Entradas etiquetadas como ‘abiogénesis’

Si hay vida en Venus, quizá no sea tan alienígena

Si los autores del reciente hallazgo sobre un nuevo y posible indicio de vida en Venus logran confirmar su descubrimiento –es decir, verificar la señal en otras longitudes de onda para comprobar que es real y no un artefacto del procesamiento de los datos–, sería de esperar que en adelante nuestro planeta vecino suba puestos en la consideración de quienes aprueban las misiones espaciales, para poder enviar algo a aquella atmósfera cuanto antes, algo que sea capaz de sacarnos de dudas antes de que no nos queden uñas que mordernos.

El administrador de la NASA ya ha dicho que es hora de priorizar Venus, y se espera que esta agencia apruebe al menos una de dos misiones ya propuestas antes del descubrimiento. Nuestra ESA tiene también un par de propuestas pendientes para enviar sondas a Venus, mientras que Rusia e India tienen misiones ya en desarrollo. Incluso alguna empresa privada podría entrar en el juego: de inmediato tras el anuncio de la detección del gas fosfano en Venus, Breakthrough Initiatives, el proyecto fundado en 2015 por el magnate ruso-israelí Yuri Milner y centrado en la búsqueda de vida alienígena, anunció la puesta en marcha de un amplio estudio multidisciplinar destinado a indagar en la posible existencia de vida en Venus y a analizar las posibilidades de enviar una sonda que solvente la incógnita.

Pero en cualquier caso, deberemos esperar. Curiosamente y dado que el anuncio del fosfano ha pillado a las agencias espaciales con el paso cambiado, más centradas en Marte, asteroides y el Sistema Solar Exterior, quien podría llegar primero a Venus es un actor insospechado: la misión india Shukrayaan-1, un orbitador que observará la atmósfera y la superficie de Venus, tiene su lanzamiento previsto para 2023, aunque no sería raro que se retrasara. La Venera-D rusa no se lanzará antes de 2026, y las misiones propuestas por la NASA y la ESA difícilmente estarán preparadas antes de finales de esta década o comienzos de la próxima.

Para entonces, es muy probable que ya se hayan hallado nuevos indicios, a favor o en contra de la presencia de vida. Al contrario de lo que siempre hemos visto en cine y televisión, viene tendiendo a ser algo improbable que la confirmación de la vida alienígena llegue con un ovni aterrizando en el jardín de la Casa Blanca o fundiendo la torre Eiffel con un rayo; más bien será algo como esto, sospechas de vida microbiana en otros mundos del vecindario solar, analizadas paso a paso, de forma muy dilatada a lo largo del tiempo, y lo peor será que tal vez nos cueste mucho llegar a dar el último paso, el de la prueba irrefutable.

¿Hay vida entre las nubes de Venus? Imagen de NASA/JPL (David Seal).

¿Hay vida entre las nubes de Venus? Imagen de NASA/JPL (David Seal).

Más aún cuando ni siquiera está del todo claro a qué podremos llamar «vida alienígena». En cuanto a «vida», y como ya conté aquí, no existe una definición científica formal universalmente aceptada. Y no existe porque, si existiera, probablemente sería errónea. Según me decía recientemente con ocasión de un reportaje para otro medio el astrofísico Charley Lineweaver, un escéptico de la vida alienígena inteligente de quien ya he hablado aquí en alguna ocasión, hasta tal punto no nos aclaramos que ni siquiera los biólogos nos ponemos de acuerdo sobre si los virus, los organismos más abundantes de la Tierra, están vivos o no (yo opino que sí, pero esa es otra historia).

Y en cuanto a «alienígena», si algún día llegamos a confirmar la presencia de microbios en otro mundo del Sistema Solar, ¿serán realmente alienígenas? Es decir, ¿podremos estar seguros de que su origen es independiente del de la vida terrestre? A propósito del mismo reportaje mencionado, el astrobiólogo español Alfonso Dávila, que investiga en el centro Ames de la NASA, me subrayaba algo ya conocido: durante la infancia del Sistema Solar, hubo un tráfico pesado de rocas entre los diferentes planetas; cientos de miles de rocas terrestres se estrellaron en Marte, y millones en Venus, según Dávila. Estos asteroides podrían haber transportado microbios de un lugar a otro, por lo que, incluso si se confirma la vida venusiana, tal vez aquellos organismos y nosotros procedamos de un mismo antepasado común.

Lo cual abre las apuestas: si llega a encontrarse algo vivo por ahí fuera, ¿serán parientes nuestros o no? Lo malo es que quizá no lleguemos a poder estar seguros; incluso si su biología básica se parece a la nuestra, con un ácido nucleico (ADN o ARN) que codifique la producción de proteínas, no necesariamente significaría que somos parientes, ya que en muchos casos la evolución sigue caminos comunes de forma separada (se llama evolución convergente).

Tradicionalmente se ha propuesto como posible prueba de orígenes separados de la vida el hecho de que, mientras que ciertos bloques básicos de la vida –aminoácidos de las proteínas o azúcares del ADN y ARN– pueden adoptar dos conformaciones que son imágenes en el espejo una de la otra, a la derecha (dextrógiros) o a la izquierda (levógiros), en los seres terrestres los aminoácidos son levógiros y los azúcares dextrógiros; dado que no hay una razón biológica para esta exclusividad, se suponía que fue una elección casual al principio de los tiempos, y que si se encontraran seres en otro mundo cercano con la misma quiralidad (así se llama esta propiedad) que la terrestre, probablemente estaríamos ante un origen común. Pero hoy sabemos que quizá tampoco esto sea necesariamente así, ya que la quiralidad predominante en los seres vivos podría no ser algo elegido al azar, sino que podría venir marcada por el distinto efecto de los rayos cósmicos sobre cada una de estas dos conformaciones. Dicho de otro modo: la radiación que barre el espacio podría determinar una misma quiralidad homogénea en bichos que nacen en planetas distintos a partir de orígenes totalmente independientes.

Lo cierto es que la pregunta de si posibles microbios venusianos y nosotros procedemos del mismo antepasado común es de enorme trascendencia: si la respuesta es sí, seguiríamos como antes; no sabríamos si la vida podría haber surgido en otros lugares. Si la respuesta es no, entonces podríamos tener la casi seguridad de que la vida debe de ser algo muy común en todo el universo, allí donde se dan las condiciones adecuadas.

Lo cual nos lleva a la pregunta: con las condiciones infernales de Venus, ¿es posible que la vida haya surgido allí? Vaya por delante que realmente aún no sabemos cómo nació la vida aquí, en la Tierra. Pero hay escenarios probables. Y todos ellos tienen algo en común: necesitan agua líquida a temperaturas moderadas –no los actuales 400 grados en la superficie de Venus– y en un pequeño entorno local donde pueda acumularse una alta concentración de moléculas biogénicas, aquellas que reaccionarán para producir alguna entidad autorreplicativa, con una fuente de energía disponible y una fuente de carbono.

Venus no ha sido siempre el infierno que es hoy. Suele decirse que Venus y la Tierra fueron planetas gemelos al comienzo de su historia (aunque la antigua existencia de océanos allí aún es motivo de debate). Y mientras que aquí fue la colonización de los mares por las cianobacterias la que logró reconducir el clima, la química atmosférica y la geodinámica para hacer de este mundo un lugar habitable, en cambio Venus fue el Anakin Skywalker del Sistema Solar, arrastrado hacia el lado oscuro a través de un catastrófico efecto invernadero que le hizo perder casi toda su agua y lo convirtió en el infierno actual.

Pero si en un principio las condiciones en ambos planetas no eran muy diferentes, esto significa que allí podrían haberse dado los mismos procesos que tuvieron lugar aquí y que dieron origen a la vida primigenia. O quizás, según lo dicho, la vida llegó a Venus desde la Tierra. Pero en cualquier caso, en momentos tempranos de la historia de los dos planetas, ambos podrían haber estado en situación parecida respecto a la presencia de algún tipo de microorganismo muy simple para nuestros cánones actuales de vida, muy sofisticado para lo que entonces era la química planetaria.

Sin embargo, el salto de aquellos posibles microbios acuáticos de la superficie de Venus a la presencia actual –si existe– de una comunidad biológica a decenas de kilómetros de altura, flotando en las nubes, no es inmediato. Hay científicos que en estos días se han mostrado muy escépticos. Pero tampoco es imposible. Aquí en la Tierra, sabemos que la vida es extraordinariamente resistente; ha colonizado la práctica totalidad de los hábitats terrestres. Incluyendo la atmósfera: varios estudios han demostrado la presencia de bacterias y hongos en la estratosfera terrestre, a decenas de kilómetros sobre el suelo.

Claro que esto no permite trazar una analogía directa con el caso de Venus. Algunos de los microbios encontrados en la estratosfera terrestre estaban en forma de esporas, fases latentes que ciertos microorganismos adoptan cuando las condiciones del entorno no les permiten crecer y multiplicarse. Es decir, son microbios transeúntes, dependientes de la superficie terrestre para volver a su estado activo. Estos no nos sirven, ya que en Venus cualquier posible organismo presente debería ser un habitante exclusivo de la atmósfera, puesto que no tiene tierra habitable a la que regresar.

También en nuestro planeta se han encontrado especies bacterianas que no se habían detectado antes en la superficie. Pero esto tampoco implica necesariamente que sean habitantes exclusivos de las alturas, evolucionados para nacer, crecer y morir en los aerosoles flotantes sin importarles si debajo existe una tierra habitable o no. Con todo, también es cierto que los moradores de la atmósfera venusiana tendrían algunas ventajas respecto a los de la estratosfera terrestre: a 55 kilómetros de altura sobre Venus, la temperatura y la presión son equivalentes a la Tierra a nivel del suelo; si bien también deberían enfrentarse a una química mucho más hostil, sin apenas agua y con nubes de ácido sulfúrico.

Pero aunque la posibilidad de comunidades microbianas totalmente autónomas en la atmósfera de Venus aún no convence a muchos científicos, la ubicuidad de la vida terrestre nos enseña que la vida, una vez presente, se abre camino. Venus no se convirtió en un infierno de la noche a la mañana. Y durante su lento tránsito de millones de años hacia el lado oscuro de la habitabilidad planetaria, quizá ciertos organismos mejor preparados para soportar una vida atmosférica pudieron sobrevivir y evolucionar hasta convertirse en moradores flotantes como los que imaginó Carl Sagan, comiendo minerales volantes y chupando las escasas gotitas de agua o el vapor de la atmósfera de Venus. Quién sabe. Al fin y al cabo, aún sabemos muy poco sobre eso que llamamos vida, sin saber realmente por qué lo llamamos vida.

