BLOGS
Ciencias mixtas Ciencias mixtas

Los secretos de las ciencias para
los que también son de letras

Archivo de la categoría ‘Astrofísica’

¿Existen los “pilares de la creación” en la nebulosa del Águila?

Lo que ven en esta foto podría no existir:

Los pilares de la creación, imagen tomada por el telescopio espacial Hubble en 2014. Imagen de NASA, ESA y Hubble Heritage Team (STScI/AURA).

Los pilares de la creación, imagen tomada por el telescopio espacial Hubble en 2014. Imagen de NASA, ESA y Hubble Heritage Team (STScI/AURA).

Pero no, no se trata de una manipulación digital como la falsa imagen de las puertas del Cielo que les traje aquí ayer.

En este caso se trata de una fotografía real llamada “los pilares de la creación”, una de las más famosas tomadas por el telescopio espacial Hubble. Se obtuvo en 1995 y muestra las nubes de polvo y gas en la nebulosa del Águila, a 7.000 años luz de nosotros, talladas por la luz de las nuevas estrellas hasta formar esos rascacielos cósmicos de 4 años luz. En realidad la que pueden ver arriba es una nueva versión, obtenida por el Hubble en 2014 en homenaje a la imagen original, esta que sigue, y que acompaño con un panorama más amplio de la nebulosa mostrando la ubicación de esta estructura.

Los pilares de la creación, imagen tomada por el telescopio espacial Hubble en 1995. Imagen de NASA, Jeff Hester y Paul Scowen (Arizona State University).

Los pilares de la creación, imagen tomada por el telescopio espacial Hubble en 1995. Imagen de NASA, Jeff Hester y Paul Scowen (Arizona State University).

Imagen del telescopio espacial Spitzer de la nebulosa del Águila, con la ubicación y el detalle de los "pilares de la creación". Imagen de NASA/JPL-Caltech/N. Flagey/MIPSGAL Science Team.

Imagen del telescopio espacial Spitzer de la nebulosa del Águila, con la ubicación y el detalle de los “pilares de la creación”. Imagen de NASA/JPL-Caltech/N. Flagey/MIPSGAL Science Team.

Pero lo que ven en estas fotos podría no existir porque quizá fue destruido hace unos 6.000 años. Lo que están viendo es el pasado, una estructura cósmica tal como era hace 7.000 años, el tiempo que ha tardado en llegarnos la luz de la nebulosa a través del universo. En 2007 un equipo de científicos dirigido por el francés Nicolas Flagey analizó las imágenes del Águila tomadas por el telescopio espacial Spitzer, capaz de ver la luz infrarroja que entonces era invisible para el Hubble. Flagey y sus colaboradores observaron lo que parecía una inmensa burbuja de gas y polvo calientes causada por la explosión de una supernova, acercándose a toda velocidad hacia los pilares. Esta burbuja es la masa roja que se observa en la imagen anterior de infrarrojos.

Dado que aquella región es una de las incubadoras de estrellas más activas y mejor estudiadas, los astrónomos consideran que varias de las estrellas masivas formadas cumplen las condiciones para estallar como supernovas, por lo que una hecatombe estelar allí es casi un desastre anunciado.

Según calculaban los investigadores en su estudio, publicado en 2009, las imágenes del Spitzer sugerían que, en aquella foto fija del Águila, a la onda expansiva de la supernova le faltaban unos 1.000 años para arrasar los pilares, por lo que la humanidad tendría que esperar unos 1.000 años para ver cómo aquellas torres quedaban deshilachadas como quien sopla un pompón de diente de león. Pero dado que nuestro retraso en recibir noticias de la nebulosa del Águila es de 7.000 años, esto implicaría que los pilares habrían dejado de existir cuando los humanos aún íbamos por el Neolítico.

Flagey calculaba que la explosión de la supernova se produjo hace entre 8.000 y 9.000 años, lo que significa que el fogonazo de este cataclismo debería haber llegado a la Tierra hace 1.000 o 2.000 años. El astrofísico, por entonces estudiante de doctorado, dijo que había identificado algunos posibles eventos candidatos en las crónicas históricas de la antigua China.

Claro que he comenzado diciendo que los pilares podrían no existir, y no que no existen. Porque no todos los expertos están de acuerdo con Flagey. En el momento de la publicación de su estudio ya hubo alguna opinión que cuestionaba la interpretación de la supernova, alegando que lo observado en las imágenes de infrarrojos podría deberse al calentamiento de la nube por estrellas masivas de la propia estructura, y no a un fenómeno que debería producir una huella de radiación mucho mayor.

Hace unos meses, el astrofísico y divulgador Ethan Siegel publicaba en su blog Starts With a Bang un artículo en el que rebatía la hipótesis de Flagey. Siegel ha analizado las nuevas imágenes tomadas por el Hubble en 2014, las ha comparado con las de 1995 y ha añadido las tomas en infrarrojo aportadas por una nueva cámara de este telescopio, concluyendo que no hay rastro de supernova y que la dinámica de las estructuras de la región se debe exclusivamente a las estrellas presentes.

Así, Siegel considera refutada la teoría de la destrucción de los pilares, que seguirán existiendo durante eras cósmicas hasta que el material de incubación de las estrellas acabe evaporado por la luz de las que ya se han formado. Pero en otro estudio publicado en 2011, Flagey admitía que la hipótesis de la supernova era algo especulativa.

Lo cual simplemente debería advertirnos contra los titulares periodísticos del estilo “los pilares de la creación ya no existen”, tanto como contra los del estilo “los pilares de la creación continúan existiendo”. El periodismo clásico odia los titulares interrogativos tanto como los condicionales. Pero la ciencia siempre está en construcción, y a veces todo lo que tiene son preguntas y condicionales. ¿Existen los pilares de la creación? Podría ser. Y podría ser que no.

Stephen Hawking no molaba nada (y ese es el problema)

La semana que termina nos ha dejado la muerte de Stephen Hawking, el científico más popular de las últimas generaciones. Los medios de todo el mundo han cubierto la noticia con amplios despliegues y con múltiples enfoques, desde lo puramente científico hasta la música que le gustaba o el maltrato que sufrió por parte de su segunda esposa. Yo mismo aporté mi granito con un pequeño obituario, pero quiero dejar un segundo granito aquí para intentar que un aspecto fundamental no se pase por alto en el que será sin duda el hito científico más negro de este 2018.

Stephen Hawking en la Universidad de Cambridge. Imagen de Lwp Kommunikáció / Flickr / CC.

Stephen Hawking en la Universidad de Cambridge. Imagen de Lwp Kommunikáció / Flickr / CC.

Tal vez Hawking no era después de todo tan popular como algunos pensábamos, como han revelado también varios medios al dejar en evidencia la confusión de muchos usuarios de Google sobre quién era el personaje fallecido. Pero sin duda podría decirse, como también han hecho constar muchas de las piezas publicadas sobre él, que era un icono de la cultura. Pero no de la Cultura, sino de la “cultura pop“, han precisado muchos medios.

Pero ¿qué es la cultura pop? Voy a la Wikipedia, y me dice que “la cultura popular [pop] se contempla a veces como trivial y embrutecida para encontrar una aceptación consensuada mayoritaria”. A continuación, añade que las principales categorías de la cultura pop son el entretenimiento, los deportes, las noticias, la política, la moda, la tecnología y la jerga.

