Entradas etiquetadas como ‘astrobiología’

Un 2023 sin Frank Drake: ¿el año en que haremos contacto?

Entre los personajes del mundo de la ciencia que hemos perdido en este 2022 destaca el nombre del radioastrónomo estadounidense Frank Drake, fallecido el pasado 2 de septiembre a los 92 años por causas que no se han especificado. Cuando alguien muere a edad tan avanzada, no se pregunta. Lo cierto es que Drake ha vivido una vida larga y plena en la que conquistó muchas metas profesionales. Pero a la que le faltó la aspiración que probablemente más deseaba. Porque el objetivo que centró la carrera de Drake, por el que será recordado, fue la búsqueda de vida alienígena inteligente.

En 1960 Drake apuntó por primera vez la antena de un radiotelescopio al cielo con el fin de escuchar si había alguien fuera de esta Tierra transmitiendo algo. Era la primera vez que esto se hacía de forma deliberada y planificada con tal objetivo. Así que hasta entonces era posible que hubiese por ahí millones de canales de Radiotelevisión Galáctica, pero que hasta entonces no hubiéramos sabido de ellos porque nadie los había intentado sintonizar.

Frank Drake en una conferencia en 2012. Imagen de Raphael Perrino / Flickr / CC.

En aquel primer intento Drake creyó haber encontrado algo, pero era una falsa alarma, una interferencia terrestre. No se escuchó nada, ni se ha escuchado nada desde entonces, más allá de otro pequeño puñado de falsas alarmas y alguna señal esporádica cuyo origen natural no se ha probado, pero se da casi por hecho.

Con aquel primer intento, Drake inauguró un campo de investigación que ha perdurado hasta hoy, la Búsqueda de Inteligencia Extraterrestre, o SETI (en inglés). Drake participó también en el envío de mensajes al espacio, por señal de radio —el mensaje de Arecibo— o en forma de placas colocadas en las sondas Pioneer y de discos de oro en las Voyager.

Pero lo que más continuará citándose de él después de su muerte será su famosa ecuación, aquella en la que introdujo varios términos para estimar el posible número de civilizaciones en la galaxia. Por supuesto que la ecuación de Drake, tan aplaudida como criticada, no pretendía ser un cálculo riguroso ni fidedigno, sino solo un ejercicio de pensamiento, un razonamiento de servilleta de bar para defender la existencia de otros seres inteligentes por ahí.

Sin embargo, Drake ha dejado este mundo sin que la respuesta a su pregunta haya variado en 60 años: hasta donde sabemos, estamos solos.

Quien siga este blog desde hace años sabrá que aquí se espera y se desea el día en que hagamos contacto —parafraseando el título de 2010, la secuela de 2001 en el cine—, pero también que no se cree que ese día vaya a existir alguna vez.

No hay ninguna contradicción en esto, ni es solo la ciencia la que nos ofrece un retrato de la realidad al que le importa un pimiento lo que nosotros queramos o nos parezca bien. En los tiempos que vivimos parece que se enseña a la gente que todo responde a nuestros deseos y necesidades, de modo que basta con creer en algo o desearlo muy fuerte para que exista. Pero se ahorrarían muchas frustraciones y horas de terapia si se contara que, para nuestra desgracia, la realidad no funciona así.

Por cada persona que gana la lotería porque, según ella, lo necesitaba, lo deseó muy fuertemente y tuvo un pálpito (incluso los medios serios han prestado espacio gratuito a cualquier charlatán que aseguraba adivinar el número del Gordo de Navidad; en cambio, a los negocios serios y honestos se les exige que paguen la publicidad), hay otros millones de personas que pensaron lo mismo y no ganaron, y que no salen en los telediarios del 22 de diciembre para decir que eso del karma y del universo que se conjura finalmente resulta ser una chorrimemez. Y por cada persona que se cura del cáncer porque, según ella, lo deseó muy fuertemente y luchó mucho, hay otros muchos miles que mueren a pesar de desearlo y luchar tanto como ella.

No toca hoy abundar aquí en por qué me temo que ese día nunca llegará, a pesar de que no solo la gran mayoría del público, sino incluso muchos físicos creen en la existencia de civilizaciones alienígenas. Anteriormente ya he tratado mucho sobre esto. Baste decir que la primera razón, aunque no la única, se resume en una palabra: biología.

La ecuación de Drake y las especulaciones de muchos físicos implicados o interesados en SETI han ignorado por completo la biología, dando por hecho que la aparición de vida era automática, inevitable, dadas las condiciones adecuadas. Pero lo que sabemos sobre el origen y la evolución de la vida en la Tierra nos dice que, mal que nos pese, no es así, sino todo lo contrario: la vida es probablemente un fenómeno extremadamente raro. Hoy la astrobiología, que aún no existía en tiempos de la ecuación de Drake, busca respuestas basadas en el conocimiento y las técnicas actuales, pero la postura pesimista (realista, con lo que sabemos) está bastante extendida.

Y pese a todo esto, ojalá nos equivoquemos. A muchos nos encantaría reconocer que estábamos en un error y asistir al descubrimiento más importante de la historia de la humanidad. Y ¿por qué no en 2023?

Hay razones para que en este nuevo año quizá pudiéramos acercarnos a ello. O al contrario, resignarnos a que tal vez haya que tirar la toalla. Mañana repasaremos algún proyecto para el nuevo año que, como mínimo, nos mantendrá entretenidos.

La NASA define una escala para confirmar la existencia de vida alienígena

En la ciencia ficción casi siempre ocurre que vienen aquí para aniquilarnos, lo que no deja la menor duda sobre su existencia. Seth Shostak, director del Instituto SETI (Búsqueda de Inteligencia Extraterrestre) solía decir que los nativos americanos no discutían entre ellos si los conquistadores europeos realmente existían. Pero si llega a encontrarse vida alienígena, es muy probable que no sea tan sencillo saber si de verdad la hemos encontrado.

Para empezar, la posibilidad de que nuestro primer encuentro con seres de otro mundo sea con alguien que nos diga «llévame ante tu líder» es inifinitamente remota; más bien será con algo cuya manifestación más sofisticada será, por ejemplo, producir metano, o comérselo. Vida simple que no será capaz de reconocernos a nosotros. Pero ¿seremos capaces nosotros de reconocerlos a ellos?

En el pasado se han propuesto muchas hipótesis y ficciones sobre vida exótica, muy diferente a la que conocemos. Como he contado aquí anteriormente, a menudo ocurre que no son biológicamente coherentes, o directamente son imposibles. Apostar si la vida que pudiéramos encontrar fuera de la Tierra sería parecida a la tenemos aquí no deja de ser una especulación. Pero la bioquímica es una derivada de la física y la química, y por lo tanto también existen reglas, límites inquebrantables más allá de los cuales las moléculas no funcionan. No todo vale. Y la inmensa mayoría de los alienígenas del cine no podrían existir en la realidad.

Otra cuestión diferente es que pudiera encontrarse vida no muy distinta de la que conocemos, pero sin la posibilidad de constatar su existencia de forma tan simple como podemos hacer aquí en la Tierra. Dada la imposibilidad práctica de viajar a otros mundos fuera del Sistema Solar, e incluso la dificultad para hacerlo dentro del Sistema Solar, los científicos tratan de detectar esos signos de vida a distancia mediante lo que se conoce como biofirmas; algún tipo de indicio que pueda registrarse con nuestros instrumentos actuales, en la Tierra o fuera de ella, y que sugiera la posible existencia de vida en algún lugar. Por ejemplo, señales de radio, señales ópticas o algún compuesto químico normalmente asociado a un origen biológico.

Algunas de estas potenciales biofirmas se han encontrado en varias ocasiones. Pero la imposibilidad de confirmar si son lo que parecen ser siempre nos ha dejado con la duda: los experimentos de las Viking, el rastro de metano en Marte, indicios en Venus y en otros mundos del Sistema Solar… El descubrimiento de algo que parecían microfósiles bacterianos en el meteorito marciano Alan Hills 84001 llevó al entonces presidente de EEUU Bill Clinton a dar una conferencia de prensa casi anunciando el primer rastro de vida extraterrestre. Luego el presunto hallazgo se pinchó, si bien todavía hay científicos que lo defienden. Y por cierto, al menos aquel anuncio de Clinton sirvió para reciclarlo en la película de 1997 Contact, aunque, al parecer, sin el conocimiento ni el permiso de Clinton, lo que motivó una protesta.

Así pues, a medida que los posibles indicios vayan llegando, ¿cómo podremos estar seguros de que estamos ante the real thing? ¿Cómo lograr un consenso entre los científicos para certificar que sí, se ha hallado vida alienígena?

No existe ningún protocolo estandarizado y consensuado para esto. Y por ello, la NASA ha decidido que ya es hora de tener uno. Esta semana la revista Nature publica un artículo firmado por varios científicos de la agencia estadounidense, incluyendo a su jefe de ciencia, James Green, y que los investigadores esperan sirva como punto de partida para una discusión que lleve a un método aceptado por todos.

No se trata de introducir ninguna técnica nueva, sino de establecer una escala, a la que han denominado CoLD, Confidence of Life Detection, o confianza en la detección de vida. Es sobre todo un protocolo que define el ascenso por una serie de niveles hacia la confirmación de la vida alienígena, de modo parecido al proceso por el cual la propia agencia valida una tecnología para su uso en misiones espaciales.

La escala CoLD consta de siete niveles: en el primero se sitúa la detección de una posible biofirma. El nivel 2 consiste en descartar otras posibles causas, como una contaminación en el experimento. Si los indicios superan este nivel, el siguiente trata de estudiar cómo ha podido producirse esa biofirma y si podría deberse a causas no biológicas. Si no se encuentran, en el nivel 4 se intenta buscar otras maneras de verificar la señal, lo que se hace en el nivel 5. Si se obtiene esa confirmación, se asciende al nivel 6, que supondría la confirmación de la vida alienígena. Por último, el nivel 7 comprendería los estudios de seguimiento de esa forma de vida.

Ilustración de la escala CoLD de detección de vida alienígena. Imagen de NASA / Aaron Gronstal.

Ilustración de la escala CoLD de detección de vida alienígena. Imagen de NASA / Aaron Gronstal.

En esta escala ya hemos llegado en varias ocasiones al nivel 1. Los indicios antes citados en Marte y otros mundos del Sistema Solar cumplen el criterio de esas posibles biofirmas. Y aunque se han emprendido otras proyectos dirigidos a indagar más hondo en ello, como el envío de sondas para confirmar las mediciones de los telescopios terrestres, hasta ahora no existía un verdadero esquema sistematizado que permita evaluar cómo se está progresando en esa línea.

Quizá haya a quienes esto pueda parecerles de interés relativamente escaso, ya que por el momento no nos acerca más al hallazgo de vida alienígena. Pero la NASA subraya que esta escala no solamente será útil para los científicos, sino también para los medios. ¿Cuántas veces hemos leído titulares según los cuales ya se habría encontrado vida fuera de la Tierra? Gracias a esta escala, u otra similar si se modifica con la participación de otros expertos, los científicos podrán hacer entender más fácilmente el alcance de sus hallazgos a los medios de manera que quede claro en qué nivel estamos en una escala de 7, y de modo que no se infle el significado de los descubrimientos en los titulares.