Según la biología, podríamos ser la única especie inteligente en el universo

El universo no es eterno, y por lo tanto comenzó en algún momento. Lo cual implica que hubo un tiempo en que la vida no existía. Y tan evidente como esto es también que hoy la vida existe; al menos nosotros, todos los seres terrícolas, estamos aquí.

La conclusión es innegable: en algún episodio de la historia del cosmos, al menos una vez, la vida pasó de no ser a ser. Esto es lo que se conoce como abiogénesis. Y es un problema. Un gran problema, porque nadie sabe cómo se produjo. De hecho, es el problema central de la biología: ¿cómo comenzó todo?

Estas rocas de la región de Pilbara, en Australia, contienen los fósiles de microbios más antiguos conocidos, de 3.500 millones de años de antigüedad. Imagen de Baumgartner et al., Geology, 2019.

Estas rocas de la región de Pilbara, en Australia, contienen los fósiles de microbios más antiguos conocidos, de 3.500 millones de años de antigüedad. Imagen de Baumgartner et al., Geology, 2019.

La dificultad de la abiogénesis es obvia: que la vida aparezca a partir de la no vida es algo que, en principio, no ocurre. Solemos llamarlo generación espontánea, y Pasteur y otros demostraron que no existe. Hay ciertas diferencias considerables entre la generación espontánea y la abiogénesis: una de ellas, que rescataremos más abajo, es que la primera ocurriría de forma rápida y rutinaria, como una especie de mecanismo naturalmente programado, mientras que la segunda sería un proceso lento, gradual y excepcional. Pero en el fondo, el resumen es el mismo: vida que surge de algo no vivo.

Tan grande es el problema que tradicionalmente ha dado pie a muchos a defender explicaciones sobrenaturales de la aparición de la vida (en contra de lo que muchos creen, la evolución definida primero por Darwin y Wallace y después reconstituida por otros no explica el origen de la vida, sino solo cómo unas especies dan lugar a otras). Francis Crick, codescubridor de la doble hélice del ADN y un crítico feroz de las religiones, trató de salvar el obstáculo de la abiogénesis proponiendo la panspermia dirigida, la idea de que una civilización alienígena sembró la vida terrestre a propósito.

Lo cual, en realidad, no solamente no resolvía el problema, sino que le daba una patada para alejarlo (¿cómo surgió la vida de la que esa civilización evolucionó?); y, en el fondo, ¿cuál es la diferencia entre hablar de Dios y de una entidad alienígena inteligente, creadora y con un poder incomprensible para nosotros?

Todo hay que decirlo, Crick moderó su postura en años posteriores, cuando se descubrió la capacidad catalítica del ARN, que rompía el ciclo del huevo y la gallina: si la formación del ADN requiere proteínas y la formación de proteínas requiere ADN, ¿cómo empieza el proceso? El descubrimiento de las ribozimas, ARN que actúa como enzimas, conseguía cortar el círculo y convertirlo en una línea con una casilla de salida.

Pero incluso con las ribozimas, la abiogénesis continúa siendo hoy una píldora difícil de tragar. O lo sería, si no fuera porque tenemos la prueba irrefutable de su existencia: nosotros. Por supuesto y dado que la vida es un fenómeno natural, recurrir a explicaciones sobrenaturales es solo negarnos a nosotros mismos nuestra capacidad para comprender el universo por medio del razonamiento y la investigación.

Esta explicación sobre la abiogénesis sirve para entender por qué se ha popularizado tanto la idea de que la vida es abundante en el universo, y por qué en cambio esta idea es, como mínimo, poco razonable. Los primeros que comenzaron a interesarse científicamente por la vida alienígena fueron físicos y matemáticos, como los fundadores de los proyectos SETI (Búsqueda de Inteligencia Extraterrestre). Para un físico, la naturaleza funciona aquí lo mismo que en GN-z11, que creo es la galaxia más lejana conocida hasta ahora. Para un matemático, es un disparate estadístico pensar que la vida terrestre es un fenómeno único.

Físicos y matemáticos han ignorado tradicionalmente el punto de vista biológico, y el público en general simplemente lo desconoce. Desde este enfoque, la vida es lo normal. Pero cuando se introduce el problema espinoso y aún inexplicado de la abiogénesis, lo normal es pensar que la vida es algo muy raro. Y que la vida inteligente, como nosotros, es algo que sencillamente no debería existir.

Pero mejor lo explica Nick Longrich. Este paleontólogo y biólogo evolutivo de la Universidad de Bath, en Inglaterra, atrajo el foco de los medios en 2015 gracias a un hallazgo espectacular, el primer fósil conocido de una serpiente de cuatro patas que vivió en el Cretácico, en la era de los dinosaurios. Este animal, llamado Tetrapodophis, rellenaba el hueco del fósil de transición entre los lagartos y las serpientes; lo que suele llamarse un eslabón perdido.

Reconstrucción de Tetrapodophis, la serpiente de cuatro patas del Cretácico. Imagen de Julius T. Cstonyi.

Reconstrucción de Tetrapodophis, la serpiente de cuatro patas del Cretácico. Imagen de Julius T. Cstonyi.

Recientemente, Longrich ha publicado un artículo en The Conversation cuyo título resume perfectamente el mensaje: “La evolución nos dice que podríamos ser la única vida inteligente en el universo”. Y sí, por supuesto que, como siempre ocurre con esta hipótesis, quienes no observan la naturaleza desde el conocimiento de la biología saldrán a opinar que tal cosa es absurda, que por narices (las narices de los físicos y matemáticos) la vida, incluyendo la inteligente, tiene que ser algo inmensamente extendido por todo el cosmos, y que blablablá… Pero de verdad, lean a Longrich.

En resumen, lo que el biólogo viene a exponer es que, si bien no tenemos ejemplos de vida extraterrestre que poder estudiar, al menos tenemos 4.500 millones de años de historia terrestre. Y eso equivale a muchísimos datos, a un experimento natural inmensamente rico.

Lo primero que podemos concluir de ese experimento natural es que, en un planeta tan sumamente habitable como el nuestro, y en más de 4.500 millones de años, la abiogénesis solo se ha producido una única vez. Si la vida surge inevitablemente allí donde puede, como han defendido los físicos, ¿por qué aquí solo una vez? ¿Por qué no dos, tres, miles, millones?

Este argumento biológico, llamado del segundo génesis (por un segundo origen independiente de la vida, y un tercero, y un cuarto…), ha sido comentado en este blog innumerables veces. Es un argumento que físicos y matemáticos pasaron por alto completamente cuando crearon esas fantasías de un universo rebosante de vida alienígena. Y es un argumento demoledor. Si la vida fuera algo de aparición tan común, en la Tierra lo veríamos casi a diario. Según lo dicho arriba, sería una especie de mecanismo naturalmente programado. En el fondo, lo que defiende la idea de la vida como fenómeno inevitable es una especie de generación espontánea. Pero entonces no tendría ningún sentido biológico que este fuera un proceso autolimitado a una vez por planeta a lo largo de toda su historia de miles de millones de años. Se mire como se mire, se llega a una reducción al absurdo.

Lo que hace Longrich en su artículo es aplicar la misma línea de razonamiento a otros pasos críticos para conducir desde la aparición de la vida, una célula simple, a algo tan complejo como nosotros. Por supuesto, con una célula sencilla no acaba el problema: hay otros muchos complicados procesos que tienen que darse para llevar a la vida inteligente. Y para cada uno de esos pasos, se pregunta Longrich, ¿existe una segunda ocasión en que se haya repetido?

Longrich da cuenta de cómo, en efecto, en muchos casos la evolución ha repetido sus soluciones en distintos linajes de la vida. El ejemplo más típico es el de las alas: las aves vuelan, pero también los insectos y los murciélagos. En todos estos casos las alas aparecieron de forma independiente en distintas líneas evolutivas. Es lo que llamamos evolución convergente. Otro ejemplo son los ojos, que surgieron de modo separado en los vertebrados y en diferentes líneas de invertebrados como los artrópodos, las medusas o los moluscos.

Entonces la pregunta es: ¿ha ocurrido esto mismo en ciertos pasos críticos, como semáforos de la evolución que deben superarse en el camino desde la célula simple a la vida inteligente? De ser así, dice Longrich, la aparición de vida compleja inteligente no solo sería probable, sino casi inevitable.

Pero la respuesta, oh sorpresa, es que no es así: no solo la propia aparición de la vida, sino también la célula eucariota, los seres multicelulares, la reproducción sexual, la fotosíntesis, el esqueleto, y por supuesto la inteligencia, todo ello apareció en la evolución solo una única vez. Según Longrich, “la convergencia parece ser la norma, y nuestra evolución parece probable. Pero cuando buscas la no convergencia, está por todas partes, y las adaptaciones críticas complejas parecen ser las menos repetidas, y por tanto improbables”.

“Estas innovaciones únicas, golpes de suerte críticos, pueden crear una cadena de cuellos de botella evolutivos o filtros”, escribe Longrich. “Si es así, nuestra evolución no fue como ganar la lotería. Fue como ganar la lotería una vez, y otra, y otra, y otra. En otros mundos, estas adaptaciones críticas pueden haber evolucionado demasiado tarde para que emergiera la inteligencia antes de que sus soles hayan degenerado, o no haber evolucionado nunca”.

Longrich hace unos números rápidos: si la aparición de vida inteligente depende, por ejemplo, de siete de estos semáforos evolutivos críticos, cada uno de ellos con un 1% de posibilidades de ponerse en verde (lo cual sería infinitamente mayor de lo que nos muestra el experimento natural de la Tierra), entonces la inteligencia ocurre en uno de cada cien billones de mundos habitables; 100.000.000.000.000. Y, continúa Longrich, “si los mundos habitables son raros, entonces podríamos ser la única vida inteligente en la galaxia, o incluso en todo el universo visible”.