No, la ciencia no aparece. Pero si resulta que en realidad la ciencia sí es Cultura, ¿por qué se habla de Hawking como cultura pop? ¿Porque salió en Los Simpson? ¿Porque era famoso? No parece que cuadre mucho con alguien que no solo ha sido uno de los científicos más importantes del siglo XX, sino también uno de los principales intelectuales de nuestro tiempo, en el verdadero sentido de la palabra “intelectual”.

Cuando en 1919 las fotografías de un eclipse solar confirmaron una de las predicciones de la relatividad general de Einstein (la curvatura de la luz de las estrellas por la masa del Sol), varios periódicos publicaron la noticia advirtiendo a sus lectores de que no trataran de entender la teoría del físico, ya que según él mismo había asegurado, no más de 12 personas en todo el mundo podrían entenderla. Al parecer, cuando le preguntaron a Einstein por esto se lo tomó como una broma, pero al comprobar que la historia de las 12 personas realmente se había divulgado en la prensa, aclaró que él jamás había dicho tal cosa.

No sería justo negar que la relación del público con la ciencia ha cambiado mucho desde los tiempos de Einstein, pero parece que un siglo después aún no se ha derribado la barrera. A pesar de que uno de los mayores empeños del propio Hawking durante toda su vida fue dar a entender que él era una persona normal y que la ciencia era una cosa normal, se le ha admirado mucho, pero de lejos. Imposible entenderle, inútil molestarse, no lo intenten; mejor dediquen el tiempo libre a hacer deporte.

En lugar de tratar de comprender la ciencia de Hawking, fíjense en su espíritu de superación, haber hecho todo aquello, fuera lo que fuese aquello, a pesar de su enfermedad… Ya se lo ha dejado claro en Twitter una famosa actriz: ahora es libre de sus limitaciones físicas. (¿Morir te libera de algo, aparte de la vida?)

En el fondo, probablemente Stephen Hawking no habría sido tan pop-ular si no hubiera sido diferente, batallando contra la muerte y postrado en una silla durante la mayor parte de su existencia. Esa serie, The Big Bang Theory, ya deja claro que para ser un científico hay que ser distinto; hay que ser un friqui.

Llega un momento en la vida de todo niño en que debe elegir: o ser un científico, o ser normal. Claro que es más fácil ser normal, porque un colegio puede no tener microscopios, pero que nunca falten los balones. ¿Hay algún niño que quiera ser como Stephen Hawking? No era guapo, ni futbolista, ni cantaba bien. No molaba. Muy admirado, eso sí, como icono de la cultura pop. Pero un icono no es un modelo; la gente quiere ser como los modelos, mientras que los iconos se guardan en una vitrina. Y se les limpia el polvo de vez en cuando.

Lo que me gustaría dejar como último tributo a Stephen Hawking lo cuenta mucho mejor Tuomas Holopainen, compositor y líder de Nightwish, en este tema dedicado a otro monstruo del pensamiento, Carl Sagan:

Make me wonder
Make me understand
Spark the light of doubt and a newborn mind
Bring the vast unthinkable down to Earth

Una máquina descubre el octavo planeta en un sistema extrasolar

Investigadores de la Universidad de Texas en Austin y de la compañía Google han revelado esta tarde, en una rueda de prensa celebrada por la NASA, el primer hallazgo de dos exoplanetas no realizado por un ser humano, sino por un sistema de Inteligencia Artificial. Uno de los nuevos planetas, llamado Kepler-90i, hace el número ocho de los que orbitan en torno a la estrella Kepler-90, lo que convierte a este sistema en el primero conocido con el mismo número de planetas que el nuestro.

Ilustración del sistema Kepler-90. Imagen de NASA/Wendy Stenzel.

Ilustración del sistema Kepler-90. Imagen de NASA/Wendy Stenzel.

Hoy el descubrimiento de un nuevo planeta extrasolar ya no suele ser carne de titulares como lo era hace un cuarto de siglo, cuando se descubrieron los primeros. Se han confirmado ya más de 3.700 planetas fuera de nuestro Sistema Solar, por lo que la idea de que toda estrella podría tener al menos un planeta, como piensan algunos expertos, ya no sorprende. Solo los planetas más parecidos al nuestro, potencialmente aptos para la vida, suelen abrirse paso hasta las páginas y las webs de los medios generales, sobre todo si no están demasiado lejos de nosotros.

No es el caso de Kepler-90i; este planeta rocoso, un 30% más grande que la Tierra, orbita una estrella similar al Sol a 2.545 años luz, y no es precisamente acogedor: los científicos estiman que su temperatura ronda los 427 grados centígrados, similar a la de Mercurio y suficiente para fundir el plomo.

Sin embargo, Kepler-90i tiene dos argumentos para marcar un hito en la astronomía. El primero de ellos es que se trata del segundo “octavo planeta” jamás conocido por el ser humano. Desde que Plutón fue expulsado del club planetario, nuestro sistema se quedó con ocho, siendo Neptuno el octavo. Hasta ahora se había encontrado un puñado de estrellas con siete planetas a su alrededor; una de ellas, TRAPPIST-1, fue noticia el pasado febrero por albergar varios planetas en su zona habitable.

Kepler-90 también era hasta ahora un sistema de siete planetas, descubiertos gracias a los datos de la sonda Kepler de la NASA. Este telescopio espacial es un sofisticado cazador de planetas: rastrea unas 150.000 estrellas en una porción de la Vía Láctea y las vigila en busca de una pequeña atenuación que revele el tránsito de un planeta delante de ellas, como si tapamos parte del foco de una linterna con un dedo. Solo que las atenuaciones debidas al tránsito de planetas son ínfimas; las herramientas informáticas pueden identificarlas, pero es tan ingente la cantidad de datos recogidos por Kepler que los astrónomos y sus ordenadores tienen que centrarse en las señales más evidentes. Y esto implica que tal vez estén pasando por alto algún que otro planeta.

Aquí es donde entra el segundo gran argumento de Kepler-90i: es el primer planeta descubierto por una red neuronal de Inteligencia Artificial (IA). La historia comienza cuando Christopher Shallue, investigador en IA de Google, se entera de que los científicos dedicados a la búsqueda de exoplanetas hoy tienen tantos datos a su disposición que están desbordados; incluso con el uso de potentes ordenadores y con la colaboración de voluntarios a través de internet, el volumen de información es casi inmanejable.

Así, Shallue vio una oportunidad perfecta para dar de comer a sus redes neuronales, sistemas basados en algoritmos que tratan de imitar la forma de aprendizaje del cerebro humano. Los expertos en IA suelen decir que, por inmensas y complejas que sean las operaciones que un ordenador puede realizar en una fracción de segundo, hay algo en lo que la máquina más sofisticada del mundo es más torpe que el más torpe de los humanos: reconocer patrones. Algo tan elemental para nosotros como distinguir un perro de un gato es una tarea colosal para una máquina. Las redes neuronales capaces de aprender están progresando en esta habilidad que los humanos manejamos con soltura.

