BLOGS
Ciencias mixtas Ciencias mixtas

Los secretos de las ciencias para
los que también son de letras

Entradas etiquetadas como ‘física’

Los Nobel, uno fresco, otro rancio, y siempre dejan a alguien fuera

Como cada año por estas fechas, no puede faltar en este blog un comentario sobre lo que nos ha traído la edición de turno de los premios Nobel. Y aunque cumplo con esta autoimpuesta obligación, debo confesarles que lo hago con la boca un poco pastosa. No por desmerecer a los ganadores, siempre científicos de altísimos logros, sino por otros motivos que año tras año suelo traer aquí y que conciernen a los propios premios.

Imagen de Wikipedia.

Imagen de Wikipedia.

En primer lugar, están los merecimientos no premiados de los que siempre se quedan por debajo de la línea de corte. Ya lo he dicho aquí, y no descubro nada nuevo: ya no hay Ramones y Cajales encerrados a solas en su laboratorio. Vivimos en la época de la ciencia colaborativa y a veces incluso multitudinaria, donde algunos estudios vienen firmados por miles de autores. No exagero: hace un par de años, un estudio de estimación de la masa del bosón de Higgs batió todos los récords conocidos al venir firmado por una lista de 5.154 autores. Nueve páginas de estudio, 24 páginas de nombres.

En el caso que nos ocupa, el Nobel de Física 2017 anunciado esta semana ha premiado la detección de ondas gravitacionales, un hito histórico que se anunció y publicó por primera vez en febrero de 2016, que confirmó la predicción planteada por Einstein hace un siglo y que según los físicos abre una nueva era de la astronomía, ya que enciende una nueva luz, que en este caso no es luz, para observar el universo.

Pero aunque sin duda el hallazgo merece los máximos honores que puedan concederse en el mundo de la ciencia, el problema es que los Nobel fueron instituidos por un tipo que murió hace 121 años, cuando la ciencia era cosa de matrimonios Curies investigando en un cobertizo. Y las normas de los Nobel dicen que como máximo se puede premiar a tres científicos para cada categoría.

Los agraciados en este caso han sido Rainer Weiss, Barry Barish y Kip Thorne, los tres estadounidenses, el primero nacido en Alemania. Weiss se queda con la mitad del premio, mientras que Barish y Thorne se reparten el otro 50%.

No cabe duda de que los tres lo merecen. Weiss fue quien inventó el detector que ha servido para pescar por primera vez las arrugas en el tejido del espacio-tiempo, producidas por un evento cataclísmico como la fusión de dos agujeros negros. Thorne ha sido la cabeza más visible en el desarrollo de la teoría de las ondas gravitacionales, además de ser un divulgador mediático y popular: creó el modelo de agujero negro que aparecía en la película Interstellar. Por su parte, Barish ha sido el principal artífice de LIGO, el detector que primero observó las ondas gravitacionales y que se construyó según el modelo de Weiss apoyado en la teoría de Thorne.

Pero más de mil científicos firmaron el estudio que describió la primicia de las ondas gravitacionales. Sus diversos grados de contribución no quedan reflejados en la lista de autores, ya que en casos así no se sigue la convención clásica de situar al principal autor directo del trabajo en primer lugar y al investigador senior en el último; aquí la lista es alfabética, sin un responsable identificado. El primero de la lista era un tal Abbott, cuyo único mérito para que aquel estudio histórico ahora se cite como “Abbott et al.” fue su ventaja alfabética. De hecho, había tres Abbotts en la lista de autores.

¿Se hace justicia premiando solo a tres? Tengo para mí que los físicos especializados en la materia, sobre todo quienes hayan participado de forma más directa o indirecta en este campo de estudio, tal vez tengan la sensación de que queda alguna cuenta no saldada.

Como mínimo, habrá quienes achaquen al jurado que haya olvidado la importantísima contribución de Virgo, el socio europeo del experimento LIGO. Ambos nacieron de forma independiente en los años 80, LIGO en EEUU y Virgo en Italia como producto de una iniciativa italo-francesa. Con el paso de los años, LIGO y Virgo comenzaron a trabajar en una colaboración que estaba ya muy bien trabada antes de que el detector estadounidense lograra la primera detección de las ondas gravitacionales. La cuarta detección de ondas de este tipo, anunciada hace solo unos días, se ha producido en paralelo en LIGO y en Virgo. ¿Es justo dejar a los artífices del proyecto europeo sin el reconocimiento del Nobel?

Por supuesto, son las normas de los premios. Pero miren esto: el testamento de Nobel no mencionaba en absoluto a tres premiados por cada categoría, sino que se refería simplemente a “la persona que…”. Por lo tanto, si se trata de ceñirse estrictamente a la última voluntad del fundador de los premios, estos no deberían repartirse.

Pero la limitada representatividad de la lista de premiados no es el único defecto de los Nobel. Otro que también he comentado aquí en años anteriores es la tendencia a premiar trabajos tan antiguos que ni sus autores ya se lo esperaban, si es que siguen vivos. Y en esto tampoco se respetan las instrucciones de Alfred Nobel, ya que él especificó que los premios deberían concederse a quien “durante el año precedente haya conferido el mayor beneficio a la humanidad”.

Si al menos este año en Física se ha premiado ciencia fresca y puntera, no ocurre lo mismo con la categoría de Fisiología o Medicina. Los tres galardonados, Jeffrey Hall, Michael Rosbash y Michael Young, todos estadounidenses, lograron sus avances fundamentales sobre los mecanismos moleculares del reloj biológico (los ritmos circadianos) allá por los años 80.

De hecho, hay un dato muy ilustrativo. A diferencia del caso de las ondas gravitacionales, en el campo de los ritmos circadianos sí hay dos nombres que muy claramente deberían encabezar una lista de candidatos a recibir los honores: Seymour Benzer y su estudiante Ron Konopka, los genetistas estadounidenses que primero descubrieron las mutaciones en los genes circadianos con las cuales pudo escribirse la ciencia moderna de la cronobiología. Pero Benzer falleció en 2007, y Konopka en 2015. Y no hay Nobel póstumo. El premio en este caso se ha concedido a una segunda generación de investigadores porque se ha concedido tan a destiempo que los de la primera murieron sin el debido reconocimiento.

En este caso, los Nobel pecan una vez más de conservadurismo, de no apostar por avances más recientes cuyo impacto está hoy de plena actualidad en las páginas de las revistas científicas. Por ejemplo, CRISPR, el sistema de corrección de genes que abre la medicina del futuro y en el que nuestro país tiene un firme candidato al premio, el alicantino Francisco Martínez Mojica. Pero dado que este avance también puede optar al Nobel de Química, que se anuncia hoy miércoles dentro de un rato, de momento sigamos conteniendo la respiración.

Así es como se ve un eclipse solar… desde la Luna

Adivina adivinanza: ¿cómo se ve un eclipse solar desde la Luna?

Dicen algunos que el eclipse solar del pasado 21 de agosto fue el más observado de la historia. Es difícil probar esta afirmación, pero es de suponer que nunca tantos ojos se habrán vuelto hacia el cielo como cuando un eclipse haya favorecido especialmente a alguna de las regiones más densamente pobladas del planeta, como por ejemplo el subcontinente indio.

Pero algo sí es probable, y es que este último haya sido el más observado científicamente, al haber agraciado con su espectáculo de totalidad a la primera potencia científica del mundo. Desde varios meses antes, todo organismo científico de EEUU con competencias en la materia nos estuvo asaeteando a las partes implicadas con andanadas de correos electrónicos informándonos de toda clase de actividades, reuniones, experimentos, viajes, distribuciones masivas de gafas y otros eventos, hasta un extremo ya ligeramente machacón; sobre todo para quienes no teníamos ninguna posibilidad de desplazarnos hasta allí.

Por mi parte, tuve la fortuna desde el punto de vista personal, pero el infortunio desde el profesional, de hallarme aquella tarde bajo un hosco muletón de nubes que arropaba por completo el cielo escocés, así que no pude presenciar ni ese diminuto mordisco al disco que podía observarse desde allí.

Pero a lo que íbamos. Si conocen el mecanismo básico de un eclipse de sol y han pensado un poco, imaginarán que el juego del escondite solar tiene un aspecto muy diferente desde la Luna. Dado que es ella la que nos oculta la luz, lo que cae sobre la Tierra es su sombra. Por tanto, desde nuestro satélite podríamos apreciar la sombra circular de la Luna moviéndose por la superficie terrestre.