Y lo cierto es que sí, los mundos habitables parecen ser raros. En los últimos años, los científicos planetarios parecen estar asumiendo con perplejidad una evidencia inesperada: hasta ahora y de más de 4.000 exoplanetas conocidos, no hay ni uno solo similar a la Tierra. En un reportaje reciente, el científico planetario Edward Schwieterman, de la Universidad de California en Riverside y el Instituto de Astrobiología de la NASA, me decía: “No debería sorprendernos si las condiciones exactas que encontramos hoy en la Tierra resultan ser raras”.

Así que, antes de caer en ese pensamiento simple de que la vida debe de estar por todas partes, escuchen a la biología; que si de algo sabe, es de vida.

La radiación estelar, un arma de doble filo para la vida en otros planetas

La semana pasada, dos científicos del Instituto Carl Sagan de la Universidad de Cornell publicaban un interesante estudio con una conclusión sugerente: la alta irradiación estelar que reciben algunos de los exoplanetas descubiertos no sería un obstáculo para la supervivencia, ya que la Tierra logró engendrar vida a pesar de que en sus comienzos también estaba sometida a un elevado nivel de radiación del Sol.

En su estudio, publicado en Monthly Notices of the Royal Astronomical Society, Lisa Kaltenegger y Jack O’Malley-James cuentan que Proxima-b, un planeta rocoso en la zona habitable de Proxima Centauri (una de las estrellas del sistema estelar más cercano a nosotros, Alfa Centauri), recibe 30 veces más radiación ultravioleta (UV) que la Tierra actual y 250 veces más bombardeo de rayos X.

En su día, estos datos desinflaron las expectativas de encontrar vida allí, ya que estos niveles de radiación se consideraban demasiado hostiles. Algo similar ocurre con otros exoplanetas potencialmente habitables que también orbitan en torno a enanas rojas, estrellas pequeñas, poco brillantes y templadas que suelen tener un comportamiento temperamental.

Kaltenegger y O’Malley-James han construido modelos de simulación computacional del ambiente de radiación UV en los cuatro exoplanetas habitables más próximos, Proxima-b, TRAPPIST-1e, Ross-128b y LHS-1140b, y con distintas composiciones atmosféricas para imponer diferentes grados de protección frente a los embates de sus estrellas, todas ellas enanas rojas. Al mismo tiempo, los dos investigadores simularon también las condiciones a lo largo de la historia de la Tierra, desde hace 3.900 millones de años hasta hoy.

Ilustración de un planeta habitable en la órbita de una estrella enana roja. Imagen de Jack O’Malley-James/Cornell University.

Ilustración de un planeta habitable en la órbita de una estrella enana roja. Imagen de Jack O’Malley-James/Cornell University.

Los resultados muestran que incluso en las peores condiciones atmosféricas y de irradiación, los exoplanetas analizados soportarían niveles de UV inferiores a los que experimentaba nuestro planeta hace 3.900 millones de años, cuando posiblemente la vida comenzaba a dar sus primeros pasos; unos primeros pasos que llegaron increíblemente lejos. «Dado que la Tierra temprana estaba habitada, mostramos que la radiación UV no debería ser un factor limitante para la habitabilidad de los planetas», escriben los investigadores. «Nuestros mundos vecinos más cercanos permanecen como objetivos interesantes para la búsqueda de vida más allá de nuestro Sistema Solar».

El estudio de Kaltenegger y O’Malley-James es sin duda un argumento a favor de que la vida pueda progresar en entornos más hostiles de lo que solemos imaginar (aunque no aborda otras agresiones como los rayos X). De hecho, sus implicaciones van aún más allá de lo que los autores contemplan, porque la radiación es una causa de variabilidad genética, el sustrato sobre el que actúa la evolución. La radiación mata, pero también muta: puede generar esporádicamente ciertas variantes genéticas que casualmente resulten en individuos mejor adaptados y en el primer paso hacia nuevas especies. Otro estudio reciente muestra que el sistema TRAPPIST-1 puede estar sometido a un intenso bombardeo de protones de alta energía; y una vez más, esto puede ser tan dañino para la vida como generador de diversidad.

Sin embargo, al leer el estudio es inevitable regresar al viejo problema, el principal: sí, la vida puede perdurar, pero para ello antes tiene que haber surgido. ¿Y cómo?

Hasta que un experimento logre reproducir a escala acelerada el fenómeno de la abiogénesis –un término elegante para referirse a la generación espontánea en tiempo geológico, la aparición de vida a partir de la no-vida–, o hasta que un algoritmo de Inteligencia Artificial sea capaz de simular el proceso, seguimos completamente a oscuras.

La especiación es un fenómeno continuo y abundante. La eclosión de seres complejos a partir de otros más sencillos es algo que ha ocurrido infinidad de veces a lo largo de la evolución, incluso cuando se ha hecho borrón y cuenta nueva, como pudo ser el caso de la biota ediacárica hace 542 millones de años. Pero todas las pruebas apuntan a que en 4.500 millones de años la vida solo ha surgido una única vez. Y lo cierto es que aún no tenemos la menor idea de cómo ocurrió.

Lo cual nos lleva una vez más a la misma idea planteada a menudo en este blog, y es que si la abiogénesis ha sido un fenómeno tan inconcebiblemente extraordinario y excepcional en un planeta también inusualmente raro —como conté recientemente aquí–, defender la abundancia de la vida en el universo es más un deseo pedido a una estrella fugaz que un argumento basado en ciencia. Al menos, con las pruebas que tenemos hasta ahora.

Esta ausencia de pruebas obliga a los defensores de la profusión de la vida en el universo a explicar por qué no tenemos absolutamente ninguna constancia de ello. Y a veces les empuja a esgrimir teorías que llegan a rayar en lo delirante. Como les contaré el próximo día.

Biología sintética y los ingenieros de Alien: ¿vuelven los ‘carros de los dioses’?

Aún no he tenido ocasión de ver el nuevo fascículo de la saga Alien. Los que aún tenemos polluelos estamos un poco limitados en nuestras salidas, así que más allá de lo puramente cinematográfico, todavía ignoro qué nuevos hilos aporta Alien: Covenant sobre la trama básica de la serie que comenzó a desvelarse en Prometheus, y que planteaba el argumento de una civilización alienígena autora de nuestra existencia, a la que se daba el nombre de «los ingenieros».

Uno de los ingenieros de 'Prometheus'. Imagen de 20th Century Fox.

Uno de los ingenieros de ‘Prometheus’. Imagen de 20th Century Fox.

La idea de que podríamos ser las criaturas de algo superior es posiblemente tan antigua como el pensamiento humano, algo natural en una especie capaz de intentar comprenderse a sí misma. Para algunos académicos, es un ejemplo de lo que el biólogo evolutivo Stephen Jay Gould llamó exaptación, una característica que surge como subproducto de una adaptación favorable: nuestra capacidad cognitiva nos resulta útil para la supervivencia, pero también nos mete en camisas de once varas a la hora de tratar de explicar la naturaleza, incluido nuestro propio origen.

Así, para algunos expertos, ideas como Dios o los llamados antiguos astronautas tienen orígenes psicológicamente parecidos. Hay quienes en la misma línea añaden otros fenómenos, como las teorías de la conspiración o lo que se conoce entre sus adeptos como el Nuevo Orden Mundial: en todos los casos se supone la existencia de una inteligencia oculta que es responsable de las cosas que ocurren, las cuales ocurren con un propósito diseñado por esa inteligencia oculta.

Es curioso, porque la idea ha ido tomando diversas formas en función del estado del conocimiento humano en cada época y de lo que se denomina el Zeitgeist, el signo de los tiempos, o lo que la gente piensa en cada momento histórico. En tiempos antiguos era lo sobrenatural: los dioses o el Dios; más modernamente la ciencia introdujo el positivismo natural; y en el siglo XX hubo quienes trataron de crear una narrativa continua entre ambas formas de pensamiento: los antiguos astronautas, popularizados en los años 70 por autores como el suizo Erich von Däniken y sus «carros de los dioses», que para este autor y otros eran un fenómeno natural –alienígenas– interpretado por sus presuntos testigos como uno sobrenatural –dioses–.

Hay quienes han situado el origen de las ideas de von Däniken en fuentes muy dispares, desde la mitología de Cthulhu de H. P. Lovecraft y su escalofriante novela En las montañas de la locura (por cierto, mitos que el escritor inventó como simple ficción), hasta las especulaciones del mismísimo Carl Sagan sobre antiguos contactos alienígenas. También se acusó al autor suizo de haber plagiado las ideas de otros.

Pero naturalmente, la hipótesis de von Däniken es pseudociencia, no corroborable ni refutable por métodos científicos, y que por tanto puede perpetuarse en la mente de quienes creen en ello sin tener que rendirse jamás a ninguna evidencia contraria. Lo cual, entre otras cosas y unido a lo provocador de la idea, mantuvo un rentable nicho de mercado para su autor, con independencia de que él realmente creyera en ello. Otros también han encontrado su filón en argumentos similares, como el español J. J. Benítez.

Paralelamente, dentro del ámbito de la ciencia hay también una larga tradición en la propuesta de que la vida pudo llegar a la Tierra desde el espacio; se conoce como panspermia. De hecho, suele atribuirse al filósofo griego Anaxágoras la primera mención de este término, al que en el siglo XIX se le dio una definición más científica como la siembra de vida a través del universo mediante microbios presentes en cuerpos viajeros; por ejemplo, asteroides y cometas.

La panspermia ha tenido sus defensores más significados en dos astrónomos, el británico Fred Hoyle y su alumno, el ceilanés Chandra Wickramasinghe. El primero, ya fallecido, aportó valiosos hallazgos sobre los procesos físico-químicos en las estrellas, además de acuñar el término Big Bang, aunque fuera con una intención irónica hacia una teoría en la que no creía. Pero tanto Hoyle como Wickramasinghe se han distinguido por sus propuestas estrambóticas y contrarias al conocimiento científico, como el rechazo a la evolución biológica o la afirmación de que la llamada gripe española de 1918 y otras graves pandemias llegaron a la Tierra desde el espacio. Hoyle llegó a decir que la posibilidad de que surja una célula a partir de sus componentes básicos es como si un tornado barre una chatarrería y ensambla un Boeing 747.

