Entradas etiquetadas como ‘biología’

Las vacunas de Pfizer-BioNTech y Moderna neutralizan la variante británica del coronavirus

Entre las aproximadamente 200 vacunas en distintas fases de desarrollo, pruebas o aprobación contra la COVID-19, se encuentran representadas todas las tecnologías actualmente disponibles, pero podemos trazar una línea de separación entre dos grandes tipos: las que utilizan el virus (atenuado o inactivado para que no cause enfermedad) y las que no. Estas últimas emplean solo una pequeña parte de él, normalmente fabricada en el laboratorio, y combinada con otros elementos para conseguir que el sistema inmune monte una defensa eficaz contra esa parte del virus.

Exceptuando algunas de las chinas (Sinovac y Sinopharm), las vacunas de las que oímos hablar en estos días son todas de esta segunda clase, y todas ellas utilizan la misma parte del virus, la proteína Spike (S) con la que el SARS-CoV-2 se ancla a la célula. Todas utilizan la proteína S completa: Pfizer-BioNTech, Moderna, Oxford-AstraZeneza, Janssen/Johnson & Johnson, Novavax, la china de CanSino y la rusa Sputnik V (léase “uve” de vacuna, no “cinco”), por citar aquellas de las que más se habla. Una opción alternativa es emplear solo un fragmento de S responsable de la unión a la célula, llamado RBD (siglas de Dominio de Unión al Receptor). Pfizer y BioNTech tienen una segunda vacuna de este tipo en pruebas.

Por otra parte, estas vacunas difieren también en cómo introducen esa proteína o fragmento de proteína en el organismo. Las de Pfizer-BioNTech y Moderna lo hacen insertando en las células las instrucciones genéticas (ARN) para que ellas mismas fabriquen esas proteínas, mientras que las de Oxford-AstraZeneca, Janssen/Johnson & Johnson, CanSino y la Sputnik V incorporan la proteína a un virus inofensivo, y la de Novavax utiliza únicamente la propia proteína.

Vacuna de Pfizer-BioNTech contra la COVID-19. Imagen de U.S. Secretary of Defense / Wikipedia.

Vacuna de Pfizer-BioNTech contra la COVID-19. Imagen de U.S. Secretary of Defense / Wikipedia.

Entre todas estas opciones, a priori no hay una mejor ni peor; todas son válidas y todas pueden servir. Son los ensayos clínicos los que determinan en la práctica cuáles de ellas muestran un mejor comportamiento, máxima eficacia con mínimos efectos adversos. Las vacunas de virus completo atenuado o inactivado representan la primera generación, una tecnología ya casi con cien años de historia y de eficacia muy contrastada; muchas de las vacunas que solemos ponernos son de este tipo. Las vacunas recombinantes (las que emplean proteínas individuales o virus inofensivos como vehículos) empezaron a desarrollarse a partir de los años 80 y ya incluyen algunas muy extendidas por todo el mundo. Las últimas en llegar han sido las de ARN, creadas a finales del siglo pasado por la bioquímica húngara Katalin Karikó y el inmunólogo estadounidense Drew Weissman –ganadores del próximo Nobel, si es que aún queda algo de justicia en el mundo– y que solo ahora han comenzado a administrarse de forma masiva.

Pero de todo lo anterior se entiende que unas sí pueden estar mejor preparadas que otras para continuar siendo eficaces si el virus cambia. Las nuevas variantes (no “cepas”) surgidas en Reino Unido, Brasil o Sudáfrica tienen cambios en la proteína S, especialmente en el RBD. Algunas de estas mutaciones pueden modificar la conformación de la proteína de tal modo que los anticuerpos neutralizantes y los linfocitos producidos por el sistema inmune –ya sea por infección previa o por vacunación– contra la variante original no puedan reconocer estas conformaciones distintas, y por lo tanto la nueva variante escape a la inmunidad ya creada. Y por lo tanto, que la nueva variante infecte a una persona vacunada o que ya pasó la enfermedad.

Así, cuantos más antígenos diferentes pueda presentar la vacuna al sistema inmune, más difícil será que el virus pueda evadirse si cambia alguno de sus componentes: las vacunas de virus completo tienen más posibilidades de servir contra variantes distintas que aquellas que solo utilizan la proteína S completa, y estas a su vez más que las que solo emplean el fragmento RBD.

Pero en la práctica, la única manera de saber si las vacunas funcionan contra nuevas variantes del virus es comprobarlo. Cuando surgió la nueva variante británica se encendieron las alarmas, ya que en principio no podía asegurarse que las vacunas disponibles continuaran siendo válidas. Ahora tenemos la confirmación de que al menos las de Pfizer-BioNTech y Moderna, las más utilizadas hasta ahora en Europa y EEUU, funcionan también contra esta nueva variante, aunque quizá su eficacia sea algo menor.

En un estudio aún sin publicar, los investigadores de Moderna han recogido muestras de sangre de ocho pacientes y 24 monos inoculados con las dos dosis de la vacuna estadounidense, y las han expuesto a partículas virales construidas artificialmente con diferentes versiones de la proteína S, incluyendo las presentes en las variantes británica y sudafricana del virus. Los resultados indican que el suero de los vacunados tiene la misma capacidad neutralizante contra la variante británica que contra la original. En el caso de la sudafricana, la neutralización originada por la vacuna se reduce a una quinta o una décima parte, pero según los autores esto todavía ofrece una neutralización significativa contra esta variante.