Pero mejor que explicarlo es verlo: así es como lo fotografió la sonda de la NASA Lunar Reconaissance Orbiter (LRO). Este vídeo de la imagen tomada por la LRO varía la exposición de la foto para que pueda apreciarse con más facilidad la sombra de la Luna sobre el territorio continental de EEUU. En ese momento, la sombra lunar se movía sobre la Tierra a una velocidad de 670 metros por segundo, unos 2.400 km/h.

Imagen del eclipse solar del 21 de agosto de 2017 visto desde la Luna por la sonda LRO. Imagen de NASA/GSFC/Arizona State University.

Imagen del eclipse solar del 21 de agosto de 2017 visto desde la Luna por la sonda LRO. Imagen de NASA/GSFC/Arizona State University.

Si lo piensan, este efecto es exactamente el mismo que observamos desde la Tierra durante un eclipse lunar: en este caso es la sombra de nuestro planeta la que cae sobre la Luna. Pero dada la enorme diferencia de tamaño entre nuestro mundo y su satélite, toda la faz de la Luna queda bajo la sombra terrestre; allí el eclipse solar es total desde cualquier lugar en la cara visible.

De hecho, dado que el tamaño aparente de la Tierra desde la Luna es mucho mayor que el del Sol, sería de esperar que el disco solar desapareciera sin dejar rastro bajo la esfera terrestre. Sin embargo, no es así. Curiosamente, el pequeño Sol va ocultándose detrás de la gran Tierra hasta que parece que va a esfumarse por completo, pero entonces se produce una especie de milagro natural: de pronto, la Tierra queda rodeada por un fino anillo rojizo, como muestra esta imagen creada por la NASA (la animación completa está disponible aquí).

Simulación de un eclipse lunar visto desde la Luna. Imagen de NASA's Scientific Visualization Studio.

Simulación de un eclipse lunar visto desde la Luna. Imagen de NASA’s Scientific Visualization Studio.

El anillo rojo no es luz solar directa; es evidente que el disco solar no rebosa por detrás del terrestre. Es la atmósfera de la Tierra encendida por el Sol, y para comprender la razón del color rojizo no hay más que contemplar un amanecer o un atardecer, ya que de eso precisamente se trata: ese filo carmesí marca todos los lugares de nuestro planeta donde en ese momento el Sol está saliendo o poniéndose.

Y obviamente, ese tenue resplandor rojo está bañando la faz de la Luna en ese instante, motivo por el cual durante un eclipse lunar los terrícolas vemos nuestro satélite de ese color; es el brillo de nuestros miles de auroras y ocasos reflejado sobre la cara de la Luna.

Una sonda de la NASA volará a través de la atmósfera del Sol

Sunshine, de Danny Boyle, es una de las películas de ciencia ficción más interesantes que he podido ver en lo que llevamos de siglo. Según parece, sus resultados en taquilla fueron más bien discretos, algo que no me corresponde analizar a mí sino a mis compañeros Carles y Juan Carlos.

Por lo que compete a este blog, puedo decir que Boyle y Alex Garland, autor de la historia, hicieron un trabajo concienzudo basándose en una asesoría científica amplia y experta, con participación de la NASA y del físico británico y estrella mediática Brian Cox, e incluso montando a los actores en vuelos de simulación de microgravedad. Y si no todo en la película es científicamente realista, no se trata de errores, sino de licencias creativas que se tomaron siendo plenamente conscientes de que se estaban apartando de la ciencia rigurosa.

Ilustración de la Parker Solar Probe. Imagen de NASA.

Ilustración de la Parker Solar Probe. Imagen de NASA.

Sí, hubo científicos que escribieron criticando negativamente la película. A quienes nos dedicamos a esto nos gusta desentrañar cuánto hay de ciencia real y cuánto de vengayá en las películas del género. Pero una cosa es aprovechar estas licencias argumentales como herramienta de divulgación, y otra basarse en ellas para descalificar una película como si se hubiera cometido una especie de afrenta. Toda época ha tenido sus inquisidores.

Toda peli de ciencia ficción encuentra su eficacia sabiendo hasta dónde estirar la ciencia; y si hay que romperla para ir un poco más allá porque la historia lo pide, pues se rompe y no pasa nada: la ciencia no es una religión, y la ficción es ficción porque es ficción. Incluso una joya tan elogiada como 2001: Una odisea del espacio se basa en una idea hoy indefendible por criterios científicos, la existencia de inteligencias extraterrestres casi supremas, ese rollo que en Prometheus llamaban “los ingenieros”. Y qué decir de toda película basada en los viajes en el tiempo.

Para quienes no la hayan visto, les resumo el argumento de Sunshine en una frase y sin spoilers: el Sol se está apagando debido a un accidente natural que en la película no se menciona, pero que sí se explica científicamente en el guión original (para los curiosos, una colisión con una Q-ball), y una nave tripulada debe viajar hasta allí para reactivarlo mediante una megaexplosión nuclear, después del fracaso de una misión anterior que desapareció sin dejar rastro.

El acierto de Sunshine, en mi opinión, está en desarrollar la quiebra psicológica de los personajes amenazados por un monstruo tan poderoso como inusual: el Sol, normalmente un elemento benéfico e imprescindible para la vida. Darle al Sol el papel del malo es un hallazgo comparable al de poner al asesino en el cuerpo de un niño; ignoro a quién se le ocurrió esto por primera vez, pero Chicho Ibáñez Serrador lo hizo magistralmente en Quién puede matar a un niño. Una película que, por cierto, también exploraba sabiamente el terror a pleno sol. En Sunshine los personajes se defienden contra un enemigo que puede liquidarlos o enloquecerlos hasta que se liquiden unos a otros, y al que jamás podrán matar ni vencer.

Comparación a escala del tamaño aparente del Sol desde la Tierra (derecha) y desde la órbita de la Parker Solar Probe (izquierda). Imagen de Wikipedia.

Comparación a escala del tamaño aparente del Sol desde la Tierra (derecha) y desde la órbita de la Parker Solar Probe (izquierda). Imagen de Wikipedia.

Me ha venido el recuerdo de Sunshine con ocasión de una rueda de prensa celebrada esta semana en la que la NASA ha presentado una misión que lanzará en 2018, y que se acercará al Sol como jamás lo ha hecho antes ningún artefacto de fabricación humana. Faltando el elemento humano, la Parker Solar Probe (bautizada en homenaje al astrofísico Eugene Parker, descubridor del viento solar y que, en contra de la costumbre en estos casos, aún vive) enfrentará sus circuitos a los mismos peligros que amenazaban a la tripulación del Icarus II en la película.

Parker se acercará a unos seis millones de kilómetros del Sol. Puede que esto no parezca demasiado si consideramos que nuestra estrella tiene un diámetro de 1,4 millones de kilómetros, pero la cosa cambia si tenemos en cuenta que Mercurio se encuentra a 58 millones de kilómetros del Sol, casi diez veces más lejos de lo que la sonda se aproximará. De hecho, Parker volará atravesando la corona, la parte exterior de la atmósfera solar. El gráfico de la derecha muestra el tamaño aparente del Sol desde la Tierra, comparado con el que verá la sonda.

Trayectoria orbital prevista para la Parker Solar Probe. Imagen de NASA.

Trayectoria orbital prevista para la Parker Solar Probe. Imagen de NASA.

Para soportar una temperatura de 1.377 ºC, con una intensidad solar 520 veces superior a la que existe en la Tierra, Parker esconderá sus instrumentos detrás de una sombrilla de 11,5 centímetros de grosor fabricada con carbono reforzado con fibra de carbono, el mismo material que protegía a los shuttles de la NASA durante la reentrada en la atmósfera. Eso sí, energía solar no le faltará.

La misión se lanzará el 31 de julio de 2018, pero durante seis años se dedicará a sobrevolar Venus. Deberemos esperar hasta el 19 de diciembre de 2024 para su primera aproximación al Sol. Parker conseguirá además otro récord, el del objeto de fabricación humana más rápido de la historia: durante su recorrido alrededor del Sol, su velocidad alcanzará los 700.000 km/h.

Thomson, el físico que (realmente no) descubrió el electrón

Dicen los libros de texto que el físico inglés Joseph John Thomson descubrió el electrón el 30 de abril de 1897. De lo cual se sigue que la primera partícula subatómica acaba de cumplir 120 años.