Entre la comunidad científica, la panspermia como la definieron Hoyle y Wickramasinghe provoca ceños fruncidos, cuando no reacciones más airadas. Lo cierto es que no existe ningún indicio para pensar que un microbio pueda sobrevivir a un largo viaje espacial en una roca, ni siquiera en estados de latencia como las esporas. Por el contrario, en los últimos años se han encontrado pruebas de que ciertas moléculas orgánicas propias de la vida sí pueden hacer tales viajes, una versión más débil de la panspermia que sí cuenta con el apoyo de algunos científicos. Y que no solo es diferente, sino casi opuesta a lo defendido por Hoyle y Wickramasinghe, ya que para estos no puede surgir la vida a partir de componentes simples.

Hay una tercera modalidad de panspermia aún más arriesgada, que es la dirigida: la idea de que la vida en la Tierra ha sido deliberadamente sembrada. Así volvemos a los antiguos astronautas de von Däniken o los ingenieros de Prometheus. Lo curioso es que esta idea también pseudocientífica ha obtenido casi más interés por parte de algunos científicos que la panspermia de Hoyle y Wickramasinghe. Uno de sus proponentes más notables fue Francis Crick, el codescubridor de la doble hélice de ADN; aunque en su descargo debe aclararse que Crick publicó su hipótesis en 1973, antes de saberse que el ARN es capaz de replicarse por sí mismo sin la intervención de otras moléculas.

Ya he mencionado arriba que Sagan, sin proponérselo, inspiró a autores como von Däniken al especular sobre posibles antiguas visitas alienígenas a la Tierra. El astrofísico y divulgador fue devastadoramente crítico con las ideas del suizo, y sobre la hipótesis de Crick escribió: “aunque no sabemos de nada que rigurosamente excluya la idea de la panspermia dirigida, de igual modo no hay nada que la apoye fuertemente”. A pesar de lo que circula por internet, no hay ninguna prueba de que Sagan creyera en teorías de antiguos astronautas, y en cambio sí hay pruebas de lo contrario.

Lo más llamativo de todo esto es que, según conté ayer, hoy podemos encontrar científicos reputados como Adam Steltzner, ingeniero jefe del rover marciano Curiosity, reflexionando públicamente y sin rubor sobre ideas que no son otra cosa que panspermia dirigida, antiguos astronautas e ingenieros. Por supuesto que Steltzner no estaba sentando cátedra cuando lo dijo, pero tampoco era una charla de café, sino una conferencia anual en Washington dedicada a explorar las fronteras de la ciencia. Y Steltzner es un ejemplo, pero no el único. Los biólogos sintéticos trabajan bajo la premisa de que esta tecnología puede avanzar espectacularmente en la recreación de múltiples procesos naturales de la vida. Y como también conté ayer, algunos no son contrarios a la idea de que estos avances, tal vez conseguidos ya por civilizaciones más avanzadas, puedan propagarse a través del universo. Dos y dos son cuatro.

Cuando Elon Musk, el magnate de SpaceX que quiere llevarnos a Marte, afirma que muy probablemente seamos el resultado de una simulación informatizada de nuestros futuros descendientes, en el fondo no es más que una nueva versión digital de la panspermia dirigida. Una diferencia esencial entre gente como von Däniken y gente como Musk es que los segundos se ganan el respeto con sus progresos reales. Y con ello, están extendiendo ideas audaces que están calando entre la comunidad científica, aunque solo sea como ciencia-espectáculo.

No creo que a Ridley Scott, artífice de la saga Alien, le haya pasado por alto el hecho de que con sus ingenieros tal vez haya pinchado en una veta de renovada actualidad. Es difícil determinar cuáles son causas y cuáles efectos. Pero en fin, todo esto está bien en la medida en que favorece la reflexión, la discusión y la creación de historias para que pasemos un buen rato en el cine. Siempre que no olvidemos que a día de hoy no tenemos absolutamente ningún indicio de que realmente haya alguien más en el universo.

Un hallazgo en un cometa complica la búsqueda de vida alienígena

¿Cómo puede un descubrimiento en un cometa complicar la búsqueda de vida alienígena? Si les interesa, sigan leyendo.

Tal vez recuerden que hace dos años y medio hasta algunos telediarios abrieron con el primer aterrizaje de un artefacto espacial en un cometa: se trataba de Philae, un módulo separable de la sonda Rosetta de nuestra Agencia Europea del Espacio (ESA). Philae solo pudo operar durante un par de días debido a que su aterrizaje defectuoso lo dejó en un lugar bastante escondido de la luz del sol, pero su breve vida fue suficiente para hacer ciencia muy valiosa. Por su parte, su nodriza Rosetta concluyó su misión en septiembre de 2016 estrellándose contra el objeto de su estudio, el cometa 67P/Churyumov–Gerasimenko.

Imagen del cometa 67P/Churyumov–Gerasimenko tomada por la sonda Rosetta. Imagen de ESA/Rosetta/NAVCAM.

Imagen del cometa 67P/Churyumov–Gerasimenko tomada por la sonda Rosetta. Imagen de ESA/Rosetta/NAVCAM.

Entre los descubrimientos que Rosetta ha aportado al conocimiento, en 2015 los científicos de la misión anunciaron el hallazgo de oxígeno molecular en la atmósfera del cometa. El oxígeno molecular es lo que respiramos, una molécula formada por dos átomos de oxígeno, O2. Y a pesar de que el oxígeno como elemento es uno de los más abundantes en el universo (el tercero, después de hidrógeno y helio), su forma molecular, la respirable, es extremadamente rara, que sepamos hasta ahora. Hasta 2011 no se confirmó por primera vez su existencia fuera del Sistema Solar, y no fue precisamente aquí al lado: en una región formadora de estrellas de la nebulosa de Orión, a unos 1.500 años luz. Posteriormente se ha detectado también en otra zona de formación de estrellas de la nebulosa Rho Ophiuchi.

La rareza del oxígeno molecular estriba en que es muy reactivo, muy oxidante, por lo que tiende a reaccionar rápidamente con otros compuestos y desaparecer en esta forma; por ejemplo, con el hidrógeno para producir agua. Así que, cuando los científicos encontraron oxígeno molecular en el cometa 67P, la reacción lógica se resumía en tres letras: WTF?

La explicación que sugirieron los investigadores de Rosetta era que el oxígeno estaba congelado en el cometa desde su formación, en los tiempos del origen del Sistema Solar, y que se iba liberando por el calor del sol. Sin embargo, la hipótesis fue cuestionada porque incluso en este caso parecía improbable que el oxígeno pudiera haber permanecido intacto, sin reaccionar, durante miles de millones de años.

Ahora, por fin existe una explicación para el oxígeno de 67P, y ha llegado de una fuente inesperada: un ingeniero químico que se dedica a la investigación de nuevos componentes electrónicos. Konstantinos Giapis, de Caltech (EEUU), se dedica desde hace 20 años a cosas como bombardear semiconductores con chorros de átomos cargados a alta velocidad para estudiar las reacciones químicas que se producen.

Cuando Giapis supo del descubrimiento de Rosetta, de repente se dio cuenta de que el cometa podía ser un ejemplo real de los experimentos que él realiza en el laboratorio: el hielo presente en 67P se calienta con el sol, liberando vapor de agua que se ioniza con la radiación ultravioleta solar y se estrella de nuevo a alta velocidad con el cuerpo del cometa por el efecto del viento solar. Cuando estas moléculas de agua chocan contra la superficie de 67P, arrancan átomos de oxígeno que se combinan con el oxígeno del agua para formar O2.

Ilustración del experimento de Konstantinos Giapis. Al bombardear con moléculas de agua (izquierda) una superficie de materiales similares a los del cometa 67P, se desprende oxígeno molecular (en rojo; el hidrógeno, en azul). Imagen de Caltech.

Ilustración del experimento de Konstantinos Giapis. Al bombardear con moléculas de agua (izquierda) una superficie de materiales similares a los del cometa 67P, se desprende oxígeno molecular (en rojo; el hidrógeno, en azul). Imagen de Caltech.

No es solo una teoría: Giapis lo ha puesto a prueba en su laboratorio, simulando el proceso que tiene lugar en el cometa, y ha demostrado que se produce oxígeno molecular. Así que la presencia de este compuesto en 67P no es una reliquia de la época del nacimiento del cometa, sino una reacción que está ocurriendo ahora para generar oxígeno respirable fresco.

Lo cual nos lleva de vuelta al título de este artículo. Y es que, aunque el estudio de Giapis aporta un interesante hallazgo en el campo de la astrofísica/química, sus repercusiones pueden complicar aún más la búsqueda de firmas de vida en planetas extrasolares: incluso si se detecta oxígeno en la atmósfera de alguno de estos lejanos planetas, ya hay otro mecanismo más que podría explicar su origen sin necesidad de que exista algo vivo allí.

El drama de la búsqueda de vida en el universo es que difícilmente llegaremos jamás a tener una prueba directa, una confirmación absoluta. Todos los intentos de encontrar biología en planetas extrasolares, que cada vez son más (los intentos y los planetas), deben conformarse con buscar indicios indirectos, como señales que no sean fácilmente atribuibles a un fenómeno natural. Los nuevos instrumentos de observación van a facilitar en los próximos años el análisis de las atmósferas de muchos exoplanetas, y con ello será posible sospechar que tal o cual composición atmosférica podría indicar la existencia de vida.

Naturalmente, la más evidente de estas posibles firmas biológicas atmosféricas es el oxígeno. Nunca se ha pretendido que esta fuese una firma definitiva: existen procesos geológicos y químicos que pueden dar lugar a la generación de este gas sin intervención de nada vivo. Por ejemplo, Europa y Ganímedes, dos de las grandes lunas de Júpiter, tienen atmósferas de oxígeno muy tenues, pero allí este gas se forma por la ruptura del agua (H2O) causada por la radiación, o radiolisis.

Sin embargo, con los procesos abióticos (sin vida) de fabricación de oxígeno ocurren dos cosas: primero, no parece fácil que puedan originar enormes cantidades de este gas y sostenidas a lo largo del tiempo. En el caso de la Tierra, el gran inflado de nuestra atmósfera se produjo por la proliferación de microbios fotosintéticos, y si aún hoy podemos respirar es gracias a que seguimos teniendo organismos fotosintéticos.

