Entradas etiquetadas como ‘física’

Los “Óscar de la ciencia” premian la primera foto de un agujero negro

El regreso de las vacaciones viene cada año con sus sempiternas rutinas: la vuelta al cole, el reingreso a la vida laboral, los anuncios de fascículos en televisión, la cuenta bancaria agonizando de inanición… Y para los que nos dedicamos a contar lo que pasa en el mundo de la ciencia, es temporada de premios. En un mes conoceremos quiénes añadirán a su lista de credenciales en la Wikipedia los laureles del Nobel. Pero por el momento, esta semana tenemos un enjundioso aperitivo con los Premios Brealthrough.

Enjundioso, porque en realidad los Breakthrough son mucho más que un aperitivo. De hecho, hoy son los premios científicos más sustanciosos del mundo, con una dotación de tres millones de dólares por galardón que triplica la de los Nobel. Por supuesto, los premios suecos continúan y continuarán siendo la cumbre soñada por todo científico (que trabaje en alguna de las categorías incluidas, claro). Pero en solo ocho ediciones, los Breakthrough han conseguido convertirse en un importante indicador en el cuadro de mandos de la actualidad científica.

Además de su generosa dotación, una clave del éxito de los Breakthrough es precisamente casi todo aquello que los diferencia de los Nobel. Frente a la pompa decimonónica de los premios suecos, con su olor a roble viejo, sus cascos de plumas y sus trajes de pingüino, los Breakthrough se presentan como “los Óscar de la ciencia”, y esta comparación basta para entender su carácter. La preferencia por uno u otro estilo puede ir en gustos, pero frente al arcaicismo de los Nobel, los Breakthrough son los premios de la era de internet, como corresponde a los nombres que los impulsan: Sergey Brin, Priscilla Chan, Mark Zuckerberg, Ma Huateng, Yuri y Julia Milner, o Anne Wojcicki.

También esta diferencia de estilo afecta al hecho de que los Breakthrough suelen concederse más en caliente que los Nobel, a hallazgos más recientes en el tiempo, premiando más los avances por sus posibilidades futuras que por las ya demostradas. Aunque Alfred Nobel consignó en su testamento que sus premios debían concederse a los descubrimientos más importantes del año precedente, lo cierto es que los Nobel tienden a distinguir hallazgos de hace varias décadas, y a menudo se ven lastrados por lo que parece una necesidad de otorgar premios escoba a trabajos que hasta ahora habían quedado sin reconocimiento. Los medios no especializados suelen presentar cada año los fallos de los Nobel como si premiaran ciencia de vanguardia, pero por lo general suele ser más bien de retaguardia –o más propiamente, de fondo de armario–, siempre que sus frutos hayan sido de gran trascendencia hasta el día de hoy.

Sin embargo y en lo que respecta a los premios de Física, este año la actualidad científica se lo ha puesto muy fácil a los jurados. El Breakthrough en esta categoría se ha concedido a los investigadores del Event Horizon Telescope (EHT), una colaboración internacional que ha empleado una red de telescopios para lograr la primera fotografía de un agujero negro.

Imagen del agujero negro supermasivo en el centro de la galaxia M87 resuelta por la red Event Horizon Telescope.

Imagen del agujero negro supermasivo en el centro de la galaxia M87 resuelta por la red Event Horizon Telescope.

El pasado 10 de abril todos los medios, incluyendo este blog, contaron la que hasta ahora ha sido la noticia científica más resonante de 2019. Más allá de su importancia, el hecho de que la noticia fuera gráfica le garantizaba el acceso a todos los telediarios, donde a menudo parece que algo no existe si no lleva foto.

Pero el Breakthrough es, además, un premio adaptado a una época en que la ciencia suele ser un esfuerzo colectivo, mientras que los Nobel siguen anclados a la idea obsoleta del genio individual. El premio lo recogerá el director de la colaboración EHT en el Centro de Astrofísica Harvard-Smithsonian, Shep Doeleman, pero el importe de tres millones de dólares se repartirá equitativamente entre los 347 investigadores firmantes de los seis estudios que presentaron los resultados. Así, cada uno de ellos tocará a algo más de 8.600 dólares. Y aunque la cantidad no sea como para bañarse en billetes, el hecho de que los y las becarias predoctorales vayan a percibir lo mismo que sus jefes y jefas es también un reconocimiento tan inusualmente raro como habitualmente merecido.

En lo que respecta al dólar, más suerte van a tener los premiados en Ciencias de la Vida y en Matemáticas, que serán menos a repartir. En la primera categoría se conceden cuatro premios, que este año irán respectivamente al genetista molecular Jeffrey Friedman por su descubrimiento de la hormona leptina y su papel en la obesidad, a los bioquímicos Franz-Ulrich Hartl y Arthur Horwich por sus hallazgos sobre el plegamiento de proteínas en la célula –un mecanismo implicado en enfermedades como las neurodegenerativas–, al fisiólogo David Julius por sus estudios sobre los mecanismos celulares y moleculares del dolor, y a la bioquímica Virginia Man-Yee Lee por sus descubrimientos de ciertos mecanismos moleculares implicados en las enfermedades neurodegenerativas.

En cuanto a la categoría de Matemáticas, cada año solo se concede un Premio Breakthrough, que en este caso ha sido para Alex Eskin, por sus descubrimientos en geometría que incluyen un trabajo desarrollado en colaboración con la iraní Maryam Mirzakhni (fallecida en 2017, por lo que no podrá recibir el premio) que resuelve un curioso problema: ¿puede un rayo de luz en una habitación cubierta de espejos alcanzar todos los puntos de la misma? Eskin y Mirzakhni demostraron que en habitaciones poligonales cuyos ángulos son fracciones de números enteros existe un número finito de puntos que no quedarían iluminados.

Por último, los Breakthrough conceden también seis premios denominados New Horizons y dotados cada uno con 100.000 dólares, tres en Física y tres en Matemáticas, a científicos jóvenes que ya han logrado avances notables; una buena manera de promocionar la consolidación de las carreras incipientes y prometedoras.

En resumen, el logro conseguido por la colaboración EHT podría dar pie a uno de esos raros casos en los que el Nobel se concede a ciencia de actualidad, como ocurrió en 2013 con la concesión del premio de Física a Peter Higgs y François Englert por el hallazgo largamente esperado del bosón de Higgs. Claro que, como también sucedió entonces, las arcaicas normas de los Nobel obligarían a seleccionar a un máximo de tres premiados. Es decir, que en este caso, 344 investigadores participantes en el hallazgo quedarían sin reconocimiento.

Rusia calló en 2017 una fuga radiactiva que afectó a casi toda Europa

Quienes vivimos la caída del muro de Berlín el 9 de noviembre de 1989 y el posterior desplome del bloque soviético sabíamos entonces que estábamos viviendo la Historia en directo. Medio mundo cambiaba en solo unos meses, y la geografía se reescribía (imagino que, por lo menos, en aquel entonces pocos se quejarían de las actualizaciones de los libros de texto). Pero ¿han sido tantos los cambios?

Recuerdo que por entonces había serias esperanzas de que el mundo entrara en una nueva época de menor tensión. Y sin embargo, los mayores atentados terroristas de la historia aún estaban por estar llegar. Y las guerras continuaron como siempre han sido. Al menos, los ciudadanos del antiguo bloque tras el Telón de Acero son hoy mucho más libres de lo que lo eran entonces, y los rusos pudieron venir a comprarse media costa española. Pero las alianzas tradicionales y las enemistades tradicionales no han variado.

Como tampoco Rusia se ha convertido en un país más transparente que antes de la descomposición de la URSS. Si mucho de lo que allí ocurre llega a nuestros ojos y oídos, continúa siendo, como antes, por quienes destapan los secretos. Y en ocasiones, como hoy, gracias a la ciencia.

El 2 de octubre de 2017, un lunes, una estación de seguimiento atmosférico en Milán (Italia) detectó en el aire un nivel inusual del isótopo radiactivo rutenio-106. El mismo día, la observación se repitió en estaciones de la República Checa, Austria y Noruega, a las que luego se unieron Polonia, Suiza, Suecia y Grecia. Los niveles detectados no eran peligrosos para la salud humana, pero la observación del mismo fenómeno en laboratorios tan distantes entre sí dejaba claro que se trataba de una contaminación a gran escala propagándose por gran parte de Europa.