Pero en realidad no fue exactamente así.

J. J. Thomson en su laboratorio. Imagen de Wikipedia.

J. J. Thomson en su laboratorio. Imagen de Wikipedia.

A los humanos nos vuelven locos los aniversarios, sobre todo cuando hacen números redondos. En cuanto algo cumple un año, ya nos estamos lanzando a celebrarlo, y luego vienen los cinco, los diez… Y todo hay que decirlo, es uno de los recursos de los que vive el periodismo, incluido el que practica este que suscribe. Y tampoco está mal recordar nuestra historia reconociendo a quienes lo merecen.

Pero a veces, estas efemérides deben servir para aclarar cómo no sucedieron las cosas. Los grandes descubrimientos científicos no suelen ser cuestión de una fecha concreta, ya que normalmente son fruto de un largo proceso de investigación. Incluso cuando hay un momento de eureka, un experimento que revela de súbito un resultado largamente esperado, este deberá esperar a ser divulgado, y a que la comunidad científica le dé su asentimiento.

Las fechas que asociamos a ciertos hallazgos, como la relatividad general de Einstein cuyo  centenario celebrábamos en 2015, suelen ser las de su divulgación. Antes era común que los científicos leyeran sus trabajos ante los miembros de alguna institución científica. Hoy la fecha de un descubrimiento es la de su publicación en una revista después de que los resultados hayan sido validados por otros expertos en un proceso llamado revisión por pares.

En el caso de Thomson, la fecha del 30 de abril corresponde al día en que presentó sus resultados ante la Royal Institution. Pero el físico no presentó el electrón, sino el “corpúsculo”, una partícula constituyente de los rayos catódicos que tenía carga negativa y cuya masa era unas mil veces menor que la del ion de hidrógeno.

En realidad, Thomson no fue el primero en intuir que el átomo no era tal á-tomo (indivisible), sino que contenía partículas subatómicas. Tampoco fue el primero en sugerir que esas partículas eran unidades elementales de carga eléctrica. Tampoco fue el primero en deducir que los rayos catódicos estaban formados por algo cargado negativamente, ni fue el primero en intentar calcular una masa para ese algo. Y por último, tampoco inventó la palabra “electrón”; esta había sido acuñada por el irlandés George Johnstone Stoney en 1891, un término esperando algo que designar.

El de Thomson es un caso peculiar. Acudo a Isobel Falconer, historiadora de matemáticas y física de la Universidad de St. Andrews (Reino Unido), experta en la figura de Thomson y autora del libro J.J. Thompson And The Discovery Of The Electron (CRC Press, 1997), entre otros muchos trabajos sobre el físico. Le pregunto si debemos considerar a Thomson el descubridor del electrón, y esta es su respuesta: “descubrir es una palabra muy resbaladiza”.

“El trabajo de Thomson reunió un número de líneas separadas que presagiaron el electrón como lo conocemos”, prosigue Falconer. “Al demostrar que podía manipular y adscribir masa y velocidad a cargas unitarias, concebidas como estructuras en el éter, reunió la visión mecanística británica y la visión continental de la relación entre electricidad y materia, haciendo de los electrones algo real para los físicos experimentales”.

Más que un padre natural para el electrón, Thomson fue el padre adoptivo; recogió a una criatura ya casi existente entonces para presentarla en sociedad y hacerla visible ante los demás. La historiadora añade que la constatación de que los electrones podían explicar las propiedades periódicas de los elementos de la tabla consiguió unificar las visiones del átomo que hasta entonces separaban a físicos y químicos.

Todo lo cual es motivo más que suficiente para conceder a Thomson un lugar de privilegio en el hall of fame de la ciencia, sin necesidad de recordarle por el electrón. “Pienso que Thomson debería ser recordado como un físico prolífico y muy creativo, con gran visión y con olfato para los problemas interesantes, que estaba preparado para romper las reglas en la prosecución de esos problemas”, dice Falconer. Tanto la historiadora como otros expertos en la obra de Thomson coinciden en su papel crucial en el cambio de siglo de la física, en su transición hacia la física de partículas. Y no solo a través de su propio trabajo, sino como director del laboratorio Cavendish de la Universidad de Cambridge, un criadero de premios Nobel.

De hecho, cuando Thomson recibió el Nobel en 1906 no fue por el electrón, sino por su línea principal de trabajo, la conducción de electricidad en recipientes llenos de gas. Curiosamente, el electrón llegó en tubos al vacío, algo que era más bien una rareza en su trabajo.

Tal vez al propio Thomson le sorprendería verse hoy en los libros como el padre del electrón. Según Falconer, era un tipo modesto. Y seguro que de otra paternidad se sentía mucho más orgulloso: vivió para ver cómo su hijo George Paget Thomson le seguía los pasos hasta el mismísimo altar de los Nobel, donde un segundo Thomson recogería su premio en 1937.

¿Realmente Einstein se equivocó?

Cuando en 1919 las fotografías de un eclipse de sol demostraron que la luz de las estrellas se curvaba al interponer la pesada masa del sol, como había predicho la relatividad general de Einstein, la prensa británica y estadounidense anunció una revolución científica liderada por aquel físico que hoy habría cumplido 138 años. A pesar de que pocos realmente entendían en qué consistía: en EEUU, el diario The New York Times publicaba la noticia señalando que “no más de 12 personas en todo el mundo podrían entenderla”.

Albert Einstein en 1921. Imagen de Wikipedia.

Albert Einstein en 1921. Imagen de Wikipedia.

Por fortuna, hoy no solo son miles los físicos en todo el mundo que entienden a la perfección el trabajo de Albert Einstein y han construido sobre los cimientos que él sentó, sino que además hay también miles de canales por los que cualquier persona interesada sin conocimientos de física puede hacerse con unos conceptos básicos sobre la relatividad especial y la general.

Y sin embargo, los especialistas continúan hoy desgranando la obra de Einstein, desde sus artículos científicos a su correspondencia, para entender y explicar cuál era su visión de la naturaleza, ese objeto del que trata el estudio de la física. No todo está dicho sobre el trabajo de Einstein. Y de hecho, en algún sentido aún no se le ha entendido bien, a decir de algunos expertos.

Uno de los aspectos más discutidos del pensamiento del científico más famoso de todos los tiempos es su relación con la mecánica cuántica, una disciplina que él contribuyó a crear cuando explicó el efecto fotoeléctrico, lo que le valió el Nobel; pero con cuya interpretación mayoritaria siempre mantuvo una seria discrepancia.

En un reportaje publicado hoy con motivo del aniversario he explicado con más detalle en qué consistía la objeción de Einstein hacia la física cuántica. En pocas palabras y según la versión más corriente, el físico pensaba que la dependencia de la cuántica del concepto de probabilidad revelaba en realidad un agujero en la teoría, un territorio en el que debían existir variables ocultas no contempladas por la interpretación manejada por sus contemporáneos y que eran fundamentales para explicar cómo funcionaba la realidad. En resumen, Einstein no pensaba que la cuántica estuviera equivocada, pero sí incompleta.

Un ejemplo estaba en el principio de incertidumbre o de indeterminación de Heisenberg, según el cual no era posible medir la posición y la velocidad de una partícula al mismo tiempo, dado que la intervención del observador modifica las propiedades del sistema observado. La física cuántica resultaba extraña en su día, y todavía hoy, porque es diferente a la clásica; esta es determinista, mientras que la cuántica es probabilista. El comportamiento de las cosas grandes, que la experiencia nos hace interpretar como de sentido común, no funciona con lo infinitamente pequeño, y viceversa. Pero Einstein pensaba que algo estaba escapando a los teóricos para poder explicar también el funcionamiento de las cosas pequeñas desde una visión realista.

En 1935, y junto a sus colegas Nathan Rosen y Boris Podolsky, el físico publicaba un artículo bajo un título en forma de pregunta que claramente sugería la respuesta: ¿Puede considerarse completa la descripción mecano-cuántica de la realidad física? En aquel trabajo, los tres científicos planteaban un experimento mental que más tarde se conocería como la Paradoja Einstein-Podolsky-Rosen (EPR).

Suponiendo dos partículas que interaccionan entre ellas antes de separarse y cuya interacción vincula entre sí las propiedades de ambas, sería posible conocer la segunda propiedad de una partícula midiéndola en la otra, ya que una vez separadas no hay posibilidad de que la observación de una influya sobre la otra; a menos, claro, que existiera lo que Einstein denominaba una “truculenta acción a distancia” instantánea; pero no hay nada instantáneo, ya que cualquier posible interacción está limitada por la velocidad de la luz.

