilizando sus componentes básicos. Tampoco “imprimir” es quizá el término más adecuado, pero Venter lo emplea del mismo modo que hoy se usa para hablar de impresión en 3D. En lugar de cartuchos con tinta de colores, el DBC utiliza depósitos con los ladrillos del ADN: adenina (A), guanina (G), timina (T) y citosina (C).

El DBC es todavía un prototipo, una máquina formada por piezas sueltas. Pero funciona, y ya ha sido capaz de imprimir cadenas de ADN y ARN, proteínas y partículas virales. Y naturalmente, más allá del argumento fantástico de la teleinvasión biológica, todo esto tiene un propósito. Pero sobre el ruido de fondo del rasgado de vestiduras de los anticiencia, déjenme hundir una idea hacia el fondo: el primer propósito de la ciencia, y el único necesario para justificarla, es el conocimiento, porque el conocimiento es cultura.

Pero sí, hay aplicaciones prácticas. La idea que inspira la biología sintética es dominar la creación de la vida para obtener beneficios de una manera mejor que la actual, o que simplemente no son alcanzables de otro modo. Los microorganismos sintéticos pueden descontaminar el medio ambiente, fabricar energía o compuestos de interés, como medicamentos, alimentos, productos industriales o vacunas.

Volviendo al DBC, Venter imagina un futuro en el que estas máquinas estarán repartidas por el mundo para fabricar, por ejemplo, vacunas o fármacos. Ante una futura pandemia, y una vez que se logre obtener un remedio, no será necesario transportarlo a todas las zonas afectadas; bastará con transmitir las instrucciones a los DBC, y estos se encargarán de producirlo in situ.

Hasta aquí, tal vez algún lector biólogo replicará que los sintetizadores de oligonucleótidos existen desde hace décadas, aunque necesiten un operador humano para introducir las órdenes. Noten la diferencia, más allá de que antes se hablaba de “sintetizar” y hoy de “imprimir”: el DBC no solo crea cadenas cortas de ADN o ARN, sino genomas sencillos completos y proteínas, y los ensambla en partículas funcionales, todo ello sin que un humano esté presente. Pero el verdadero salto viene de las posibilidades futuras de esta tecnología cuando se conjuga con otros trabajos previos en biología sintética: concretamente, la posibilidad de imprimir microbios con genomas sintéticos diseñados a voluntad.

Venter es un tipo propenso a mirar de lejos que no se ha resistido a fantasear con la futura evolución de esta tecnología. Y uno de sus posibles usos, dice, sería producir microbios en Marte capaces de modificar el entorno para hacerlo más habitable para el ser humano; es lo que se conoce como terraformación, y es una posibilidad que Venter ya ha discutido con otro genio visionario embarcado en el proyecto de fundar una colonia marciana, Elon Musk.

Aquí entramos de nuevo en el terreno de la ciencia ficción, pero en una que no es teóricamente imposible. Venter quiere llegar a obtener una “célula receptora universal”, una bacteria vacía similar a la que él rellenó con un genoma artificial, pero que sea capaz de aceptar cualquier secuencia genética que se le quiera implantar para hacer lo que uno quiera que haga, o… convertirse en lo que uno quiera que se convierta. Incluso, tal vez, en un humano.

Sí, sí, un humano. Esta es la idea lanzada por George Church y Gary Ruvkun, biólogos sintéticos de la Universidad de Harvard. Church, Ruvkun y otros piensan que es ilusorio e inútil tratar de viajar a otras estrellas, y que en su lugar la expansión de la humanidad por el universo se llevará a cabo enviando bacterias cargadas con el genoma humano y utilizándolas después para imprimir humanos en el destino elegido.

Al fin y al cabo, una célula es lo que dice su genoma; una célula A puede transformarse en otra célula B si se le insertan los genes de la célula B. Y así, célula a celula, creciendo, dividiéndose y diferenciándose, una sola célula acaba creando un organismo humano completo. Esto ocurre en cada gestación. Pero también ha ocurrido a lo largo de nuestra evolución desde que éramos bacterias (o arqueas).