Si hay vida en Venus, quizá no sea tan alienígena

Si los autores del reciente hallazgo sobre un nuevo y posible indicio de vida en Venus logran confirmar su descubrimiento –es decir, verificar la señal en otras longitudes de onda para comprobar que es real y no un artefacto del procesamiento de los datos–, sería de esperar que en adelante nuestro planeta vecino suba puestos en la consideración de quienes aprueban las misiones espaciales, para poder enviar algo a aquella atmósfera cuanto antes, algo que sea capaz de sacarnos de dudas antes de que no nos queden uñas que mordernos.

El administrador de la NASA ya ha dicho que es hora de priorizar Venus, y se espera que esta agencia apruebe al menos una de dos misiones ya propuestas antes del descubrimiento. Nuestra ESA tiene también un par de propuestas pendientes para enviar sondas a Venus, mientras que Rusia e India tienen misiones ya en desarrollo. Incluso alguna empresa privada podría entrar en el juego: de inmediato tras el anuncio de la detección del gas fosfano en Venus, Breakthrough Initiatives, el proyecto fundado en 2015 por el magnate ruso-israelí Yuri Milner y centrado en la búsqueda de vida alienígena, anunció la puesta en marcha de un amplio estudio multidisciplinar destinado a indagar en la posible existencia de vida en Venus y a analizar las posibilidades de enviar una sonda que solvente la incógnita.

Pero en cualquier caso, deberemos esperar. Curiosamente y dado que el anuncio del fosfano ha pillado a las agencias espaciales con el paso cambiado, más centradas en Marte, asteroides y el Sistema Solar Exterior, quien podría llegar primero a Venus es un actor insospechado: la misión india Shukrayaan-1, un orbitador que observará la atmósfera y la superficie de Venus, tiene su lanzamiento previsto para 2023, aunque no sería raro que se retrasara. La Venera-D rusa no se lanzará antes de 2026, y las misiones propuestas por la NASA y la ESA difícilmente estarán preparadas antes de finales de esta década o comienzos de la próxima.

Para entonces, es muy probable que ya se hayan hallado nuevos indicios, a favor o en contra de la presencia de vida. Al contrario de lo que siempre hemos visto en cine y televisión, viene tendiendo a ser algo improbable que la confirmación de la vida alienígena llegue con un ovni aterrizando en el jardín de la Casa Blanca o fundiendo la torre Eiffel con un rayo; más bien será algo como esto, sospechas de vida microbiana en otros mundos del vecindario solar, analizadas paso a paso, de forma muy dilatada a lo largo del tiempo, y lo peor será que tal vez nos cueste mucho llegar a dar el último paso, el de la prueba irrefutable.

¿Hay vida entre las nubes de Venus? Imagen de NASA/JPL (David Seal).

¿Hay vida entre las nubes de Venus? Imagen de NASA/JPL (David Seal).

Más aún cuando ni siquiera está del todo claro a qué podremos llamar «vida alienígena». En cuanto a «vida», y como ya conté aquí, no existe una definición científica formal universalmente aceptada. Y no existe porque, si existiera, probablemente sería errónea. Según me decía recientemente con ocasión de un reportaje para otro medio el astrofísico Charley Lineweaver, un escéptico de la vida alienígena inteligente de quien ya he hablado aquí en alguna ocasión, hasta tal punto no nos aclaramos que ni siquiera los biólogos nos ponemos de acuerdo sobre si los virus, los organismos más abundantes de la Tierra, están vivos o no (yo opino que sí, pero esa es otra historia).

Y en cuanto a «alienígena», si algún día llegamos a confirmar la presencia de microbios en otro mundo del Sistema Solar, ¿serán realmente alienígenas? Es decir, ¿podremos estar seguros de que su origen es independiente del de la vida terrestre? A propósito del mismo reportaje mencionado, el astrobiólogo español Alfonso Dávila, que investiga en el centro Ames de la NASA, me subrayaba algo ya conocido: durante la infancia del Sistema Solar, hubo un tráfico pesado de rocas entre los diferentes planetas; cientos de miles de rocas terrestres se estrellaron en Marte, y millones en Venus, según Dávila. Estos asteroides podrían haber transportado microbios de un lugar a otro, por lo que, incluso si se confirma la vida venusiana, tal vez aquellos organismos y nosotros procedamos de un mismo antepasado común.

Lo cual abre las apuestas: si llega a encontrarse algo vivo por ahí fuera, ¿serán parientes nuestros o no? Lo malo es que quizá no lleguemos a poder estar seguros; incluso si su biología básica se parece a la nuestra, con un ácido nucleico (ADN o ARN) que codifique la producción de proteínas, no necesariamente significaría que somos parientes, ya que en muchos casos la evolución sigue caminos comunes de forma separada (se llama evolución convergente).

Tradicionalmente se ha propuesto como posible prueba de orígenes separados de la vida el hecho de que, mientras que ciertos bloques básicos de la vida –aminoácidos de las proteínas o azúcares del ADN y ARN– pueden adoptar dos conformaciones que son imágenes en el espejo una de la otra, a la derecha (dextrógiros) o a la izquierda (levógiros), en los seres terrestres los aminoácidos son levógiros y los azúcares dextrógiros; dado que no hay una razón biológica para esta exclusividad, se suponía que fue una elección casual al principio de los tiempos, y que si se encontraran seres en otro mundo cercano con la misma quiralidad (así se llama esta propiedad) que la terrestre, probablemente estaríamos ante un origen común. Pero hoy sabemos que quizá tampoco esto sea necesariamente así, ya que la quiralidad predominante en los seres vivos podría no ser algo elegido al azar, sino que podría venir marcada por el distinto efecto de los rayos cósmicos sobre cada una de estas dos conformaciones. Dicho de otro modo: la radiación que barre el espacio podría determinar una misma quiralidad homogénea en bichos que nacen en planetas distintos a partir de orígenes totalmente independientes.

Lo cierto es que la pregunta de si posibles microbios venusianos y nosotros procedemos del mismo antepasado común es de enorme trascendencia: si la respuesta es sí, seguiríamos como antes; no sabríamos si la vida podría haber surgido en otros lugares. Si la respuesta es no, entonces podríamos tener la casi seguridad de que la vida debe de ser algo muy común en todo el universo, allí donde se dan las condiciones adecuadas.

Lo cual nos lleva a la pregunta: con las condiciones infernales de Venus, ¿es posible que la vida haya surgido allí? Vaya por delante que realmente aún no sabemos cómo nació la vida aquí, en la Tierra. Pero hay escenarios probables. Y todos ellos tienen algo en común: necesitan agua líquida a temperaturas moderadas –no los actuales 400 grados en la superficie de Venus– y en un pequeño entorno local donde pueda acumularse una alta concentración de moléculas biogénicas, aquellas que reaccionarán para producir alguna entidad autorreplicativa, con una fuente de energía disponible y una fuente de carbono.

Venus no ha sido siempre el infierno que es hoy. Suele decirse que Venus y la Tierra fueron planetas gemelos al comienzo de su historia (aunque la antigua existencia de océanos allí aún es motivo de debate). Y mientras que aquí fue la colonización de los mares por las cianobacterias la que logró reconducir el clima, la química atmosférica y la geodinámica para hacer de este mundo un lugar habitable, en cambio Venus fue el Anakin Skywalker del Sistema Solar, arrastrado hacia el lado oscuro a través de un catastrófico efecto invernadero que le hizo perder casi toda su agua y lo convirtió en el infierno actual.

Pero si en un principio las condiciones en ambos planetas no eran muy diferentes, esto significa que allí podrían haberse dado los mismos procesos que tuvieron lugar aquí y que dieron origen a la vida primigenia. O quizás, según lo dicho, la vida llegó a Venus desde la Tierra. Pero en cualquier caso, en momentos tempranos de la historia de los dos planetas, ambos podrían haber estado en situación parecida respecto a la presencia de algún tipo de microorganismo muy simple para nuestros cánones actuales de vida, muy sofisticado para lo que entonces era la química planetaria.

Sin embargo, el salto de aquellos posibles microbios acuáticos de la superficie de Venus a la presencia actual –si existe– de una comunidad biológica a decenas de kilómetros de altura, flotando en las nubes, no es inmediato. Hay científicos que en estos días se han mostrado muy escépticos. Pero tampoco es imposible. Aquí en la Tierra, sabemos que la vida es extraordinariamente resistente; ha colonizado la práctica totalidad de los hábitats terrestres. Incluyendo la atmósfera: varios estudios han demostrado la presencia de bacterias y hongos en la estratosfera terrestre, a decenas de kilómetros sobre el suelo.

Claro que esto no permite trazar una analogía directa con el caso de Venus. Algunos de los microbios encontrados en la estratosfera terrestre estaban en forma de esporas, fases latentes que ciertos microorganismos adoptan cuando las condiciones del entorno no les permiten crecer y multiplicarse. Es decir, son microbios transeúntes, dependientes de la superficie terrestre para volver a su estado activo. Estos no nos sirven, ya que en Venus cualquier posible organismo presente debería ser un habitante exclusivo de la atmósfera, puesto que no tiene tierra habitable a la que regresar.

También en nuestro planeta se han encontrado especies bacterianas que no se habían detectado antes en la superficie. Pero esto tampoco implica necesariamente que sean habitantes exclusivos de las alturas, evolucionados para nacer, crecer y morir en los aerosoles flotantes sin importarles si debajo existe una tierra habitable o no. Con todo, también es cierto que los moradores de la atmósfera venusiana tendrían algunas ventajas respecto a los de la estratosfera terrestre: a 55 kilómetros de altura sobre Venus, la temperatura y la presión son equivalentes a la Tierra a nivel del suelo; si bien también deberían enfrentarse a una química mucho más hostil, sin apenas agua y con nubes de ácido sulfúrico.

Pero aunque la posibilidad de comunidades microbianas totalmente autónomas en la atmósfera de Venus aún no convence a muchos científicos, la ubicuidad de la vida terrestre nos enseña que la vida, una vez presente, se abre camino. Venus no se convirtió en un infierno de la noche a la mañana. Y durante su lento tránsito de millones de años hacia el lado oscuro de la habitabilidad planetaria, quizá ciertos organismos mejor preparados para soportar una vida atmosférica pudieron sobrevivir y evolucionar hasta convertirse en moradores flotantes como los que imaginó Carl Sagan, comiendo minerales volantes y chupando las escasas gotitas de agua o el vapor de la atmósfera de Venus. Quién sabe. Al fin y al cabo, aún sabemos muy poco sobre eso que llamamos vida, sin saber realmente por qué lo llamamos vida.