La Paradoja EPR fue discutida durante décadas, pero hoy hay una potente corriente entre los físicos que considera probada la “truculenta acción a distancia”, el fenómeno llamado entrelazamiento cuántico (más detalles aquí y aquí). En los últimos años varios experimentos cada vez más finos y blindados parecen demostrar que las predicciones de la cuántica se cumplen, que las partículas se comunican entre ellas a pesar de estar separadas y que, en consecuencia, Einstein acertó al describir un fenómeno, pero se equivocó al creer que tal fenómeno no era posible.

Sin embargo, tal vez no todo es realmente lo que parece, o lo que asume la versión corriente. Hace unos días estuve hablando con Don Howard, profesor de filosofía de la Universidad de Notre Dame (EEUU) especializado en filosofía de la ciencia, y en concreto en el pensamiento de Einstein. Howard me contaba un detalle tal vez poco conocido, y es que en realidad la mayor objeción del alemán a la cuántica no era la ausencia de determinismo; pero es que su mayor objeción no estaba reflejada en el estudio EPR por una razón: “como sabemos por su correspondencia posterior, Einstein de hecho no escribió el EPR, sino que lo hizo Podolsky, y realmente no le gustaba el estudio”.

Según Howard, “en una carta a Schrödinger poco después de la publicación del estudio EPR, Einstein explicaba que el punto principal quedaba enterrado por la erudición o por el excesivo formalismo del estudio”. Para Einstein, el artículo se había centrado en justificar que la cuántica estaba incompleta basándose en la existencia de un caso especial de la realidad física que no tenía cabida en la teoría, pero su verdadera objeción era más profunda y general; la cuántica no era incompleta por no poder explicar algo muy concreto, sino más bien por no poder explicarlo todo en su conjunto.

Einstein veía más bien que la cuántica solo podía explicar la realidad si se prescindía de rasgos esenciales de la realidad tal como es, tal como él la había descrito a través de la relatividad aplicable a las cosas grandes. Podría decirse que los cuánticos describían retratos mediante ecuaciones, pero no narraban el relato de la realidad; por ejemplo, no tenía cabida hablar del pasado de una partícula; no sale en el retrato.

¿Estaba Einstein realmente equivocado? Desde luego, no creía en el entrelazamiento cuántico entre partículas separadas (que los físicos llaman no-localidad). Y para Howard, en esto hoy se habría rendido a las pruebas: “creo que habría cedido, por dolorosa que fuera esa concesión”, dice. “¿Por qué? Porque, como dejó claro en muchas ocasiones, al final es la prueba empírica la que decide las cuestiones sobre la elección de teoría”. Einstein era un realista, y hoy parece cada vez más claro que el entrelazamiento cuántico es real.

Pero según la visión de Howard y otros pensadores sobre cuál era el verdadero sentido de la objeción de Einstein a la cuántica, se entiende que históricamente tal vez un solo árbol, la paradoja EPR, ha tapado todo un bosque. Lo cierto es que hoy los físicos aún continúan batallando por darse la mano uniendo los dos túneles perforados desde ambos extremos, el de la cuántica y el de la relativística. Y está claro que Einstein acertó cuando escribió:

En cualquier caso, en mi opinión, uno debería guardarse de comprometerse dogmáticamente con el esquema de la teoría actual en la búsqueda de una base unificada para la física en su conjunto.

Haga sus propios copos de nieve, e ilumine su árbol con peces eléctricos

Ya que el anticiclón no parece dispuesto a soltarnos y a falta de Navidades blancas, ¿qué tal aprovechar las vacaciones para fabricar sus propios copos de nieve en casa?

Copo de nieve fotografiado al microscopio. Imagen de Kenneth Libbrecht.

Copo de nieve fotografiado al microscopio. Imagen de Kenneth Libbrecht.

El físico de Caltech (EEUU) Kenneth G. Libbrecht es probablemente el mayor experto mundial en cristales de hielo: los crea, los estudia y los fotografía para comprender cómo se forman y en qué medida sus simétricas formas caprichosas dependen de factores como el grado de humedad, la presión o las variaciones sutiles de temperatura. Sus hermosas imágenes están libres de Photoshop; son fotomicrografías reales de copos sabiamente iluminados para que la luz se descomponga en los colores del arco iris.

Y por cierto, hasta tal punto las condiciones de crecimiento del cristal determinan su forma que Libbrecht ha desmontado el viejo mito según el cual no existen dos copos de nieve iguales: utilizando condiciones idénticas, el físico ha logrado crear cristales que son auténticos gemelos idénticos. Y no solo de dos en dos, sino hasta en grupos de varios.

En su web, Libbrecht detalla paso a paso una receta para crear copos de nieve en casa, que resumo aquí. Estos son los materiales necesarios:

Esquema del aparato para crear copos de nieve. Imagen de Kenneth Libbrecht.

Esquema del aparato para crear copos de nieve. Imagen de Kenneth Libbrecht.

  • Una botella pequeña de plástico (con tapón)
  • Tres vasos de poliestireno
  • Una esponja pequeña de 1 cm de grosor
  • Hilo de náilon
  • Aguja de coser
  • Cuatro alfileres
  • Un clip
  • Toallas de papel
  • Cinta adhesiva
  • Unos cinco kilos de hielo seco (puede comprarse por ejemplo aquí)

Primero, se corta el fondo de la botella de plástico a 1 cm de la base. En este fondo se encaja una esponja circular, que se fija clavando cuatro alfileres en los laterales. La esponja y el fondo de la botella se perforan en su centro con una aguja en la que se ha enhebrado el hilo de náilon. Este se fija al exterior de la base con cinta adhesiva, y en el otro extremo se ata el clip para que sirva de peso. La longitud total del hilo debe ser tal que, al volver a colocar el fondo a la botella y ponerla boca abajo, el clip quede dentro de la botella sin llegar al borde del cuello.

Todo este tinglado de la botella, una vez mojada la esponja con agua del grifo, se introduce en los vasos de poliestireno rellenos de hielo seco machacado, como muestra la figura, y se cubre con toallas de papel alrededor de la botella. Con los materiales que Libbrecht utiliza, el vaso que rodea la botella debe agujerearse por la base, pero el físico aclara que esta disposición es solo una sugerencia.

Copos de nieve creados en el experimento. Imagen de Kenneth Libbrecht.

Copos de nieve creados en el experimento. Imagen de Kenneth Libbrecht.

Lo importante es que en la botella se creen dos zonas, templada y húmeda arriba, fría y seca abajo. El agua de la esponja supersatura el aire de vapor, que difunde pasivamente hacia abajo (el aparato se llama cámara de difusión). Al encontrar la zona fría, comienza a cristalizar en torno a un sitio de nucleación, suministrado por las irregularidades del hilo, y a los pocos minutos comenzarán a aparecer los cristales como los de la foto.

Según explica Libbrecht, esto mismo sucede en la atmósfera cuando el aire cálido y húmedo encuentra aire frío. Según la temperatura de este sea mayor o menor de 0 ºC , se forma lluvia o nieve. Cada gota de lluvia o copo de nieve lleva en su interior alguna partícula de polvo que sirve para la nucleación.

Obtener fotografías como las de Libbrecht es algo mucho más complicado, ya que esto requiere un microscopio en frío. Pero los cristales de nieve que se forman pueden verse a simple vista o con una lupa.

Otra sugerencia para Navidad es controlar las luces del árbol mediante peces eléctricos, para quienes tengan acuario y sean además un poco frikis. La propuesta viene del Laboratorio de Peces Eléctricos dirigido por Jason Gallant en la Universidad Estatal de Michigan (EEUU).

Gallant aclara que los peces realmente no alimentan la iluminación del árbol, sino que controlan el parpadeo de las luces. Es decir, que el montaje es una manera navideña y original de comprobar cómo los peces eléctricos africanos Gymnarchus, según el científico fáciles de encontrar en las tiendas de acuarios, navegan y se comunican con impulsos eléctricos; cada vez que el pez emite un pulso, el árbol se ilumina.

Pez eléctrico africano Gymnarchus. Imagen de Wikipedia.

Pez eléctrico africano Gymnarchus. Imagen de Wikipedia.