De hecho, si podría ocurrir, ¿cómo podemos saber que no ha ocurrido ya? Esta es la idea de Adam Steltzner, ingeniero jefe del rover marciano Curiosity en la NASA. “Puede que sea así como nosotros llegamos aquí”, dice Steltzner. ¿Y si nosotros, todos, la vida en la Tierra, fuéramos el producto de un DBC que alguien trajo aquí hace miles de millones de años?

Repito: adiós a la señal alienígena, mientras nadie demuestre lo contrario

Esta semana, el microbiólogo ilicitano Francisco Martínez Mojica, de la Universidad de Alicante, ha recibido el prestigioso y sustancioso premio Fundación BBVA Fronteras del Conocimiento por haber descubierto un sistema de defensa de los microbios de las salinas de Santa Pola que, con el correr del tiempo y de las investigaciones, ha permitido crear CRISPR: la mejor herramienta de cortapega genético de la historia de la biología molecular, uno de los mayores hallazgos de este incipiente siglo y una promesa para la corrección de ciertas enfermedades.

¿Qué tendrá esto que ver con el título del artículo? Este Yanes ha perdido el oremus, tal vez estén pensando. Pero aguántenme un momento, que sigo para llegar a donde voy.

Mojica recibió el premio compartido en paridad con Emmanuelle Charpentier y Jennifer Doudna, las científicas que en la práctica convirtieron esta excentricidad de las bacterias (en realidad arqueas, que no son bacterias) en un valioso instrumental quirúrgico molecular. Mojica fue el descubridor; Charpentier y Doudna, las inventoras.

Hasta ahí, todo correcto. Lo interesante viene al analizar el caso más a fondo, una historia que ya expliqué aquí con detalle. Hasta hace año y medio, nadie sabía quién era Francisco Martínez Mojica. CRISPR ya era una revolución entre la comunidad científica y en los (cada vez más escasos) medios populares que se ocupan de los asuntos de ciencia, pero nadie sabía que su descubridor, y quien le puso el nombre de CRISPR, era un español que trabaja en Alicante. De hecho, nadie sabía quién era su descubridor, y a nadie parecía importarle.

Hasta que, en enero de 2016, a uno de los biólogos más influyentes del mundo, Eric Lander, le dio por investigar la historia de CRISPR para publicar un extenso artículo titulado “Los héroes de CRISPR” en la revista científica de biología número uno del mundo, Cell. Uno de aquellos héroes, especialmente reivindicado en el artículo, era Mojica.

De repente, todo cambió: poco después Mojica aparecía hasta en la Wikipedia, y su nombre comenzó a rumorearse para el Nobel. Pero para entonces, el investigador ya se había perdido los tres millones de dólares del Breakthrough Prize, que recibieron solo Charpentier y Doudna, y lo que es aún más grave, el Princesa de Asturias de Investigación 2015, que recibieron solo Charpentier y Doudna. Aún más grave, dado que el presuntamente muy docto jurado de un premio de tal prestigio no se molestó en hacer lo que después hizo Lander, investigar quién lo merecía, y así un premio español dejó fuera a un español tan acreedor de la distinción como las dos premiadas; una mancha para estos premios que difícilmente podrá repararse.

Y así llego a donde quiero llegar: amigos, por desgracia en muchos casos la ciencia está muy alejada de sus ideales de neutralidad y objetividad. Los científicos están contaminados por los mismos sesgos humanos que de repente convierten en mercancía mediática valiosa a algo como el cocinero ese. Mojica vio cómo su trabajo original era rechazado sucesivamente por la revista Nature y por otras publicaciones de primer nivel sin que siquiera fuera enviado a revisión. Solo consiguió por primera vez colar su firma en una de las revistas filiales de Nature en 2011, diluido entre un bosque de Charpentiers, Koonins, Horvaths y van der Oosts. Cuando su nombre fue descubierto por Lander y comenzó a pronunciarse en las mismas frases que la palabra “Nobel” (que, yo confío, llegará), algunos investigadores extranjeros contactados por varios medios arrugaban la nariz: ¿Nobel? ¿Alicante? ¿Dónde está eso? ¿Cerca de Magaluf?