Cinco días después, la Agencia Internacional de la Energía Atómica abrió una investigación, solicitando a las 43 naciones europeas que detallaran posibles fuentes de aquella contaminación atmosférica radiactiva. Tuvo que transcurrir un mes y medio para que, el 21 de noviembre, las autoridades rusas reconocieran que a finales de septiembre se había registrado una medición de rutenio-106 en la región del sur de los Urales. Sin embargo, los responsables de una posible fuente en aquella zona, el complejo nuclear Mayak en Ozersk, se apresuraron a negar toda relación con el incidente.

Una señal de advertencia de contaminación radiactiva en la zona de Mayak, en Rusia. Imagen de Ecodefense, Heinrich Boell Stiftung Russia, Alla Slapovskaya, Alisa Nikulina / Wikipedia.

Una señal de advertencia de contaminación radiactiva en la zona de Mayak, en Rusia. Imagen de Ecodefense, Heinrich Boell Stiftung Russia, Alla Slapovskaya, Alisa Nikulina / Wikipedia.

Por su parte, los datos facilitados por los países europeos no ayudaron a clarificar el fenómeno. Mientras, Rusia seguía declinando toda responsabilidad y atribuyendo la contaminación a la posible desintegración en la atmósfera de un satélite con baterías de radioisótopos.

Desde entonces, el episodio ha traído de cabeza a las autoridades de seguridad nuclear; hasta ahora, cuando por fin tenemos la respuesta: un estudio elaborado por cerca de 70 expertos de distintas instituciones de Europa y Canadá –con la participación del CIEMAT de España–, dirigido por la Universidad Leibniz de Hannover (Alemania) y publicado en la revista PNAS, ha reunido todos los datos de seguimiento de la nube radiactiva y los ha introducido en un modelo de los movimientos atmosféricos durante los días previos a la detección.

La reconstrucción del crimen apunta al culpable más probable: el complejo ruso Mayak. Según los investigadores, los patrones de distribución vertical del isótopo descartan la hipótesis del satélite o una posible incineración de material radiactivo de uso médico, y en cambio todas las pistas son consistentes con una fuga en Mayak que pronto se extendió hacia el oeste formando una nube del tamaño de Rumanía.

Es más, los científicos han logrado incluso determinar cómo se produjo el escape. Estudiando las características del contaminante y los procesos que lo generan, han llegado a la conclusión de que probablemente ocurrió durante el reprocesamiento de un combustible nuclear gastado dos años antes para producir cerio-144 destinado a un experimento de detección de neutrinos en el laboratorio italiano de Gran Sasso.

Esta hipótesis ya fue propuesta en febrero de 2018 por científicos del Instituto Francés de Radioprotección y Seguridad Nuclear. Entonces, los investigadores franceses sugirieron que los datos apuntaban a Mayak como el origen de la contaminación. Esta compañía, que cuenta con una planta de reprocesamiento de combustible nuclear, había firmado un contrato con el Gran Sasso para la producción del altamente radiactivo cerio-144 requerido para el experimento. Mayak era la única instalación capaz de producir el material que necesitaban los físicos italianos.

Parte de las instalaciones del complejo nuclear de Mayak, en Rusia. Imagen de Carl Anderson, US Army Corps of Engineers / Wikipedia.

Parte de las instalaciones del complejo nuclear de Mayak, en Rusia. Imagen de Carl Anderson, US Army Corps of Engineers / Wikipedia.

Sin embargo, en diciembre de 2017 Mayak comunicó al Gran Sasso que no podía cumplir con el encargo, pero sin decir ni una palabra de que el proceso había fallado y se había producido una fuga. A la teoría de los físicos franceses, el director del Instituto de Seguridad Nuclear de la Academia Rusa de Ciencias respondió diciendo que era una buena hipótesis, pero incorrecta.

Ya entonces, y aunque había constancia de que los efectos de la nube radiactiva eran inocuos para la población europea –la contaminación no llegó a España–, se sugirió que no podía afirmarse lo mismo respecto a los habitantes de los núcleos próximos a Mayak; una instalación que, por cierto, en 1957 fue la sede del desastre de Kyshtym, el tercer accidente nuclear más grave de la historia después de los de Fukushima y Chernóbil, que afectó a un área con una población de 270.000 personas. Aquello fue en tiempos de la Guerra Fría. Pero parece que algunas cosas nunca cambian en Rusia.

Mañana, ¿la primera foto de un agujero negro?

Mañana miércoles llegará por fin una de las noticias más esperadas en el mundo de la ciencia en los últimos años. Y no es una frase hecha: a un servidor le toca cada mes de enero escribir una previsión para algún medio sobre lo que nos deparará la investigación científica en el año que empieza, y desde 2017 ha figurado en esos pronósticos una noticia que finalmente se nos escapó durante los dos años pasados, y que por fin verá la luz mañana: la primera foto de un agujero negro.

Los agujeros negros, esos objetos de densidad tan inmensa que se tragan cuanto cae bajo su influjo gravitatorio, son uno de los fenómenos cósmicos más populares, a pesar de que hasta ahora jamás han sido vistos directamente; en realidad, nadie sabe con certeza qué aspecto tendrían si pudiéramos contemplarlos desde una distancia segura.

Simulación de un agujero negro creada por Jean-Pierre Luminet en 1979.

Simulación de un agujero negro creada por Jean-Pierre Luminet en 1979.

Las razones por las que nadie ha podido contemplar hasta ahora un agujero negro son de lo más trivial: están muy lejos y son, ejem, negros. Respecto a lo primero, el más cercano que se conoce es Sagitario A*, el agujero negro supermasivo que ocupa el centro de la galaxia, a unos 26.000 años luz de la Tierra. Pese a su masa equivalente a cuatro millones de soles, desde nuestra segura lejanía solo ocupa en el cielo el espacio de un punto diminuto.

En cuanto a lo segundo, vemos los objetos gracias a la luz que reflejan, pero los agujeros negros se la tragan. Sin embargo y aunque no podamos observarlos directamente porque no ofrecen ninguna imagen, sí es posible vislumbrar sus efectos. Por ejemplo, su enorme masa actúa como lente gravitatoria; es decir, deforma la luz de los objetos que se encuentran detrás desde nuestro punto de vista. Así, si pudiéramos acercarnos lo suficiente como para entrar en su órbita, contemplaríamos algo parecido a esta simulación construida en 2016 por el astrofísico francés Alain Riazuelo (y que, por cierto, recuerda a un salvapantallas de las antiguas versiones de Windows):

Pero esta fantasmagórica deformación de los objetos alrededor de una nada en movimiento no es lo único que puede observarse de un agujero negro. Su enorme masa convierte a estos objetos en sumideros cósmicos; y tal como el agua gira en espiral alrededor de un drenaje, un agujero negro puede formar a su alrededor un disco de acreción, compuesto por gases y polvo girando a velocidades cercanas a la de la luz. El calentamiento debido a la fricción de los materiales genera un plasma luminoso, que justo en la frontera del horizonte de sucesos –la distancia del agujero negro a la cual la radiación y la materia ya no pueden escapar– dibuja un anillo de luz donde los fotones describen círculos antes de ser tragados por el sumidero.

Durante décadas, los astrofísicos han formulado predicciones sobre el aspecto de esta “sombra”, donde la luz del horizonte de sucesos desaparece. La relatividad general de Einstein predice una forma circular, mientras que otras hipótesis han propuesto que podría tener una imagen más achatada.

En 1979, el matemático francés Jean-Pierre Luminet utilizó por primera vez un modelo computacional para simular el aspecto de un agujero negro con disco de acreción (el modelo de Riazuelo simula un agujero negro desnudo). Con los medios rudimentarios de la época, tuvo que dibujar a mano uno a uno todos los puntos que la computadora le iba indicando. Lo hizo sobre papel fotográfico de negativo, para que al positivarlo después se vieran como brillantes los puntos que él había dibujado, correspondientes a la luminosidad del disco de acreción. El resultado fue la imagen mostrada más arriba.

La imagen de Luminet muestra el disco de acreción visto desde una ligera altura con respecto a su plano. Para comprender lo que estamos viendo debemos entender que las extrañas propiedades del agujero negro nos ofrecen una imagen diferente a la real; el disco es simplemente un disco luminoso, tal cual. Pero mientras que en una imagen de Saturno los anillos desaparecen detrás del planeta, esto no ocurre en el agujero negro: debido a que actúa como lente gravitatoria, la deformación de la luz hace que veamos la parte posterior del disco por encima, como si se desbordara sobre él.