Para poner en práctica la idea de Gallant se necesita algo de material electrónico, pero también ciertos conocimientos de informática para programar una plataforma Arduino. La lista de los componentes necesarios y el código para programar el sistema se detallan en el blog de Gallant. Feliz navidad y felices experimentos.

Cuidado con el radón, el monstruo que vive en el sótano

Como en los cuentos de Lovecraft, la amenaza llega desde el submundo. Si usted vive en la franja occidental de la Península que desciende desde Galicia hasta el Sistema Central, esto le interesa. Sepa que tal vez se encuentre en una zona de alta exposición al radón, un gas radiactivo que aparece en el ambiente durante la desintegración del uranio-238 atrapado en el suelo y en las rocas, y que está presente de forma natural en pequeñísima proporción en el aire que respiramos.

Con el radón sucede como con los virus: la percepción pública tiende a desplazarse fácilmente del cero al infinito sin término medio. La mayoría de la gente no conoce el problema de este gas, pero a veces ocurre que quienes se enteran de ello pasan de inmediato al extremo del pánico.

Lo cierto es que el radón es un problema de salud pública reconocido por la Organización Mundial de la Salud, que mantiene un proyecto internacional al respecto. Pero como recordaba el pasado 7 de noviembre (Día Europeo del Radón) el experto del Ilustre Colegio Oficial de Geólogos (ICOG) Luis S. Quindós Poncela, que dirige el Grupo Radón en la Cátedra de Física Médica de la Universidad de Cantabria, lo prioritario es presentar el problema a los poderes públicos y a los ciudadanos para facilitar la información primero, y la actuación después.

El problema con el radón no es que estemos potencialmente expuestos a una fuente de radiación externa, como cuando nos hacemos una radiografía, sino que estamos potencialmente expuestos a contaminación radiactiva: cuando respiramos, introducimos el radón en nuestros pulmones, y así llevamos la fuente de radiación con nosotros. Y si bien el propio gas se desintegra en unos propios días, al hacerlo origina otros compuestos también radiactivos que nos someten a una exposición más prolongada. Esta radiación sostenida puede provocar mutaciones en el ADN cuya consecuencia más fatal es el cáncer.

El radón se filtra al aire desde el suelo, por lo que el riesgo es mayor cuanto más permeable es el terreno bajo nuestros pies. Según Quindós Poncela, las arcillas contienen una concentración de uranio apreciable, pero “su elevada impermeabilidad hace que la cantidad de radón que alcanza la superficie sea muy pequeña”. En cambio el granito es más poroso y suele formar paisajes muy rotos, como ocurre en la Sierra de Guadarrama, y es en este tipo de suelos donde “el radón se desplaza más fácilmente y puede alcanzar la superficie del suelo en mayor proporción”, añade el experto.

Vías de entrada del radón en una casa. Imagen de la Universidad de Cantabria.

Vías de entrada del radón en una casa. Imagen de la Universidad de Cantabria.

Dado que el radón surge desde lo profundo, las zonas de mayor riesgo en las viviendas son los sótanos y plantas bajas. Suele decirse que a partir del segundo piso ya no existe riesgo, pero no siempre es así: Quindós Poncela advierte de que el suelo no es la única fuente del gas. Los materiales de construcción, si se han extraído de una zona con presencia de uranio, también pueden desprender radón. Además el gas se disuelve en el agua, lo que añade otro factor de riesgo en viviendas que reciban el suministro de un pozo.

Curiosamente, la eficiencia energética de las viviendas actuales es un factor que juega en contra de la seguridad contra el radón. Según Quindós Poncela, la construcción de casas cada vez más herméticas no favorece la eliminación del gas: “Mientras que una vivienda antigua renueva el aire de su interior unas tres veces por hora, una moderna necesita dos horas para llevar a cabo dicha renovación. Este hecho favorece la presencia y acumulación de radón en el interior de las casas”, dice.

En los años 90 se emprendió una campaña de medición de radón en viviendas en toda España, gracias a la cual hoy tenemos el mapa de riesgo publicado por el Consejo de Seguridad Nuclear y que pego a continuación. Pero para Quindós Poncela, las 9.000 mediciones tomadas todavía son insuficientes. Y no solo hace falta una mayor vigilancia: el ICOG reclama a las autoridades “que se apliquen cuanto antes medidas constructivas frente al radón (diseño de cimentaciones, ventilación pasiva, análisis de materiales de construcción, etc.), incluyéndolas en el Código Técnico de la Edificación, y mejorando además la definición de las zonas de riesgo en nuestro país”.

Mapa de riesgo del radón en España. Imagen del Consejo de Seguridad Nuclear.

Mapa de riesgo del radón en España. Imagen del Consejo de Seguridad Nuclear.

En cuanto a las zonas de riesgo, un caso particular estudiado por el Grupo Radón de Quindós Poncela es el de Torrelodones, el pueblo de la sierra madrileña donde vivo, y donde el granito aflora del suelo en cada recodo del paisaje.

Las medidas tomadas en Torrelodones muestran una amplia variación de los niveles de radón, pero en casi todos los casos se mantienen bastante por debajo de los 200 becquerelios por metro cúbico (Bq/m³). En este rango, los expertos recomiendan simplemente “incrementar la ventilación natural de la vivienda para conseguir concentraciones tan bajas como sea posible”.

Solo en una ubicación la medida llega a los 266 Bq/m³, y es en la zona de Colonia Varela; si lo conocen, a la espalda del centro comercial Espacio Torrelodones. Pero incluso en este lugar no hay motivo para la alarma: por debajo de 400 Bq/m³ no se considera necesario aplicar medidas de remedio, sino solo aumentar la ventilación, especialmente en sótanos y plantas a ras de suelo.

Es de esperar que la insistencia de los expertos y la divulgación del problema del radón facilite una mayor vigilancia y una ampliación de las mediciones. Pero si viven en una zona propensa a este riesgo y quieren quedarse más tranquilos, ustedes mismos pueden medir el nivel de radón en su casa: la web del Grupo Radón ofrece un kit, con dos detectores y sus instrucciones, por 80 euros más IVA y gastos de envío.

EmDrive: publicado, pero aún sin explicación válida

Justo al día siguiente de mi anterior artículo sobre el EmDrive, lo que circulaba como un rumor fundado se hizo realidad: el estudio del equipo de NASA Eagleworks se ha publicado en la edición digital de la revista Journal of Propulsion and Power (JPP). Su versión en papel aparecerá en el número de diciembre.

Es necesario recordar que no es el primer estudio publicado que valida el funcionamiento del EmDrive; el equipo de Eagleworks ya había presentado resultados en un congreso hace dos años, pero estas comunicaciones no están sujetas al filtro de revisión por pares de las revistas. En cambio, sí lo estuvieron los estudios publicados respectivamente por el equipo chino dirigido por Yang Juan y por los alemanes Tajmar y Fiedler.

Uno de los sistemas EmDrive construidos por el equipo de Eagleworks. Imagen de White et al, JPP.

Uno de los sistemas EmDrive construidos por el equipo de Eagleworks. Imagen de White et al, JPP.

También conviene recalcar lo que ya he explicado antes: que los científicos de Eagleworks, dirigidos por Harold Sonny White, validen el funcionamiento del EmDrive, no implica que la NASA como institución respalde estos resultados, ni mucho menos la explicación que los autores aportan. Eagleworks es un poco a la NASA lo que el Equipo A al Pentágono. La agencia se ha mantenido siempre bien al margen de las proclamas de White, llegando incluso a prohibirle el contacto con los medios (nota periodística: por este motivo mi anterior artículo se titulaba “Científicos de la NASA…” y no “La NASA…”).

Además, insisto en que la publicación de los resultados con estas bendiciones oficiales significa lo que significa, y no más: que el estudio es formalmente correcto respecto a los resultados que se detallan, con las limitaciones que se especifican y las conclusiones directas que pueden derivarse de ellos.

Durante estos días se rumoreaba que el Instituto Estadounidense de Aeronáutica y Astronáutica, que edita la revista JPP, habría aceptado publicar el estudio solo a condición de que White y sus colaboradores aceptaran retirar su explicación del efecto EmDrive basada en una interpretación alternativa y minoritaria de la física cuántica que ni siquiera para sus propios defensores necesariamente justifica el funcionamiento del EmDrive.