Shallue se puso en contacto con Andrew Vanderburg, astrónomo de la Universidad de Texas, y entre ambos entrenaron al sistema de Google para aprender a reconocer patrones de indicios de exoplanetas en los datos de atenuación de luz de estrellas recogidos por Kepler. Y allí donde los científicos habían encontrado siete planetas, en la estrella Kepler-90, la máquina encontró uno más, el octavo, con una señal tan débil que había escapado a los astrónomos. Lo mismo ocurrió con otra estrella, Kepler-80, donde el sistema de Google descubrió un sexto planeta, Kepler-80g. El estudio de los dos investigadores se publicará próximamente en la revista The Astronomical Journal.

Y esto es solo el principio. En la rueda de prensa, Vanderburg y Shallue apuntaron que por el momento solo han aplicado la red neuronal a 670 estrellas, pero que su intención es pasar los datos de las 150.000 observadas por Kepler. El sistema Kepler-90 es parecido al nuestro en el número de planetas y en su distribución, con los pequeños más cercanos a la estrella, pero es como una versión comprimida, ya que todos ellos están muy próximos a su sol; de ahí las altas temperaturas. Pero hoy los científicos ya sospechan que los sistemas multiplanetarios, incluso con muchos más planetas que el nuestro, probablemente sean algo muy corriente en nuestra galaxia. Y con la avalancha de datos de Kepler y la pericia de la máquina de Shallue, todo indica que pronto sabremos de algún sistema tan parecido al nuestro, con un planeta tan parecido al nuestro, que la presencia de vida allí parezca algo casi inevitable.

Las ondas gravitacionales, un nuevo color en la paleta de los astrónomos

Las ondas gravitacionales se han convertido en el Titanic de la ciencia. No por el naufragio, sino por la película: en 1997 era casi inútil que ninguna otra producción aspirara a llevarse un premio de cualquier categoría en la que tuviera que competir contra la cinta de James Cameron. Como conté ayer, los descubridores (o más bien confirmadores) de las ondas gravitacionales se han llevado este mes el Nobel y el Princesa de Asturias, pero anteriormente ya habían caído en sus redes otros premios de primera fila como el Kavli de Astrofísica y el Breakthrough Prize, ambos económicamente muy jugosos.

Pero el Princesa, entregado este viernes a tres máximos responsables del hallazgo y simbólicamente a más de mil investigadores de la colaboración LIGO, ha caído por suerte en la misma semana en que la detección de las ondas gravitacionales ha comenzado a hacer realidad la promesa de convertirse en un nuevo color de la paleta astronómica.

El pasado lunes se anunciaba la quinta detección de este tipo de arrugas en la alfombra del espacio-tiempo que sostiene el universo, pero con una novedad que comienza a explicar por qué este método de observación abre una nueva era para la astronomía.

Mientras que los cuatro eventos anteriores se produjeron por la fusión de pares de agujeros negros, en este último caso, ocurrido el pasado 17 de agosto, ha sido la colisión de dos estrellas de neutrones, que se cuentan entre los objetos más densos del cosmos. Las estrellas de neutrones se forman cuando una estrella supermasiva explota en una supernova y sufre un colapso gravitatorio que comprime el material estelar hasta reducir su tamaño a unos pocos kilómetros, a pesar de que su masa excede en varias veces la del Sol.

Ilustración de la colisión entre dos estrellas de neutrones. Imagen de NSF/LIGO/Sonoma State University/A. Simonnet.

Ilustración de la colisión entre dos estrellas de neutrones. Imagen de NSF/LIGO/Sonoma State University/A. Simonnet.

El resultado es un objeto extremadamente denso, una especie de pelota de núcleos atómicos comprimidos con electrones fluyendo entre los huecos. Suele decirse que, si pudiéramos acercarnos a una estrella de neutrones y recoger una cucharadita de su superficie (por supuesto, algo imposible en la práctica), esa cantidad de material pesaría mil millones de toneladas.

Durante años los científicos han teorizado que la fusión de dos estrellas de neutrones es uno de los procesos responsables de los llamados Brotes de Rayos Gamma (BRG), lo cual equivale a decir que son las explosiones más potentes del universo. Un BRG puede liberar en unos segundos más energía que nuestro Sol a lo largo de toda su existencia. Son fenómenos raros, y por suerte se han detectado en otras galaxias, a miles de millones de años luz de nosotros. Pero en realidad, el hecho de que no nos haya caído ninguno en las cercanías no es casualidad, sino causalidad: muchos científicos piensan que si hubiera ocurrido, sencillamente no estaríamos aquí.

Imagen de la galaxia NGC 4993 tomada desde el observatorio de La Silla, en Chile. Imagen de ESO/S. Smartt & T.-W. Chen.

Imagen de la galaxia NGC 4993 tomada desde el observatorio de La Silla, en Chile. Imagen de ESO/S. Smartt & T.-W. Chen.

Pues bien, lo que tiene de única la nueva onda gravitacional detectada no es solo el fenómeno que la ha originado, sino que además también ha podido recogerse el BRG producido por la fusión de las dos estrellas, así como el rastro de luz de todo ello, lo que ha sido descrito por los astrofísicos como el principio de la era de la astronomía multimensajero.

Imaginemos una tormenta de las normales en la Tierra. Cuando cae un rayo, lo detectamos de dos maneras distintas, por la luz (el relámpago) y el sonido (el trueno). Los astrofísicos hacen algo parecido con los fenómenos astronómicos, registrándolos a través de sus diferentes emisiones.

Ahora la detección de ondas gravitacionales se ha unido a ese repertorio de ojos y oídos del que disponen los científicos. La colisión de las dos estrellas de neutrones en la galaxia NGC 4993, a 130 millones de años luz, fue registrada por los tres detectores de ondas gravitacionales (dos de LIGO y el de Virgo), por los telescopios espaciales de rayos gamma Fermi e INTEGRAL, y por una multitud de telescopios terrestres en la banda óptica, en la de rayos X y en la de ondas de radio. Todo esto convierte la GW170817 (GW de Gravitational Wave) en el primer fenómeno astronómico observado de tantas maneras distintas.

Los puntos marcan todos los observatorios en la Tierra y en el espacio que registraron la fusión entre dos estrellas de neutrones. Imagen de Abbott et al. 2017.

Los puntos marcan todos los observatorios en la Tierra y en el espacio que registraron la fusión entre dos estrellas de neutrones. Imagen de Abbott et al. 2017.

Pero si les parece que la colisión de dos estrellas a más de 1.200 trillones de kilómetros es algo muy ajeno a ustedes, sepan que tal vez lleven el producto de un fenómeno como este en el dedo, alrededor del cuello o en los lóbulos de las orejas: los astrofísicos pensaban que explosiones tan energéticas como esta son la fragua donde se crean los elementos más pesados del universo, por ejemplo el oro, la plata, el platino o el uranio. En el GW170817, la lectura de las emisiones permitió confirmar que la colisión de las dos estrellas creó una masa de oro similar a la de la Tierra. Una buena pepita; eso sí, habría que juntarla átomo a átomo.

El Princesa de Asturias de ciencia acierta este año, pero tiene una deuda pendiente

Ayer las gaitas sonaron en Oviedo un año más para acoger la entrega anual de los premios Princesa de Asturias. Los que hemos crecido con media pata en el Principado envidiamos profundamente a los galardonados, no por el premio, sino porque a diferencia de nosotros anoche cenaron allí, y a gastos pagados. Pero en fin; en el culín de sidra meramente simbólico que le toca beberse a este blog figuran tres nombres propios y un inmenso colectivo de cerebros: los físicos Rainer Weiss, Kip Thorne y Barry Barish, junto con los más de mil integrantes de la Colaboración Científica LIGO, han recibido el premio de Investigación Científica y Técnica 2017.