Por otra parte, el efecto Doppler –el mismo que hace cambiar la sirena de una ambulancia cuando pasa junto a nosotros– hace que se vea más luminosa la parte del disco que se acerca hacia nosotros, y más oscura la que se aleja; por eso lo vemos más brillante a un lado y más apagado al otro. Por último, hay que tener en cuenta que la imagen de Luminet muestra el espectro electromagnético completo, y no solo lo que observaríamos como luz visible.

Décadas más tarde, el físico Kip Thorne se basó en esta imagen de Luminet para crear su propia simulación, que sirvió como base para crear el agujero negro de la película de Christopher Nolan Interstellar. Sin embargo, los responsables de la producción optaron por una versión simplificada y estéticamente más llamativa, con una simetría que desprecia el efecto Doppler (la imagen estaría tomada desde el plano del disco de acreción):

Agujero negro retratado en la película 'Interstellar'. Imagen de Paramount Pictures.

Agujero negro retratado en la película ‘Interstellar’. Imagen de Paramount Pictures.

Como respuesta a esta licencia artística de la película, Thorne y sus colaboradores publicaron una versión más realista:

Simulación de un agujero negro creada por Kip Thorne y sus colaboradores. Imagen de James et al / Classical and Quantum Gravity.

Simulación de un agujero negro creada por Kip Thorne y sus colaboradores. Imagen de James et al / Classical and Quantum Gravity.

En 2007, tres radiotelescopios se unieron para resolver la estructura de Sagitario A*. Con el paso de los años, otros observatorios radioastronómicos se han sumado, creándose una red global llamada Event Horizon Telescope (EHT) cuyo objetivo es convertir la Tierra en un enorme ojo, un telescopio virtual global con la suficiente capacidad de resolución como para poder captar una imagen de Sagitario A*.

El trabajo ha sido titánico; el volumen de datos era tal que no podían transmitirse por internet, sino que debían transportarse en discos físicos por avión hasta las sedes centrales del proyecto en Bonn (Alemania) y el Instituto Tecnológico de Massachusetts.

Pero por fin y después de años de espera, mañana es el día: a las 3 de la tarde en horario peninsular español (13:00 en tiempo universal coordinado), los científicos del EHT darán a conocer los resultados del proyecto mediante siete ruedas de prensa simultáneas en distintos lugares del mundo, una de ellas en castellano desde Santiago de Chile. Si todo ha salido como se espera, será un hito en la historia de la ciencia. Y aquí se lo contaré.

¿Un universo rebosante de vida? ¿O la Tierra sí es un lugar especial?

La vida es un fenómeno bastante improbable. Sí, ya sé, ya sé. Se preguntarán de dónde sale esta afirmación. Realmente no es tal, sino solo una hipótesis. Pero una que hasta ahora tiene más apoyos a favor que la contraria.

Es lógico que la visión humana al respecto esté normalmente sesgada hacia el lado contrario, dado que nosotros estamos aquí y apenas conocemos otro lugar. Ningún ser humano ha pisado jamás otro planeta, y solo 12 han caminado sobre otro cuerpo celeste. Así que nos guiamos intuitivamente por lo único que conocemos: un planeta rebosante de vida.

Pensemos en alguien que ha vivido su existencia alejado de la civilización, que un día viaja a la ciudad, compra un billete de lotería y le toca el gran premio. Sin duda pensaría que es enormemente fácil, dado que desconoce las reglas del sorteo y las posibilidades de ganar. En términos de la lotería galáctica de la vida, nosotros, los agraciados, solemos pensar que los planetas habitados deben de ser inmensamente comunes en el universo, aunque en realidad no tengamos la menor idea de cuáles son las reglas concretas de la aparición de la vida ni la probabilidad real de que ocurra.

A esta idea común de que la vida debe de ser tan omnipresente en el cosmos como lo es en nuestro planeta –donde se encuentra incluso en los entornos más hostiles, desde los polos a los desiertos, pasando por los volcanes y las fosas oceánicas– han contribuido los astrofísicos, quienes durante décadas nos han hecho calar la idea de que la Tierra no es un lugar especial.

De hecho, esta visión empezó a incubarse cuando Copérnico se cargó el geocentrismo, y ha venido expandiéndose con las evidencias de que ni nuestro planeta, ni nuestro sistema solar, ni nuestra galaxia tienen esencialmente nada especial que los distinga de otros muchos millones, desde el punto de vista puramente astrofísico. A menudo se dice que la Tierra es solo un suburbio más de un sistema solar suburbial más en una galaxia suburbial más. Todo lo cual ha llevado a muchos físicos a encogerse de hombros: si en la Tierra hay vida, ¿por qué no en cualquier otro lugar?

Imagen de la Tierra desde el espacio tomada por la misión Apolo 17 en 1972. Imagen de NASA.

Imagen de la Tierra desde el espacio tomada por la misión Apolo 17 en 1972. Imagen de NASA.

Solo que esta visión es simplista. Y espero que se me entienda, no es un “simplista” con ánimo peyorativo. Es que la física es simplista por obligación. Había un viejo chiste sobre dos caballos de carreras, y un físico al que se le preguntaba cuál de los dos tenía más posibilidades de llegar primero a la meta. El físico decía: supongamos dos caballos totalmente esféricos y sin rozamiento…

Solo cuando los físicos comienzan a hundir los pies en el sucio cenagal de la química y la biología es cuando son realmente conscientes de que los caballos no son esféricos y sin rozamiento. O, como decía Carl Sagan, que “la biología es más parecida a la historia que a la física” porque “no hay predicciones en la biología, igual que no hay predicciones en la historia”. Y de que tal vez la Tierra después de todo sí sea un lugar más especial de lo que predice la astrofísica.

Sagan era astrofísico, pero hundió los pies. Otro ejemplo es el australiano Charley Lineweaver, astrofísico reconvertido en astro-bio-geólogo. En realidad, no crean que los astrobiólogos tienen más respuestas. Los astrobiólogos son un poco como un equipo de bomberos forestales en el desierto, siempre esperando a poder entrar en acción. A la espera de ese momento, exploran las posibilidades teóricas analizando las condiciones más raras y extremas en las que puede llegar a surgir un incendio.

Pero cuando un físico como Lineweaver comienza a añadir capas de complejidad a esa noción simplista que aplica a la Tierra el principio de mediocridad, descubre que quizá nuestro planeta no sea realmente un suburbio tan mediocre. Lineweaver suele ilustrar sus planteamientos con lo que llama la falacia del planeta de los simios, en alusión a la idea de que el universo debe de estar lleno de especies inteligentes porque la evolución conduce a eso; en la saga clásica, el declive de los humanos dejaba el hueco para que los simios dieran ese salto evolutivo.

Pero para Lineweaver, existe un experimento natural que prueba cómo la evolución no conduce necesariamente a la aparición de una especie tecnológica inteligente. Es su propio país, Australia; un continente separado del resto durante 100 millones de años y en el que todo lo que logró la evolución, según sus propias palabras, fueron los canguros.

Lineweaver propone que existe un “cuello de botella gaiano” (según la idea de Gaia, la Tierra como un sistema vivo autorregulado), un momento de crisis en el que todo planeta con vida naciente deriva hacia la catástrofe climática cuando la propia biología no consigue modificar el ciclo de carbonatos-silicatos para imponer unas condiciones de habitabilidad estables. Es posible que esto sucediera en Venus y Marte, y según Lineweaver la Tierra podría ser un caso insólito que consiguió superar ese cuello de botella. Con lo cual este planeta no sería un ejemplo mediocre de lo que es la norma en el universo, sino una excepción, una anomalía, un raro caso de éxito donde todos los demás fallan.

Por supuesto, la idea de Lineweaver no deja de ser otra hipótesis sin demostración. Pero quien defienda esa visión del universo rebosante de vida debe enfrentarse a la incómoda realidad de que los datos disponibles apoyan más bien lo contrario: aquí no ha venido nadie más, y en los miles de mundos ya confirmados aún no hay nada que invite fuertemente a sospechar la existencia de vida.