Pero esto no tenía ningún sentido; todo científico sabe para qué sirve el apartado de discusión en un estudio. Sería absurdo aprobar los resultados de un trabajo, censurando al mismo tiempo las especulaciones que sus autores puedan verter en el espacio específicamente abierto para ello. Finalmente el estudio se ha publicado esencialmente completo respecto a la versión sin revisar filtrada antes en internet.

En resumen: ¿significa esto que el EmDrive funciona? Una pregunta aún sin respuesta definitiva, pero que sí puede descomponerse en otras más precisas:

¿El EmDrive produce una fuerza? Sí, al menos una fuerza aparente. Tres grupos de investigación distintos han publicado resultados mostrando que es así. Y eso sin contar los experimentos de los propios inventores del sistema, Roger Shawyer y Guido Fetta, que se han hecho públicos pero no se han publicado formalmente (nótese el matiz). Poner en duda los resultados de un equipo de investigadores cuestiona su honestidad o su competencia profesional; poner en duda los resultados de tres equipos independientes cuestiona la honestidad o la competencia profesional de quien los pone en duda.

¿Esa fuerza podría emplearse como propulsión? Tal vez, pero aún no puede confirmarse al cien por cien. En su estudio, White y sus colaboradores mencionan como principales objeciones un posible desplazamiento del centro de gravedad del cono o una expansión térmica, que es mayor en el vacío (donde se han hecho los experimentos del nuevo estudio) que en el aire, mientras que la señal del impulso es igual en ambos medios. Pero aunque han hecho todo lo posible por descartar estos efectos parásitos, el sistema tiene una limitación intrínseca por el mero hecho de estar atornillado al suelo por dos lugares. Los investigadores esperan diseñar un nuevo sistema con mayores grados de libertad para poder desechar definitivamente estas posibles interferencias. Sin embargo, si la señal fuera enteramente un falso positivo debido a alguno de estos efectos, sería chocante que los experimentos independientes con diferentes diseños no hubieran llegado ya a esta conclusión.

¿Expulsa propelente el EmDrive? No, al menos un propelente formado por materia. Sé que suena a perogrullada; pero como menciono más abajo, una hipótesis pretende explicar el funcionamiento del EmDrive mediante la expulsión de fotones a través del extremo cerrado del cono. Pero los fotones no tienen masa, por lo que no son materia. Al menos, no tienen masa en reposo, claro que un fotón nunca está en reposo…

¿Consume combustible el EmDrive? No. La fuente nuclear que alimentaría el generador de microondas es un consumible, pero no un combustible. Incluso es posible que en ciertos casos el magnetrón pudiera alimentarse solo con energía solar. A comienzos de este año, la sonda Juno de la NASA batió el récord del aparato más alejado del Sol alimentado por paneles solares, rompiendo la marca anterior de 792 millones de kilómetros establecida por la europea Rosetta. Deberán ser los ingenieros quienes valoren en qué casos la energía fotovoltaica sería suficiente para alimentar un generador de microondas; que yo sepa, White solo ha hablado de emplear energía nuclear.

¿Viola el EmDrive las leyes de la física? No. Nada puede violar las leyes fundamentales de la naturaleza. Pero si funciona, significa que la teoría está incompleta, y habrá que encontrar una nueva manera de explicar la realidad. Como conté recientemente a propósito de la materia oscura, no es la primera vez que esto ocurre en la historia de la ciencia, ni será la última.

Entonces, ¿cómo se explica la aparente violación de la conservación de la cantidad de movimiento (p)? Repaso brevemente, a riesgo de dejar alguna fuera, las cinco principales hipótesis que se han aportado para explicar el funcionamiento del EmDrive:

1. Presión de radiación

Shawyer, el inventor del sistema, afirma que el EmDrive genera propulsión por el empuje de los fotones de la radiación de microondas sobre el extremo cerrado del cono, por el mismo principio en el que se basan los veleros espaciales; no las velas solares, que se impulsan por el viento solar (partículas cargadas), sino las fotónicas. Pero la inmensa mayoría de los físicos rechazan esta explicación, porque es como empujar un coche desde dentro. O como me recordaba con mucho acierto un/a usuario/a en Twitter, como el barón de Münchhausen, que escapó de una ciénaga tirando de su propia coleta. En este caso habría una clara violación de la conservación de p. Shawyer sostiene que no es así; de hecho, hace tiempo me aseguró en un email que “el EmDrive claramente obedece las leyes de Newton, tanto teórica como experimentalmente, según muestran los resultados de las pruebas dinámicas; así que no viola la conservación de la cantidad de movimiento”. Pero hasta donde sé, no ha explicado cómo.

2. Fotones como propelente

El pasado junio, un equipo de investigadores finlandeses publicó un estudio (revisado por pares) que atribuye la propulsión del EmDrive a la expulsión de fotones que actúan como propelente. Según la peculiar visión de Patrick Grahn y sus colaboradores, sí existe un combustible, las microondas, y un propelente, los fotones. Grahn afirma que el emparejamiento de las partículas en fases opuestas produce una interferencia destructiva que cancela su radiación electromagnética, pero los fotones no se destruyen, sino que escapan del extremo cerrado del cono siendo indetectables como ondas y actuando como propelente. Los fotones tienen una cantidad de movimiento debida solo a su energía, pero la hipótesis de Grahn requiere asumir que de esta p se deriva una masa teórica en movimiento, que vendría aportada por el generador de microondas y que escaparía del cono hacia el exterior, moviendo el propulsor por una simple acción-reacción. Todo lo cual resulta inaceptable para la gran mayoría de los físicos.

3. Radiación Unruh

Esta es una primera hipótesis que se basa en la energía del vacío, en el marco de la física relativista. Ya la expliqué con detalle anteriormente. Como en el caso anterior, la teoría requiere adjudicar una masa relativística a los fotones. Pero aunque el efecto en el que se fundamenta no se ha descartado, y de hecho podría contemplarse como una forma particular de la radiación de Hawking que desprenden los agujeros negros, tampoco se ha corroborado de forma convincente. Hasta ahora, la idea propuesta por el físico Mike McCulloch no ha calado en la comunidad científica. Mi impresión puramente personal (como un no-físico y al margen de la discusión sobre el efecto Unruh) es que justificar el funcionamiento del EmDrive por el efecto Unruh es un poco como matar moscas a cañonazos, cuando además ni siquiera está claro que los cañonazos existan.

4. Empuje desde el vacío cuántico

White explica el funcionamiento de su sistema también por energía del vacío, pero en el contexto cuántico. La hipótesis se basa en el vacío cuántico, el estado más bajo de energía de un sistema cuántico (digamos, una visión energética de lo que se entendería como vacío normal). Esta energía no es cero, lo que puede explicarse por la acción de las oscilaciones de partículas virtuales. Este mecanismo se ha utilizado para explicar el efecto Casimir de la teoría cuántica de campos, según el cual existe una fuerza medible –de atracción o repulsión según la configuración del sistema– entre dos placas conductoras separadas por una pequeña distancia en el vacío. El problema con la explicación de White es que nadie se la cree: para la mayoría de los físicos, es imposible extraer energía aprovechable como propulsión a partir del vacío cuántico; no se puede extraer p de él, ya que no es un marco de referencia fijo desde el que empujar, así que estamos otra vez en el caso del barón de Münchhausen y su coleta.

Sin embargo, White justifica su hipótesis basándola en una teoría alternativa de la física cuántica. Todo lo que han oído mencionar sobre el extraño comportamiento de las partículas, como la paradoja del gato de Schrödinger o el experimento de la doble ranura, se basa en la llamada interpretación de Copenhague, la que prima hoy en física. Según esta teoría, las partículas no tienen una posición fija, sino que se comportan como nubes de probabilidad (por ejemplo, a lo largo de dos caminos alternativos y mutuamente excluyentes) hasta que un observador las mide, rompiendo la onda y bloqueando las partículas en una posición. Esta interpretación probabilística de la cuántica no gustaba nada a Einstein; como mencioné hace unos días, en una ocasión le preguntó a su biógrafo Abraham Pais si creía que la luna solo existía cuando alguien la miraba.

En los años 20 del siglo pasado, Louis de Broglie propuso una interpretación alternativa, la teoría de la onda piloto, que David Bohm completó en lo que hoy se conoce como mecánica de De Broglie-Bohm. La teoría es realista; es decir, afirma que las partículas sí tienen una posición concreta en todo momento, con independencia de la presencia de un observador y guiada por su onda acompañante (onda piloto). Si no conocemos estas trayectorias, decía Bohm, no se debe a que no existan, sino a la existencia de variables ocultas que se nos escapan.