El físico Rainer Weiss recibe el premio Princesa de Asturias 2017 de Investigación Científica y Técnica de manos del rey Felipe. Imagen de EFE/Chema Moya.

El físico Rainer Weiss recibe el premio Princesa de Asturias 2017 de Investigación Científica y Técnica de manos del rey Felipe. Imagen de EFE/Chema Moya.

Cada año se establece una comparación interesante entre los Nobel y nuestra propia versión, que obviamente no alcanza la misma repercusión internacional que los premios suecos, al menos en ciencia. El paralelismo es relativo, porque los Nobel distinguen tres categorías científicas, mientras que en los nuestros todo entra en un mismo saco.

A pesar de esto, los Princesa de Asturias no tienen una capacidad más limitada para premiar a los científicos, sino todo lo contrario: hay muchas disciplinas científicas que no tienen cabida en los Nobel, mientras que la categoría más amplia de los Princesa permite incluir a los paleoantropólogos, biólogos evolutivos, matemáticos, ingenieros de computación, ecólogos, científicos planetarios o climatólogos, por citar solo algunos ejemplos.

En este blog ya respondí a la clásica pregunta de por qué no hay un Nobel de matemáticas, pero aclarando que la respuesta más bien explica por qué estos premios solo contemplan un espectro muy estrecho de ciencias, dejando fuera a todas las demás. Algunas de las que he mencionado aún no existían en tiempos de Alfred Nobel, pero sí otras. Y la verdadera pregunta debería ser por qué no hay Nobel de invención o tecnología, el campo al que el inventor de la dinamita dedicó toda su vida.

Pero salvando las diferencias entre ambos premios, es interesante comparar dónde ponen el foco cada año dos jurados formados por un puñado de reconocidas personalidades de la ciencia y adláteres. Y dado que los Princesa se anuncian en junio y los Nobel en septiembre, los premios españoles sirven como antesala, recurriendo al tópico y sin que suponga ningún demérito abrir el camino hacia la máxima distinción científica del único planeta habitado conocido (por nosotros, claro).

Lo cierto es que este año los jurados lo tenían fácil. Tanto el Princesa como el Nobel de Física han reconocido lo que muchos han llamado el hallazgo del siglo, la confirmación de las ondas gravitacionales que Einstein predijo hace cien años y que se anunció por primera vez en febrero de 2016.

A diferencia de los Nobel, los Princesa no limitan la concesión a un máximo de tres nombres. El jurado de los premios españoles escogió a los mismos tres responsables de la detección de ondas gravitacionales que aún viven (uno de ellos murió este mismo año) y que este mes han sido agraciados también con el Nobel: el impulsor de todo ello, Rainer Weiss; el teórico, Kip Thorne; y el que lo hizo realidad, Barry Barish.

Pero además, el Princesa ha incluido también de forma más simbólica a todo el equipo que participa en el experimento LIGO, la máquina que permitió llevar a cabo el hallazgo. Como ya conté aquí, más de mil investigadores firmaron el estudio que describió la primera detección de ondas gravitacionales.

Como en el caso de los Nobel, se echa de menos un reconocimiento para los responsables y los integrantes del experimento Virgo, el homólogo europeo del estadounidense LIGO. Virgo no es una sucursal, sino que ambos comenzaron su andadura de forma independiente, para luego entablar una colaboración que ya estaba consolidada antes de que LIGO consiguiera cazar por primera vez las arrugas espaciotemporales. Aquella primera detección no cayó en las redes de Virgo, pero no por ello su contribución a este titánico esfuerzo colectivo e internacional debería quedar sin premio.

En resumen, aunque en este caso los Princesa han acertado al marcar la senda que luego han seguido los Nobel, y además reparten la distinción de una manera más ajustada al formato cooperativo de la investigación científica actual, siempre se olvida a alguien.

En el caso de los Princesa, sin duda el error más imperdonable en la historia de estos galardones se cometió en 2015, cuando se premió a las investigadoras Emmanuelle Charpentier y Jennifer Doudna por el desarrollo de la herramienta de edición genómica CRISPR, dejando fuera al descubridor del sistema; que para más escarnio es español, el alicantino Francis Mojica. Una deuda aún pendiente, y una mancha que debe borrarse cuanto antes: ¿hará falta que Mojica reciba el Nobel para que el jurado del Princesa deje de mirar para otro lado?

Los Nobel, uno fresco, otro rancio, y siempre dejan a alguien fuera

Como cada año por estas fechas, no puede faltar en este blog un comentario sobre lo que nos ha traído la edición de turno de los premios Nobel. Y aunque cumplo con esta autoimpuesta obligación, debo confesarles que lo hago con la boca un poco pastosa. No por desmerecer a los ganadores, siempre científicos de altísimos logros, sino por otros motivos que año tras año suelo traer aquí y que conciernen a los propios premios.

Imagen de Wikipedia.

Imagen de Wikipedia.

En primer lugar, están los merecimientos no premiados de los que siempre se quedan por debajo de la línea de corte. Ya lo he dicho aquí, y no descubro nada nuevo: ya no hay Ramones y Cajales encerrados a solas en su laboratorio. Vivimos en la época de la ciencia colaborativa y a veces incluso multitudinaria, donde algunos estudios vienen firmados por miles de autores. No exagero: hace un par de años, un estudio de estimación de la masa del bosón de Higgs batió todos los récords conocidos al venir firmado por una lista de 5.154 autores. Nueve páginas de estudio, 24 páginas de nombres.

En el caso que nos ocupa, el Nobel de Física 2017 anunciado esta semana ha premiado la detección de ondas gravitacionales, un hito histórico que se anunció y publicó por primera vez en febrero de 2016, que confirmó la predicción planteada por Einstein hace un siglo y que según los físicos abre una nueva era de la astronomía, ya que enciende una nueva luz, que en este caso no es luz, para observar el universo.

Pero aunque sin duda el hallazgo merece los máximos honores que puedan concederse en el mundo de la ciencia, el problema es que los Nobel fueron instituidos por un tipo que murió hace 121 años, cuando la ciencia era cosa de matrimonios Curies investigando en un cobertizo. Y las normas de los Nobel dicen que como máximo se puede premiar a tres científicos para cada categoría.

Los agraciados en este caso han sido Rainer Weiss, Barry Barish y Kip Thorne, los tres estadounidenses, el primero nacido en Alemania. Weiss se queda con la mitad del premio, mientras que Barish y Thorne se reparten el otro 50%.

No cabe duda de que los tres lo merecen. Weiss fue quien inventó el detector que ha servido para pescar por primera vez las arrugas en el tejido del espacio-tiempo, producidas por un evento cataclísmico como la fusión de dos agujeros negros. Thorne ha sido la cabeza más visible en el desarrollo de la teoría de las ondas gravitacionales, además de ser un divulgador mediático y popular: creó el modelo de agujero negro que aparecía en la película Interstellar. Por su parte, Barish ha sido el principal artífice de LIGO, el detector que primero observó las ondas gravitacionales y que se construyó según el modelo de Weiss apoyado en la teoría de Thorne.