Ya hay al menos tres indicios de posible vida microbiana en la atmósfera de Venus

Venus no es el gran olvidado de las misiones espaciales. O sí. Depende de a quién se pregunte. En 2017, un artículo en The Atlantic firmado por David Brown alegaba que la estrategia de la NASA de «seguir el agua» había arrumbado a nuestro vecino más cercano, porque no hay agua líquida en la superficie de Venus. Pero como reconocía el propio Brown, hay otras razones, y es que Venus es un infierno difícilmente explorable: temperatura en la superficie, más de 400 grados; presión atmosférica en la superficie, 100 atmósferas, más o menos la equivalente a 1.000 metros bajo el agua aquí en la Tierra.

Pero no, Venus no es un hueco en blanco en la historia de la exploración espacial. De hecho, fue el primer planeta visitado por sondas terrestres, sobrevolado por primera vez por la soviética Venera 1 en 1961, después por la estadounidense Mariner 2 al año siguiente, hollado (presuntamente) por la Venera 3 en el 66, y después por las 4, 5, 6, 7 y 8, las dos últimas con aterrizajes suaves; fotografiado en la superficie por la Venera 9, visitado por las Pioneer Venus de la NASA, etcétera, etcétera… Hay una buena cantidad de chatarra humana sobre la superficie de Venus; de hecho, más que en Marte.

Así vio (en imagen UV) Venus la sonda de la NASA Pioneer Venus en 1979. Imagen de NASA

Así vio (en imagen UV) Venus la sonda de la NASA Pioneer Venus en 1979. Imagen de NASA

Sin embargo, es cierto que nada ha aterrizado allí desde la soviética Vega 2 en 1984, ni penetrado en su atmósfera desde la estadounidense Magellan en 1994. Pero es que ningún aparato ha llegado a funcionar durante más de 127 minutos en aquel infierno. Y cuando los fondos para la exploración espacial no hacen sino disminuir cada vez más, los científicos tratan de sacar más ciencia por menos dinero, y Venus no es el destino más adecuado para esto.

Hubo un tiempo en que Venus era el gran candidato a albergar vida extraterrestre del tipo más deseado, la que piensa. Su tamaño similar a la Tierra y su gruesa atmósfera invitaban a pensar que podía ser una versión tropical de nuestro planeta. El hecho de que una densa capa de nubes ocultara a la vista los detalles de su superficie no hacía sino disparar las fantasías sobre una gran civilización venusiana. Todavía a mediados del siglo XX, autores de ciencia ficción como Ray Bradbury escribían sobre la vida en Venus.

Hasta que la ciencia vino a aguar la fiesta. Fue en los años 60 cuando las sondas espaciales revelaron que nada vivo puede existir en la superficie de Venus, puesto que no hay posibilidad alguna de bioquímica, moléculas biológicas, a 400 grados centígrados. Ningún «pero ¿y si…?». Nada que podamos llamar vida, salvo que llamemos vida a otras cosas que no lo son.

Sin embargo, también la ciencia a veces abre una puerta cuando cierra otra. Y quedaba un resquicio: la atmósfera de Venus, allá arriba en las nubes. En una franja aproximada entre los 50 y 60 kilómetros de altura, el rango de temperaturas es similar al terrestre, la presión atmosférica es tolerable y la radiación es moderada.

Hace unos años, la NASA ideó un concepto de exploración tripulada de la atmósfera de Venus mediante dirigibles que flotarían en un justo punto dulce a 55 kilómetros de altura: 27 grados de temperatura, gravedad casi como la terrestre, y media atmósfera de presión, más o menos la de una montaña terrestre de 5.500 metros. El gran truco consistiría en que, dada la mayor densidad de la atmósfera de Venus por su gran cantidad de CO2, estos dirigibles simplemente tendrían que ir rellenos de aire, nuestro aire normal y respirable, para flotar libremente sobre las nubes venusianas como los globos de helio flotan en la Tierra.

Con todo, esta posible habitabilidad es relativa: la atmósfera de Venus es mayoritariamente CO2, casi nada de oxígeno, poco vapor de agua y, sobre todo, nubes de ácido sulfúrico, que dificultan bastante cualquier intento de diseñar una nave que pueda funcionar y perdurar allí. De existir vida en la atmósfera de Venus, tendría que ser anaerobia; sin aire. Pero en la Tierra sí existe vida anaerobia: sobre todo células simples, bacterias y arqueas, pero en los últimos años se han descubierto algunos microorganismos multicelulares que también viven sin aire.

En 1967, justo cuando se confirmaba que la superficie de Venus era inhabitable, el ínclito Carl Sagan y el biofísico Harold Morowitz publicaban en Nature una hipótesis de vida en la atmósfera venusiana: una vejiga flotante del tamaño de una pelota de ping pong, rellena de hidrógeno que fabricaría por fotosíntesis absorbiendo agua de la atmósfera, y que comería minerales volantes a través de su superficie inferior pegajosa.

La propuesta de Sagan y Morowitz era una pura especulación teórica, pero tenía un fundamento, pues por entonces ya se conocía el que era:

El primer indicio de vida en Venus: el absorbedor desconocido de UV

Hace más de un siglo, las observaciones de Venus en el espectro de luz ultravioleta, más allá de la luz visible, revelaron extrañas manchas oscuras. Algo estaba absorbiendo la mayor parte de la luz UV solar e incluso algo del violeta, lo que inspiró la propuesta de Sagan y Morowitz de que podría tratarse de organismos fotosintéticos, capaces de captar la energía del sol para fabricar moléculas orgánicas a partir del agua y el CO2.

El «absorbedor desconocido de UV» de la atmósfera de Venus ha sido objeto de muchos estudios. El año pasado, las observaciones de los telescopios y las sondas espaciales descubrieron además un patrón de cambios a largo plazo que se corresponde con variaciones en el clima venusiano. Se ha propuesto que ciertos compuestos de azufre presentes en la atmósfera venusiana podrían ser en parte responsables de esta absorción, pero la posible participación de microbios no se ha descartado.

Pero si este es el más antiguo signo de posible vida en Venus, no es el único. Las observaciones de las diversas sondas que han analizado la atmósfera venusiana han revelado:

El segundo indicio de vida en Venus: sulfuro de carbonilo

La presencia de distintos compuestos en la atmósfera de Venus puede explicarse por las reacciones químicas que tienen lugar allí de forma espontánea. Pero algunos investigadores han llamado la atención sobre el hecho de que varios de ellos no se encuentran en el equilibrio químico que se esperaría. En la Tierra, la causa de estos desequilibrios es la presencia de vida, desde los microbios a la actividad humana.

Uno de los compuestos más intrigantes en la atmósfera venusiana es el sulfuro de carbonilo, o COS. Esta molécula es el compuesto de azufre más abundante de forma natural en la atmósfera terrestre, y en nuestro planeta se considera un indicador de vida, ya que no es fácil producirlo de forma inorgánica. Una parte de nuestro COS proviene de la actividad industrial, pero otra procede de los océanos y los volcanes. Y aunque la presencia de COS en Venus no es ni mucho menos garantía de que exista allí algo vivo, un dato intrigante es que a este compuesto se le atribuye un posible papel en el origen de la vida terrestre, ya que actúa como catalizador para unir entre sí a los aminoácidos, las unidades que forman las proteínas.

Conviene tener en cuenta que hasta hace muy poco se pensaba que la antigua actividad volcánica en Venus se había extinguido mucho tiempo atrás. Pero después de algunas observaciones previas que sugerían lo contrario, en enero de este año se publicó un estudio según el cual algunas coladas de lava solo tienen unos pocos años de edad; aún hay volcanes activos allí. Y aunque esto quizá podría justificar la presencia del COS, en cambio los expertos no creen que sirva para explicar:

El tercer indicio de vida en Venus: fosfano

Llegamos así a lo nuevo y último, lo publicado esta semana: la presencia en la atmósfera venusiana de un compuesto, PH3, llamado trihidruro de fósforo, fosfano o fosfina (pero NO fosfatina, como ya se ha escrito por ahí). Como el COS, el fosfano no debería estar allí, ya que en la Tierra es un indicador de vida. Aquí se produce sobre todo por microbios anaerobios, y puede encontrarse en la descomposición de la materia orgánica y en los intestinos de algunos animales. Más que un signo de vida, es un signo de muerte, pero donde hay algo muerto antes hubo algo vivo. Pero a pesar de la enorme cantidad de fuentes de fosfano en la Tierra, su presencia en la atmósfera es solo residual, porque se oxida rápidamente.

Sin embargo, resulta que en Venus el fosfano es mil veces más abundante que en la Tierra.

Existen otras maneras de fabricar fosfano que no necesitan algo vivo. En Júpiter y Saturno se genera en el interior denso y caliente de estos gigantes gaseosos. También las tormentas eléctricas o los impactos de meteoritos pueden producirlo. Y el rozamiento entre las placas tectónicas, o las erupciones volcánicas. Pero Venus no es un planeta gaseoso como Júpiter y Saturno, sino rocoso, y ninguno de estos mecanismos explica la gran cantidad de fosfano. Los autores del nuevo estudio, dirigido por la astrónoma de la Universidad de Cardiff Jane Greaves, calcularon que se necesitaría una actividad volcánica 200 veces mayor que la terrestre para justificarlo. De hecho, examinaron una a una casi cien maneras distintas de producir fosfano que no requirieran la presencia de vida. Ninguna de ellas servía para explicar la presencia abundante y sostenida de un gas que debería desaparecer rápidamente.

¿Significa esto que ya puede darse casi por segura la presencia de vida en Venus? Aún no. Aunque el nuevo estudio es concienzudo y riguroso, los expertos han advertido de que la señal de fosfano es débil, y que harán falta nuevas observaciones en otras longitudes de onda para confirmar que no es un artefacto introducido en el procesamiento de los datos. Los investigadores esperaban haber abordado ya estos estudios, pero la COVID-19 los ha demorado.

Incluso si se confirma la presencia de fosfano y no existe otra manera imaginable de explicarla, aún puede existir una manera todavía no imaginable. A lo largo de la historia de la búsqueda de algo vivo fuera de la Tierra, todo lo que se creía que eran signos de vida ha resultado ser el producto de fenómenos naturales inorgánicos, algunos de ellos descubiertos por primera vez gracias a esas observaciones intrigantes. En este caso, podría ser que un proceso químico aún no descrito o una actividad geológica insospechada estuvieran produciendo el misterioso gas.

En cualquier caso, parece claro que, a partir de ahora, el fosfano venusiano va a atraer tanta atención como el metano de Marte, otro gas cuyo origen podría revelar la presencia de microbios. El Sistema Solar huele cada vez más a vida, aunque este olor sea tan nauseabundo como el del fosfano.

Según la biología, podríamos ser la única especie inteligente en el universo

El universo no es eterno, y por lo tanto comenzó en algún momento. Lo cual implica que hubo un tiempo en que la vida no existía. Y tan evidente como esto es también que hoy la vida existe; al menos nosotros, todos los seres terrícolas, estamos aquí.

La conclusión es innegable: en algún episodio de la historia del cosmos, al menos una vez, la vida pasó de no ser a ser. Esto es lo que se conoce como abiogénesis. Y es un problema. Un gran problema, porque nadie sabe cómo se produjo. De hecho, es el problema central de la biología: ¿cómo comenzó todo?