Cierto es que tampoco hay nada que lo excluya. Pero aunque el descubrimiento de nuevos exoplanetas ha estado afectado por un sesgo impuesto por los propios métodos de observación –por ejemplo, es más fácil descubrir planetas supergigantes gaseosos, poco aptos para la vida–, la realidad es que una vez más la Tierra sí parece ser un lugar algo especial; entre miles de mundos ya descubiertos, no parece haber tantos similares al nuestro como en un principio podría pensarse.

Lineweaver ha aportado ahora un nuevo dato más en contra de esa percepción de la Tierra como un planeta mediocre, y por tanto en contra de la idea del universo rebosante de vida. El científico australiano y sus colaboradores, los astrofísicos Sarah McIntyre y Michael Ireland, han analizado la posibilidad de que los exoplanetas rocosos conocidos hasta ahora posean un campo magnético similar al de la Tierra. El motivo, escriben los investigadores en su estudio, es que “las evidencias del Sistema Solar sugieren que, a diferencia de Venus y Marte, la presencia de un potente dipolo magnético en la Tierra ha ayudado a mantener agua líquida en su superficie”, y por tanto la vida.

Los investigadores no sostienen que la existencia de un campo magnético sea un requisito mínimo obligatorio para la vida, pero sí que aumenta sus posibilidades, al proteger el agua y la atmósfera del viento y la radiación estelar.

El resultado del estudio es que solo uno de los exoplanetas analizados, Kepler-186f, tiene un campo magnético mayor que el terrestre, “mientras que aproximadamente la mitad de los exoplanetas rocosos detectados en la región habitable de sus estrellas tienen un dipolo magnético insignificante”, escriben los investigadores.

Representación artística de Kepler-186f. Imagen de NASA Ames/SETI Institute/JPL-Caltech.

Representación artística de Kepler-186f. Imagen de NASA Ames/SETI Institute/JPL-Caltech.

Lineweaver y sus colaboradores se abstienen de concluir que sus datos descarten la posibilidad de vida en esos planetas, pero sí sugieren que la mayoría de los que se han descubierto en otros sistemas solares son probablemente menos hospitalarios para la vida que la Tierra. Y quien crea que hablar solo de vida basada en el agua y el carbono es reduccionista debería saber que, en realidad, es igualmente reduccionista proponer otras bioquímicas alternativas sin considerar sus numerosos e inmensos obstáculos, conocidos o no. En un futuro tal vez no lejano, es posible que los sistemas de Inteligencia Artificial puedan modelizar estas bioquímicas alternativas para tratar de obtener un veredicto sobre su plausibilidad real. Hasta entonces, son solo fantasías.

Pero en fin, al menos hay una buena noticia: Kepler-186f. Solo que, hasta ahora, ni siquiera los responsables del Instituto SETI (Búsqueda de Inteligencia Extraterrestre) albergan demasiadas esperanzas de que allí exista vida inteligente…

Esto es, según la ciencia, lo que pudo pasarle al avión de ‘Manifest’

Imagino que incluso quienes no somos adictos a las series hemos echado de menos aquella virtud que tenía Perdidos de sorprendernos en cada nuevo episodio, dejarnos hambrientos con cada cliffhanger y mantenernos ocupados rascándonos la cabeza con la incógnita de si debajo de todas aquellas capas de misterio encontraríamos una historia de ciencia ficción o una mera fantasía sobrenatural (en las que, por definición, anything goes).

Por supuesto, todo duró hasta que J. J. Abrams y Damon Lindelof decidieron que su final no debía coincidir con ninguno de los propuestos por los fanes, y solo les quedó la opción de aquello. Pero a pesar del monumental descalabro final, desde entonces hemos tratado de encontrar los mismos ingredientes en otras imitaciones, sin éxito.

Por desgracia, tampoco parece que vayamos a encontrarlos en Manifest, la nueva serie estrenada esta semana, ya que quienes la han visto entera nos aconsejan que no nos hagamos ilusiones. La serie viene lastrada por un bajón de audiencia en EEUU tras los primeros episodios, y por el momento hemos podido comprobar la flojedad de los personajes y de sus soportes físicos reales, insoportablemente inferiores a Jack/Matthew Fox, Kate/Evangeline Lilly, Sayid/Naveen Andrews, Sawyer/Josh Lee Holloway, Locke/Terry O’Quinn, Hurley/Jorge García…

Pero a quienes nos fijamos en la ciencia incluso dentro de la ducha nos divierte buscar lo científico que subyace a las historias de ficción. Y lo cierto es que la ciencia tiene una explicación a lo que le sucedió al vuelo 828 de Montego Air con el que arranca el episodio piloto de Manifest.

Para quienes no lo hayan visto, resumo que los protagonistas de la serie suben a un avión que parte de Jamaica con destino a Nueva York. Durante la travesía, experimentan unas violentas turbulencias no anticipadas por las lecturas de los instrumentos, y en especial un extraño fenómeno de luces y estrépito durante unos segundos. Después, el vuelo prosigue sin más incidencias… hasta que, a su llegada a Nueva York, los ocupantes del avión descubren que durante su viaje de unas pocas horas han transcurrido más de cinco años para el resto del mundo.

Un fofograma de la serie 'Manifest'. Imagen de Compari Entertainment / Jeff Rake Productions / Universal Television / Warner Bros. Television.

Un fofograma de la serie ‘Manifest’. Imagen de Compari Entertainment / Jeff Rake Productions / Universal Television / Warner Bros. Television.

Naturalmente, no tengo la menor idea de cuál será el desarrollo posterior de la serie ni la explicación imaginada por los guionistas. Pero por pura curiosidad, la ciencia tiene un argumento para explicar teóricamente (repito, teóricamente) la asombrosa anomalía que sirve de premisa para la serie: se conoce como dilatación del tiempo y es una consecuencia de la teoría de la relatividad especial de Einstein.

A finales del siglo XIX, Albert Michelson y Edward Morley demostraron que la luz se movía a la misma velocidad en todas direcciones, Hendrik Lorentz propuso que los objetos se contraían en la dirección de su movimiento, y Hermann Minkovski describió un espacio-tiempo de cuatro dimensiones (tres en el espacio y una temporal) aplicando las ecuaciones del electromagnetismo concebidas por James Clerk Maxwell.

Todas estas ideas confluyeron en la cabeza de Albert Einstein: el espacio y el tiempo estaban ligados a través de una constante universal, la velocidad de la luz, lo que implicaba que no eran absolutos, sino que podían deformarse dependiendo del sistema desde el cual se observaran; si se tiraba de esta manta espacio-temporal desde una esquina de la cama, los efectos se notarían en la esquina contraria para que las ecuaciones de Maxwell continuaran cumpliéndose. Estas deformaciones en el espacio y el tiempo podían predecirse por un factor matemático que Lorentz había introducido en su hipótesis de la contracción, y que se llamó transformación de Lorentz.

Pero el hecho de que la velocidad de la luz en el vacío, c, fuera una constante universal, de valor igual a casi 300.000 km/s (hoy su valor estándar es de 299.792,458 km/s), resultaba en unas consecuencias bastante exóticas. Imaginemos que una nave vuela por el espacio a una velocidad constante cercana a la de la luz, y que el piloto decide encender los faros delanteros. ¿Qué ocurre con la luz de los faros?

Dado que la luz no puede viajar más rápido que la luz, un observador sentado en un asteroide inmóvil que viera pasar la nave debería observar que el chorro luminoso apenas logra salir de los faros. Y sin embargo, el piloto vería algo muy diferente: puesto que su sistema de referencia es tan válido como el del habitante del asteroide (un curioso ejemplo que expliqué aquí es el de la mosca que vuela dentro del coche), él debería contemplar el chorro de luz de los faros proyectándose hacia delante exactamente del mismo modo que si su nave estuviera parada en el suelo.

Antes incluso de que Einstein formulara su relatividad especial, este y otros experimentos mentales llevaron a los científicos a proponer que el tiempo (y el espacio, ya que ambos están ligados en esa manta del cosmos) se comporta de forma distinta según la velocidad relativa entre un observador y otro: el piloto vería que en su nave todo transcurre de forma normal; enciende los faros, y alumbran. En cambio, el habitante del asteroide vería que esto ocurre muy despacio: se encienden los faros y la luz va avanzando poco a poco, poco a poco, mientras observa cómo el piloto parece moverse a cámara lenta.