Pero más de mil científicos firmaron el estudio que describió la primicia de las ondas gravitacionales. Sus diversos grados de contribución no quedan reflejados en la lista de autores, ya que en casos así no se sigue la convención clásica de situar al principal autor directo del trabajo en primer lugar y al investigador senior en el último; aquí la lista es alfabética, sin un responsable identificado. El primero de la lista era un tal Abbott, cuyo único mérito para que aquel estudio histórico ahora se cite como “Abbott et al.” fue su ventaja alfabética. De hecho, había tres Abbotts en la lista de autores.

¿Se hace justicia premiando solo a tres? Tengo para mí que los físicos especializados en la materia, sobre todo quienes hayan participado de forma más directa o indirecta en este campo de estudio, tal vez tengan la sensación de que queda alguna cuenta no saldada.

Como mínimo, habrá quienes achaquen al jurado que haya olvidado la importantísima contribución de Virgo, el socio europeo del experimento LIGO. Ambos nacieron de forma independiente en los años 80, LIGO en EEUU y Virgo en Italia como producto de una iniciativa italo-francesa. Con el paso de los años, LIGO y Virgo comenzaron a trabajar en una colaboración que estaba ya muy bien trabada antes de que el detector estadounidense lograra la primera detección de las ondas gravitacionales. La cuarta detección de ondas de este tipo, anunciada hace solo unos días, se ha producido en paralelo en LIGO y en Virgo. ¿Es justo dejar a los artífices del proyecto europeo sin el reconocimiento del Nobel?

Por supuesto, son las normas de los premios. Pero miren esto: el testamento de Nobel no mencionaba en absoluto a tres premiados por cada categoría, sino que se refería simplemente a “la persona que…”. Por lo tanto, si se trata de ceñirse estrictamente a la última voluntad del fundador de los premios, estos no deberían repartirse.

Pero la limitada representatividad de la lista de premiados no es el único defecto de los Nobel. Otro que también he comentado aquí en años anteriores es la tendencia a premiar trabajos tan antiguos que ni sus autores ya se lo esperaban, si es que siguen vivos. Y en esto tampoco se respetan las instrucciones de Alfred Nobel, ya que él especificó que los premios deberían concederse a quien “durante el año precedente haya conferido el mayor beneficio a la humanidad”.

Si al menos este año en Física se ha premiado ciencia fresca y puntera, no ocurre lo mismo con la categoría de Fisiología o Medicina. Los tres galardonados, Jeffrey Hall, Michael Rosbash y Michael Young, todos estadounidenses, lograron sus avances fundamentales sobre los mecanismos moleculares del reloj biológico (los ritmos circadianos) allá por los años 80.

De hecho, hay un dato muy ilustrativo. A diferencia del caso de las ondas gravitacionales, en el campo de los ritmos circadianos sí hay dos nombres que muy claramente deberían encabezar una lista de candidatos a recibir los honores: Seymour Benzer y su estudiante Ron Konopka, los genetistas estadounidenses que primero descubrieron las mutaciones en los genes circadianos con las cuales pudo escribirse la ciencia moderna de la cronobiología. Pero Benzer falleció en 2007, y Konopka en 2015. Y no hay Nobel póstumo. El premio en este caso se ha concedido a una segunda generación de investigadores porque se ha concedido tan a destiempo que los de la primera murieron sin el debido reconocimiento.

En este caso, los Nobel pecan una vez más de conservadurismo, de no apostar por avances más recientes cuyo impacto está hoy de plena actualidad en las páginas de las revistas científicas. Por ejemplo, CRISPR, el sistema de corrección de genes que abre la medicina del futuro y en el que nuestro país tiene un firme candidato al premio, el alicantino Francisco Martínez Mojica. Pero dado que este avance también puede optar al Nobel de Química, que se anuncia hoy miércoles dentro de un rato, de momento sigamos conteniendo la respiración.

Adiós, Cassini

Hoy brillará un meteorito en el cielo de Saturno. Aproximadamente a las 13:54, la sonda Cassini de la NASA comenzará a adentrarse en la atmósfera del planeta anillado a 113.000 kilómetros por hora. Un minuto más tarde, el vínculo de comunicación entre el aparato y el control de la misión en la Tierra se perderá definitivamente, después de que la sonda haya enviado sus últimos y valiosos datos.

En ese momento, Cassini se hallará a unos 1.500 kilómetros sobre las nubes de Saturno, la altura a la cual la presión atmosférica es equivalente a la del nivel del mar en nuestro planeta. Entonces el rozamiento atmosférico empezará a incinerar y desintegrar las piezas de la sonda. Un par de minutos después, Cassini ya solo será un recuerdo, aunque sus últimos datos tardarán casi una hora y media más en llegar hasta las antenas terrestres.

Una de las últimas imágenes de Saturno enviadas por Cassini el día antes de su final. Imagen de NASA/JPL-Caltech/Space Science Institute.

Una de las últimas imágenes de Saturno enviadas por Cassini el día antes de su final. Imagen de NASA/JPL-Caltech/Space Science Institute.

Imagino que sobre todo los científicos, y los que alguna vez lo hemos sido, podremos comprender la sensación de vacío y el nudo en la garganta de los responsables de la misión después de un momento como este. Por supuesto, los datos de Cassini, como los de cualquier otra gran misión espacial, continuarán dando mucho trabajo a los científicos durante los años venideros. Pero ya no será lo mismo para quienes la vieron tomar forma primero en el papel, después convertirse en un objeto real, luego despegar hacia el espacio profundo, y desde entonces le han dedicado todo su trabajo durante décadas.

En una de las muchas notas de prensa que han circulado estos días sobre Cassini, la científica del Instituto de Ciencias Planetarias de Tucson (EEUU) Candy Hansen recordaba que comenzó a trabajar con Cassini en 1990, cuando aún era solo un proyecto, siete años antes de su lanzamiento al espacio. Han pasado 27 años, casi toda una vida profesional, y Hansen decía sentir que hoy perderá a un viejo amigo.

He estado revisando algunos datos y, si la información no me falla, Cassini será hasta el momento de su destrucción la sonda aún activa más longeva en el espacio profundo, exceptuando las dos Voyager, lanzadas en 1977 y que continúan operando desde los confines del Sistema Solar. Alguna de las Pioneer de la NASA es aún más antigua, pero no se ha intentado contactar con ellas desde hace años y se desconoce si siguen funcionando.

Pero además de su veteranía, Cassini ha sido una misión favorita de muchos por otros motivos. Al fin y al cabo, ¿a quién no le gusta Saturno? Desde pequeños, cuando empezamos a aprender que hay otros mundos por ahí fuera, el planeta de los anillos es el más reconocible, el más dibujado, el que nadie confunde con ningún otro.

Y en adelante, gran parte de lo que sabemos y sabremos sobre Saturno deberemos agradecérselo a Cassini. Desde su llegada a su objetivo en 2004, la sonda ha enviado a sus cuidadores terrestres una inmensa cantidad de datos sobre Saturno, sus anillos y sus lunas. Ha descubierto mares de metano y etano en Titán, y un probable océano bajo el hielo de Encélado que podría ser apto para la vida. En sus últimas semanas, ha completado su brillante carrera con una última aproximación a Titán y un total de 22 órbitas enhebrándose en el hueco entre Saturno y sus anillos, una proeza técnica inédita hasta ahora.