Estas rocas de la región de Pilbara, en Australia, contienen los fósiles de microbios más antiguos conocidos, de 3.500 millones de años de antigüedad. Imagen de Baumgartner et al., Geology, 2019.

Estas rocas de la región de Pilbara, en Australia, contienen los fósiles de microbios más antiguos conocidos, de 3.500 millones de años de antigüedad. Imagen de Baumgartner et al., Geology, 2019.

La dificultad de la abiogénesis es obvia: que la vida aparezca a partir de la no vida es algo que, en principio, no ocurre. Solemos llamarlo generación espontánea, y Pasteur y otros demostraron que no existe. Hay ciertas diferencias considerables entre la generación espontánea y la abiogénesis: una de ellas, que rescataremos más abajo, es que la primera ocurriría de forma rápida y rutinaria, como una especie de mecanismo naturalmente programado, mientras que la segunda sería un proceso lento, gradual y excepcional. Pero en el fondo, el resumen es el mismo: vida que surge de algo no vivo.

Tan grande es el problema que tradicionalmente ha dado pie a muchos a defender explicaciones sobrenaturales de la aparición de la vida (en contra de lo que muchos creen, la evolución definida primero por Darwin y Wallace y después reconstituida por otros no explica el origen de la vida, sino solo cómo unas especies dan lugar a otras). Francis Crick, codescubridor de la doble hélice del ADN y un crítico feroz de las religiones, trató de salvar el obstáculo de la abiogénesis proponiendo la panspermia dirigida, la idea de que una civilización alienígena sembró la vida terrestre a propósito.

Lo cual, en realidad, no solamente no resolvía el problema, sino que le daba una patada para alejarlo (¿cómo surgió la vida de la que esa civilización evolucionó?); y, en el fondo, ¿cuál es la diferencia entre hablar de Dios y de una entidad alienígena inteligente, creadora y con un poder incomprensible para nosotros?

Todo hay que decirlo, Crick moderó su postura en años posteriores, cuando se descubrió la capacidad catalítica del ARN, que rompía el ciclo del huevo y la gallina: si la formación del ADN requiere proteínas y la formación de proteínas requiere ADN, ¿cómo empieza el proceso? El descubrimiento de las ribozimas, ARN que actúa como enzimas, conseguía cortar el círculo y convertirlo en una línea con una casilla de salida.

Pero incluso con las ribozimas, la abiogénesis continúa siendo hoy una píldora difícil de tragar. O lo sería, si no fuera porque tenemos la prueba irrefutable de su existencia: nosotros. Por supuesto y dado que la vida es un fenómeno natural, recurrir a explicaciones sobrenaturales es solo negarnos a nosotros mismos nuestra capacidad para comprender el universo por medio del razonamiento y la investigación.

Esta explicación sobre la abiogénesis sirve para entender por qué se ha popularizado tanto la idea de que la vida es abundante en el universo, y por qué en cambio esta idea es, como mínimo, poco razonable. Los primeros que comenzaron a interesarse científicamente por la vida alienígena fueron físicos y matemáticos, como los fundadores de los proyectos SETI (Búsqueda de Inteligencia Extraterrestre). Para un físico, la naturaleza funciona aquí lo mismo que en GN-z11, que creo es la galaxia más lejana conocida hasta ahora. Para un matemático, es un disparate estadístico pensar que la vida terrestre es un fenómeno único.

Físicos y matemáticos han ignorado tradicionalmente el punto de vista biológico, y el público en general simplemente lo desconoce. Desde este enfoque, la vida es lo normal. Pero cuando se introduce el problema espinoso y aún inexplicado de la abiogénesis, lo normal es pensar que la vida es algo muy raro. Y que la vida inteligente, como nosotros, es algo que sencillamente no debería existir.

Pero mejor lo explica Nick Longrich. Este paleontólogo y biólogo evolutivo de la Universidad de Bath, en Inglaterra, atrajo el foco de los medios en 2015 gracias a un hallazgo espectacular, el primer fósil conocido de una serpiente de cuatro patas que vivió en el Cretácico, en la era de los dinosaurios. Este animal, llamado Tetrapodophis, rellenaba el hueco del fósil de transición entre los lagartos y las serpientes; lo que suele llamarse un eslabón perdido.

Reconstrucción de Tetrapodophis, la serpiente de cuatro patas del Cretácico. Imagen de Julius T. Cstonyi.

Reconstrucción de Tetrapodophis, la serpiente de cuatro patas del Cretácico. Imagen de Julius T. Cstonyi.

Recientemente, Longrich ha publicado un artículo en The Conversation cuyo título resume perfectamente el mensaje: “La evolución nos dice que podríamos ser la única vida inteligente en el universo”. Y sí, por supuesto que, como siempre ocurre con esta hipótesis, quienes no observan la naturaleza desde el conocimiento de la biología saldrán a opinar que tal cosa es absurda, que por narices (las narices de los físicos y matemáticos) la vida, incluyendo la inteligente, tiene que ser algo inmensamente extendido por todo el cosmos, y que blablablá… Pero de verdad, lean a Longrich.

En resumen, lo que el biólogo viene a exponer es que, si bien no tenemos ejemplos de vida extraterrestre que poder estudiar, al menos tenemos 4.500 millones de años de historia terrestre. Y eso equivale a muchísimos datos, a un experimento natural inmensamente rico.

Lo primero que podemos concluir de ese experimento natural es que, en un planeta tan sumamente habitable como el nuestro, y en más de 4.500 millones de años, la abiogénesis solo se ha producido una única vez. Si la vida surge inevitablemente allí donde puede, como han defendido los físicos, ¿por qué aquí solo una vez? ¿Por qué no dos, tres, miles, millones?

Este argumento biológico, llamado del segundo génesis (por un segundo origen independiente de la vida, y un tercero, y un cuarto…), ha sido comentado en este blog innumerables veces. Es un argumento que físicos y matemáticos pasaron por alto completamente cuando crearon esas fantasías de un universo rebosante de vida alienígena. Y es un argumento demoledor. Si la vida fuera algo de aparición tan común, en la Tierra lo veríamos casi a diario. Según lo dicho arriba, sería una especie de mecanismo naturalmente programado. En el fondo, lo que defiende la idea de la vida como fenómeno inevitable es una especie de generación espontánea. Pero entonces no tendría ningún sentido biológico que este fuera un proceso autolimitado a una vez por planeta a lo largo de toda su historia de miles de millones de años. Se mire como se mire, se llega a una reducción al absurdo.

Lo que hace Longrich en su artículo es aplicar la misma línea de razonamiento a otros pasos críticos para conducir desde la aparición de la vida, una célula simple, a algo tan complejo como nosotros. Por supuesto, con una célula sencilla no acaba el problema: hay otros muchos complicados procesos que tienen que darse para llevar a la vida inteligente. Y para cada uno de esos pasos, se pregunta Longrich, ¿existe una segunda ocasión en que se haya repetido?

Longrich da cuenta de cómo, en efecto, en muchos casos la evolución ha repetido sus soluciones en distintos linajes de la vida. El ejemplo más típico es el de las alas: las aves vuelan, pero también los insectos y los murciélagos. En todos estos casos las alas aparecieron de forma independiente en distintas líneas evolutivas. Es lo que llamamos evolución convergente. Otro ejemplo son los ojos, que surgieron de modo separado en los vertebrados y en diferentes líneas de invertebrados como los artrópodos, las medusas o los moluscos.

Entonces la pregunta es: ¿ha ocurrido esto mismo en ciertos pasos críticos, como semáforos de la evolución que deben superarse en el camino desde la célula simple a la vida inteligente? De ser así, dice Longrich, la aparición de vida compleja inteligente no solo sería probable, sino casi inevitable.

Pero la respuesta, oh sorpresa, es que no es así: no solo la propia aparición de la vida, sino también la célula eucariota, los seres multicelulares, la reproducción sexual, la fotosíntesis, el esqueleto, y por supuesto la inteligencia, todo ello apareció en la evolución solo una única vez. Según Longrich, “la convergencia parece ser la norma, y nuestra evolución parece probable. Pero cuando buscas la no convergencia, está por todas partes, y las adaptaciones críticas complejas parecen ser las menos repetidas, y por tanto improbables”.

“Estas innovaciones únicas, golpes de suerte críticos, pueden crear una cadena de cuellos de botella evolutivos o filtros”, escribe Longrich. “Si es así, nuestra evolución no fue como ganar la lotería. Fue como ganar la lotería una vez, y otra, y otra, y otra. En otros mundos, estas adaptaciones críticas pueden haber evolucionado demasiado tarde para que emergiera la inteligencia antes de que sus soles hayan degenerado, o no haber evolucionado nunca”.

Longrich hace unos números rápidos: si la aparición de vida inteligente depende, por ejemplo, de siete de estos semáforos evolutivos críticos, cada uno de ellos con un 1% de posibilidades de ponerse en verde (lo cual sería infinitamente mayor de lo que nos muestra el experimento natural de la Tierra), entonces la inteligencia ocurre en uno de cada cien billones de mundos habitables; 100.000.000.000.000. Y, continúa Longrich, “si los mundos habitables son raros, entonces podríamos ser la única vida inteligente en la galaxia, o incluso en todo el universo visible”.

Y lo cierto es que sí, los mundos habitables parecen ser raros. En los últimos años, los científicos planetarios parecen estar asumiendo con perplejidad una evidencia inesperada: hasta ahora y de más de 4.000 exoplanetas conocidos, no hay ni uno solo similar a la Tierra. En un reportaje reciente, el científico planetario Edward Schwieterman, de la Universidad de California en Riverside y el Instituto de Astrobiología de la NASA, me decía: “No debería sorprendernos si las condiciones exactas que encontramos hoy en la Tierra resultan ser raras”.

Así que, antes de caer en ese pensamiento simple de que la vida debe de estar por todas partes, escuchen a la biología; que si de algo sabe, es de vida.

Protección planetaria, la política que impide buscar vida en otros mundos

Es curioso que, siendo la búsqueda de vida alienígena uno de los objetivos que cualquiera esperaría de las misiones espaciales, en realidad nunca ha sido así. Como conté ayer aquí, solo ha existido una misión destinada a buscar vida fuera de la Tierra: las dos sondas gemelas Viking de la NASA que exploraron Marte en 1976. De hecho, la búsqueda de vida alienígena no figura como un objetivo específico de la NASA.

Lo cierto es que confirmar la existencia de vida extraterrestre, incluso en el propio Sistema Solar, no es algo sencillo. Si alguna lección enseñaron las Viking, es precisamente la dificultad de diseñar experimentos de detección de vida que lleguen a resultados concluyentes. Pero también es evidente que, si se hubiera continuado en la línea abierta por aquella misión, probablemente se habría perfeccionado la tecnología necesaria. En la época de las Viking aún estaban naciendo las tecnologías de ADN, pero hoy la extracción, amplificación y secuenciación de ADN de microbios son técnicas de uso común.