Esto se llama dilatación del tiempo, y tomó cuerpo y coherencia gracias a la relatividad de Einstein: cuando una nave se mueve a velocidades relativísticas, próximas a la de la luz, las agujas de su reloj corren más despacio que las de otro situado en tierra; todo se ralentiza. A la vuelta de su viaje, el piloto de la nave comprobará que, durante su vuelo de unas horas, en la Tierra han transcurrido días, meses o años. Así, la dilatación del tiempo permite viajar al futuro (no al pasado).

Este recurso se ha explotado a menudo en la ficción. Uno de los ejemplos más conocidos es la primera versión de El planeta de los simios, la de 1968 con Charlton Heston (el libro original era algo diferente). Quizá no sea el mejor ejemplo, ya que en la película parecían ser los habitáculos de la nave los que protegían a los tripulantes del paso del tiempo, algo que no tiene el menor sentido; pero durante la misión espacial de Heston/Taylor y sus compañeros, en la Tierra habían transcurrido miles de años. Aquí he contado también un bonito ejemplo musical, ’39, un tema de Queen compuesto –cómo no– por el astrofísico y guitarrista Brian May.

En resumen, la dilatación del tiempo según la relatividad de Einstein podría explicar teóricamente el viaje temporal de los protagonistas de Manifest. Pero para no dejar la explicación a medias, hagamos algunos números. La dilatación del tiempo se calcula aplicando un factor de transformación llamado factor de Lorentz, o γ (la letra griega gamma minúscula):

t’ = γ . t

En la fórmula, t’ es el tiempo transcurrido en tierra, t es el tiempo transcurrido en el avión y γ es el factor de Lorentz, que se expresa así:

γ = 1 / √ (1 − v²/c²),

donde c es la velocidad de la luz y v es la velocidad (constante) del avión. Es decir, que nos queda así:

t’ = t / √ (1 − v²/c²)

A partir de aquí podemos calcular a qué velocidad tendría que volar el avión para que los pasajeros del vuelo 828 de Montego Air descubrieran que, a la llegada de su viaje de Jamaica a Nueva York, ya no estuvieran en abril de 2013, sino en noviembre de 2018.

A las velocidades normales a las que estamos acostumbrados, la dilatación del tiempo casi no se nota. Como se ve en este gráfico, es solo a partir de aproximadamente la tercera parte de la velocidad de la luz (unos 100.000 km/s, o 360.000.000 km/h) cuando el efecto en el reloj comienza a hacerse ostensible (el eje vertical representa la relación entre el tiempo en tierra y el tiempo en el avión, mientras que el eje horizontal muestra la velocidad del avión en fracciones de la velocidad de la luz).

Gráfico de la dilatación del tiempo en función de la velocidad. Imagen de Zayani / Wikipedia.

Gráfico de la dilatación del tiempo en función de la velocidad. Imagen de Zayani / Wikipedia.

Así pues, y dado que la mayor parte del vuelo transcurre normalmente –a velocidades no relativísticas–, el tiempo t del avión en el que ocurre la magia es cuando tiene lugar el fenómeno extraño de las turbulencias y las luces; se supone que es en ese momento cuando el avión se catapulta a velocidad relativística. No recuerdo exactamente de cuánto tiempo se trataba, pero supongamos que son unos 10 segundos (el resultado no variará demasiado). Mientras, el tiempo t’ en tierra es de unos 5 años y 7 meses, o unos 173.664.000 segundos. Así es como nos queda la ecuación de la dilatación del tiempo, con el valor estándar de la velocidad de la luz:

173.664.000 = 10 / √ (1 − v²/299.792,458²)

De aquí podemos despejar la incógnita, v, para averiguar así la velocidad del avión. Y el resultado es que durante esos 10 segundos de turbulencias el avión volaba a 299.792,4579999995 km/s, o 1.079.252.848,799998 km/h. O sea, a más de mil setenta y nueve millones de kilómetros por hora.

Si lo expresamos como fracción de la velocidad de la luz, v/c, es un 0,9999999999999983 de la velocidad de la luz, o un 99,99999999999983% de la velocidad de la luz.

Claro que, como ya he dicho, todo esto es teórico. En primer lugar, durante esos 10 segundos el avión habría recorrido, despreciando otros efectos, 2.997.924,579999995 de kilómetros, es decir, casi tres millones de kilómetros, o algo menos de ocho veces la distancia de la Tierra a la Luna. Claro que por la contracción del espacio de Lorentz, los pasajeros habrían visto la Luna mucho más cerca de lo normal; y por el mismo efecto, quien estuviera mirando hacia el cielo en ese momento habría observado cómo la longitud del avión se acortaba.

Pero además habría otros efectos colaterales, también consecuencia de la relatividad: los pasajeros apenas habrían notado nada raro (si es que sus cuerpos hubieran podido soportar una aceleración instantánea hasta casi la velocidad de la luz), pero para un observador externo la masa del avión y de sus ocupantes se habría multiplicado enormemente (la masa también se ve afectada por la transformación de Lorentz), lo cual haría más difícil que el aparato se mantuviera en vuelo.

Además, dado que masa y energía son proporcionales por la ecuación de la relatividad einsteniana E = mc², siendo E la energía, m la masa y c la velocidad de la luz, esto implica que también se habría disparado la cantidad de energía necesaria para hacer volar el avión; no le habría bastado con el combustible de sus depósitos. Lo cual nos lleva a la conclusión de que algo o alguien debería ser el responsable de esta jugarreta a los pasajeros del vuelo 828. ¿Alienígenas? ¿Un experimento a manos de una civilización avanzada que ha roto el espacio-tiempo de los pasajeros, y de ahí las voces, las premoniciones…?

Ah, no, espera. Olvidaba que se trata de imitar a Abrams y Lindelof. Y ellos ya optaron por el espiritismo…

¿Cómo puede una mosca volar dentro de un coche o de un avión en movimiento?

Hace unos días, durante un viaje en coche, una mosca decidió unirse a nuestro periplo en un área de servicio de la provincia de Ciudad Real, para acabar viaje con nosotros en Málaga. Si un insecto supiera geografía y pudiera extrañarse, se habría extrañado de que una mosca manchega hubiera acabado, sin saber cómo ni por qué, en la costa andaluza. Pero hete aquí que, cuando el bicho revoloteaba ante mis narices mientras yo trataba de ignorarlo conduciendo a 120 kilómetros por hora, me acordé de Galileo.

¿Quién no se ha preguntado alguna vez cómo puede una mosca volar tranquilamente dentro de un coche o de un avión, cuando estos a su vez se están moviendo a toda velocidad? Podríamos pensar que la mosca debería quedar estampada contra la luna trasera del coche a poco que intentara emprender el vuelo. Y sin embargo, sabemos que no es así: la mosca vuela tan tranquilamente y sin aparente esfuerzo como lo haría sobre un filete en perfecto reposo sobre la encimera de la cocina.

Lo cual es sorprendente, teniendo en cuenta que una mosca volando pasillo adelante dentro de un avión está sumando sus 7 km/h a los 900 km/h del aparato, alcanzando una velocidad récord de 907 km/h para un observador en tierra, y sin despeinarse, si una mosca pudiera ser despeinada. Pero ¿cómo sabe el movimiento de la mosca que debe descontar el movimiento del avión?

Mosca doméstica. Imagen de Alexey Goral / Wikipedia.

Mosca doméstica. Imagen de Alexey Goral / Wikipedia.

Aquí es donde entra Galileo, quien ya se hizo esta pregunta hace casi 400 años, y logró responderla. En 1632 publicó Diálogos sobre los dos máximos sistemas del mundo, donde escribía:

Enciérrate con algún amigo en la bodega bajo la cubierta de algún barco grande, y lleva contigo algunas moscas, mariposas y otros pequeños animales voladores. Lleva un gran cuenco de agua con algún pez dentro; cuelga una botella que se vacíe gota a gota en una vasija ancha bajo ella. Mientras el barco está parado, observa cuidadosamente cómo los pequeños animales vuelan a la misma velocidad hacia todos los lados de la bodega. Los peces nadan indiferentemente en todas direcciones; las gotas caen en la vasija; y cuando lanzas algo a tu amigo, no necesitas hacerlo con más fuerza en una dirección que en otra, a iguales distancias; saltando con los pies juntos, recorres la misma distancia en todas direcciones. Una vez que hayas observado todo esto cuidadosamente (aunque sin duda cuando el barco está detenido todo debe ocurrir de esta manera), haz que el barco se mueva a la velocidad que quieras, mientras el movimiento sea uniforme y no fluctúe. No verás el más minimo cambio en todos los efectos antedichos, ni podrás saber por ninguno de ellos si el barco se mueve o está parado.