La teoría implica que la mecánica cuántica no es local; las partículas pueden estar físicamente alejadas entre sí, lo mismo que los objetos grandes sujetos al comportamiento de la física clásica. En los años 60, John Bell se acogió a la teoría de la onda piloto para explicar el entrelazamiento cuántico, la capacidad de dos partículas separadas de estar sincronizadas en sus propiedades. Aunque la teoría de De Broglie-Bohm continúa sin ser aceptada mayoritariamente, en los últimos años se han publicado varios experimentos que la respaldan. Y por ejemplo, el entrelazamiento cuántico en condiciones no locales ya ha sido suficientemente validado, como he contado aquí en ocasiones anteriores.

En concreto, White se apoya en la posibilidad de que las partículas reales del vacío cuántico puedan intercambiar cantidad de movimiento para defender que esta puede cosecharse y transmitirse: “sería posible aplicar/extraer trabajo en/de el vacío, y por tanto sería posible empujar desde el vacío cuántico preservando las leyes de la conservación de la energía y de la cantidad de movimiento”, escribe. Pero si la hipótesis de White fuera aceptada, que por el momento no lo es, esto supondría cambiar radicalmente de modelo de física cuántica; algo que hasta ahora no han conseguido validaciones más sólidas de la teoría de la onda piloto.

5. Efecto Mach

Una teoría desarrollada por el físico James Woodward en los años 90 propone que la energía interna de un cuerpo varía al acelerar; es decir, que no todo se traduce en energía cinética, sino que el objeto en movimiento almacena energía potencial absorbida de su entorno mediante la interacción con el campo gravitatorio que se opone a su movimiento (la inercia). Este enriquecimiento energético, sugiere Woodward, se traslada a cambios en la masa del cuerpo, y puede ordeñarse en forma de cantidad de movimiento que el objeto le ha robado previamente al universo, conservándose todo lo que tiene que conservarse.

La hipótesis es esencialmente compatible con la relatividad general; de hecho, la idea (más filosófica que física) del origen de la inercia como una influencia del resto del universo sobre un sistema local fue una inspiración para Einstein, que profesaba un gran respeto hacia su autor, el austríaco Ernst Mach. Sin embargo, el efecto Mach derivado por Woodward aún no ha sido validado de forma concluyente. Woodward afirma que su teoría podría aprovecharse para construir propulsores sin partes móviles ni propelente, y que es la explicación que mejor encaja con la física actual para explicar la señal del EmDrive.

Científicos de la NASA confirman que el “propulsor imposible” EmDrive funciona

Si esto fuera cierto, lo cambiaría todo. Ya, ya. Pensarán que esta frase se manosea demasiado para vender expectativas infladas sobre casi cualquier cosa, desde los cereales con chocolate hasta la última oferta de tarifas para móviles. Pero créanme: les aseguro que, si esto finalmente llega a confirmarse sin ningún género de dudas, la física y la ingeniería aeroespacial van a tener que replantearse algunos de sus fundamentos básicos, que se remontan hasta el día en que Einstein le preguntó a su biógrafo si creía que la luna solo existía cuando la mirábamos.

Desde hace unos años se viene hablando del llamado EmDrive o propulsor de cavidad resonante de radiofrecuencia. Se trata de un tipo de motor (o más bien, no-motor) que permitiría emprender largos viajes por el espacio a velocidades hoy inimaginables, sin emplear ni una sola pieza mecánica móvil que pueda desgastarse o romperse, sin consumir combustible de ninguna clase y sin expulsar ningún tipo de propelente. En resumen, el sueño más salvaje de la ciencia ficción.

El EmDrive. Imagen de SPR.

El EmDrive. Imagen de SPR.

El EmDrive fue ideado por el ingeniero británico Roger Shawyer, que a principios de este siglo creó una empresa destinada a desarrollarlo. Pocos años después, el ingeniero estadounidense Guido Fetta creó independientemente un concepto similar llamado Cannae Drive. En esencia, el EmDrive consiste en algo tan simple como un cono metálico truncado en cuyo interior se hacen rebotar microondas, un tipo de ondas de radio; o sea, luz (no visible). Supuestamente, es lo que les ocurre a estas ondas cuando rebotan en el interior del cono lo que produce la propulsión.

Solo hay un pequeño gran inconveniente; y es que, de acuerdo a la física actual, es imposible que funcione. Un cohete se mueve gracias a la tercera ley del movimiento de Newton, el principio de acción y reacción: quema un combustible, expulsa un propelente en una dirección y esto lo impulsa en sentido contrario. Esta ley fundamental de la física debe respetarse en todos los casos: cuando un velero avanza, lo hace como reacción a la fuerza que impacta sobre sus velas. En los barcos es el viento atmosférico, mientras que las naves espaciales pueden aprovechar el viento solar de partículas cargadas o el empuje de los fotones por la llamada presión lumínica.

Pero está claro que no podemos mover un barco empujando las velas desde la cubierta, igual que no podemos empujar un coche desde dentro sin un punto de apoyo exterior. Esta imposibilidad se describe por la recreación de la ley de Newton en el principio de conservación de la cantidad de movimiento, cuyo fundamento básico puede resumirse de la forma más simple en que, para que algo se mueva, otra cosa tiene que cederle ese movimiento. Y no parece que la luz rebotando dentro de un cono pueda mover a nada más que el aburrimiento. En resumen, la idea del EmDrive es parece una aberración inviable.

Pero si de ninguna manera esto puede funcionar, ¿qué sentido tiene seguir discutiendo? El problema es que el propulsor imposible parece empeñarse una y otra vez en negar la teoría. No solo Shawyer y Fetta insisten en que su motor produce una propulsión, pequeña pero real; los mismos resultados se han obtenido en China y en Alemania. Pero sin duda, lo que más revuelo ha causado es la confirmación de estos resultados en un laboratorio bastante oscuro del Centro Espacial Johnson de la NASA llamado Eagleworks, tan marginal que ni siquiera (que yo sepa) tiene apenas sitio en el dominio web de la agencia, sino solo una página en Facebook.

Todo físico que aspire a seguir siendo considerado como tal negará hasta la tortura que el EmDrive pueda hacer otra cosa que decorar un salón. Y por ello, cuando hace un par de años los científicos de Eagleworks se plantaron en un congreso afirmando que el propulsor funciona, la reacción de la comunidad no fue precisamente el aplauso. Incluso la NASA tuvo que desmarcarse de los resultados de Eagleworks, adhiriéndose a la fe pura y prohibiendo a los responsables del laboratorio todo contacto con los medios.

Pero como he explicado alguna vez aquí, los congresos son foros donde a menudo se presentan resultados en caliente, aún sin suficiente contrastación y sin validación por parte del resto de la comunidad científica. Solo cuando un estudio es formalmente revisado por otros expertos y publicado en una revista científica puede asumirse que sus conclusiones son válidas.

Hace unos días se ha filtrado (probablemente por parte de los propios responsables de Eagleworks) un estudio que pone a limpio los resultados de los investigadores de la NASA con el EmDrive. Y descartadas posibles objeciones, como la intervención de fuerzas parásitas o la interferencia del aire, los científicos de Eagleworks se ratifican en su conclusión: “el sistema funciona de forma consistente”, escriben.

Según el estudio, el EmDrive produce una fuerza de 1,2 milinewtons (mN) por kilovatio (kW). A primera vista podría no parecer una propulsión impresionante. Por ejemplo el llamado propulsor Hall, un motor de plasma que actualmente se investiga como alternativa prometedora a los actuales cohetes, genera 60 mN/kW, unas 50 veces más fuerza que el EmDrive. Pero la diferencia estriba en que este propulsor consume grandes cantidades de combustible. Y en cuanto a las opciones actuales de propulsión sin propelente, como las velas solares, solo alcanzan algo más de 6 micronewtons por kW; es decir, unas 200 veces menos que el EmDrive.

Pero sobre todo, hay que tener en cuenta que el impulso generado por el EmDrive debería ser, pura y simplemente, cero. Cualquier fuerza por encima de cero, por mínima que sea, podría ir sumando aceleración a una nave espacial hasta lograr velocidades increíbles; se ha calculado que la propulsión suministrada por el EmDrive, si realmente existe, podría poner una nave en Marte en 70 días, o llegar al sistema estelar Alfa Centauri en solo 92 años.