Por algún motivo, durante décadas la biología ha sido la gran olvidada de las misiones espaciales, dominadas por otras ramas científicas como la astrofísica y las ciencias planetarias. Pero las cosas están cambiando. Hace un año, un informe de las Academias Nacionales de Ciencia, Ingeniería y Medicina de EEUU recomendaba a la NASA “expandir la búsqueda de vida en el universo y hacer de la astrobiología una parte integral de sus misiones”, haciendo notar que hasta entonces las misiones interplanetarias habían estado dominadas por la geología y habían dejado de lado la biología.

Pero existe, además, otro gran impedimento para buscar vida en otros mundos del Sistema Solar. Y no es científico, sino político: la protección planetaria. Por este nombre se conocen las directrices nacidas del Tratado del Espacio Exterior de 1967, y que las agencias espaciales establecen con el fin de evitar que las sondas puedan contaminar otros mundos con microbios terrestres. Entre estas directrices, la NASA incluye la norma de evitar los lugares de Marte más propicios para la vida, que podrían contaminarse con más facilidad. Claro que, si se evitan los lugares más propicios para la vida, ¿cómo va a ser posible encontrar vida?

Autorretrato del rover Curiosity en Marte, tomado en enero de 2018. La imagen es un mosaico de docenas de fotografías con distintos ángulos, lo que permite borrar el propio brazo de la cámara. Imagen de NASA/JPL-Caltech/MSSS.

Autorretrato del rover Curiosity en Marte, tomado en enero de 2018. La imagen es un mosaico de docenas de fotografías con distintos ángulos, lo que permite borrar el propio brazo de la cámara. Imagen de NASA/JPL-Caltech/MSSS.

Con esto ya puede intuirse que la protección planetaria es un asunto debatible y controvertido. Hoy las posturas oficiales, como la política de protección planetaria de la NASA, se sitúan del lado del hiperproteccionismo; es decir, tratar los presuntos hábitats extraterrestres –dando por hecho que existen– con un escrúpulo infinitamente mayor del que se aplicaría al más frágil de los ecosistemas terrestres. Aquí, en casa, los espacios naturales protegidos pueden cerrarse al público si se consideran especialmente vulnerables, pero ¿cómo iba a trabajar la ciencia en favor de su conservación si se la dejara fuera?

Un ejemplo de esta postura extrema es un artículo recientemente publicado por la científica planetaria Monica Grady, a propósito de la sonda israelí Beresheet que el pasado abril se estrelló contra la Luna. Beresheet llevaba una carga de tardígrados, popularmente llamados osos de agua; bichitos microscópicos capaces de sobrevivir en el espacio en una especie de estado de latencia. Grady admitía que probablemente estos animalitos no van a vivir por mucho tiempo en la Luna, pero planteaba la cuestión: ¿y si hubiera sido Marte en lugar de la Luna? “Tenemos la responsabilidad de mantener Marte lo más prístino posible”, escribía la científica.

Esta opinión parece abundar entre los científicos planetarios. En mayo el investigador del Planetary Science Institute Steve Clifford decía a la revista Discover: “En nuestra búsqueda de vida, podríamos ser responsables de la extinción de la primera biosfera alienígena que detectáramos”. En el mismo artículo, la geóloga marciana Tanya Harrison se preguntaba: “Qué ocurriría si dañáramos el mayor descubrimiento de la historia?”.

En el extremo opuesto se sitúan los defensores de la terraformación de Marte: convertir el planeta vecino en un lugar habitable para los humanos, lo que implica modificar profundamente cualquier hábitat nativo que pudiera existir allí. La idea, explorada a menudo por la ciencia ficción, tiene también sus partidarios en la vida real. Este mes, un artículo publicado por tres científicos en la revista FEMS Microbiology Ecology sostiene que “la introducción de microbios [terrestres en otros mundos] no debería considerarse accidental, sino inevitable”, y que la previsible expansión del ser humano a otros mundos aconseja un control sobre este proceso para sembrar microbios beneficiosos, por lo que los investigadores proponen “un programa riguroso para desarrollar y explorar protocolos proactivos de inoculación”.

La diferencia de enfoque está clara: tanto el primer firmante de este artículo, Jose V. Lopez de la Nova Southeastern University de Florida, como sus dos coautores, son biólogos. Obviamente, no es que la biología en pleno vaya a situarse en este lado del debate ni a defender una opción tan radical como la terraformación. Pero sí es cierto que el principio de precaución maximalista esgrimido tradicionalmente por los científicos planetarios ha prescindido de lo que la biología puede aportar al respecto. Y cuando se pregunta a los biólogos, ocurren cosas como esta: el genetista de Harvard Gary Ruvkun decía al Washington Post que la idea de que los microbios residuales que quedan en las sondas esterilizadas vayan a colonizar otro planeta es “de risa, como de los años 50”.

Ruvkun fue precisamente uno de los autores de un informe de las Academias Nacionales de Ciencias, Ingeniería y Medicina de EEUU que el pasado año instaba a la NASA a revisar y actualizar sus políticas de protección planetaria. En respuesta a esta petición de las Academias, la NASA creó un comité para revisar sus directrices. El comité lo dirige un científico planetario, Alan Stern, investigador principal de la misión New Horizons que exploró Plutón; pero por fin entre sus doce miembros se incluyen dos biólogos.

El comité acaba de publicar ahora un documento con sus conclusiones, que recomiendan actualizar la política de protección planetaria de la NASA –e involucrar en ella a los nuevos operadores espaciales privados– teniendo en cuenta el panorama actual y futuro de la exploración espacial, que vaticina un tráfico más intenso de materiales, aparatos y personas entre la Tierra y otros mundos.

Básicamente, el informe recomienda que las políticas se adecúen de forma más flexible a cada situación concreta, y no con el actual criterio de máxima restricción. Por ejemplo, en el caso de Marte se aconseja separar las zonas de exploración humana, donde inevitablemente se introduciría más contaminación, de aquellas de interés astrobiológico, donde debería limitarse la presencia humana y operar mediante sondas robóticas. En cualquier caso, el informe reconoce que la invasión de Marte por microbios terrestres es algo muy improbable.

Lo mismo se aplica a los mundos oceánicos, como Encélado, Europa o Titán, para los que hay misiones planificadas en los próximos años y para los cuales actualmente se exige un nivel de esterilización de las sondas que el informe reconoce como “anacrónico y a veces poco realista” e “innecesariamente conservador”.

En resumen, parece que se avecinan nuevos y buenos tiempos para la astrobiología. O, como mínimo, tiempos en que los astrobiólogos van a tener un papel más relevante en el diseño de las misiones espaciales. Ya se sabe que las cosas de palacio van despacio, y conviene recordar que por el momento no existe ni una sola misión planificada cuyo objetivo directo sea la búsqueda de formas de vida alienígena. Pero para quienes ahora empiecen a estudiar biología o vayan a hacerlo en los próximos años, podría ser la oportunidad, quién sabe, de participar en el mayor descubrimiento científico de la historia.

El día que más cerca estuvimos de hallar vida en Marte

El 30 de julio de 1976 se encontró vida en Marte. O, al menos, eso es lo que lleva defendiendo desde hace 22 años Gilbert Levin, ingeniero responsable de uno de los experimentos de la única misión en la historia de la exploración espacial que ha buscado vida en otro mundo: las dos sondas gemelas Viking 1 y 2, que se posaron en dos lugares de Marte distantes entre sí más de 6.000 kilómetros para responder a la vieja incógnita de si existe algo vivo en el que entonces se creía el segundo mundo más propicio del Sistema Solar para la vida.

Sobre la misión Viking ya he hablado aquí en varias ocasiones. Para la biología es una referencia única, ya que, no está de más repetirlo, a continuación sigue la lista de todas las misiones lanzadas al espacio en busca de vida.

1. Viking.

Y ya. Y por el momento no hay ninguna otra prevista para buscar vida in situ. Así que, quienes se quejan del dinero gastado en la búsqueda de alienígenas, y no empleado para otros fines más urgentes aquí en la Tierra, pueden estar tranquilos: el ser humano no está gastando ni, que esté previsto, va a gastar un solo céntimo en tratar de comprender por vías racionales quiénes somos en el universo; eso sí, seguirá dedicando ingentes cantidades de riqueza a tratar de averiguarlo por vías espirituales, esotéricas y mágicas.

Imagen de la sonda Viking 1 en Marte. Imagen de Roel van der Hoorn / NASA / JPL / Wikipedia.

Imagen de la sonda Viking 1 en Marte. Imagen de Roel van der Hoorn / NASA / JPL / Wikipedia.

Viking fue el producto de un momento de mucha euforia y poco dinero. Tras el éxito de la conquista de la Luna se diseñó un programa llamado Voyager (no relacionado con las dos sondas del mismo nombre que exploran el espacio profundo) cuyo objetivo era enviar aparatos a Marte en los años 70 para preparar el terreno a las misiones tripuladas en los 80. Voyager fue una de las víctimas del brutal hachazo a los presupuestos de la NASA que causó la cancelación del programa Apolo. Y aunque la posibilidad de enviar astronautas a Marte se esfumó por completo, Viking fue una versión más modesta y barata que recuperaba los objetivos científicos de Voyager.

Entre esos objetivos, había uno por encima de todos los demás: buscar vida. También esto era un producto de la euforia del momento: entre los años 60 y 70, había que ser realmente un descreído incurable para pensar que no había vida en otros mundos. La misión Viking iba a por todas, con una serie de instrumentos de la última tecnología de la época, destinados a esclarecer a la primera si había algo vivo en Marte.

Y sí, lo había. Eso fue lo que encontraron Levin y el resto de científicos del experimento de emisión marcada (Labeled Release, LR): las dos Viking, en enclaves muy alejados entre sí, detectaron presunta actividad microbiana.

El LR era muy sencillo en su idea, muy complejo para llevarla a la práctica en un aparato situado en otro planeta que debía funcionar por sí solo. En 1952, Levin había inventado un método para detectar contaminación microbiana en el agua y en los alimentos, que se basaba en el famoso experimento con el que Louis Pasteur refutó la generación espontánea.

Pasteur demostró cómo la entrada de microbios al interior de un matraz podía demostrarse por el efecto de su actividad sobre un caldo de cultivo, y cómo la esterilización por calor eliminaba dicha actividad. De igual modo, el método de Levin consistía en dar alimento a los posibles microbios marcianos y medir después la presencia de compuestos resultantes de ese metabolismo. En el caso del LR, el carbono suministrado era radiactivo con el fin de poder detectarlo (los isótopos radiactivos son un marcaje muy habitual en los experimentos biológicos, porque pitan) si las muestras de suelo marciano emitían CO2, el producto de desecho común en los seres vivos.

Fue aquel 30 de julio cuando Levin y sus colaboradores recibieron los primeros resultados de las Viking, y eran positivos. Había algo en Marte que estaba consumiendo los nutrientes y produciendo CO2. Los resultados aguantaron todos los controles incluidos en el experimento y las pruebas adicionales del sistema realizadas en la Tierra.

La primera imagen tomada en la superficie de Marte, por la sonda Viking 1 el 20 de julio de 1976. Imagen de NASA/JPL.