Ahora tenemos otro posible caso. Se llama Antonio Paris y, como ya expliqué ayer, y como Mojica, no da el perfil ideal: es profesor en una universidad estatal de segunda fila, firma sus investigaciones desde su propio “centro virtual” creado por él mismo, The Center for Planetary Science, suele publicar solo y, sobre todo y para colmo, dedica parte de su tiempo a la investigación científica del fenómeno ovni.

El protagonista de la polémica, el astrónomo Antonio Paris. Imagen de The Center for Planetary Science.

El protagonista de la polémica, el astrónomo Antonio Paris. Imagen de The Center for Planetary Science.

Insisto, posible caso. Entiéndanme, ni mucho menos pretendo comparar a Paris con Mojica, pues el primero no reúne, al menos hasta hoy, los méritos del segundo. Pero como excientífico y veterano periodista de ciencia, me ha parecido que las críticas vertidas a Paris y a su trabajo (repito, no solo a su trabajo, sino a él mismo) recuerdan en cierto modo al caso de Mojica por el insoportable tufillo a contaminación por sesgo y falta de neutralidad.

El trabajo publicado recientemente por Paris, que explica la señal Wow! por el paso de dos cometas (a quien esto le suene a griego clásico, puede encontrar más información aquí), ha recibido ciertas críticas por parte de otros científicos. Esto es normal y habitual, e incluso él mismo señalaba las limitaciones de su estudio y los datos que no encajan con su explicación ni con ninguna otra (por ejemplo, a la crítica de que el radiotelescopio captó la señal con uno de sus receptores, pero no con el otro, Paris ha sugerido la posibilidad, obvia, pero de la que nadie más ha hablado ni por supuesto nadie ha rebatido, de que simplemente el telescopio fallara).

Estas críticas han sido resaltadas por varios medios, que han presentado el asunto desde distintos enfoques, desde el más prudente de la duda, hasta el más arriesgado de afirmar que los resultados de Paris han sido rebatidos por otros científicos. Cuando publiqué ayer mi artículo, algún usuario perezoso en Twitter, de los que leen titulares pero no artículos, señalaba esto último.

Pero no, los resultados de Paris no han sido (aún) rebatidos por otros científicos. Tal vez lo sean mañana, dentro de un mes o de un año. Pero para serlo, deberán serlo por la misma vía que los ha admitido: la publicación científica mediante revisión por pares. Hasta entonces, los resultados de Paris deben considerarse provisionalmente válidos, como todo en ciencia.

Aunque también criticables, como todo en ciencia. El problema en este caso, y de ahí el tufillo que las convierte en sospechosas, es el contenido de estas críticas. No soy astrofísico, y por tanto no estoy cualificado para valorar directamente la calidad de los resultados de Paris. Pero cuando se crea en Reddit un hilo en el que se atacan los resultados de alguien comenzando por cuestionar su heterodoxo perfil y sus credenciales profesionales; cuando se critica el estudio porque la revista en la que se ha publicado no es de las favoritas de los astrónomos; cuando las críticas proceden en parte del descubridor original de la señal, quien de forma más o menos soslayada siempre ha creído en su origen alienígena; cuando, y esto sí que es de chiste, se critica a Paris por hacer “ciencia de nota de prensa”, cuando los resultados de Paris no son una nota de prensa sino un estudio científico publicado, y cuando quien profiere tal crítica no ha publicado una refutación científicamente validada y por tanto sí está haciendo ciencia de nota de prensa…

Miren, yo no conozco a Paris más allá de los breves contactos motivados por los reportajes que he escrito sobre su trabajo. No tengo simpatía por él ni lo contrario. Y personalmente, me encantaría que la señal Wow! fuera realmente el primer saludo alienígena de la historia, así que los resultados de Paris no juegan a favor de lo que me gustaría.