Segundo, en algunos casos esos procesos requieren condiciones que tampoco son hospitalarias para la vida. Por ejemplo, en planetas muy calientes y próximos a su estrella, la radiación UV de esta puede descomponer el agua. Pero si se encuentra oxígeno en un planeta así, sus propias condiciones hacen muy improbable que exista algo vivo.

En resumen, y aunque detectar oxígeno en abundancia en la atmósfera de un exoplaneta no sería una demostración de vida, sí sería un buen comienzo. O al menos, lo era, hasta el hallazgo de Giapis. Ahora sabemos que hay una manera más de producir oxígeno, que a 67P le funciona muy bien, y en la que no interviene nada parecido a la vida. Desde Caltech ya nos advierten: «otros cuerpos astrofísicos, como planetas más allá de nuestro Sistema Solar, o exoplanetas, también podrían producir oxígeno molecular por el mismo mecanismo abiótico, sin necesidad de vida. Esto puede influir en la futura búsqueda de signos de vida en exoplanetas».

Sin rastro de vida inteligente en más de 6.000 estrellas

Será curioso saber qué artículo despierta mayor interés, si el que publiqué ayer, sugiriendo que la búsqueda de signos de vida extraterrestre pronto podría dar frutos, o este de hoy. Las buenas noticias y las malas tienden a atraerse como los polos opuestos, en sentido puramente electromagnético (nunca he creído en esa aplicación metafórica a los seres humanos; o al menos en mi caso, no funciona así).

El sistema triple Alfa Centauri: A, B y Proxima (señalada en rojo). Imagen de Wikipedia.

El sistema triple Alfa Centauri: A, B y Proxima (señalada en rojo). Imagen de Wikipedia.

La mala noticia de hoy es que dos proyectos de búsqueda de señales de vida inteligente, uno en 5.600 estrellas y otro en 692, han concluido con las manos vacías. Nada por aquí, nada por allá. Y les aseguro que no me alegro de ello, pero es otro apoyo más a la hipótesis de que la vida no es un fenómeno común en el universo.

El primero de los proyectos es obra de dos investigadores de la Universidad de California en Berkeley. Nathaniel Tellis y Geoffrey Marcy han emprendido lo que se conoce como SETI óptico; es decir, búsqueda de inteligencia extraterrestre (cuyas iniciales en inglés forman el acrónimo SETI), pero no en forma de señales de radio, sino de pulsos de luz visible.

La idea inspiradora, puramente especulativa, es que una civilización lo suficientemente avanzada podría emplear el láser como un medio de comunicación a grandes distancias, y uno de estos pulsos que cayera en nuestra dirección podría detectarse como un chispazo de luz distinguible del brillo de la estrella.

Los dos investigadores han aplicado un algoritmo a un exhaustivo conjunto de datos recogidos por el telescopio Keck de Hawái entre 2004 y 2016, correspondientes a 5.600 estrellas de la Vía Láctea distribuidas por todo el cielo, en su mayoría hasta una distancia de unos 326 años luz, y de un amplio rango de edades, desde menos de 200 millones de años hasta casi 10.000 millones de años. Para cada estrella, han buscado posibles chispazos en casi todo el espectro de luz visible (todos los colores) y en un radio de hasta decenas de unidades astronómicas (una unidad astronómica, UA, es la distancia media de la Tierra al Sol).

Después de todo ello, esta es la conclusión de los investigadores en su estudio, que se publicará próximamente en la revista The Astronomical Journal: «No hemos encontrado emisiones láser procedentes de las regiones planetarias en torno a ninguna de las 5.600 estrellas». Según los datos actuales disponibles, Tellis y Marcy calculan que este conjunto de estrellas debería albergar unos 2.000 planetas templados de tamaño similar a la Tierra, así que los resultados no son nada alentadores.

El segundo proyecto es el Breakthrough Listen, una de las Iniciativas Breakthrough del programa SETI fundado en 2015 por el físico y magnate ruso Yuri Milner, y que cuenta con la participación del Centro SETI de la Universidad de California en Berkeley. Breakthrough ha celebrado esta semana en la Universidad de Stanford su segunda conferencia anual, donde se han discutido cuestiones como el potencial para la existencia de vida en algunos mundos recientemente descubiertos, por ejemplo Proxima b, el sistema TRAPPIST-1 o el recién llegado LHS 1140b, del que hablé ayer. También se debatió sobre el Breakthrough Starshot, el proyecto de Milner de enviar una flota de minúsculas sondas al sistema Alfa Centauri.

En la conferencia Breakthrough se han presentado las conclusiones del primer año de Listen. El director del SETI en Berkeley, Andrew Siemion, expuso los resultados de la escucha de posibles señales de radio de origen inteligente en 692 estrellas con el radiotelescopio de Green Bank, una instalación histórica para el SETI, ubicada en Virginia Occidental. De todas las señales captadas, los investigadores seleccionaron 11 como las más significativas. Pero el veredicto es claro, o más bien oscuro: «se considera improbable que alguna de estas señales tenga un origen artificial, pero la búsqueda continúa», han declarado los responsables del proyecto.

En resumen, seguimos en blanco, solos y sin compañía. Por supuesto, hay recurso al viejo aforismo: la ausencia de prueba no es prueba de ausencia. Como no podía ser de otra manera, Tellis reconoció a la revista The Atlantic que el hecho de no haber detectado comunicaciones láser no significa que esas 5.600 estrellas estén desprovistas de vida. «Cada una de esas estrellas podría tener un Nueva York, un París o un Londres, y no tendríamos ni idea», dijo. De hecho, nosotros no enviamos comunicaciones por láser al espacio; si alguien nos estudiara desde allí empleando la misma técnica, no encontraría ningún rastro de nuestra presencia.

Pero no olvidemos que el aforismo es de por sí discutible cuando sirve para encubrir una llamada a la ignorancia. Por poner un ejemplo tan ridículo como claro, es indefendible alegar que la ausencia de pruebas de que hay un dragón invisible en la habitación no prueba que el dragón invisible no esté presente, por mucho que uno desee creer en los dragones invisibles. La vida es muy común en el estanque de mi jardín. Si tomo una simple gota al azar, encuentro al primer vistazo esta diminuta maravilla:

Alga verde microscópica Scenedesmus. Imagen de J. Y., tomada acercando la cámara del móvil al ocular de un microscopio.

Alga verde microscópica Scenedesmus. Imagen de J. Y., tomada acercando la cámara del móvil al ocular de un microscopio.

Que, por cierto, es una alga verde Scenedesmus, una clorofícea colonial que suele formar grupos de cuatro u ocho células, llamados cenobios. Pero en el estanque del universo, ninguna gota de las muchas analizadas hasta ahora de una manera u otra ha revelado absolutamente nada. ¿Es la vida realmente tan común en el universo?

La vida extraterrestre, cada vez más cerca

Durante buena parte del siglo pasado cundía la sensación de que la confirmación de la vida extraterrestre era una fruta madura a punto de caer. Eran los años 60, 70 y 80, cuando el fenómeno ovni estaba en su apogeo y parecía que la prueba definitiva llegaría mañana o pasado. Pero después comenzaron a aparecer las cámaras digitales y los móviles con cámara (que, para los recién llegados, en realidad son anteriores a los smartphones).

Ilustración del exoplaneta LHS 1140b. Imagen de M. Weiss/CfA.

Ilustración del exoplaneta LHS 1140b. Imagen de M. Weiss/CfA.

Hoy hasta los maasáis de la sabana keniana llevan en el bolsillo una cámara de fotos de alta definición (no es broma); y en contra de lo que muchos habrían previsto, en lo referente a los ovnis seguimos estancados en la misma coyuntura de los tiempos en que una cámara era un bien escaso y rudimentario. Cada día se suben milles de millones de fotos y vídeos a internet, pero ninguno de los 7.500 millones de humanos dispersos por todos los rincones del planeta nos ha mostrado una entrevista con alienígenas recién bajados de un platillo volante, grabada en Full HD con un iPhone no-sé-cuántos-van-ya.

Ya expliqué aquí hace tiempo mis razones para no creer en los ovnis, mal que me pese; y en algún otro medio he contado cómo la ciencia ha ido desmontando uno por uno los presuntos casos de avistamientos más sonados de los últimos años. Pero si lo que piense alguien que tiende al escepticismo puede mover a otros a un escepticismo hacia el escepticismo, la cuestión es que, como conté en un reportaje hace ya ocho años, incluso algunos ufólogos hace tiempo que tiraron la toalla; claro está, aquellos que han sostenido frente al fenómeno ovni una actitud honesta y racional, no quienes tratan de seguir viviendo del cuento a toda costa.

Rescato algunos ejemplos de lo anterior que cité en aquel reportaje. Jenny Randles, ufóloga, escritora y antigua directora de investigación de la British UFO Research Association (BUFORA), reconocía: «ET no aterrizó y el mundo sigue su camino como siempre». Wendy Connors, ufóloga estadounidense, escribió un artículo sobre la «muerte de la ufología». El español Ricardo Campo, investigador crítico del fenómeno ovni, calificaba la ufología como «ciencia abortada», y me contaba a su vez que muchos ufólogos se habían rendido a la evidencia. El ufólogo Vicente-Juan Ballester Olmos también cerraba el ataúd de la ufología: «Lo que no ha ocurrido ya en estos 60 años no creo que vaya a ocurrir en lo sucesivo; el misterio de los ovnis ya está momificado y es labor para historiadores, antropólogos y sociólogos», decía.

Y a pesar de todo, en ciertos programas de televisión continúan desfilando personajes que no hacen sino confirmar aquella idea del genial Carl Sagan: «los casos fiables no son interesantes, y los casos interesantes no son fiables. Desafortunadamente, no hay casos que sean a la vez fiables e interesantes».

Todo lo cual no significa que la creencia en los ovnis haya desaparecido de la calle. De hecho, algún análisis reciente apunta que esta fe, ya que a tales alturas no cabe otra calificación, puede estar remontando desde sus mínimos históricos, tal vez debido a las corrientes culturales cíclicas, y tal vez enmarcada dentro de un fenómeno más general de auge de las pseudociencias y del movimiento anti-Ilustración, algo de lo que ya he hablado aquí.