La primera imagen tomada en la superficie de Marte, por la sonda Viking 1 el 20 de julio de 1976. Imagen de NASA/JPL.

Entonces, ¿caso cerrado? Por desgracia, no. Otro experimento de las Viking encargado de detectar moléculas orgánicas, las que forman todos los seres vivos conocidos, dio resultado negativo, lo que finalmente llevó a la NASA a concluir que los datos del LR eran solo un falso positivo. Pero después de años manteniendo una posición cauta, en 1997 Levin presentó su conclusión definitiva: las Viking habían encontrado vida en Marte.

Desde entonces, Levin ha continuado defendiendo su hipótesis a través de las décadas. Curiosamente, misiones posteriores con aparatos más sensibles han podido confirmar que sí existen moléculas orgánicas en Marte, lo que elimina la objeción por la que en su día se rechazaron los resultados del LR. Pero ¿por qué, a pesar de esto, las conclusiones de Levin no se han aceptado como válidas?

La respuesta está en que, tratándose de una proclama tan extraordinaria, las pruebas deben ser también extraordinarias. Un experimento LR en la Tierra requeriría demostraciones menos exigentes, dado que la existencia de vida aquí es algo sobradamente probado. Pero para admitir que las Viking encontraron vida, antes deberían descartarse por completo y de forma inequívoca todas las hipótesis alternativas; es decir, que la reacción del carbono observada en el LR no se debió a algún proceso puramente químico o geológico en lugar de bioquímico o biológico.

Esto habría podido hacerse si se hubiera seguido trabajando para profundizar en la misma línea, pero no se hizo. Es curioso cómo la línea posterior la ha marcado no un experimento exitoso, sino uno fallido: si las Viking no hubieran fracasado en la detección de las moléculas orgánicas que de hecho sí existen en Marte, es probable que después de aquella misión se hubiera continuado tratando de confirmar la presencia de vida.

Este mes, Levin ha vuelto a la carga, publicando en Scientific American (una revista popular de ciencia, pero no una revista científica) un artículo en el que continúa defendiendo su hipótesis de que las Viking hallaron vida en Marte. Levin recuerda sus resultados, y con mucho acierto escribe: «Inexplicablemente, más de 43 años después de las Viking, ninguna de las sondas posteriores que la NASA ha posado en Marte ha llevado un instrumento de detección de vida para profundizar en estos emocionantes resultados. En su lugar, la agencia ha lanzado una serie de misiones a Marte para determinar si alguna vez existió un hábitat adecuado para la vida, y de ser así, finalmente traer muestras a la Tierra para su examen biológico».

Es decir, rescatando un símil que ya he utilizado aquí, es como analizar si en una casa hay mascotas viendo si existe algún rastro de que hay o hubo en algún momento una caseta de perro, una cama de gato o una jaula de hámster, y buscando en los armarios de la cocina para saber si hay comida de perros, gatos o hámsters, en lugar de mirar directamente si en la casa hay un perro, un gato o un hámster.

También hay que decir que no todos los argumentos de Levin son impecablemente rigurosos. Entre los muchos indicios adicionales que aporta a favor de la vida en Marte, menciona alguno un poco exótico: una imagen tomada por el rover Curiosity, dice, mostraba una formación similar a un gusano. Otras imágenes, añade, parecen mostrar líquenes o estromatolitos (tapetes de microbios fosilizados). Pero aparte del hecho de que pensar que en Marte existen no ya microbios, sino gusanos o líquenes, es algo que muchos no vamos a creernos a no ser que nos los restriguen por la cara, esto no favorece precisamente su tesis; la pareidolia ha sido el argumento tradicional de multitud de ideas pseudocientíficas. Y dejando de lado el clásico de Jesús en la tostada, en Marte ya hemos tenido nuestra buena ración de fotos de caras, bichos, hombrecillos, lagartos e incluso elefantes.

Pareidolia: la imagen de un elefante en la región marciana de Elysium Planitia. Imagen de NASA/JPL/University of Arizona.

Pareidolia: la imagen de un elefante en la región marciana de Elysium Planitia. Imagen de NASA/JPL/University of Arizona.

Por último, Levin añade que en 43 años ningún experimento o teoría ha proporcionado una explicación definitiva no biológica de los resultados del LR. Pero también aquí el autor está cayendo en un argumento popular, pero no científico: es la explicación biológica la que debe probarse.

Pero sí hace notar una gran contradicción, y es que «la NASA mantiene la búsqueda de vida alienígena entre sus prioridades más altas», y a pesar de ello, no hace nada al respecto. Levin cuenta un detalle interesante, y es que propuso a la NASA un experimento para el rover Mars 2020, la próxima misión marciana que se lanzará el año próximo.

La idea de Levin era un instrumento basado en el LR que fuera capaz de detectar la quiralidad de las moléculas. La quiralidad es lo que tienen los guantes: un guante derecho no se transforma en un guante izquierdo cuando lo giramos, porque está fabricado con una quiralidad concreta. Lo mismo sucede con las moléculas de los seres vivos, ya que las enzimas, los catalizadores de los procesos biológicos, utilizan y producen moléculas con una quiralidad concreta, izquierda o derecha.

Si los resultados del LR se debieron a un proceso puramente químico geológico, la quiralidad debería ser arbitraria: se encontrarían tantas moléculas a derechas como a izquierdas. Por el contrario, si se encontrara una quiralidad preferente, sin duda sería una prueba de que hay enzimas implicadas, y que por lo tanto es un proceso biológico. Pero si Levin presentó un proyecto formal, en cualquier caso la NASA no lo seleccionó, porque la carga de instrumentos del Mars 2020 ya está definida y no incluye ningún instrumento biológico.

Pero ¿por qué la NASA no busca vida alienígena, si se supone que es uno de sus objetivos prioritarios? Mañana lo explicaremos.

¿Y si no hay nadie más en el universo?

Hace unos días escuché a un tertuliano de radio decir que tal asunto a tal político le interesaba tanto como el ciclo de reproducción del pingüino. Es curioso con qué frecuencia se utilizan ejemplos de la biología, y no por ejemplo de la pintura flamenca o del baloncesto, para denotar las cosas que, al parecer, no deben interesar a ninguna persona interesada en las cosas que deben interesar a todo el mundo; el ciclo de reproducción del pingüino, la cría del mejillón, el ritual de apareamiento del cangrejo australiano…

Y es curioso, porque ni la pintura flamenca ni el baloncesto pueden responder a preguntas verdaderamente trascendentales para la humanidad; mientras que, la biología, sí.

Por ejemplo: ¿estamos solos en el universo? Es una pregunta puramente biológica, a pesar de que los primeros en interesarse científicamente por esta cuestión fueron físicos y matemáticos. Quienes, por cierto, dieron por hecho que la respuesta era “no”, creyendo que la astrofísica y las conjeturas matemáticas bastaban para responder a la pregunta.

¿Un universo vacío? Imagen del telescopio espacial Hubble / Wikipedia.

¿Un universo vacío? Imagen del telescopio espacial Hubble / Wikipedia.

Tratando de ser lo más ecuánime posible, no se me ocurre ninguna otra pregunta más trascendental que esta, exceptuando una: ¿existe (lo que suele llamarse) Dios, o algo más allá de la muerte? Pero dado que esto, en el fondo, pasa por la posibilidad de que pueda existir algún tipo o forma de vida no biológica, llámese como se llame, resulta que volvemos a rozar la biología sin pasar ni de lejos por la pintura flamenca ni por el baloncesto.

Y sí, aunque pueda no parecerlo, esto incluye también el conocimiento del ritual de apareamiento del cangrejo australiano, dado que puede desvelar pistas sobre cómo funciona la evolución, y por tanto la biología terrestre, y por tanto la biología en general, incluyendo la de otros lugares del universo, que debe regirse por las mismas reglas que aquí.

Es difícil aventurar si el descubrimiento de que existe vida en otros lugares cambiaría mucho o poco nuestro mundo. Obviamente, el impacto social sería mucho mayor si se hallara otra civilización inteligente que si solo se encontraran formas de vida simple. Pero incluso teniendo en cuenta que muchos estarán en su perfecto derecho de declarar que les importa tres pimientos la existencia de vida alienígena, con los problemas que ya tenemos en la Tierra y blablablá, el hecho de que parezcan ser mayoría quienes creen en la vida alienígena es un buen motivo para intentar, al menos, presentar la ciencia que revele si esa creencia tiene algún fundamento real.

Y la respuesta es que no; al menos con lo que sabemos hasta ahora, no hay ningún motivo de peso, más allá de la conjetura puramente teórica, para pensar que pueda existir vida en algún otro lugar del universo. Al menos, vida compleja, autoconsciente, tecnológica… Vida como nosotros, casi como nosotros, o muy superior a nosotros. No tenemos ninguna evidencia de ello, y el conocimiento solo puede agarrarse a las evidencias.

Pese a todo, resulta chocante que esta sea la única creencia en el universo de las pseudociencias que un científico puede abrazar y defender sin poner en riesgo su reputación. De hecho, en algunos casos ha servido para construirla o reforzarla: Carl Sagan, Frank Drake, Paul Davis, Seth Shostak, Freeman Dyson…

Sin embargo, en estos años del siglo XXI, algo nuevo está ocurriendo: cada vez es más visible entre los científicos, y puede que más abundante, la idea de que en realidad podríamos estar solos en el universo actual.

(Nota: entiéndase “actual” en sentido einsteniano; es decir, que no existe nadie cuyas señales podamos recibir, o que pueda recibir las nuestras, en el breve periodo de la historia del universo en el que el ser humano existe y existirá. Lo cual no quiere decir que no pueda existir dentro de mucho tiempo en una galaxia muy, muy lejana.)

¿Por qué este cambio? A riesgo de equivocarme, me atrevería a aventurar dos razones: por una parte, la paradoja de Fermi (tanta gente por ahí y nosotros aquí solos) ya empieza a cansar, y hay quienes creen que, atendiendo a la navaja de Ockham, o al sentido común, quizá no haya tal paradoja, sino que sencillamente no haya tales millones de civilizaciones por ahí desperdigadas.

En segundo lugar, los biólogos han irrumpido en el debate. Por supuesto que no hay razón para pensar que el biólogo medio descarte la existencia de vida alienígena, ni muchísimo menos. Es más, la fusión entre biología y vida alienígena ha creado una nueva ciencia, la astrobiología. Pero aunque esta disciplina aporta valiosísimas investigaciones sobre el origen de la vida terrestre y sus límites, probablemente no pocos astrobiólogos lamentan en silencio la posibilidad, cada vez más cercana, de morir sin llegar a ver descubierto el objetivo último de su trabajo. Y por el contrario, haber biólogos que con la biología en la mano no se creen el cuento de los aliens, haylos. Y lo dicen.

Pero no se trata solo de biólogos. Como ejemplo, hoy les traigo un estudio elaborado el año pasado por tres investigadores de la Universidad de Oxford. Aunque los autores anunciaron que lo habían enviado a la revista Proceedings of the Royal Society, hasta donde sé aún no se ha publicado formalmente, pero al fin y al cabo se trata de una aportación teórica especulativa.