A continuación vuelve otra vez a describir los saltos, el vuelo de las moscas, el pez y demás, para añadir:

La causa de todas estas correspondencias de los efectos es el hecho de que el movimiento del barco es común a todas las cosas contenidas en él, y también al aire.

De este modo, Galileo estaba introduciendo algo que hoy nos resulta muy familiar: la inercia. Dos mil años antes de Galileo, Aristóteles se rascaba la cabeza pensando cómo era posible que una flecha o una lanza continuaran su camino en el aire sin una fuerza aparente que siguiera empujándolas. El rascado de cabeza prosiguió durante dos milenios hasta que Galileo fue el primero en explorar y explicar con acierto el efecto de la inercia; aún sin emplear esta palabra, pero definiendo un principio fundamental de la física básica: que las leyes del movimiento son las mismas en cualquier sistema de referencia inercial, y que por tanto no existe ningún sistema privilegiado sobre otro. Medio siglo más tarde, la relatividad galileana se transformaría en las leyes del movimiento de Newton, y otros dos siglos después, serviría como base para la relatividad especial de Einstein.

En resumen, gracias a Galileo sabemos que la mosca posada cuando el coche comienza a moverse experimenta la misma inercia que nosotros en nuestros asientos. Una vez que el coche ya avanza a toda velocidad, la mosca absorbe la inercia del coche y del aire que lleva dentro en su propio movimiento, por lo que puede volar libremente a su manera normal dentro del vehículo, por grande que sea su velocidad. Incluso si la mosca está volando en el momento en que el coche comienza a acelerar, apenas notará un pequeño desplazamiento hacia la parte trasera que podrá compensar rápidamente; el aire dentro del coche se comprime ligeramente hacia atrás cuando empieza a moverse, pero rápidamente adquiere también la inercia del movimiento de todo el sistema.

En realidad, y si lo pensamos bien, nada de esto debería resultarnos sorprendente si tenemos en cuenta que la velocidad de la mosca, del coche e incluso del avión son, en el fondo, ridículas. Cuando Galileo expuso su argumento, lo hizo con un propósito más trascendente que explicar el vuelo de una mosca en la bodega de un barco: aportaba pruebas a favor del sistema heliocéntrico de Copérnico y en contra del sistema geocéntrico de Ptolomeo. Cuando Copérnico propuso que la Tierra y el resto de los planetas giraban en torno al sol, muchos vinieron a decir: tonterías; si la Tierra se moviera, tendríamos que estar continuamente agarrándonos a algo para no resultar arrastrados. Está claro que nosotros estamos en reposo, y que es el resto del universo el que se mueve.

Galileo explicando sus teorías astronómicas en la Universidad de Padua, por Félix Parra. Imagen de Wikipedia.

Galileo explicando sus teorías astronómicas en la Universidad de Padua, por Félix Parra. Imagen de Wikipedia.

Pero con su magnífico argumento del barco, Galileo demostraba que el reposo en el interior de la bodega, o para el caso, en la superficie de la Tierra, es solo una ilusión; y que es perfectamente posible que todo se esté moviendo a gran velocidad sin que nos demos cuenta, siempre que en este movimiento uniforme participe todo lo que existe a nuestro alrededor, un sistema del que somos parte.

Y vaya si nos movemos a gran velocidad: solo con la rotación de la Tierra, cualquier punto en el Ecuador se está moviendo en todo momento a unos 1.600 km/h, una velocidad que disminuye al aumentar la latitud hasta los polos, donde es cero. Y por cierto, este es el motivo de que los cohetes se lancen preferentemente desde lugares lo más cercanos al Ecuador que sea posible: al despegar desde puntos con mayor velocidad de rotación, las naves ya llevan un impulso extra que las ayuda a alcanzar la velocidad de escape de la atmósfera terrestre.

Pero la de rotación es también una velocidad insignificante si la comparamos con la de traslación de la Tierra alrededor del Sol: unos 108.000 km/h. Y esta a su vez es una minucia en comparación con la velocidad del Sistema Solar alrededor del centro de la galaxia: 792.000 km/h. Y esto sin contar el movimiento de la galaxia respecto a otras, la expansión del universo… En resumen, el reposo simplemente no existe. Porque para empezar, habría que definir: ¿reposo respecto a qué?

El argumento de Galileo era tan sólido que la Inquisición, a la que lógicamente no le placía en absoluto quitar a la Tierra del centro del universo, no pudo oponer otra respuesta más inteligente que… condenar a Galileo a reclusión domiciliaria de por vida. Esto acabó con el hombre; pero por supuesto, no con la verdad de su ciencia.

Sin la inercia, probablemente nuestra vida sería mucho más complicada. Aunque pensándolo bien, quizá tendría sus ventajas: podríamos desplazarnos de un lugar a otro del planeta simplemente dando saltitos y dejando que la Tierra corriera bajo nuestros pies. Viajaríamos gratis. Como la mosca.

Tres millones de dólares para Jocelyn Bell, la astrofísica ignorada por el Nobel

Hace un par de años y medio conté aquí la curiosa historia del descubrimiento del primer púlsar (estrella de neutrones giratoria) y de cómo aquel hallazgo, publicado en 1968, llegó a ilustrar la icónica portada de uno de los discos más míticos de la historia musical reciente, Unknown Pleasures de Joy Division (1979).

Jocelyn Bell en 1967. Imagen de Roger W Haworth / Wikipedia.

Jocelyn Bell en 1967. Imagen de Roger W Haworth / Wikipedia.

En el devenir de aquel episodio científico, que abrió una nueva era para la astronomía, hubo una clara figura perdedora: la norirlandesa Jocelyn Bell (después Bell Burnell por matrimonio), la autora material del hallazgo. Bell recibió en su día una gran atención por parte de los medios británicos… consistente en preguntarle si tenía muchos novios o si era más alta que la princesa Margarita.

Unos años después, en 1974, el descubrimiento fue distinguido con el Premio Nobel de Física… para el supervisor de Bell, Antony Hewish. No solo se trata de que Hewish no había sido el artífice directo del descubrimiento; es que incluso el hallazgo fue posible gracias a que Bell y otros cuatro colaboradores habían pasado dos años construyendo el artefacto necesario para ello. Y no piensen en alta tecnología: allí cada becario recibía un kit de herramientas para clavar palos en una parcela de 18.000 metros cuadrados y tender 190 kilómetros de cable entre ellos. Así eran aquellos primitivos radiotelescopios.

En su día y desde entonces, la omisión de Bell en la concesión de aquel premio ha perdurado popularmente como un caso flagrante de machismo en el mundo de la ciencia. Pero ya aclaré que en realidad se trata de algo más complejo: Bell era la becaria, y con independencia de que fuera hombre o mujer, los comités de los Nobel casi nunca premian a los becarios por considerarlos meramente las manos del cerebro de su amo.

Lo cual, evidentemente, casi nunca es cierto. Pero el Premio Nobel es una institución privada y por lo tanto tiene todo el derecho a regirse por las normas que le parezca, por equivocadas que sean (ya he comentado aquí mil veces que hoy en día premiar a una sola persona por un hallazgo es un descomunal anacronismo) Y aunque las quejas por este criterio sean frecuentes, a muchos de quienes protestan por ello, en concreto a los becarios, habría que plantearles esta pregunta: ¿cuántos estarían dispuestos a que en el futuro sean sus becarios quienes se lleven el mérito? Todos los sistemas jerárquicos se perpetúan porque los de abajo acaban llegando arriba.

Por su parte, Bell atajaba las críticas hacia el fallo del premio con una humildad y una elegancia dignas de aplauso:

Es el supervisor quien tiene la responsabilidad final del éxito o el fracaso del proyecto. Oímos de casos en los que un supervisor culpa a su estudiante de un fracaso, pero sabemos que la culpa es sobre todo del supervisor. Me parece simplemente justo que él deba también beneficiarse de los éxitos. Pienso que los premios Nobel quedarían degradados si se concedieran a estudiantes de investigación, excepto en casos muy excepcionales, y no creo que este sea uno de ellos.