Pero una cosa es el fenómeno ovni, y otra muy diferente la confirmación de vida extraterrestre. Y respecto a esto último, sí podría decirse, desde un enfoque científico, que la situación actual tiene un cierto sabor a años 60-70: como entonces, hoy se diría que la noticia de que nuestro planeta no es el único lugar habitado del universo parece a punto de caer, aunque los otros puedan ser simplemente organismos simples como hongos o bacterias.

Ya conté aquí hace unos días que por primera vez se ha logrado detectar una atmósfera en un planeta de tamaño y masa similares a la Tierra. En plenas vacaciones de Semana Santa, la revista Science nos sorprendía con un bombazo: Encélado, una luna de Saturno que se postula como uno de los candidatos del Sistema Solar para albergar vida, puede tener fuentes hidrotermales en el fondo de su océano subglacial. Recordemos que hoy muchos científicos se inclinan por la hipótesis de que fue precisamente en este tipo de fumarolas submarinas donde pudo nacer la vida en la Tierra.

Ahora, esta misma semana, la revista Nature publica el hallazgo de un nuevo exoplaneta que uno de sus descubridores, Jason Dittmann, del Centro de Astrofísica Harvard-Smithsonian (CfA), califica como «el mejor objetivo para la búsqueda de vida más allá de la Tierra». LHS 1140b, que así se llama, es una superTierra de 6,6 veces la masa terrestre y 1,4 veces su diámetro, probablemente rocosa, situada en la zona templada de su estrella, una enana roja a 40 años luz de nosotros.

Ilustración del exoplaneta LHS 1140b. Imagen de ESO/spaceengine.org.

Ilustración del exoplaneta LHS 1140b. Imagen de ESO/spaceengine.org.

Las palabras de Dittmann no solo se justifican por las condiciones propicias del planeta, sino también por las condiciones propicias para estudiarlo: el nuevo planeta transita ante la cara de su estrella desde nuestro punto de vista, algo que no sucede en todos los casos, como por ejemplo en el muy prometedor Proxima b, descubierto el año pasado. Este paso de LHS 1140b delante de su estrella permitirá estudiar la luz que lo roza para determinar si tiene atmósfera, si su composición es apta para la vida, y si podría mostrar alguna firma biológica.

Por último, LHS 1140b cuenta con dos ventajas interesantes frente a otros exoplanetas recientemente descubiertos. A diferencia de la muy cacareada TRAPPIST-1, la estrella LHS 1140 parece tranquila, sin grandes fulguraciones achicharrantes. Y también a diferencia de TRAPPIST-1, la estrella del nuevo exoplaneta parece tener una edad suficiente (según los autores del estudio, por lo menos 5.000 millones de años) como para haber dado margen a un proceso de desarrollo de vida…

…si es que este proceso ha podido llegar a ocurrir alguna vez fuera de la Tierra. Algo de lo que personalmente también me declaro escéptico, por razones que ya he contado aquí y que se resumen en una: si en 4.540 millones de años de edad de la Tierra, y que sepamos, la vida solo ha surgido aquí una única vez, ¿qué parte de este argumento nos incita a dar por supuesto que la aparición de la vida sea un fenómeno frecuente? Pero de verdad, me encantaría tener que reconocer mi equivocación aquí mañana mismo…

Sin un «segundo génesis», no hay alienígenas

Si les dice algo el nombre del lago Mono, en California, una de dos: o han estado por allí alguna vez, o recuerdan el día en que más cerca estuvimos del «segundo génesis».

Les explico. A finales de noviembre de 2010, la NASA sacudió el ecosistema científico lanzando un teaser previo a una rueda de prensa en la que iba a «discutirse un hallazgo de astrobiología que impactará la búsqueda de pruebas de vida extraterrestre». La conferencia, celebrada el 2 de diciembre, solo decepcionó a quienes esperaban la presentación de un alien, algo siempre extremadamente improbable y que el anuncio tampoco insinuaba, salvo para quien no sepa leer. Para los demás, lo revelado allí era un descubrimiento excepcional en la historia de la ciencia: una bacteria diferente a todos los demás organismos de la Tierra conocidos hasta ahora.

El lago Mono, en California. Imagen de Wikipedia.

El lago Mono, en California. Imagen de Wikipedia.

Coincidiendo con la rueda de prensa, los resultados se publicaron en la web de la revista Science bajo un título breve, simple y atrevido: «Una bacteria que puede crecer usando arsénico en lugar de fósforo». La sinopsis de la trama decía que un equipo de investigadores, dirigidos por la geobióloga Felisa Wolfe-Simon, había encontrado en el lago Mono un microorganismo capaz de emplear arsénico como sustituto del fósforo en su ADN. Lo que para otros seres terrestres es un veneno (su posible papel como elemento traza aún se discute), para aquella bacteria era comida.

Toda la vida en este planeta, desde el virus que infecta a una bacteria hasta la ballena azul, se basa en la misma bioquímica. Uno de sus fundamentos es un material genético (ADN o ARN) formado por tres componentes: una base nitrogenada, un azúcar y un fosfato. Dado que este fue el esquema fundador de la biología terrestre, todos los seres vivos estamos sujetos a él. Encontrar un organismo que empleara un sistema diferente, por ejemplo arseniato en lugar de fosfato, supondría hallar una forma de vida que se originó de modo independiente a la genealogía de la que todos los demás procedemos.

Esto se conoce informalmente como un «segundo génesis», un segundo evento de aparición de vida (que no tiene por qué ser el segundo cronológicamente). Sobre si la bacteria del lago Mono, llamada GFAJ-1, habría llegado a representar o no un segundo génesis, hay opiniones. Hay quienes piensan que no sería así, ya que la existencia de un ADN modificado habría representado más bien una adaptación extrema muy temprana dentro de una misma línea evolutiva.

Para otros, es irrelevante que el origen químico fuera uno solo: dado que la definición actual de cuándo la no-vida se transforma en vida se basa en la acción de la evolución biológica, existiría la posibilidad de que la diversificación del ADN se hubiera producido antes de este paso crucial, y por lo tanto la vida habría arrancado ya con dos líneas independientes y paralelas.

Pero mereciera o no la calificación de segundo génesis, finalmente el hallazgo se desinfló. Desde el primer momento, muchos científicos recibieron el anuncio con escepticismo por razones teóricas, como el hecho de que el ADN con arsénico en lugar de fósforo daría lugar a un compuesto demasiado inestable para la perpetuación genética (este es solo un caso más de por qué muchas de las llamadas bioquímicas alternativas con las que tanto ha jugado la ciencia ficción son en realidad pura fantasía que hace reír a los bioquímicos). La publicación del estudio confirmó las sospechas: los experimentos no demostraban realmente que el ADN contuviera arsénico. Y como después se demostró, no lo contenía.

La bacteria GFAJ-1 del lago Mono resultó ser simplemente una extremófila más, un bicho capaz de crecer en aguas muy salinas, alcalinas y ricas en arsénico. Tenía una tolerancia fuera de lo común a este elemento, pero no lo empaquetaba en su ADN; se limitaba a acumularlo, construyendo su material genético con el fósforo que reciclaba destruyendo otros componentes celulares en tiempos de escasez. Su única utilidad real fue conseguir el propósito expresado en su nombre, GFAJ, formado por las iniciales de Give Felisa A Job («dadle un trabajo a Felisa»): aunque el estudio fuera refutado, le sirvió a Wolfe-Simon como trampolín para su carrera.

Bacterias GFAJ-1. Imagen de Wikipedia.

Bacterias GFAJ-1. Imagen de Wikipedia.

Por algún motivo que desconozco, el estudio nunca ha sido retractado, cuando debería haberlo sido. Me alegro de que a Wolfe-Simon le vaya bien, pero desde el principio el suyo fue un caso de ciencia contaminada: no descubrió el GFAJ-1 por casualidad, sino que estaba previamente convencida de la existencia de bacterias basadas en el arsénico, algo que ya había predicado antes en conferencias y que le hizo ganar cierta notoriedad. El siguiente paso era demostrar que tenía razón, fuera como fuese.

Hoy seguimos sin segundo génesis terrestre. Y su ausencia es una razón que a algunos nos aparta de esa idea tan común sobre la abundancia de la vida alienígena. Afirmar que el hecho de que estemos aquí implica que la vida debe de ser algo muy común en el universo es sencillamente una falacia, porque no lo implica en absoluto. Es solo pensamiento perezoso; una idea que cualquiera puede recitar si le ponen en la boca un micrófono de Antena 3 mientras se compra unos pantalones en Zara, pero que si se piensa detenidamente y sobre argumentos científicos, no tiene sustento racional.

Pensémoslo un momento: si creemos que la vida es omnipresente en el universo, esto equivale a suponer que dado un conjunto de condiciones adecuadas para algún tipo de vida, por diferentes que esas condiciones fueran de las nuestras y que esa vida fuera de la nuestra, esta aparecería con una cierta frecuencia apreciable.

Pero la Tierra es habitable desde hace miles de millones de años. Y sin embargo, esa aparición de la vida solo se ha producido una vez, que sepamos hasta ahora. Si suponemos que los procesos naturales han actuado del mismo modo en todo momento (esto se conoce como uniformismo), debería haber surgido vida en otras ocasiones; debería estar surgiendo vida nueva hoy. Y hasta donde sabemos, no es así. Hasta donde sabemos, solo ha ocurrido una vez en 4.500 millones de años.

¿Por qué? Bien, podemos pensar que el uniformismo no es una regla pura, dado que sí han existido procesos excepcionales, como episodios globales de vulcanismo o impactos de grandes asteroides que han cambiado drásticamente las reglas del juego de la vida. Esto se conoce como catastrofismo, y la situación real se acerca más a un uniformismo salpicado con algunas gotas esporádicas de catastrofismo.

Pero si aceptamos que el catastrofismo fue determinante en el comienzo de la vida en la Tierra, la conclusión continúa siendo la misma: si deben darse unas condiciones muy específicas e inusuales, una especie de tormenta bioquímica perfecta, entonces estamos también ante un fenómeno extremadamente raro, que en 4.500 millones de años no ha vuelto a repetirse. De una manera o de otra, llegamos a la conclusión de que la vida es algo muy improbable. Desde el punto de vista teórico, para que la idea popular tenga algún viso de ser otra cosa que seudociencia debería antes refutarse la hipótesis nula (una explicación sencilla aquí).