¿Y ahora, qué? Por supuesto que la discusión sobre el EmDrive no va a acabar aquí. Fetta ha anunciado que lanzará al espacio un Cannae Drive en un satélite para estudiar su comportamiento en condiciones reales. En cuanto al estudio de Eagleworks, aún debe pasar los filtros de publicación, aunque es de esperar que no sean un obstáculo; al fin y al cabo, anteriormente otros grupos ya han publicado formalmente resultados positivos con el EmDrive.

De hecho, antes de que el estudio se filtrara en internet ya circulaban rumores sugiriendo que el proceso de revisión se ha completado y que por tanto el trabajo se publicará próximamente, tal vez en la revista Journal of Propulsion and Power. Si los rumores son ciertos, ¿cómo reaccionará la NASA ante un estudio publicado en su nombre que sostiene una (aparente) violación flagrante de las (actuales) leyes de la física?

Claro que, si finalmente el EmDrive funciona, habrá que encontrar la manera de explicarlo sin que exista tal violación. Ya conté aquí una interesante hipótesis que sin embargo no ha sido favorecida por otros físicos. Pero los científicos de Eagleworks apuntan a una explicación incluso más audaz, que justifica lo que les decía al comienzo: el EmDrive amenaza con sacudir los cimientos fundamentales en los que se asienta la física cuántica actual. Mañana se lo contaré.

O mejor, pasado mañana; antes de eso les traeré aquí una noticia fresca, o más bien glacial, que nos descubrirá una nueva maravilla de nuestro Sistema Solar. No pierdan esta sintonía.

Una nueva teoría de la gravedad prescinde de la materia oscura

Como sabe cualquiera que haya abierto una lavadora después del centrifugado, el giro tiende a expulsar las cosas hacia fuera. En la lavadora, son las paredes del tambor las que impiden que la ropa salga volando. Pero las galaxias, que también centrifugan, no tienen tambor; ¿qué es lo que evita que las estrellas salgan volando en todas direcciones?

Lo que mantiene una galaxia unida es la gravedad, que tiende a juntar las masas unas a otras. Es lo mismo que nos mantiene pegados al suelo. El problema es que, cuando los físicos calculan la masa de una galaxia, las cuentas no salen: la gravedad es demasiado baja como para compensar la inercia que tiende a dispersarla. Como conté ayer, la solución por la que se ha optado es suponer que la masa es realmente mucho mayor de lo que se ve, pero el resto es invisible: materia oscura. A más masa, más gravedad, y así todo cuadra.

Representación hipotética de la distribución de materia oscura (nube azul) en la Vía Láctea. Imagen de ESO/L. Calçada vía Wikipedia.

Representación hipotética de la distribución de materia oscura (nube azul) en la Vía Láctea. Imagen de ESO/L. Calçada vía Wikipedia.

Pero algunos físicos piensan que tal vez no sea necesario inventar un tipo de materia de la que hasta ahora no ha podido obtenerse ninguna prueba; que quizá la inercia sea menor de lo que sospechamos, o la gravedad sea mayor. Ayer conté un ejemplo de lo primero, una hipótesis que reduce el valor de la inercia. Otras propuestas se basan en un aumento del valor de la gravedad, asegurando que al menos en ciertos casos no se comporta como sospechamos.

La propuesta más conocida en esta línea fue desarrollada por el israelí Mordehai Milgrom en 1983, y se conoce como Dinámica Newtoniana Modificada, o MOND. En breve, lo que Milgrom propone es que el valor familiar proporcionado por Newton para la gravedad no funciona en escalas extremas, cuando la aceleración es enormemente baja o la distancia al centro de la galaxia es muy grande, como ocurre en las estrellas de la periferia. En estos casos la gravedad sería mayor de lo normal, compensando la inercia que tiende a dispersar la galaxia.

Un resultado similar –una gravedad mayor– se deriva de una nueva teoría propuesta ahora por el holandés Erik Verlinde, de la Universidad de Ámsterdam. Aunque en este caso, el punto de partida es completamente distinto. Verlinde comenzó su carrera bajo la dirección de Gerard ’t Hooft, conocido sobre todo (además de por su Nobel en 1999) como el creador del llamado Principio Holográfico.

El Principio Holográfico es una audaz propuesta según la cual el universo es la proyección de un holograma contenido en una esfera que lo rodea. La idea del holograma es la misma que conocemos de las tarjetas de crédito: una superficie de dos dimensiones que contiene información sobre un objeto tridimensional. Dado que el holograma tiene una dimensión menos que el objeto al que representa, en el caso del universo se trataría de un espacio tridimensional en un área bidimensional; o si añadimos el tiempo, un universo 4D en un espacio 3D, siendo el tiempo una de estas dimensiones.

El Principio Holográfico es una aplicación cosmológica de la Teoría de Cuerdas, un modelo emergente de la física que trata de conciliar la cuántica con la relativística, hasta ahora dos mundos separados. En cuántica no existe la gravedad, el concepto fundamental de la relatividad. En la Teoría de Cuerdas, la materia no está formada por esas bolitas con las que asociamos la imagen de las partículas subatómicas, sino por hilos de una sola dimensión que vibran de diferentes maneras para originar las diferentes clases de partículas. Una de esas partículas originadas por una de las muchas vibraciones posibles es el gravitón, la responsable de la gravedad, por lo que la Teoría de Cuerdas ofrece un modelo de gravedad cuántica que trata de desbrozar el camino hacia eso que habitualmente se conoce como Teoría del Todo.

El Principio Holográfico interesa a muchos físicos porque permite correlacionar dos teorías en principio muy distintas que se diferencian en una dimensión, lo que permite abordar problemas muy complejos en un marco mucho más sencillo. En el caso que nos ocupa, la ventaja es que la gravedad aparece en el universo como consecuencia de la información contenida en ese holograma.

Sin embargo, lo que propone Verlinde es una enmienda al modelo de su maestro: que en realidad el holograma es incompleto. Imaginemos uno de esos cuadros holográficos que se venden en los bazares, y supongamos que una parte de la imagen, por ejemplo la mano de un personaje, no estuviera representada en el holograma, sino que sobresaliera del cuadro como un objeto tridimensional real. Según Verlinde, al menos una parte de la gravedad no está codificada en el holograma, sino que surge intrínsecamente como una propiedad del tejido del espacio-tiempo, del mismo modo que la temperatura aparece como consecuencia del movimiento de las partículas.

En 2010 Verlinde publicó su teoría de la Gravedad Emergente, como se ha dado en llamar. Ahora, en un nuevo estudio la aplica a los movimientos de las estrellas en las galaxias, llegando a un sorprendente resultado: esa gravedad emergente explica la fuerza habitualmente atribuida a la presencia de la materia oscura. Es decir, que la desviación de la gravedad einsteniana en el caso de las grandes escalas se compensa cuando se introduce esa porción extra de gravedad oscura. No hace falta materia extra que no se ve, sino una fuerza extra que no se había calculado.

Tal vez piensen que sustituir la materia oscura por una gravedad oscura es como elegir muerte en lugar de susto. Pero lo cierto es que se trata de encontrar el origen de un balance de fuerzas que evidentemente existe. Ante el continuado fracaso en los intentos de detección de materia oscura, algunos físicos han llegado a sugerir que esta materia se encuentra escondida en otra dimensión, siendo la gravedad la única de las fuerzas fundamentales cuyos efectos son transversales a todas las dimensiones. Y esto no solo explicaría por qué la gravedad de la que tenemos constancia es tan débil (solo tendríamos constancia de una parte de ella), sino que encajaría con el universo de 11 dimensiones propuesto por una variante unificadora de la Teoría de Cuerdas llamada Teoría M. Pero la hipótesis de Verlinde prescinde por completo de la materia oscura, y es probable que algunos defensores de la Teoría de Cuerdas respirarían aliviados con esta solución.

Aún habrá que esperar para comprobar cómo la teoría de Verlinde es recibida por la comunidad física, y qué posibles objeciones plantearán los expertos. Pero como dije ayer, están surgiendo nuevas visiones alternativas que tal vez, solo tal vez, algún día podrían hacernos recordar con una sonrisa los tiempos en que teníamos inmensos, carísimos y complejos detectores buscando un tipo de materia tan invisible como –tal vez, y solo tal vez– inexistente.