Pero seamos neutrales, honestos y objetivos. Los resultados y sus conclusiones merecen el respeto de cualquier otra publicación científica mientras no se demuestren erróneos por la vía oficial, no en prensa, blogs y reddits. Su autor merece el respeto de cualquier otro científico mientras no se demuestre que ha falseado sus datos de mala fe. Estas son las reglas del juego de la ciencia: hoy debemos aceptar que la balanza se inclina oficialmente hacia una explicación natural de la señal. A quien no le guste, que no lo diga, que lo demuestre y lo publique, y aquí lo contaremos con mucho gusto.

Adiós a la única señal de posible origen alienígena

A los que secundamos el I want to believe, pero no nos vale con el “haberlos, haylos”, y no encontramos argumentos biológicos sólidos para defender su existencia, al menos nos quedaba el consuelo de la señal Wow! Por desgracia, ahora, parece que ya no.

Hasta la fecha, no hemos encontrado una sola prueba creíble de la existencia de alienígenas. La fiebre ovni del siglo pasado remitió sin culminar en ninguna revelación extraordinaria, y todos los rastreos de señales de alguien ahí fuera (lo que se conoce como Búsqueda de Inteligencia Extraterrestre, o SETI) han terminado hasta ahora con las manos vacías.

La estupefacción de los astrónomos ante la llamada paradoja de Fermi (según aquella idea atribuida al físico italiano: si hay tantos por ahí, ¿dónde están?) ha dado lugar a hipótesis de lo más variopinto, rayando casi en lo estrafalario; la última que leí hace unos días, de unos investigadores de Oxford y Belgrado, sugiere que los alienígenas han alcanzado tal nivel tecnológico que se han convertido en máquinas, prescindiendo de sus cuerpos biológicos. Y que como los ordenadores funcionan mejor en frío, están dormidos esperando a que el universo se expanda más y baje la temperatura para activarse de nuevo. O dicho de otro modo, que están echando la siesta hasta que pase la ola de calor. Lo cual convierte en algo muy dudoso que los veamos por la Península estos días.

Pero quedaba un indicio sin explicación, un expediente X real. En 1977, un primitivo radiotelescopio en Ohio captó una fuerte señal de radio del cielo que hasta ahora nadie había podido asignar satisfactoriamente a ningún fenómeno natural. Dado que aquel telescopio no podía moverse a izquierda y derecha (técnicamente, ascensión recta), podía captar un punto determinado del firmamento durante 72 segundos, el tiempo que la propia rotación terrestre hacía pasar ese punto por delante de la ventana de observación del telescopio. Y 72 segundos fue lo que duró la señal; al volver a escuchar posteriormente el mismo punto del cielo, sólo se encontró silencio, y jamás ha vuelto a repetirse.

La señal Wow! Imagen de Wikipedia.

La señal Wow! Imagen de Wikipedia.

El astrónomo que se encontraba aquel día dedicando parte de su tiempo libre a aquella especie de actividad extraescolar de buscar alienígenas era Jerry Ehman. Cuando Ehman descubrió la señal marcada en el papel continuo de la impresora, la rodeó con bolígrafo rojo y escribió “Wow!”. Desde entonces, se ha conocido como la señal Wow!.

La señal Wow! ha permanecido inexplicada durante casi 40 años. Hasta que a finales de 2015, un astrónomo del St. Petersburg College de EEUU llamado Antonio Paris publicó un estudio proponiendo que la presunta transmisión alienígena era en realidad el ruido producido por el paso de dos cometas llamados 266P/Christensen y P/2008 Y2 (Gibbs).

Estos cometas no se descubrieron hasta 2006, y por tanto no eran conocidos en 1977, cuando se captó la señal. Pero el cálculo de sus órbitas reveló que sus posiciones en el cielo el día de la señal Wow! eran compatibles con el lugar del que procedía la emisión. Además, la frecuencia de radio de la señal, 1.420 megahercios, coincide también con la del hidrógeno, y precisamente los cometas están rodeados por una gran nube de hidrógeno.