Pero además hay otro poderoso motivo que ha prestado un carácter especial a esta misión, y que hoy debemos recordar de nuevo: su otra mitad. Originalmente la misión tuvo un segundo componente, la sonda Huygens de la Agencia Europea del Espacio (ESA). Ambas viajaron juntas hasta 2005, cuando la fase europea se separó de su media naranja americana para aterrizar en Titán, la mayor de las lunas de Saturno.

Huygens fue un completo y rotundo éxito; en mi modesta opinión personal y con permiso de Rosetta, el más espectacular en la historia espacial europea. La imagen de la superficie de Titán enviada por Huygens a Cassini y de ahí a la Tierra es la fotografía más lejana de la superficie de otro mundo que hemos tenido nunca, y que tendremos probablemente durante muchos años más. No me he resistido a publicarla aquí varias veces, y tampoco me resisto hoy.

Imagen de la superficie de Titán tomada por la sonda Huygens. ESA/NASA/JPL/University of Arizona.

Imagen de la superficie de Titán tomada por la sonda Huygens. ESA/NASA/JPL/University of Arizona.

Aunque Huygens dio su misión por concluida solo unos 90 minutos después de su asombrosa conquista de Titán, 12 años después y con ocasión del final definitivo de la misión es obligado rememorar de nuevo la hazaña del aterrizaje más lejano jamás logrado por un artefacto construido por el ser humano.

El final de Cassini puede seguirse ahora en directo en la web de la NASA.

Una vez más, los aliens somos nosotros

Recuerdo una aventura de Tintín en la que Hernández y Fernández viajan por el desierto en un jeep, buscando alguna pista para orientarse. Tras mucho vagar sin rumbo, por fin encuentran dos huellas de ruedas, y deciden seguirlas con la esperanza de que les conducirán a algún lugar habitado. Mientras siguen el rastro, descubren otro par de roderas que se unen a las primeras, y luego otras dos, lo que les convence de que han dado con una ruta muy frecuentada. Hasta que finalmente descubren que han estado conduciendo en círculos, y que son sus propias marcas las que están siguiendo.

Cuando se trata de buscar rastros alienígenas, los humanos somos Hernández y Fernández: seguimos huellas para al final descubrir que nos estamos siguiendo a nosotros mismos. Hace unos días, como conté aquí, el imponente radiotelescopio de Arecibo en Puerto Rico (por cierto, uno de los muchos lugares de interés que hacen de la isla un destino viajero muy recomendable) detectó una señal en el cielo cuyo perfil no cuadraba fácilmente con ningún fenómeno astronómico conocido y que parecía proceder de la estrella Ross 128, a unos 11 años luz de la Tierra.

Imagen del Instituto SETI.

Imagen del Instituto SETI.

El responsable del hallazgo, Abel Méndez, que dirige el Laboratorio de Habitabilidad Planetaria en la Universidad de Puerto Rico en Arecibo, difundió la observación a través del blog de su grupo, citando las tres causas más probables de la señal: una fulguración de la estrella, una emisión de algún otro objeto astronómico que casualmente se encontraba en la misma línea visual que Ross 128, o bien una interferencia de algún satélite terrestre en órbita lejana, ya que los más cercanos a la Tierra pasan por el cielo demasiado aprisa como para emitir una señal sostenida.

Por su parte, Méndez confiaba en que la causa de la señal fuera astronómica, ese gran trofeo deseado por los astrofísicos, y decía tener preparada una Piña Colada para celebrarlo. Pero en su breve informe hacía también un guiño inevitable a la posibilidad de que la emisión fuera de origen alienígena, aunque solo fuese para aclarar que esta explicación se encontraba al final de la lista.

Y por muy al final que estuviera, el guiño ya estaba hecho; de inmediato fue recogido por otros dos equipos de investigadores que no se dedican a buscar nuevos tipos de objetos astronómicos, sino a escuchar el cielo en busca de alguna voz entre las estrellas. El Instituto SETI (siglas en inglés de Búsqueda de Inteligencia Extraterrestre) dirigió entonces su Matriz de Telescopios Allen (ATA, en inglés) hacia Ross 128, y lo mismo hizo el grupo SETI de la Universidad de California en Berkeley con el radiotelescopio de Green Bank en Virginia Occidental. Por su parte, Arecibo también repetía sus observaciones.

Los tres grupos han reunido sus datos y han llegado a un veredicto. “Parece claro ahora que las detecciones de Arecibo fueron debidas a transmisiones desde satélites terrestres en órbita geosincrónica”, dice el Instituto SETI en su web. Lo mismo concluyen el grupo de SETI Berkeley en un breve estudio y Méndez en la web de su laboratorio.

La explicación. Dado que una órbita es una caída libre, para un mismo objeto la trayectoria de esa caída y su velocidad están determinadas por la distancia de la órbita a la Tierra. Los satélites en órbita baja (Low Earth Orbit, o LEO), como la Estación Espacial Internacional (a unos 400 kilómetros), pueden verse cruzando el cielo rápidamente. Pero existe una especie de punto mágico llamado órbita geoestacionaria, a unos 36.000 kilómetros de la Tierra, en el que un satélite situado a la altura del ecuador terrestre queda sincronizado con la rotación del planeta, de modo que su posición en el cielo apenas varía. Esta órbita se utiliza sobre todo para satélites meteorológicos y de comunicaciones.

Precisamente la posición de la estrella Ross 128 en el cielo queda a una declinación de casi cero grados, es decir, a la altura del ecuador celeste, así que su situación aparente coincide con los aparatos que circulan en la órbita geoestacionaria. Según Méndez, las extrañas distorsiones observadas en la señal, que le han llevado a bautizarla como señal Weird! (rara), podrían explicarse por la interferencia entre la telemetría de varios de estos satélites.

La explicación de la señal es finalmente la menos interesante de todas las posibles, aunque en el futuro ayudará a interpretar emisiones similares. Por desgracia para Méndez, no se trata de un objeto astronómico, así que su Piña Colada deberá guardarse para otra ocasión. Por desgracia para los grupos SETI, deberán seguir buscando. Por desgracia para los que practicamos el WETI (de “wait”, esperar), deberemos seguir esperando.

No es la primera vez que los humanos hacemos como Hernández y Fernández buscando huellas de otros seres en el desierto del espacio. De hecho, ocurrió en primer lugar el mismo día en que comenzó la búsqueda SETI, el 8 de abril de 1960; en aquel caso la señal procedía de un avión espía U2. Volvió a ocurrir en 1997; era una sonda de la NASA y la ESA llamada SOHO.

El caso más rocambolesco tuvo lugar en 2015, cuando la señal captada por un radiotelescopio australiano demostró ser, en efecto, de origen inteligente: se producía cuando los investigadores abrían la puerta del microondas con el que calentaban la comida, antes de que el aparato se apagara. Sí, en el siglo XXI, un microondas puede ser el mayor signo de vida inteligente en el universo.

Incluso la famosa señal Wow! de 1977, la única que ha aguantado el tipo durante décadas, ha sido recientemente explicada por el paso de dos cometas, si bien no todos los expertos compran esta explicación. ¿Qué nos queda entonces? De momento, nada. Solo la manía de empeñarnos, contra toda evidencia, en que tiene que haber alguien más en el desierto.