Existen estos casos excepcionales que mencionaba Bell. Uno reciente que me viene ahora a la memoria es el del Nobel de Medicina de 2009, que premió a Elizabeth Blackburn y a su becaria Carol Greider por el descubrimiento de la telomerasa, la enzima clave del envejecimiento celular. Blackburn relacionó el acortamiento de los telómeros (los extremos de los cromosomas) con la edad de la célula, pero la identificación de la telomerasa fue obra exclusiva de Greider, algo que el comité Nobel no pudo ignorar.

Pero en realidad, el papel de Greider en este hallazgo fue muy similar al de Bell en el suyo. Algo que nunca sabremos es si Bell habría recibido el premio junto a Hewish si su nombre de Jocelyn hubiera designado a un chico (curiosamente, este nombre en Francia es masculino, algo similar a la diferencia de uso de Andrea, que es femenino aquí y masculino en Italia).

Jocelyn Bell Burnell en 2015. Imagen de Silicon Republic / Wikipedia.

Jocelyn Bell Burnell en 2015. Imagen de Silicon Republic / Wikipedia.

En definitiva, y ya se debiera la omisión a su condición de mujer o de becaria, o a ambas, lo cierto es que el agravio del Nobel aún pedía una reparación, a pesar de que desde entonces Bell ha sido distinguida con altos honores y nombramientos, incluyendo la Orden del –ya inexistente– Imperio Británico.

La merecida reparación le ha llegado ahora a Bell en una forma de menor prestigio científico que el Nobel, pero que muchos de los nobeles cambiarían con gusto: los tres millones de dólares que otorga el Premio Especial Breakthrough en Física Fundamental. En comparación, la dotación del Nobel en cada categoría es de algo menos de un millón a repartir entre los premiados, que en ciencia suelen ser tres.

Los Premios Breakthrough fueron creados en 2012 por un grupo de magnates que incluye al físico y tecnólogo ruso-israelí Yuri Milner, al cofundador de Facebook Mark Zuckerberg y su mujer, Priscilla Chan, al cofundador de Google Sergey Brin, a la cofundadora de la empresa genómica 23andMe y exmujer de Brin, Anne Wojcicki, y al chino Jack Ma, cofundador del gigante de internet Alibaba. Es decir, un ramillete de empresarios con bolsillos sin fondo que decidieron dedicar parte de su fortuna a la promoción de la ciencia y la investigación tecnológica.

Los premios tienen su edición regular anual, a la que se añade la concesión esporádica de galardones especiales a figuras de excepcional relevancia, como es el caso de Bell. El premio recibido ahora por la astrónoma se ha concedido anteriormente a Stephen Hawking y a los principales responsables del descubrimiento del bosón de Higgs o de las ondas gravitacionales.

Así pues, enhorabuena a la premiada, que lo tenía bien merecido. Que lo disfrute con salud. Y ya que hemos mencionado el Unknown Pleasures, me sirve como excusa para dejarles con esta rara y antigua joya.

¿Existen los “pilares de la creación” en la nebulosa del Águila?

Lo que ven en esta foto podría no existir:

Los pilares de la creación, imagen tomada por el telescopio espacial Hubble en 2014. Imagen de NASA, ESA y Hubble Heritage Team (STScI/AURA).

Los pilares de la creación, imagen tomada por el telescopio espacial Hubble en 2014. Imagen de NASA, ESA y Hubble Heritage Team (STScI/AURA).

Pero no, no se trata de una manipulación digital como la falsa imagen de las puertas del Cielo que les traje aquí ayer.

En este caso se trata de una fotografía real llamada “los pilares de la creación”, una de las más famosas tomadas por el telescopio espacial Hubble. Se obtuvo en 1995 y muestra las nubes de polvo y gas en la nebulosa del Águila, a 7.000 años luz de nosotros, talladas por la luz de las nuevas estrellas hasta formar esos rascacielos cósmicos de 4 años luz. En realidad la que pueden ver arriba es una nueva versión, obtenida por el Hubble en 2014 en homenaje a la imagen original, esta que sigue, y que acompaño con un panorama más amplio de la nebulosa mostrando la ubicación de esta estructura.

Los pilares de la creación, imagen tomada por el telescopio espacial Hubble en 1995. Imagen de NASA, Jeff Hester y Paul Scowen (Arizona State University).

Los pilares de la creación, imagen tomada por el telescopio espacial Hubble en 1995. Imagen de NASA, Jeff Hester y Paul Scowen (Arizona State University).

Imagen del telescopio espacial Spitzer de la nebulosa del Águila, con la ubicación y el detalle de los "pilares de la creación". Imagen de NASA/JPL-Caltech/N. Flagey/MIPSGAL Science Team.

Imagen del telescopio espacial Spitzer de la nebulosa del Águila, con la ubicación y el detalle de los “pilares de la creación”. Imagen de NASA/JPL-Caltech/N. Flagey/MIPSGAL Science Team.

Pero lo que ven en estas fotos podría no existir porque quizá fue destruido hace unos 6.000 años. Lo que están viendo es el pasado, una estructura cósmica tal como era hace 7.000 años, el tiempo que ha tardado en llegarnos la luz de la nebulosa a través del universo. En 2007 un equipo de científicos dirigido por el francés Nicolas Flagey analizó las imágenes del Águila tomadas por el telescopio espacial Spitzer, capaz de ver la luz infrarroja que entonces era invisible para el Hubble. Flagey y sus colaboradores observaron lo que parecía una inmensa burbuja de gas y polvo calientes causada por la explosión de una supernova, acercándose a toda velocidad hacia los pilares. Esta burbuja es la masa roja que se observa en la imagen anterior de infrarrojos.

Dado que aquella región es una de las incubadoras de estrellas más activas y mejor estudiadas, los astrónomos consideran que varias de las estrellas masivas formadas cumplen las condiciones para estallar como supernovas, por lo que una hecatombe estelar allí es casi un desastre anunciado.

Según calculaban los investigadores en su estudio, publicado en 2009, las imágenes del Spitzer sugerían que, en aquella foto fija del Águila, a la onda expansiva de la supernova le faltaban unos 1.000 años para arrasar los pilares, por lo que la humanidad tendría que esperar unos 1.000 años para ver cómo aquellas torres quedaban deshilachadas como quien sopla un pompón de diente de león. Pero dado que nuestro retraso en recibir noticias de la nebulosa del Águila es de 7.000 años, esto implicaría que los pilares habrían dejado de existir cuando los humanos aún íbamos por el Neolítico.

Flagey calculaba que la explosión de la supernova se produjo hace entre 8.000 y 9.000 años, lo que significa que el fogonazo de este cataclismo debería haber llegado a la Tierra hace 1.000 o 2.000 años. El astrofísico, por entonces estudiante de doctorado, dijo que había identificado algunos posibles eventos candidatos en las crónicas históricas de la antigua China.

Claro que he comenzado diciendo que los pilares podrían no existir, y no que no existen. Porque no todos los expertos están de acuerdo con Flagey. En el momento de la publicación de su estudio ya hubo alguna opinión que cuestionaba la interpretación de la supernova, alegando que lo observado en las imágenes de infrarrojos podría deberse al calentamiento de la nube por estrellas masivas de la propia estructura, y no a un fenómeno que debería producir una huella de radiación mucho mayor.

Hace unos meses, el astrofísico y divulgador Ethan Siegel publicaba en su blog Starts With a Bang un artículo en el que rebatía la hipótesis de Flagey. Siegel ha analizado las nuevas imágenes tomadas por el Hubble en 2014, las ha comparado con las de 1995 y ha añadido las tomas en infrarrojo aportadas por una nueva cámara de este telescopio, concluyendo que no hay rastro de supernova y que la dinámica de las estructuras de la región se debe exclusivamente a las estrellas presentes.

Así, Siegel considera refutada la teoría de la destrucción de los pilares, que seguirán existiendo durante eras cósmicas hasta que el material de incubación de las estrellas acabe evaporado por la luz de las que ya se han formado. Pero en otro estudio publicado en 2011, Flagey admitía que la hipótesis de la supernova era algo especulativa.

Lo cual simplemente debería advertirnos contra los titulares periodísticos del estilo “los pilares de la creación ya no existen”, tanto como contra los del estilo “los pilares de la creación continúan existiendo”. El periodismo clásico odia los titulares interrogativos tanto como los condicionales. Pero la ciencia siempre está en construcción, y a veces todo lo que tiene son preguntas y condicionales. ¿Existen los pilares de la creación? Podría ser. Y podría ser que no.