Paris es un tipo heterodoxo. Además de su trabajo como astrónomo y profesor, dedica parte de su tiempo a la investigación científica del fenómeno ovni. En enero de 2016 cubrí su estudio para otro medio. Cuando contacté con otros expertos para que valoraran su hipótesis, me expusieron algunas pegas; sobre todo, que la señal Wow! parecía demasiado potente para proceder de un cometa, y que estos objetos se mueven despacio en el cielo, y que por tanto la emisión debería haberse detectado otra vez cuando el telescopio de Ohio volvió a observar la misma región. Pero cuando le pregunté a Paris qué le parecían estas objeciones, se limitó a responderme con una frase de Spock en Star Trek: “soy un científico, no tengo emociones”.

La historia ha tenido ahora su continuación. Uno de los dos cometas, el 266P/Christensen, debía pasar a comienzos de este año por la misma región del cielo donde se detectó la señal Wow!. Por tanto, era una ocasión magnífica para estudiar la emisión del cometa y comprobar hasta qué punto se parecía a la señal de 1977. Para complementar sus observaciones, Paris ha estudiado también otros cometas.

Las conclusiones, publicadas hace un par de semanas, parecen confirmar la hipótesis: “Los resultados de esta investigación, por tanto, concluyen que los espectros de los cometas son detectables a 1.420 MHz y, más importante, que la señal Wow! de 1977 fue un fenómeno natural de un cuerpo del Sistema Solar”, escribe Paris.

¿Asunto zanjado? ¿Adiós a los aliens? Las objeciones originales sobre la fuerza de la señal y su rapidez aún persisten; aunque respecto a lo primero, Paris ya me advirtió el año pasado de que sería difícil cuadrar la potencia actual de la señal, dado que los cometas habrán perdido gran parte de su masa desde 1977. Pero por lo demás, algunos expertos han planteado otras nuevas pegas que resultan más bien ridículas, como que Paris ha financiado su investigación por crowdfunding, o que la revista donde ha publicado el estudio, Journal of the Washington Academy of Sciences, no es un foro donde los astrónomos suelen enviar sus trabajos.

Mientras, Ehman, que aún vive pero ya retirado, mantiene la actitud gallega que ha mantenido siempre: puede ser, o puede no ser, no se ha probado una cosa, ni la contraria. En el fondo, Ehman parece seguir albergando la esperanza de que aquel día su boli rojo subrayara el primer y hasta hoy único mensaje recibido de otro mundo. Pero por desgracia, y mientras nadie refute los resultados de Paris, hoy tenemos aún menos razones para confiar en que las pruebas que no han llegado hasta ahora acaben llegando. Bueno, tal vez aún nos queden los radiodestellos rápidos (FRB).

Un hallazgo en un cometa complica la búsqueda de vida alienígena

¿Cómo puede un descubrimiento en un cometa complicar la búsqueda de vida alienígena? Si les interesa, sigan leyendo.

Tal vez recuerden que hace dos años y medio hasta algunos telediarios abrieron con el primer aterrizaje de un artefacto espacial en un cometa: se trataba de Philae, un módulo separable de la sonda Rosetta de nuestra Agencia Europea del Espacio (ESA). Philae solo pudo operar durante un par de días debido a que su aterrizaje defectuoso lo dejó en un lugar bastante escondido de la luz del sol, pero su breve vida fue suficiente para hacer ciencia muy valiosa. Por su parte, su nodriza Rosetta concluyó su misión en septiembre de 2016 estrellándose contra el objeto de su estudio, el cometa 67P/Churyumov–Gerasimenko.

Imagen del cometa 67P/Churyumov–Gerasimenko tomada por la sonda Rosetta. Imagen de ESA/Rosetta/NAVCAM.

Imagen del cometa 67P/Churyumov–Gerasimenko tomada por la sonda Rosetta. Imagen de ESA/Rosetta/NAVCAM.