Estas son las criaturas que vivirán para ver el fin de la Tierra

Esta semana se nos ha recordado de nuevo que 2016 ha sido el año más cálido de la historia (desde el comienzo de los registros en 1880), según han confirmado los análisis independientes de la NASA y la NOAA (la agencia estadounidense de la atmósfera y los océanos). En realidad la conclusión no es novedosa, ya que fue el 18 de enero, con el año recién estrenado, cuando la Organización Meteorológica Mundial anunció por primera vez este nuevo récord, que bate la marca de temperaturas globales por tercer año consecutivo.

El recordatorio llega con el reciente lanzamiento de la campaña Misión 2020, una iniciativa promovida por un grupo de expertos mundiales destinada a reducir las emisiones globales de efecto invernadero en los próximos tres años. El plazo no es casual, ya que un informe elaborado por investigadores de varios organismos estima que los objetivos definidos en el acuerdo de París de 2015 solo podrán alcanzarse si las emisiones se reducen en un plazo máximo de tres años. De lo contrario, “si las emisiones continúan aumentando después de 2020, o incluso si se estabilizan, los objetivos de temperaturas fijados en París serán prácticamente inalcanzables”, escriben en la revista Nature los promotores de Misión 2020.

La del cambio climático no es la única de las amenazas actuales que van a hacer del mundo un lugar más complicado para los que vengan después de nosotros. Pero de todas ellas, es la única ya presente hoy que actúa a escala global, la única que puede pintar un futuro sombrío para la continuidad de la vida en este planeta tal como la conocemos.

Imagen de Pixabay.

Imagen de Pixabay.

Hace unos días, tres investigadores de México y EEUU publicaban un estudio en el que, analizando 27.600 especies de vertebrados terrestres y, con más detalle, 177 especies de mamíferos, avalan la hipótesis planteada por algunos científicos de que actualmente nos encontramos en el curso de la sexta gran extinción en masa en la historia de la Tierra; un episodio de orígenes y tempos diferentes, pero de consecuencias similares a los cinco que en épocas anteriores resultaron en la desaparición de grandes grupos enteros de animales como los dinosaurios. Esta nueva “aniquilación biológica”, como la califican los autores, se produce a través de una “masiva erosión atropogénica de la biodiversidad y de los servicios de los ecosistemas esenciales para la civilización”, escriben.

Aunque hoy la práctica totalidad de la comunidad científica no duda de que los efectos del cambio climático van a ser devastadores incluso a lo largo de este siglo, y por supuesto ninguno cuestiona la alarmante pérdida progresiva de biodiversidad causada por el ser humano, sin embargo no todos están de acuerdo en la conclusión de que pueda hablarse de todo esto como la Sexta Extinción.

Pero lo sea o no, una cosa es cierta, y es que la Tierra sobrevivirá, como lo ha hecho a través de las cinco grandes extinciones de la historia. Solo que ya no será la misma; las extinciones masivas han sido grandes volantazos en el curso del planeta, como quiebras de la compañía terrestre seguidas de refundaciones bajo nueva dirección.

Y en esa futura nueva Tierra, es posible que los humanos ya no estemos aquí, una vez se rompa la estabilidad del planeta que ha permitido el desarrollo de la civilización desde la revolución agrícola. Muchos expertos apuntan a una paradoja entre el enorme poder del ser humano y la fragilidad de su dependencia de los servicios de los ecosistemas. ¿Cómo vamos a alimentarnos si la agricultura empieza a fracasar de forma masiva? Dediquen solo unos segundos a imaginarlo. Según los ecólogos, los humanos no damos el perfil del tipo de especie con las características óptimas para sobrevivir a lo que se avecina.

¿Y quién lo hará? Los microbios, seguro. Los insectos, tal vez. Quienes vivieron los 80 recordarán una magnífica película injustamente olvidada, al menos para los programadores de la televisión en abierto, que nos repiten una y otra vez los mismos bodrios. Juegos de guerra era una fábula temprana sobre una preocupación muy actual, el riesgo de la tecnología desbocada determinando el destino de la Tierra. Cuando un nuevo sistema de inteligencia artificial al mando del arsenal de misiles nucleares de EEUU decide jugar a la guerra sin ser capaz de distinguir entre la simulación y la realidad, los dos jóvenes protagonistas buscan desesperadamente al programador del sistema. Por fin lo encuentran, pero descubren con sorpresa que la única persona capaz de evitar el inminente fin del mundo no está interesada en hacerlo, y que en su lugar espera casi con ilusión el comienzo de una nueva Tierra bajo el reinado de los insectos.

Pero hay otro bichito que probablemente estará allí no solo para ver el fin del mundo tal como los humanos lo entendemos, sino incluso el verdadero final del planeta cuando el Sol lo engulla dentro de miles de millones de años, y que posiblemente será el último testimonio de lo que un día fue un mundo pletórico de vida.

Tres investigadores de la Universidad de Oxford acaban de publicar un fascinante estudio en el que han tirado de modelos informáticos para someter a la Tierra a los mayores cataclismos astrofísicos imaginables: explosiones de supernovas, brotes de rayos gamma, impactos de grandes asteroides e incluso el paso casual de estrellas errantes. Los científicos han considerado estos fenómenos como eventos de esterilización global, capaces de barrer todo rastro de vida incluso de los microbios más resistentes, haciendo hervir el agua de todos los océanos de la Tierra.

Y sin embargo, la conclusión de los investigadores es que “la esterilización global es un fenómeno improbable”. Incluso en las condiciones más duras, hay un tipo de organismos que podrían sobrevivir para ver el final definitivo de este planeta: los tardígrados, llamados comúnmente osos de agua, unos minúsculos animalitos de ocho patas y medio milímetro de longitud que viven en todos los hábitats de la Tierra, y que según enumeran los autores del estudio pueden sobrevivir unos minutos a -272 grados o a 150 grados, y durante décadas a -20 grados; aguantan el vacío del espacio y presiones de hasta 1.200 atmósferas en la fosa oceánica de las Marianas; pasan 30 años sin comida ni agua; y resisten niveles de radiación cientos de veces superiores a las dosis letales para los humanos.

Un tardígrado al microscopio electrónico. Imagen de N. Carrera, Global Soil Biodiversity Atlas.

Un tardígrado al microscopio electrónico. Imagen de N. Carrera, Global Soil Biodiversity Atlas.

“Para una completa esterilización debemos establecer el evento necesario para matar a todas estas criaturas”, escriben los investigadores en su estudio. Y no lo han conseguido: incluso en las condiciones más extremas que entran dentro de lo plausible, los osos de agua seguirían aquí para ver el final de los tiempos. Los autores concluyen: “una vez que la vida existe en un planeta similar a la Tierra, su completa eliminación es un fenómeno muy improbable, de otro modo que no sea la evolución de su estrella”.

Repito: adiós a la señal alienígena, mientras nadie demuestre lo contrario

Esta semana, el microbiólogo ilicitano Francisco Martínez Mojica, de la Universidad de Alicante, ha recibido el prestigioso y sustancioso premio Fundación BBVA Fronteras del Conocimiento por haber descubierto un sistema de defensa de los microbios de las salinas de Santa Pola que, con el correr del tiempo y de las investigaciones, ha permitido crear CRISPR: la mejor herramienta de cortapega genético de la historia de la biología molecular, uno de los mayores hallazgos de este incipiente siglo y una promesa para la corrección de ciertas enfermedades.