A lo anterior hay una salvedad, y es la posibilidad de que la «biosfera en la sombra» (un término ya acuñado en la biología) procedente de un segundo génesis fuera eliminada por selección natural debido a su mayor debilidad, o sea eliminada una y otra vez, por muchos génesis que se produzcan sin siquiera enterarnos.

Esta hipótesis no puede descartarse a la ligera, pero tampoco darse por sentada: si en su día la existencia de algo como la bacteria GFAJ-1 no resultaba descabellada, es porque la idea de una biosfera extremófila en la sombra es razonable; una segunda línea evolutiva surgida en un nicho ecológico muy marginal, como el lago Mono, tendría muchas papeletas para prosperar, quizá más que un invasor del primer génesis pasando por un trabajoso proceso de adaptación frente a un competidor especializado. Y sin embargo, hasta ahora el resultado de la búsqueda en los ambientes más extremos de la Tierra ha sido el mismo: nada. Solo parientes nuestros que comparten nuestro único antepasado común.

Si pasamos de la teoría a la práctica, es aún peor. Hasta hoy no tenemos absolutamente ni siquiera un indicio de que exista vida en otros lugares del universo. En la Tierra la vida es omnipresente, y no se esconde. Nos encontramos con pruebas de su presencia a cada paso. Incluso en el rincón más remoto del planeta hay testigos invisibles de su existencia, porque en el rincón más remoto del planeta uno puede encender un GPS o un Iridium y recibir una señal de radio por satélite. Si el universo bullera de vida, bulliría también de señales. Y sin embargo, si algo sabemos es que el cosmos parece un lugar extremadamente silencioso.

Como respuesta a lo anterior, algunos científicos han aportado la hipótesis de que la vida microbiana sea algo frecuente, pero que a lo largo de su evolución exista un cuello de botella complicado de superar en el que casi inevitablemente fracasa, impidiendo el progreso hacia formas de vida superiores; lo llaman el Gran Filtro. Otros investigadores sugieren que tal vez la Tierra haya llegado demasiado pronto a la fiesta, y que la inmensa mayoría de los planetas habitables todavía no existan. Pero también con estas dos hipótesis llegamos a la misma conclusión: que en este momento no hay nadie más ahí fuera.

Pero esto es ciencia, y eso significa que aquello que nos gustaría no necesariamente coincide con lo que es; y debemos atenernos a lo que es, no a lo que nos gustaría. Personalmente, I want to believe; me encantaría que existiera vida en otros lugares y quisiera vivir para verlo. Pero por el momento, aquello del «sí, claro, si nosotros estamos aquí, ¿por qué no va a haber otros?», mientras alguien rebusca en los colgadores de Zara, no es ciencia, sino lo que en inglés llaman wishful thinking, o pensamiento ilusorio.

Claro que todo esto cambiaría si por fin algún día tuviéramos constancia de ese segundo génesis terrestre. Y aunque seguimos esperando, hay una novedad potencialmente interesante. Un nuevo estudio de la Universidad de Washington, el Instituto de Astrobiología de la NASA y otras instituciones, publicado en la revista PNAS, descubre que en la Tierra existió un episodio de oxigenación frustrado, previo al que después daría lugar a la aparición de la vida compleja.

Hoy sabemos que hace unos 2.300 millones de años la atmósfera terrestre comenzó a llenarse de oxígeno (esto se conoce como Gran Oxidación), gracias al trabajo lento y constante de las cianobacterias fotosintéticas. Los fósiles más antiguos de células eucariotas (la base de los organismos complejos) comienzan a encontrarse en abundancia a partir de unos 1.700 millones de años atrás, aunque aún se discute cuándo surgieron por primera vez. Pero si de algo no hay duda, es de que fue necesaria una oxigenación masiva de la atmósfera para que la carrera de la vida tomara fuerza y se consolidara.

Los investigadores han estudiado rocas de esquisto de entre 2.320 y 2.100 millones de años de edad, la época de la Gran Oxidación, en busca de la huella de la acción del oxígeno sobre los isótopos de selenio. La idea es que la oxidación del selenio actúa como testigo del nivel de oxígeno en la atmósfera presente en aquella época.

Lo que han descubierto es que la historia del oxígeno en la Tierra no fue un «nada, después algo, después mucho», en palabras del coautor del estudio Roger Buick, sino que al principio hubo una Gran Oxidación frustrada: los niveles de oxígeno subieron para después bajar por motivos desconocidos, antes de volver a remontar para quedarse y permitir así el desarrollo de toda la vida que hoy conocemos.

Este fenómeno, llamado «oxygen overshoot«, ya había sido propuesto antes, pero el nuevo estudio ofrece una imagen clara de un episodio en la historia de la Tierra que fue clave para el desarrollo de la vida. Según Buick, «esta investigación muestra que había suficiente oxígeno en el entorno para permitir la evolución de células complejas, y para convertirse en algo ecológicamente importante, antes de lo que nos enseñan las pruebas fósiles».

El interés del estudio reside en que crea un escenario propicio para que hubiera surgido una «segunda» biosfera (primera, en orden cronológico) de la que hoy no tenemos constancia, y que tal vez pudo quedar asfixiada para siempre cuando los niveles de oxígeno se desplomaron por causas desconocidas. Pero Buick deja claro: «esto no quiere decir que ocurriera, sino que pudo ocurrir».

E incluso asumiendo que la propuesta de Buick fuera cierta, en el fondo tampoco estaríamos hablando de un segundo génesis, sino de un primer spin-off frustrado a partir de un único génesis anterior; las bacterias, los primeros habitantes de la Tierra, ya llevaban por aquí cientos de millones de años antes del oxygen overshoot. El estudio podría decirnos algo sobre la evolución de la vida, pero no sobre el origen de la vida a partir de la no-vida, la abiogénesis, ese gran problema pendiente que muchos dan por resuelto, aunque aún no tengamos la menor idea de cómo resolverlo.

El universo, ¿lleno de microbios alienígenas muertos?

Poco podía imaginar Ricitos de Oro, cuando allanaba la morada de los tres ositos sin el menor miramiento, que su poco edificante conducta iba a encontrar eco en un campo tan alejado de los cuentos infantiles como la astronomía exoplanetaria.

Ilustración de una exoluna de un exoSaturno gigante. Imagen de Dmytro Ivashchenko / Wikipedia.

Ilustración de una exoluna de un exoSaturno gigante. Imagen de Dmytro Ivashchenko / Wikipedia.

¿Tan alejado de los cuentos infantiles? ¿Realmente el de los exoplanetas habitables es un relato científicamente sólido, o es solo una bonita fantasía?

La niña del cuento llegaba a la casa de los tres ositos, donde descubría tres platos de sopa (creo que en la versión original era porridge, pero dejémoslo mejor en alimentos aptos para el consumo humano). Uno de ellos estaba demasiado caliente, y el otro muy frío. Solo el tercero tenía la temperatura justa. La fábula sirvió a los científicos que buscan planetas fuera del Sistema Solar para definir lo que se llama la zona habitable: dependiendo del tamaño de una estrella y de su intensidad, existe una franja alrededor de ella en la cual un planeta estaría justo a la temperatura necesaria para que exista vida. Bajo este supuesto se han identificado ya numerosos exoplanetas potencialmente habitables.

Pero ¿basta este requisito para suponer la posibilidad de vida? Los científicos planetarios Charley Lineweaver y Aditya Chopra piensan que no.

Lineweaver y Chopra admiten la posibilidad de que la aparición de la vida sea un fenómeno muy frecuente en el universo. Algo con lo que, como ya he contado aquí, no estoy personalmente de acuerdo. El nacimiento de la vida a partir de la no vida tiene dos nombres distintos en biología que se diferencian por su escala temporal: si hablamos de que esto ocurra de hoy para mañana, lo llamamos generación espontánea, algo cuya imposibilidad ya fue demostrada por Pasteur en el siglo XIX; por el contrario, si hablamos de un largo período geológico, lo llamamos abiogénesis, algo que muchos dan por facilísimo.

Es evidente que la escala temporal cambia las cosas: la evolución de las especies, que es la secuela de la abiogénesis, ocurre a lo largo de muchos miles de años, incluso millones. Pero hasta que nadie logre recrear en un laboratorio (o, al menos, en una simulación in silico) un proceso acelerado que pueda replicar lo ocurrido en el primer millardo de años de la historia de la Tierra, no tendremos otra prueba de que esto pueda llegar a suceder sino el hecho de que estamos aquí.

De hecho, la enorme dificultad de llegar a concebir lo que muchos dan como evidente fue lo que llevó a tipos tan listos como Carl Sagan y Francis Crick a sugerir que la vida fue sembrada en este planeta desde otro lugar, fuera cual fuera su (único) origen inicial. Y aunque desde entonces se ha aligerado la dificultad de alguno de los pasos necesarios (ya he hablado aquí del ARN catalítico), la generación espontánea a largo plazo, más correctamente conocida como abiogénesis, continúa siendo para algunos un hueso intelectual que hay que tragarse de través.

Pero en fin, supongamos que sí; que la vida surge. Incluso con esta concesión, gente como Lineweaver y Chopra opinan que de ahí a imaginar alienígenas inteligentes y tecnológicos no hay precisamente una cuesta abajo, sino todo lo contrario, más bien un abismo casi insalvable.

Los dos investigadores ponen como ejemplo nuestros vecinos del segundo y el cuarto: Venus y Marte. En el principio, estos dos planetas eran bastante similares a la Tierra, pero ambos sufrieron sendas catástrofes climáticas: Venus devino demasiado ardiente y Marte demasiado gélido. Y sin embargo, si existieran esos alienígenas inteligentes, desde su lejana estrella considerarían que ambos están dentro de la zona Ricitos de Oro del Sol, tanto como la Tierra.

Lo que Lineweaver y Chopra plantean en su estudio, publicado en Astrobiology, es que la habitabilidad es sólo una fase transitoria en la historia de ciertos planetas, pero que lo normal por defecto es que ese estado se malogre y, aunque haya surgido la vida microbiana, esta acabe desapareciendo. Pudo ocurrir en Venus y Marte; no lo sabemos. Pero sí estamos seguros de que en ninguno de los dos planetas hay nada parecido a algo que podamos llamar gente.