Entre los descubrimientos que Rosetta ha aportado al conocimiento, en 2015 los científicos de la misión anunciaron el hallazgo de oxígeno molecular en la atmósfera del cometa. El oxígeno molecular es lo que respiramos, una molécula formada por dos átomos de oxígeno, O2. Y a pesar de que el oxígeno como elemento es uno de los más abundantes en el universo (el tercero, después de hidrógeno y helio), su forma molecular, la respirable, es extremadamente rara, que sepamos hasta ahora. Hasta 2011 no se confirmó por primera vez su existencia fuera del Sistema Solar, y no fue precisamente aquí al lado: en una región formadora de estrellas de la nebulosa de Orión, a unos 1.500 años luz. Posteriormente se ha detectado también en otra zona de formación de estrellas de la nebulosa Rho Ophiuchi.

La rareza del oxígeno molecular estriba en que es muy reactivo, muy oxidante, por lo que tiende a reaccionar rápidamente con otros compuestos y desaparecer en esta forma; por ejemplo, con el hidrógeno para producir agua. Así que, cuando los científicos encontraron oxígeno molecular en el cometa 67P, la reacción lógica se resumía en tres letras: WTF?

La explicación que sugirieron los investigadores de Rosetta era que el oxígeno estaba congelado en el cometa desde su formación, en los tiempos del origen del Sistema Solar, y que se iba liberando por el calor del sol. Sin embargo, la hipótesis fue cuestionada porque incluso en este caso parecía improbable que el oxígeno pudiera haber permanecido intacto, sin reaccionar, durante miles de millones de años.

Ahora, por fin existe una explicación para el oxígeno de 67P, y ha llegado de una fuente inesperada: un ingeniero químico que se dedica a la investigación de nuevos componentes electrónicos. Konstantinos Giapis, de Caltech (EEUU), se dedica desde hace 20 años a cosas como bombardear semiconductores con chorros de átomos cargados a alta velocidad para estudiar las reacciones químicas que se producen.

Cuando Giapis supo del descubrimiento de Rosetta, de repente se dio cuenta de que el cometa podía ser un ejemplo real de los experimentos que él realiza en el laboratorio: el hielo presente en 67P se calienta con el sol, liberando vapor de agua que se ioniza con la radiación ultravioleta solar y se estrella de nuevo a alta velocidad con el cuerpo del cometa por el efecto del viento solar. Cuando estas moléculas de agua chocan contra la superficie de 67P, arrancan átomos de oxígeno que se combinan con el oxígeno del agua para formar O2.

Ilustración del experimento de Konstantinos Giapis. Al bombardear con moléculas de agua (izquierda) una superficie de materiales similares a los del cometa 67P, se desprende oxígeno molecular (en rojo; el hidrógeno, en azul). Imagen de Caltech.

Ilustración del experimento de Konstantinos Giapis. Al bombardear con moléculas de agua (izquierda) una superficie de materiales similares a los del cometa 67P, se desprende oxígeno molecular (en rojo; el hidrógeno, en azul). Imagen de Caltech.

No es solo una teoría: Giapis lo ha puesto a prueba en su laboratorio, simulando el proceso que tiene lugar en el cometa, y ha demostrado que se produce oxígeno molecular. Así que la presencia de este compuesto en 67P no es una reliquia de la época del nacimiento del cometa, sino una reacción que está ocurriendo ahora para generar oxígeno respirable fresco.

Lo cual nos lleva de vuelta al título de este artículo. Y es que, aunque el estudio de Giapis aporta un interesante hallazgo en el campo de la astrofísica/química, sus repercusiones pueden complicar aún más la búsqueda de firmas de vida en planetas extrasolares: incluso si se detecta oxígeno en la atmósfera de alguno de estos lejanos planetas, ya hay otro mecanismo más que podría explicar su origen sin necesidad de que exista algo vivo allí.

El drama de la búsqueda de vida en el universo es que difícilmente llegaremos jamás a tener una prueba directa, una confirmación absoluta. Todos los intentos de encontrar biología en planetas extrasolares, que cada vez son más (los intentos y los planetas), deben conformarse con buscar indicios indirectos, como señales que no sean fácilmente atribuibles a un fenómeno natural. Los nuevos instrumentos de observación van a facilitar en los próximos años el análisis de las atmósferas de muchos exoplanetas, y con ello será posible sospechar que tal o cual composición atmosférica podría indicar la existencia de vida.