¿Qué tendrá esto que ver con el título del artículo? Este Yanes ha perdido el oremus, tal vez estén pensando. Pero aguántenme un momento, que sigo para llegar a donde voy.

Mojica recibió el premio compartido en paridad con Emmanuelle Charpentier y Jennifer Doudna, las científicas que en la práctica convirtieron esta excentricidad de las bacterias (en realidad arqueas, que no son bacterias) en un valioso instrumental quirúrgico molecular. Mojica fue el descubridor; Charpentier y Doudna, las inventoras.

Hasta ahí, todo correcto. Lo interesante viene al analizar el caso más a fondo, una historia que ya expliqué aquí con detalle. Hasta hace año y medio, nadie sabía quién era Francisco Martínez Mojica. CRISPR ya era una revolución entre la comunidad científica y en los (cada vez más escasos) medios populares que se ocupan de los asuntos de ciencia, pero nadie sabía que su descubridor, y quien le puso el nombre de CRISPR, era un español que trabaja en Alicante. De hecho, nadie sabía quién era su descubridor, y a nadie parecía importarle.

Hasta que, en enero de 2016, a uno de los biólogos más influyentes del mundo, Eric Lander, le dio por investigar la historia de CRISPR para publicar un extenso artículo titulado “Los héroes de CRISPR” en la revista científica de biología número uno del mundo, Cell. Uno de aquellos héroes, especialmente reivindicado en el artículo, era Mojica.

De repente, todo cambió: poco después Mojica aparecía hasta en la Wikipedia, y su nombre comenzó a rumorearse para el Nobel. Pero para entonces, el investigador ya se había perdido los tres millones de dólares del Breakthrough Prize, que recibieron solo Charpentier y Doudna, y lo que es aún más grave, el Princesa de Asturias de Investigación 2015, que recibieron solo Charpentier y Doudna. Aún más grave, dado que el presuntamente muy docto jurado de un premio de tal prestigio no se molestó en hacer lo que después hizo Lander, investigar quién lo merecía, y así un premio español dejó fuera a un español tan acreedor de la distinción como las dos premiadas; una mancha para estos premios que difícilmente podrá repararse.

Y así llego a donde quiero llegar: amigos, por desgracia en muchos casos la ciencia está muy alejada de sus ideales de neutralidad y objetividad. Los científicos están contaminados por los mismos sesgos humanos que de repente convierten en mercancía mediática valiosa a algo como el cocinero ese. Mojica vio cómo su trabajo original era rechazado sucesivamente por la revista Nature y por otras publicaciones de primer nivel sin que siquiera fuera enviado a revisión. Solo consiguió por primera vez colar su firma en una de las revistas filiales de Nature en 2011, diluido entre un bosque de Charpentiers, Koonins, Horvaths y van der Oosts. Cuando su nombre fue descubierto por Lander y comenzó a pronunciarse en las mismas frases que la palabra “Nobel” (que, yo confío, llegará), algunos investigadores extranjeros contactados por varios medios arrugaban la nariz: ¿Nobel? ¿Alicante? ¿Dónde está eso? ¿Cerca de Magaluf?

Ahora tenemos otro posible caso. Se llama Antonio Paris y, como ya expliqué ayer, y como Mojica, no da el perfil ideal: es profesor en una universidad estatal de segunda fila, firma sus investigaciones desde su propio “centro virtual” creado por él mismo, The Center for Planetary Science, suele publicar solo y, sobre todo y para colmo, dedica parte de su tiempo a la investigación científica del fenómeno ovni.

El protagonista de la polémica, el astrónomo Antonio Paris. Imagen de The Center for Planetary Science.

El protagonista de la polémica, el astrónomo Antonio Paris. Imagen de The Center for Planetary Science.

Insisto, posible caso. Entiéndanme, ni mucho menos pretendo comparar a Paris con Mojica, pues el primero no reúne, al menos hasta hoy, los méritos del segundo. Pero como excientífico y veterano periodista de ciencia, me ha parecido que las críticas vertidas a Paris y a su trabajo (repito, no solo a su trabajo, sino a él mismo) recuerdan en cierto modo al caso de Mojica por el insoportable tufillo a contaminación por sesgo y falta de neutralidad.

El trabajo publicado recientemente por Paris, que explica la señal Wow! por el paso de dos cometas (a quien esto le suene a griego clásico, puede encontrar más información aquí), ha recibido ciertas críticas por parte de otros científicos. Esto es normal y habitual, e incluso él mismo señalaba las limitaciones de su estudio y los datos que no encajan con su explicación ni con ninguna otra (por ejemplo, a la crítica de que el radiotelescopio captó la señal con uno de sus receptores, pero no con el otro, Paris ha sugerido la posibilidad, obvia, pero de la que nadie más ha hablado ni por supuesto nadie ha rebatido, de que simplemente el telescopio fallara).

Estas críticas han sido resaltadas por varios medios, que han presentado el asunto desde distintos enfoques, desde el más prudente de la duda, hasta el más arriesgado de afirmar que los resultados de Paris han sido rebatidos por otros científicos. Cuando publiqué ayer mi artículo, algún usuario perezoso en Twitter, de los que leen titulares pero no artículos, señalaba esto último.

Pero no, los resultados de Paris no han sido (aún) rebatidos por otros científicos. Tal vez lo sean mañana, dentro de un mes o de un año. Pero para serlo, deberán serlo por la misma vía que los ha admitido: la publicación científica mediante revisión por pares. Hasta entonces, los resultados de Paris deben considerarse provisionalmente válidos, como todo en ciencia.

Aunque también criticables, como todo en ciencia. El problema en este caso, y de ahí el tufillo que las convierte en sospechosas, es el contenido de estas críticas. No soy astrofísico, y por tanto no estoy cualificado para valorar directamente la calidad de los resultados de Paris. Pero cuando se crea en Reddit un hilo en el que se atacan los resultados de alguien comenzando por cuestionar su heterodoxo perfil y sus credenciales profesionales; cuando se critica el estudio porque la revista en la que se ha publicado no es de las favoritas de los astrónomos; cuando las críticas proceden en parte del descubridor original de la señal, quien de forma más o menos soslayada siempre ha creído en su origen alienígena; cuando, y esto sí que es de chiste, se critica a Paris por hacer “ciencia de nota de prensa”, cuando los resultados de Paris no son una nota de prensa sino un estudio científico publicado, y cuando quien profiere tal crítica no ha publicado una refutación científicamente validada y por tanto sí está haciendo ciencia de nota de prensa…

Miren, yo no conozco a Paris más allá de los breves contactos motivados por los reportajes que he escrito sobre su trabajo. No tengo simpatía por él ni lo contrario. Y personalmente, me encantaría que la señal Wow! fuera realmente el primer saludo alienígena de la historia, así que los resultados de Paris no juegan a favor de lo que me gustaría.

Pero seamos neutrales, honestos y objetivos. Los resultados y sus conclusiones merecen el respeto de cualquier otra publicación científica mientras no se demuestren erróneos por la vía oficial, no en prensa, blogs y reddits. Su autor merece el respeto de cualquier otro científico mientras no se demuestre que ha falseado sus datos de mala fe. Estas son las reglas del juego de la ciencia: hoy debemos aceptar que la balanza se inclina oficialmente hacia una explicación natural de la señal. A quien no le guste, que no lo diga, que lo demuestre y lo publique, y aquí lo contaremos con mucho gusto.