Primero, el perfil de los autores: el sueco Anders Sandberg es un transhumanista, neurocientífico computacional de formación; el estadounidense Eric Drexler es ingeniero nanotecnólogo; y el australiano Toby Ord es filósofo ético, interesado sobre todo en la erradicación de la pobreza en el mundo.

Es decir, que a primera vista no hay motivos para pensar que los autores se agarren a argumentos biológicos terracéntricos y reduccionistas (una acusación frecuente) con el fin predeterminado de negar la existencia de vida alienígena. Por el contrario, el trabajo de los autores consiste en revisitar la famosa ecuación de Frank Drake, esa que durante décadas se ha esgrimido para defender que nuestra galaxia debería albergar miles o millones de civilizaciones.

Así, Sandberg, Drexler y Ord escriben que la ecuación de Drake “implícitamente asume certezas respecto a parámetros altamente inciertos”. Para solventar estas incertidumbres, los autores han construido un modelo que incorpora los recorridos químicos y genéticos en el origen de la vida –es decir, la biología–, teniendo en cuenta que “el conocimiento científico actual corresponde a incertidumbres que abarcan múltiples órdenes de magnitud”.

Y este es el resultado: “Cuando el modelo se recompone para representar las distribuciones de incertidumbre de forma realista, encontramos una probabilidad sustancial de que no haya otra vida inteligente en nuestro universo observable”. En concreto, estas son las cifras a las que llegan los autores: entre un 53 y un 99,6% de que no haya nadie más en la galaxia, y entre un 39 y un 85% de que estemos completamente solos en el universo observable.

“Este resultado disuelve la paradoja de Fermi”, escriben. En una presentación de su trabajo disponible en la web, tachan la palabra “paradoja” y la sustituyen por “pregunta”. “¿Dónde están?”, es la pregunta. Y esta es su respuesta: “Probablemente, extremadamente lejos, y muy posiblemente más allá del horizonte cosmológico y eternamente inalcanzables”.

¿Vida inteligente más allá del horizonte cosmológico? ¿Eternamente inalcanzable y, por tanto, incognoscible para nosotros? ¿A qué recuerda esta descripción? Inevitablemente, llega un punto en el que hablar de vida alienígena inteligente llega a ser algo bastante parecido a hablar de… Dios. O a ver si no qué era el 2001 de Arthur C. Clarke.

¿Otra vida (alienígena) es posible? 3: Seres sin agua

Una de las maneras más frecuentes de imaginar otros seres vivos radicalmente diferentes a los terrestres es sustituir el agua por otro líquido que supla sus funciones. Dado que absolutamente toda la vida en la Tierra depende del agua como solvente universal, medio de las reacciones químicas e ingrediente del metabolismo, una criatura que empleara otro líquido alternativo demostraría que puede existir vida “tal como no la conocemos”. Es difícil imaginar de forma científicamente realista nada más alejado de nuestro concepto de vida que un ser capaz de reemplazar el agua por otra sustancia.

Pero ¿es posible? El resumen es este: parece generalmente aceptado que, en las condiciones que solemos entender como habitables, las rarísimas propiedades del agua –que ahora veremos– la convierten en una sustancia insustituible; cualquier otra opción, como decíamos en el caso del silicio frente al carbono, supondría aceptar que la naturaleza es lo suficientemente caprichosa para elegir una opción peor existiendo una mejor, y no es así como funciona. Sin embargo, otros líquidos podrían tal vez servir en condiciones extremas muy distintas de las terrestres. Aunque otra cuestión mucho más dudosa es si podrían sostener formas de vida más compleja que una célula simple.

Ilustración artística de la superficie de Titán. Imagen de Kevin Gill / Wikipedia.

Ilustración artística de la superficie de Titán. Imagen de Kevin Gill / Wikipedia.

Comencemos por el agua: estamos tan acostumbrados a ella que nada de lo que hace nos parece raro. Y sin embargo, si uno cogiera la tabla periódica y tratara de predecir las propiedades del agua a partir de las de sus átomos, se equivocaría por completo. De hecho, el comportamiento del agua es tan extraño que los investigadores aún tratan de comprender por qué actúa de manera tan distinta a lo que se esperaría de su composición química.

Quizá lo más llamativo respecto al agua es que la vida en la Tierra no existiría de no ser por una rarísima propiedad que vemos a diario y a la que no damos ninguna importancia: que el hielo flote. En la naturaleza, todas las sustancias se dilatan al calentarse y se contraen al enfriarse. También el agua; si comenzamos a enfriar agua caliente, observaremos que se contrae. Pero al llegar a los 4 ºC ocurre algo insólito: de repente, empieza a dilatarse, como sabe todo el que alguna vez ha olvidado una botella llena en el congelador. Al congelarse, aumenta de volumen y por tanto se reduce su densidad, motivo por el cual el hielo flota.

Pero ¿qué sucedería si no fuera así? Si, como ocurre con el resto de sustancias, el hielo se hundiera, se formaría más hielo en la superficie que también caería hacia las profundidades. A su vez, el hielo del fondo iría creciendo, hasta que finalmente los océanos quedarían convertidos en un bloque sólido. Ni siquiera el calor de la superficie bastaría para mantener una suficiente provisión de agua líquida en el planeta. No se trata solo de la necesidad de agua para beber: los océanos mantienen el planeta habitable gracias a su inercia térmica, las corrientes que moderan el clima, el efecto invernadero que depende de la propia vida y de los ciclos geológicos sustentados por los mares… Sin todo esto, la Tierra hoy sería un planeta deshabitado, o poblado como mucho por algunos microorganismos simples.

No es la única de las propiedades raras del agua: si el H2O siguiera la pauta normal de compuestos similares con los demás elementos que acompañan al oxígeno en su grupo de la tabla periódica, azufre (H2S), selenio (H2Se) y teluro (H2Te), el agua debería hervir a unos 80 ºC bajo cero y congelarse a -100 ºC. Pero a estas temperaturas serían imposibles, o como mínimo extremadamente lentas, todas las reacciones químicas de las que dependen los procesos metabólicos.

Por suerte para nosotros, no es así. A la presión atmosférica terrestre, el agua se mantiene en estado líquido entre los 0 y los 100 ºC, una franja de temperaturas que no solo es anormalmente ancha, sino que está completamente desplazada respecto a lo que se esperaría de su composición química. Y gracias a ello existe la vida terrestre. Es más, las propiedades anormales del agua solo se manifiestan precisamente en la banda de temperaturas que permiten la única vida que conocemos, lo que no invita precisamente a pensar que este líquido sea solo una de las muchas opciones posibles.

Pero aunque en las condiciones que llamamos habitables no existe otra sustancia líquida que iguale las ventajas del agua, los científicos han especulado con posibles sustitutos en entornos mucho más extremos, en los que la vida basada en el agua sería imposible. El amoniaco (NH3), los hidrocarburos como el metano (CH4), el fluoruro de hidrógeno (HF), el sulfuro de hidrógeno (H2S) o el ácido sulfúrico (H2SO4) son, entre otros, algunos de los compuestos que se han propuesto como posibles alternativas en condiciones muy diferentes a las terrestres.

De entre estas posibilidades, hay una de especial interés. Mientras que en los demás casos se trata de puras especulaciones teóricas que nunca van a poder comprobarse, dado que no se aplican a los mundos a nuestro alcance, para los hidrocarburos simples como el metano y el etano existe un experimento natural relativamente cercano en el que estudiar si puede haber surgido una bioquímica alternativa: Titán.

Ilustración artística de la superficie de Titán. Imagen de NASA / JPL.

Ilustración artística de la superficie de Titán. Imagen de NASA / JPL.

Esta luna de Saturno no solo posee una atmósfera densa y abundancia de materia orgánica, sino que también es el único mundo del Sistema Solar, además de la Tierra, con líquido en su superficie. A las temperaturas gélidas de Titán, el metano y el etano se mantienen en forma líquida, llenando lagos y mares. Bajo la superficie se cree que pueden existir agua y amonio en forma líquida a altas presiones.

Las condiciones de Titán podrían ser propicias para la existencia de bacterias metanógenas independientes del oxígeno y el agua. Así, si la naturaleza pudiera crear vida basada en una bioquímica muy diferente de la terrestre, Titán debería confirmarlo. Por el contrario y si Titán no fuera más que una sopa yerma de nutrientes, o bien sus microbios fueran como los metanógenos terrestres, que emplean oxígeno en forma de CO2 y producen agua, la posibilidad de una bioquímica no acuática no quedaría descartada, pero sí perdería mucha de su credibilidad.

Vale la pena mencionar que una biología basada en los hidrocarburos como solventes es algo mucho más complicado de lo que podría parecer a simple vista. Como con los cubitos de hielo, hay otro fenómeno cotidiano al que no damos importancia, pero que también es esencial para la vida terrestre: la separación del agua y el aceite. Gracias a esta propiedad química pueden existir las células, ya que el agua interior y el agua exterior quedan separadas por una barrera de aceite, la membrana celular.

Pero los hidrocarburos son aceite, así que en este caso debería darse la situación inversa. En un mundo aceitoso en lugar de acuoso, las células deberían poseer una membrana formada por alguna sustancia soluble en agua, pero con la suficiente consistencia como para mantener una barrera estable. Se han aportado modelos teóricos de esto, por ejemplo, basados en un compuesto orgánico polar (soluble en agua) llamado acrilonitrilo que, de hecho, existe en Titán.

Incluso en el caso de Titán, se asume que el carbono sería el bloque fundamental de los seres vivos. Como expliqué ayer, la sustitución de este elemento por otro diferente para construir vida exótica es algo que plantea muy serias objeciones. Algunos científicos como Carl Sagan han concedido la posibilidad de la vida no basada en el agua, pero en cambio han sido mucho más escépticos a la hora de considerar un sustituto para el carbono.

Y dado que las condiciones ambientales ideales para la bioquímica del carbono coinciden con las de la bioquímica del agua, esto nos lleva a una conclusión. En estas condiciones, no hay un reemplazo adecuado para el agua. Y aunque la bioquímica del carbono podría tal vez seguir un camino hipotético con solventes distintos al agua en condiciones extremas, se trata una vez más de un sendero tan tortuoso que difícilmente podría engendrar nada más sofisticado que células simples, sin la organización en estructuras diferenciadas que permite la evolución de vida compleja. Si algo sabemos con seguridad, es que en la superficie de Titán no se aprecia vida macroscópica; no hay vegetación.

No es que la posibilidad de microbios con una bioquímica alternativa carezca de interés; para la biología sería el hallazgo más importante de la historia. Puede merecer la pena buscar vida bacteriana en un lugar de nuestro entorno como Titán; por cierto, el único mundo del Sistema Solar exterior en el que se ha posado una sonda de fabricación humana. Pero en exoplanetas a años luz de distancia que jamás podremos visitar, nunca sabremos con certeza si existen microorganismos exóticos.