Naturalmente, la más evidente de estas posibles firmas biológicas atmosféricas es el oxígeno. Nunca se ha pretendido que esta fuese una firma definitiva: existen procesos geológicos y químicos que pueden dar lugar a la generación de este gas sin intervención de nada vivo. Por ejemplo, Europa y Ganímedes, dos de las grandes lunas de Júpiter, tienen atmósferas de oxígeno muy tenues, pero allí este gas se forma por la ruptura del agua (H2O) causada por la radiación, o radiolisis.

Sin embargo, con los procesos abióticos (sin vida) de fabricación de oxígeno ocurren dos cosas: primero, no parece fácil que puedan originar enormes cantidades de este gas y sostenidas a lo largo del tiempo. En el caso de la Tierra, el gran inflado de nuestra atmósfera se produjo por la proliferación de microbios fotosintéticos, y si aún hoy podemos respirar es gracias a que seguimos teniendo organismos fotosintéticos.

Segundo, en algunos casos esos procesos requieren condiciones que tampoco son hospitalarias para la vida. Por ejemplo, en planetas muy calientes y próximos a su estrella, la radiación UV de esta puede descomponer el agua. Pero si se encuentra oxígeno en un planeta así, sus propias condiciones hacen muy improbable que exista algo vivo.

En resumen, y aunque detectar oxígeno en abundancia en la atmósfera de un exoplaneta no sería una demostración de vida, sí sería un buen comienzo. O al menos, lo era, hasta el hallazgo de Giapis. Ahora sabemos que hay una manera más de producir oxígeno, que a 67P le funciona muy bien, y en la que no interviene nada parecido a la vida. Desde Caltech ya nos advierten: “otros cuerpos astrofísicos, como planetas más allá de nuestro Sistema Solar, o exoplanetas, también podrían producir oxígeno molecular por el mismo mecanismo abiótico, sin necesidad de vida. Esto puede influir en la futura búsqueda de signos de vida en exoplanetas”.

Sin rastro de vida inteligente en más de 6.000 estrellas

Será curioso saber qué artículo despierta mayor interés, si el que publiqué ayer, sugiriendo que la búsqueda de signos de vida extraterrestre pronto podría dar frutos, o este de hoy. Las buenas noticias y las malas tienden a atraerse como los polos opuestos, en sentido puramente electromagnético (nunca he creído en esa aplicación metafórica a los seres humanos; o al menos en mi caso, no funciona así).

El sistema triple Alfa Centauri: A, B y Proxima (señalada en rojo). Imagen de Wikipedia.

El sistema triple Alfa Centauri: A, B y Proxima (señalada en rojo). Imagen de Wikipedia.

La mala noticia de hoy es que dos proyectos de búsqueda de señales de vida inteligente, uno en 5.600 estrellas y otro en 692, han concluido con las manos vacías. Nada por aquí, nada por allá. Y les aseguro que no me alegro de ello, pero es otro apoyo más a la hipótesis de que la vida no es un fenómeno común en el universo.

El primero de los proyectos es obra de dos investigadores de la Universidad de California en Berkeley. Nathaniel Tellis y Geoffrey Marcy han emprendido lo que se conoce como SETI óptico; es decir, búsqueda de inteligencia extraterrestre (cuyas iniciales en inglés forman el acrónimo SETI), pero no en forma de señales de radio, sino de pulsos de luz visible.

La idea inspiradora, puramente especulativa, es que una civilización lo suficientemente avanzada podría emplear el láser como un medio de comunicación a grandes distancias, y uno de estos pulsos que cayera en nuestra dirección podría detectarse como un chispazo de luz distinguible del brillo de la estrella.