La clave está, según los autores, en que es precisamente la presencia de vida lo único que puede mantener la habitabilidad a largo plazo. La idea ya ha sido propuesta antes, pero aún no ha sido explorada en profundidad. Un planeta necesita unas condiciones de partida favorables, pero si estas no resultan modificadas por una biología con un desarrollo lo suficientemente rápido, el resultado será la catástrofe climática y la vida naciente se marchitará hasta desaparecer.

Los responsables de esta catástrofe, explican Lineweaver y Chopra, son los gases de efecto invernadero. Existe en la naturaleza un fenómeno llamado ciclo de carbono o ciclo de carbonatos-silicatos, al que hoy se presta mucha atención porque está en el centro de la preocupación sobre el cambio climático antropogénico. El CO2 de la atmósfera se disuelve en la lluvia y cae sobre las rocas de silicatos, formándose carbonatos y sílice que llegan al mar y son utilizados por los organismos microscópicos. Una parte de esta comunidad planctónica es engullida en las zonas de subducción de las placas tectónicas, y el magmatismo en el interior de la Tierra produce de nuevo silicatos, que salen por las zonas de crecimiento de placas, y CO2, que regresa a la atmósfera en forma de gas gracias a los volcanes.

El CO2 regresa a la atmósfera por los volcanes. Foto del Kilauea, en Hawái. Imagen de Wikipedia.

El CO2 regresa a la atmósfera por los volcanes. Foto del Kilauea, en Hawái. Imagen de Wikipedia.

Sin embargo, este ciclo no es un sistema cerrado perfectamente armónico. En Venus, las altas temperaturas favorecen la formación de silicatos, lo que eleva el CO2 atmosférico, que a su vez aumenta el efecto invernadero y hace subir las temperaturas; el resultado es un ciclo de realimentación que lleva a la catástrofe climática. En la Tierra, históricamente la formación de carbonatos ha tendido a eliminar CO2 de la atmósfera… hasta que llegó la quema de combustibles fósiles. Pero esa es otra historia.

Los autores del estudio estiman que la Tierra no logró mantener una cierta estabilidad climática hospitalaria para la vida hasta hace unos 3.000 millones de años. Pero el factor determinante para alcanzar este relativo equilibrio fue precisamente la existencia de vida, en tiempo y forma suficientes como para alterar el metabolismo terrestre, evitando los ciclos de realimentación hacia la catástrofe climática y consiguiendo superar así lo que llaman el «cuello de botella gaiano» (Gaia hace referencia a la regulación global del planeta, según la idea originalmente propuesta por James Lovelock y Lynn Margulis).

Lo cual, temen Lineweaver y Chopra, es algo probablemente bastante raro en el universo. «Este cuello de botella gaiano puede ser una mejor explicación para la no prevalencia de vida que el paradigma tradicional del cuello de botella en la aparición de la vida», escriben. Su conclusión es que tal vez el cosmos está lleno de microbios alienígenas, pero que están todos muertos y fosilizados.

Puede ser que Lineweaver y Chopra estén en lo cierto; pero el hecho es que tampoco se ha encontrado todavía una solución al otro cuello de botella, el de la aparición de la vida. Con lo cual, lo único que podemos afirmar es que ahora tenemos no una, sino dos graves dificultades para aceptar ese mantra popular de que el universo rebosa vida.

¿Y si la Tierra sí fuera un lugar especial?

No importa cuántos intentos más de encontrar vida alienígena fracasen. Ni cuántos años más transcurran sin que recibamos, por vía activa o pasiva, una prueba de la existencia de algo vivo que no haya nacido entre los confines de este planeta. Unos siempre seguirán buscando y otros siempre seguiremos esperando; incluso los bioescépticos, como un servidor.

Ningún científico serio entregaría su carrera a la búsqueda del Yeti o del monstruo del lago Ness. Y sin embargo, muchos científicos de intachables credenciales dedican la suya a la búsqueda de algo de cuya existencia, en más de medio siglo de rastreo, hemos logrado acumular tantas pruebas como del Yeti o el monstruo del lago Ness.

No es una crítica a la actividad de búsqueda, que es un imperativo del conocimiento (y para quienes prefieren el oscurantismo, conviene aclarar que hoy se sostiene con fondos privados). Pero sí al sesgo que se asocia a la actividad de búsqueda. Hubo un tiempo no lejano en que muchos negaban la posibilidad de vida alienígena por una cuestión de fe: no podía haber otros seres en el universo porque la Biblia no decía nada de ello, y era imposible que cometiera semejante omisión. Hoy se tiende a pensar lo contrario en la creencia de que hay un argumento científico para ello, pero lo cierto es que continúa siendo una cuestión de fe. Lo explico.

La 'canica azul', imagen de la Tierra tomada por la misión Apolo 17 en 1972. Imagen de NASA.

La ‘canica azul’, imagen de la Tierra tomada por la misión Apolo 17 en 1972. Imagen de NASA.

El argumento científico es la aplicación del llamado principio de mediocridad, según el cual algo elegido al azar entre muchos tenderá con mayor probabilidad a ser un representante promedio de esos muchos. Cuando Copérnico mostró que la Tierra no era el centro del universo, comenzó a barruntarse la idea de que nuestro planeta no es un lugar especial, y que por tanto debe de ser uno más entre una infinidad de otros similares. Lo cual lleva a suponer que la vida, e incluso lo que Carl Sagan llamaba “el equivalente funcional del ser humano”, son comunes en el universo.

El principio de mediocridad suele ser un argumento apoyado por los astrofísicos. Y curiosamente, ellos se enfrentan a la necesidad de explicar por qué, de hecho, todo nuestro universo sí es un lugar especial: muchos cosmólogos encuentran chocante que una serie de constantes físicas del universo, que en principio podrían adoptar cualquier valor aleatorio, se sitúen exactamente en la estrecha ventana que permite la existencia de materia y, por tanto, de vida. Este llamado “ajuste fino del universo” asusta a algunos científicos, porque para ellos abre la puerta a la defensa de que existe un diseño inteligente del universo.

Por mi parte, sospecho que en la negación del ajuste fino por este motivo existe un sesgo intelectual; un científico nunca debería oponerse a una hipótesis por otros motivos que los científicos, y no por el hecho de que no le guste. Y sospecho también que es este mismo sesgo, por igual motivo, el que suele llevar a la defensa de que la vida es omnipresente en el universo. Es decir, es una cuestión de fe, no de ciencia.

Pero es que, en realidad, el ajuste fino puede explicarse por causas perfectamente naturales. Nuestro universo puede ser simplemente uno entre una infinidad de otros muchos que existen o han existido, con todos los rangos posibles de los parámetros físicos que en esos otros muchos casos han dado lugar a universos abortados, sin materia o sin vida. Simplemente, el nuestro tuvo más suerte, y por eso estamos aquí, precisamente en este universo que sí tiene algo de especial.

Lo mismo puede aplicarse a la Tierra. Según el principio de mediocridad, no podemos negar que en el universo habrá un número inmenso de planetas muy semejantes al nuestro, con similares condiciones de partida. Pero entre eso y afirmar que en todos ellos es inevitable que surja la vida se interpone la suposición de que este es un proceso determinista. Y eso ya no es mediocridad, sino más bien todo lo contrario, negar toda la amplísima gama de muchas otras opciones que no llevan a la vida.

Bajando a lo concreto: la aplicación de todo esto a la existencia del ser humano la expone estupendamente el científico planetario australiano Charley Lineweaver en esta charla TEDx. Lineweaver explica lo que llama “la falacia del planeta de los simios”, y es esa suposición a la que me he referido antes de que en todo planeta habitado la evolución conduce a ese “equivalente funcional del ser humano” del que hablaba Sagan. El científico explica que esos otros experimentos de evolución separada también se han dado aquí, en la propia Tierra, y no han llevado a la aparición de una especie inteligente como nosotros. Por ejemplo, uno de esos experimentos se llama Australia.

Pero es que lo mismo se aplica a toda la aparición y la evolución de la vida. Cuando se dice que la vida ha surgido en la Tierra, y que por tanto debe de haberlo hecho en otros muchos lugares, suele olvidarse una pregunta esencial. Sí, la vida surgió en la Tierra.

¿Pero por qué solo una vez?

En los comienzos de la biología, y si la aparición de la vida era tan inevitable, esta debería haber surgido de forma independiente en innumerables lugares de la Tierra. Y sin embargo, no tenemos motivo para pensar que la vida surgió más de una vez. Por el contrario, sí los hay para suponer que toda la vida terrestre actual desciende de un único origen entre quizá miles de millones de intentos fracasados en nuestro propio planeta.

Por ejemplo, uno de estos argumentos es la llamada quiralidad de las moléculas biológicas. Las moléculas pueden tener dos configuraciones simétricas, como los dos guantes de un par. Ambas son equivalentes; es decir, que pueden funcionar igualmente. Pero no son intercambiables; o sea, que una vez elegida una opción, no hay vuelta atrás: para que los procesos biológicos funcionen, debe mantenerse la misma configuración. Resulta que en la naturaleza todos los aminoácidos biológicos tienen una de estas dos configuraciones posibles, la llamada levógira (giro a la izquierda), mientras que los azúcares son dextrógiros (giro a la derecha).

¿Y por qué no al revés?

Si la vida hubiera surgido varias veces de forma independiente en la Tierra, y aunque (lo cual es mucho suponer) en todos los casos se llegara inevitablemente a las mismas soluciones biológicas, como ADN, ARN y proteínas, por simple azar algunos de esos inicios de vida habrían elegido aminoácidos dextrógiros y azúcares levógiros. Con lo cual, hoy tendríamos seres vivos de ambos tipos. Pero no es así. Ni se ha encontrado jamás un organismo terrestre que utilice opciones bioquímicas tan radicalmente distintas como para invitarnos a suponer que surgió de un origen independiente. Con lo que hoy sabemos, la hipótesis más razonable es que la vida nació una sola vez en la Tierra, en un único charco o incluso una gota de agua, entre otros billones de gotas de agua.

Mañana contaré un nuevo estudio firmado por Lineweaver que aporta una interesante teoría sobre qué podría hacer a la Tierra mucho más especial de lo que pensamos; incluso muy diferente a muchos otros planetas descubiertos que se suponen potencialmente habitables.