Por lo tanto y para el caso de los exoplanetas, restringir la calificación de “habitables” a los muy semejantes a la Tierra no es terracentrismo, sino lo único científicamente sensato. Solo en estos podría encontrarse eso de cuya existencia está convencida una gran parte de la población, los aliens. Que, si realmente existieran, muy probablemente serían bioquímicamente similares a nosotros, al menos en lo básico. Todo lo demás, pensar que puedan existir organismos superiores en unas condiciones ambientales radicalmente distintas a las terrestres, vida inteligente “tal como no la conocemos”, es solo fantasía para la ficción. O pseudociencia para la realidad.

¿Otra vida (alienígena) es posible? 2: La bioquímica alternativa

Según lo que expliqué ayer, cuando se dice que la vida alienígena podría ser muy diferente a la que conocemos aquí en la Tierra, sería conveniente matizar lo que esto no quiere decir: no quiere decir que cualquier cosa sea posible. Si la física es universal, la química es universal, y la biología deriva directamente de la física y la química, ¿bajo qué piedra lleva siglos escondida la presunta prueba de que, en cambio, la biología va por barrios?

Que nadie se adelante a señalar las extremas diferencias entre los organismos que pueblan los distintos barrios terrestres. Porque si algo nos enseñan las únicas pruebas de las que disponemos hasta ahora, las de nuestro propio planeta (que sepamos, el único habitado del universo), es precisamente que la biología tiende a una sorprendente uniformidad, incluso entre entornos tan radicalmente diversos como una selva amazónica y un desierto, o los hielos polares y los infiernos volcánicos.

Una forma de vida basada en el silicio en la serie Star Trek. Imagen de Paramount Television.

Una forma de vida basada en el silicio en la serie Star Trek. Imagen de Paramount Television.

Comencemos por recordar una vez más (que nunca sobra) que en este planeta tan extremadamente habitable, como demuestra el hecho de que está extremadamente habitado, la vida solo ha surgido una única vez –que sepamos– en más de 5.000 millones de años. Así que todos los seres terrícolas somos descendientes de un mismo ancestro, lo que en biología suele conocerse como LUCA (siglas de Last Universal Common Ancestor, o último ancestro universal común), un bicho unicelular que vivió probablemente hace algo menos de 4.500 millones de años.

La aparición de la vida una única vez, y la descendencia de todos los organismos terrestres de un tal LUCA, ya sugieren la idea de que la biología tiene ciertos raíles. Pero si observamos lo que la Tierra ha hecho de ella, descubrimos que existen claros patrones comunes conservados durante miles de millones de años. Todo el mundo ha escuchado alguna vez la enorme similitud genética entre, por ejemplo, los humanos y los chimpancés. Pero quizá no todo el mundo sabe que compartimos en torno a un 60% de nuestros genes con organismos tan distintos a nosotros como una mosca de la fruta o una platanera.

Es más, si nos vamos a organismos tan alejados entre sí como los humanos y las bacterias, descubrimos que también somos, en realidad, sorprendentemente parecidos. Un estudio de 2012 analizó las semejanzas de secuencias entre nuestras proteínas y las de 975 especies de bacterias. Comparar los proteomas (el catálogo de proteínas de una especie) en lugar de los genomas facilita la apreciación del grado de similitud entre especies tan distintas, ya que el genoma se organiza de distinta manera en procariotas (bacterias) y eucariotas (nosotros). Dado que las proteínas son el resultado directo del genoma y las moléculas que construyen tanto las estructuras como las funciones de los organismos, comparar las proteínas permite quitarse de encima esas diferencias de organización genómica que no afectan al producto final.

El estudio descubrió que, en general, menos de un 7% de los fragmentos proteicos de las bacterias no están presentes en el proteoma humano. O dicho al revés y más claro, que si se dividen las proteínas en trocitos cortos (de cuyas secuencias dependen sus funciones), más del 93% de este total de bloques proteicos de las bacterias también aparecen en las proteínas humanas.

Curiosamente, una bacteria tan distinta de nosotros como Thermus thermophilus, un bicho unicelular que crece alegremente en aguas termales a 65 ºC, tiene solo un 3,71% de sus fragmentos proteicos que no están presentes en el proteoma humano. Aunque el enfoque de este estudio no era el evolutivo, sino que se centraba en estudiar la relación entre las semejanzas proteómicas y la capacidad de una bacteria para provocar enfermedades y estimular el sistema inmune, los resultados revelan que somos más parecidos de lo que cabría pensar. Y por supuesto, en realidad ya lo sabíamos incluso sin estudios tan detallados: las bacterias y nosotros tenemos los mismos tipos de moléculas y el mismo funcionamiento molecular básico en nuestras células.

Ahora la pregunta es: ¿cómo de diferentes podrían ser estas moléculas y este funcionamiento molecular básico en otros seres que no desciendan de nuestro LUCA, surgidos en otros planetas con condiciones ambientales muy diversas? Es decir, ¿podrían existir otras bioquímicas alternativas a la terrestre?

La única respuesta cierta es que no lo sabemos. Pero se ha especulado mucho sobre ello. Y entre todas estas especulaciones destaca una sobre las demás: la bioquímica del silicio.

Al silicio se llega por el camino del razonamiento. La bioquímica es un Meccano (no el grupo, el juego de construcción hoy ya muy en desuso) basado en un tipo de pieza central capaz de unirse a la vez a otras cuatro, que pueden ser de diferentes clases, para formar polímeros (cadenas ramificadas de muchos). Estos enlaces deben ser fuertes y estables, pero al mismo tiempo lo suficientemente fáciles de romper, de modo que puedan almacenar energía y liberarla al romperse.

Lo anterior es un esquema básico imprescindible para la vida que difícilmente nadie se atrevería a cuestionar. Sea como sea cualquier forma de vida en el universo, por muy radicalmente diferente a nosotros, para ser una forma de vida deberá cumplir este principio universal. Como expliqué ayer, los seres chorreantes de energía pura o las piedras pensantes son fantasías interesantes para la ficción, pero fuera de las páginas de una novela o del marco de una pantalla caerían en el pozo de las pseudociencias.

En la Tierra, esta pieza básica central del Meccano bioquímico es el carbono, un elemento que cumple a la perfección el perfil ideal. Pero en principio podría haber otras opciones. Eso sí, debemos tener en cuenta que son limitadas: la química es universal; la tabla periódica es la lista de ingredientes del universo, y no hay más. No existe otra química. Por lo tanto, para buscar un sustituto hay que encontrarlo en esa tabla.

Lo más parecido que existe al carbono sin ser el carbono es el silicio. Es por ello que ha sido tradicionalmente el favorito de la ciencia ficción, y a su vez es por esto que muchas personas piensan que realmente el silicio podría ser una buena alternativa al carbono para la vida alienígena «tal como no la conocemos», radicalmente distinta a la terrestre. Y dado que en apariencia el silicio podría ser ventajoso en condiciones de calor extremo, en realidad nuestro concepto de lo que es un planeta habitable, con sus temperaturas moderadas, es solo una basura terracentrista…

Condiciones extremas para la vida en la Tierra: fuentes termales en el Parque Nacional de Yellowstone (EEUU). Imagen de Jim Peaco, National Park Service / Wikipedia.

Condiciones extremas para la vida en la Tierra: fuentes termales en el Parque Nacional de Yellowstone (EEUU). Imagen de Jim Peaco, National Park Service / Wikipedia.

Pero ¿es así? Cuando se analizan las propiedades del átomo de silicio y sus posibilidades de combinación, se descubre que tanto los enlaces que forma entre sí como con otros elementos son notablemente menos estables y robustos que los del carbono, lo que se debe a la configuración de los orbitales de electrones externos, responsables de la formación de dichos enlaces. El átomo de carbono está completo y estable compartiendo sus cuatro electrones externos, mientras que el de silicio no. Es más, las cadenas de silicio son inestables en agua. Es más, el silicio no forma fácilmente los enlaces dobles y triples con otro mismo átomo que son fundamentales en la bioquímica terrestre.

Es más, y por último, toda bioquímica se basa en una transferencia en cadena de la energía que da lugar a residuos, subproductos oxidados cuya energía se ha transferido a otras moléculas para construir partes de los organismos o desempeñar sus funciones. Dada la abundancia del oxígeno en el universo, estas reacciones se producen mediante la unión de los residuos a este elemento: los productos finales básicos de la quema de energía en los seres terrestres son dióxido de carbono (CO2) y agua (H2O). Se da la maravillosa circunstancia de que el CO2 es un gas en un rango amplísimo de condiciones ambientales, por lo que lo eliminamos fácilmente del organismo.

¿Qué ocurre con el silicio? Resulta que el SiO2, el equivalente del CO2, tiene para nosotros un nombre: cuarzo. Es sólido. Arena. Una piedra. Resulta muy difícil imaginar cómo un organismo podría manejarse produciendo constantemente residuos de cuarzo de los que tiene que deshacerse.

En resumen, elegir el silicio como alternativa al carbono es como dar el empleo al segundo mejor candidato. Y la naturaleza no entiende de enchufes. Hay un dato que quizá desconozcan muchos de quienes hablan de la vida basada en el silicio sin profundizar en los datos. Y es que si la naturaleza terrestre hubiera encontrado que el silicio era una verdadera alternativa al carbono, lo habría elegido en lugar de este, por una sencilla razón: en la Tierra, el silicio es unas 220 veces más abundante que el carbono. Y a pesar de ello, la vida escogió a este.

Lo cual no implica que el silicio sea irrelevante, ni muchísimo menos. Como uno de los elementos más abundantes en la Tierra y su corteza, es el soporte de gran parte de la geología terrestre, y a través de sus ciclos se regulan factores tan esenciales como el clima y, por tanto, la habitabilidad de este planeta. Sería difícil imaginar la vida sin el silicio, pero el silicio no forma parte de la vida. Y aunque no pueda descartarse al cien por cien que en otros planetas de condiciones extremas pudiera existir algo parecido a vida rudimentaria basada en el silicio (incluso en el laboratorio se ha experimentado con esto), sostener en las propiedades del silicio la organización de la vida compleja, llegando hasta la vida inteligente, es algo que hasta ahora nadie ha podido fundamentar teóricamente.

Y dado que la vida compleja basada en el carbono, el elemento ideal para la bioquímica, requiere una franja concreta de condiciones ambientales que es a grandes rasgos la que existe en la Tierra, la hipótesis más probable, la que no necesita olvidarse de todo lo que conoce la ciencia actual, es que hablar de planetas habitables basándonos en el nuestro como modelo no es terracentrismo: un planeta habitable para la vida tal como la conocemos es probablemente un planeta habitable, punto. Y como ya he contado aquí, en los últimos años se ha descubierto que los planetas realmente habitables parecen ser muy raros.

Hay un último rincón que merece la pena explorar en esto de las «otras vidas» diferentes a la terrestre, y es el del agua como solvente universal y medio de las reacciones bioquímicas, y como ingrediente esencial de los procesos metabólicos. ¿Podrían existir formas de «vida tal como no la conocemos» basadas en otra cosa que sirva como alternativa al agua? Mañana seguimos.