Los dos investigadores han aplicado un algoritmo a un exhaustivo conjunto de datos recogidos por el telescopio Keck de Hawái entre 2004 y 2016, correspondientes a 5.600 estrellas de la Vía Láctea distribuidas por todo el cielo, en su mayoría hasta una distancia de unos 326 años luz, y de un amplio rango de edades, desde menos de 200 millones de años hasta casi 10.000 millones de años. Para cada estrella, han buscado posibles chispazos en casi todo el espectro de luz visible (todos los colores) y en un radio de hasta decenas de unidades astronómicas (una unidad astronómica, UA, es la distancia media de la Tierra al Sol).

Después de todo ello, esta es la conclusión de los investigadores en su estudio, que se publicará próximamente en la revista The Astronomical Journal: “No hemos encontrado emisiones láser procedentes de las regiones planetarias en torno a ninguna de las 5.600 estrellas”. Según los datos actuales disponibles, Tellis y Marcy calculan que este conjunto de estrellas debería albergar unos 2.000 planetas templados de tamaño similar a la Tierra, así que los resultados no son nada alentadores.

El segundo proyecto es el Breakthrough Listen, una de las Iniciativas Breakthrough del programa SETI fundado en 2015 por el físico y magnate ruso Yuri Milner, y que cuenta con la participación del Centro SETI de la Universidad de California en Berkeley. Breakthrough ha celebrado esta semana en la Universidad de Stanford su segunda conferencia anual, donde se han discutido cuestiones como el potencial para la existencia de vida en algunos mundos recientemente descubiertos, por ejemplo Proxima b, el sistema TRAPPIST-1 o el recién llegado LHS 1140b, del que hablé ayer. También se debatió sobre el Breakthrough Starshot, el proyecto de Milner de enviar una flota de minúsculas sondas al sistema Alfa Centauri.

En la conferencia Breakthrough se han presentado las conclusiones del primer año de Listen. El director del SETI en Berkeley, Andrew Siemion, expuso los resultados de la escucha de posibles señales de radio de origen inteligente en 692 estrellas con el radiotelescopio de Green Bank, una instalación histórica para el SETI, ubicada en Virginia Occidental. De todas las señales captadas, los investigadores seleccionaron 11 como las más significativas. Pero el veredicto es claro, o más bien oscuro: “se considera improbable que alguna de estas señales tenga un origen artificial, pero la búsqueda continúa”, han declarado los responsables del proyecto.

En resumen, seguimos en blanco, solos y sin compañía. Por supuesto, hay recurso al viejo aforismo: la ausencia de prueba no es prueba de ausencia. Como no podía ser de otra manera, Tellis reconoció a la revista The Atlantic que el hecho de no haber detectado comunicaciones láser no significa que esas 5.600 estrellas estén desprovistas de vida. “Cada una de esas estrellas podría tener un Nueva York, un París o un Londres, y no tendríamos ni idea”, dijo. De hecho, nosotros no enviamos comunicaciones por láser al espacio; si alguien nos estudiara desde allí empleando la misma técnica, no encontraría ningún rastro de nuestra presencia.

Pero no olvidemos que el aforismo es de por sí discutible cuando sirve para encubrir una llamada a la ignorancia. Por poner un ejemplo tan ridículo como claro, es indefendible alegar que la ausencia de pruebas de que hay un dragón invisible en la habitación no prueba que el dragón invisible no esté presente, por mucho que uno desee creer en los dragones invisibles. La vida es muy común en el estanque de mi jardín. Si tomo una simple gota al azar, encuentro al primer vistazo esta diminuta maravilla:

Alga verde microscópica Scenedesmus. Imagen de J. Y., tomada acercando la cámara del móvil al ocular de un microscopio.

Alga verde microscópica Scenedesmus. Imagen de J. Y., tomada acercando la cámara del móvil al ocular de un microscopio.

Que, por cierto, es una alga verde Scenedesmus, una clorofícea colonial que suele formar grupos de cuatro u ocho células, llamados cenobios. Pero en el estanque del universo, ninguna gota de las muchas analizadas hasta ahora de una manera u otra ha revelado absolutamente nada. ¿Es la vida realmente tan común en el universo?