Stephen Hawking no molaba nada (y ese es el problema)

La semana que termina nos ha dejado la muerte de Stephen Hawking, el científico más popular de las últimas generaciones. Los medios de todo el mundo han cubierto la noticia con amplios despliegues y con múltiples enfoques, desde lo puramente científico hasta la música que le gustaba o el maltrato que sufrió por parte de su segunda esposa. Yo mismo aporté mi granito con un pequeño obituario, pero quiero dejar un segundo granito aquí para intentar que un aspecto fundamental no se pase por alto en el que será sin duda el hito científico más negro de este 2018.

Stephen Hawking en la Universidad de Cambridge. Imagen de Lwp Kommunikáció / Flickr / CC.

Stephen Hawking en la Universidad de Cambridge. Imagen de Lwp Kommunikáció / Flickr / CC.

Tal vez Hawking no era después de todo tan popular como algunos pensábamos, como han revelado también varios medios al dejar en evidencia la confusión de muchos usuarios de Google sobre quién era el personaje fallecido. Pero sin duda podría decirse, como también han hecho constar muchas de las piezas publicadas sobre él, que era un icono de la cultura. Pero no de la Cultura, sino de la “cultura pop“, han precisado muchos medios.

Pero ¿qué es la cultura pop? Voy a la Wikipedia, y me dice que “la cultura popular [pop] se contempla a veces como trivial y embrutecida para encontrar una aceptación consensuada mayoritaria”. A continuación, añade que las principales categorías de la cultura pop son el entretenimiento, los deportes, las noticias, la política, la moda, la tecnología y la jerga.

No, la ciencia no aparece. Pero si resulta que en realidad la ciencia sí es Cultura, ¿por qué se habla de Hawking como cultura pop? ¿Porque salió en Los Simpson? ¿Porque era famoso? No parece que cuadre mucho con alguien que no solo ha sido uno de los científicos más importantes del siglo XX, sino también uno de los principales intelectuales de nuestro tiempo, en el verdadero sentido de la palabra “intelectual”.

Cuando en 1919 las fotografías de un eclipse solar confirmaron una de las predicciones de la relatividad general de Einstein (la curvatura de la luz de las estrellas por la masa del Sol), varios periódicos publicaron la noticia advirtiendo a sus lectores de que no trataran de entender la teoría del físico, ya que según él mismo había asegurado, no más de 12 personas en todo el mundo podrían entenderla. Al parecer, cuando le preguntaron a Einstein por esto se lo tomó como una broma, pero al comprobar que la historia de las 12 personas realmente se había divulgado en la prensa, aclaró que él jamás había dicho tal cosa.

No sería justo negar que la relación del público con la ciencia ha cambiado mucho desde los tiempos de Einstein, pero parece que un siglo después aún no se ha derribado la barrera. A pesar de que uno de los mayores empeños del propio Hawking durante toda su vida fue dar a entender que él era una persona normal y que la ciencia era una cosa normal, se le ha admirado mucho, pero de lejos. Imposible entenderle, inútil molestarse, no lo intenten; mejor dediquen el tiempo libre a hacer deporte.

En lugar de tratar de comprender la ciencia de Hawking, fíjense en su espíritu de superación, haber hecho todo aquello, fuera lo que fuese aquello, a pesar de su enfermedad… Ya se lo ha dejado claro en Twitter una famosa actriz: ahora es libre de sus limitaciones físicas. (¿Morir te libera de algo, aparte de la vida?)

En el fondo, probablemente Stephen Hawking no habría sido tan pop-ular si no hubiera sido diferente, batallando contra la muerte y postrado en una silla durante la mayor parte de su existencia. Esa serie, The Big Bang Theory, ya deja claro que para ser un científico hay que ser distinto; hay que ser un friqui.

Llega un momento en la vida de todo niño en que debe elegir: o ser un científico, o ser normal. Claro que es más fácil ser normal, porque un colegio puede no tener microscopios, pero que nunca falten los balones. ¿Hay algún niño que quiera ser como Stephen Hawking? No era guapo, ni futbolista, ni cantaba bien. No molaba. Muy admirado, eso sí, como icono de la cultura pop. Pero un icono no es un modelo; la gente quiere ser como los modelos, mientras que los iconos se guardan en una vitrina. Y se les limpia el polvo de vez en cuando.

Lo que me gustaría dejar como último tributo a Stephen Hawking lo cuenta mucho mejor Tuomas Holopainen, compositor y líder de Nightwish, en este tema dedicado a otro monstruo del pensamiento, Carl Sagan:

Make me wonder
Make me understand
Spark the light of doubt and a newborn mind
Bring the vast unthinkable down to Earth

Pasen y vean una alucinante reacción en cadena que descubre el orden del caos

Imagino que habrán visto infinidad de vídeos de efecto dominó, esos en los que la caída de una primera ficha pone en marcha una reacción en cadena que tumba otros miles de piezas formando figuras, hinchando globos y disparando pirotecnia. Supongo que continuarán celebrándose aquellos concursos en los que un japonés muy concentrado acababa dando saltos de alegría cuando su montaje funcionaba a la perfección hasta la traca final, pero ya no aparecen en los telediarios con tanta asiduidad como antes. Será que lo hemos visto tantas veces que ya no nos sorprende.

Pero este vídeo que les traigo hoy les va a sorprender. Del creador de esta loca genialidad solo sé lo que figura en su canal de YouTube, que se hace llamar Kaplamino y que le llevó tres meses de trabajo y más de 500 rondas de ensayo y error llegar a crear esta maravilla de la ingeniería física de mesa, que convierte un aparente caos de objetos sobre un plano inclinado en una increíble coreografía ajustada al milímetro y sincronizada a la centésima de segundo.

Imagen de Kaplamino / YouTube.

Imagen de Kaplamino / YouTube.

Los montajes de efecto dominó juegan con el concepto físico clásico de la cantidad de movimiento, una magnitud que es constante en un sistema cerrado ideal, y que un objeto puede transferir a otro dentro de ese sistema. Cuando el taco de billar golpea una bola, le transfiere su cantidad de movimiento, que a su vez la bola golpeada puede transmitir a otras al hacer carambolas. Un ejemplo de escritorio muy kitsch y nerdie es el péndulo de Newton, ese conjunto de bolitas suspendidas donde el movimiento de la primera se transmite a la última pasando por las intermedias, pero sin que estas se muevan. No lo inventó Newton, sino el francés Edme Mariotte, aunque el inglés lo mencionó en sus Principia.

Esta transferencia de la cantidad de movimiento es la que funciona cuando las fichas de dominó se empujan unas a otras o se emplean para mover bolitas u otros mecanismos. Otra manera de expresarlo es mediante la energía, que tienen los cuerpos en movimiento (cinética) o en altura (potencial), y que se va transmitiendo de unos elementos a otros, ya que (también idealmente) la energía total del sistema no varía.

Los sistemas de efecto dominó tienen que jugar con estas magnitudes para conseguir que la cantidad de movimiento y la energía no se disipen, sino que vayan transmitiéndose en cadena de unos elementos a otros. Las fichas no se mueven a lo largo del circuito, sino que es la energía la que se mueve. Los montajes que además utilizan otros tipos de objetos, como pelotas o varillas, suelen utilizar la tercera dimensión para añadir algo de energía potencial al sistema; es decir, aprovechan los desniveles para que algo al caer mueva otra cosa.

Lo que tiene de especial el montaje de Kaplamino es que la canica azul encargada de iniciar la reacción es la que va moviéndose a lo largo de todo el circuito, como en un pinball; no se limita a ceder su energía y pararse para que otros objetos tomen el relevo, sino que va recuperando energía para continuar moviéndose hasta el final. Y todo ello sobre un plano, en solo dos dimensiones. La mesa está inclinada para aprovechar algo de energía potencial en la caída de la canica, y el resto es cosa de imanes y palancas, que van devolviéndole a la canica altura y velocidad para conseguir que nunca deje de moverse. Otra genialidad del autor es aprovechar los dobles recorridos de algunos elementos para conseguir efectos diferentes en cada uno de ellos.

Es cierto, esto no sirve absolutamente para nada. ¿Y por qué debería servir? Aprovechando que se celebra ahora en Madrid la feria ARCO, ¿podríamos decir que este es el arte de la física?