Por su parte, en un estudio publicado en Science, investigadores de BioNTech y Pfizer han construido también partículas virales artificiales con la versión de la proteína S de la variante británica del virus y han analizado la capacidad de neutralización del suero de 40 personas inmunizadas con la vacuna de estas dos compañías. “Los sueros inmunes mostraban una neutralización ligeramente reducida pero generalmente preservada en su mayoría“, escriben los autores, concluyendo que según sus datos el linaje B.1.1.7 [la variante británica] no escapará a la protección mediada por [la vacuna de Pfizer-BioNTech] BNT162b2“.

En otro estudio aún sin publicar, investigadores de la Universidad Rockefeller de Nueva York, los Institutos Nacionales de la Salud de EEUU (NIH) y Caltech han analizado la sangre de 20 personas que han recibido las dos dosis de la vacuna de Moderna o de la de Pfizer-BioNTech. Aunque encontraron que algunos de los anticuerpos producidos por estas personas pierden eficacia contra las nuevas variantes del virus, en algunos casos de forma drástica, en cambio observaron que en general los sueros mantienen una buena capacidad neutralizante contra dichas variantes, lo que atribuyen al hecho de que la sangre de las personas vacunadas contiene distintos anticuerpos, algunos de los cuales continúan siendo válidos.

Una advertencia final: todo lo anterior son estudios de laboratorio, que aún deberán confirmarse en el mundo real. Pero conviene subrayar que incluso si las nuevas variantes surgidas hasta ahora aún pueden contenerse con las vacunas actuales, surgirán otras que no; esto es casi inevitable, ya que los virus están sometidos a la selección natural tanto como cualquier otro ser vivo en la naturaleza (en este caso, su naturaleza somos nosotros). Por tanto, a medida que nuestras vacunas les impidan sobrevivir y reproducirse, estaremos favoreciendo que prosperen los mutantes capaces de escapar a nuestro control. Estos encontrarán su particular paraíso sobre todo en las personas inmunodeprimidas o aquellas que desarrollen menos inmunidad.

Sin embargo, esto no debería suponer un gran obstáculo para el futuro control de la pandemia. En especial, las plataformas de ARN como las de Moderna y BioNTech permiten modificar el diseño de las vacunas con enorme rapidez para atajar las nuevas variantes. Es una carrera de humanos contra virus. En Alicia a través del espejo, decía la Reina Roja que en su mundo era necesario correr mucho para quedarse en el mismo sitio. En biología evolutiva esta idea se ha utilizado durante décadas para explicar cómo las especies deben evolucionar para sobrevivir en un entorno cambiante en competición con otras especies. El caso de los virus no es diferente. Pero una vez que estamos en esa carrera de la Reina Roja, todo irá bien mientras continuemos corriendo al mismo ritmo que el virus.

La inmunología revela pistas clave sobre la gravedad de la COVID-19

Suele sorprenderme que a nadie parezca sorprenderle la existencia de los anticuerpos. Piénsenlo un momento: toda proteína que se produce en el cuerpo lleva sus instrucciones de fabricación previamente escritas en el genoma, que hemos heredado de nuestros padres, y ellos de los suyos. Y sin embargo, llega un virus nuevo que antes no existía, como el SARS-CoV-2 de la COVID-19, y el organismo es capaz de fabricar unas proteínas, los anticuerpos, ajustadas a la forma de las proteínas del virus, los antígenos, como esas protecciones de espuma van recortadas alrededor del objeto que protegen. Incluso si algún día descubriéramos microbios en Venus y pudieran infectarnos, generaríamos anticuerpos contra los antígenos de Venus.

¿Cómo lo hacemos? ¿Cómo es posible que nuestros genes puedan fabricar anticuerpos adaptados a la forma de antígenos que antes ni siquiera existían, con los que jamás ningún humano se había topado?

Este fue un enigma que torturó a los inmunólogos durante años, hasta que en los 70 lo resolvió el japonés Susumu Tonegawa. Y personalmente, fue la casi increíble solución la que me llevó a elegir la inmunología como especialidad de doctorado. Todos decían que el XXI sería el siglo del cerebro, y de hecho lo es; el encuentro entre neurociencias y computación aún nos reservará sorpresas alucinantes en las próximas décadas (por cierto, después de recibir el Nobel, Susumu se dedicó al cerebro). Muchos querían desentrañar los secretos del cáncer, la eterna lacra. Otros elegían la biotecnología vegetal por sus grandes posibilidades de desarrollo industrial.

Pero en cuanto a mí, no solo la respuesta a esa pregunta era la mayor maravilla de la naturaleza, sino que además la inmunología me parecía la cosa más importante del mundo. Porque es precisamente lo que nos protege del mundo.

Esta es la respuesta: en los linfocitos B, las células que producen los anticuerpos, los genes encargados de fabricar estas proteínas se reorganizan entre sí al azar, como cuando se utilizan las mismas piezas de Lego para hacer construcciones diferentes (esto se llama recombinación somática). En cada célula individual el resultado es distinto, y por ello cada célula produce un anticuerpo único, con una forma distinta. La consecuencia es que nuestro cuerpo está patrullado en todo momento por millones de células B preparadas para producir millones de anticuerpos distintos contra cualquier cosa, el polen de arizónica, la peste negra, el SARS-CoV-2, el antígeno venusiano o nada en particular.

Esto lo llevamos de fábrica; esas células ya existen previamente. Cuando el antígeno en cuestión nos invade, llega un momento en que casualmente se produce el encuentro entre él y su anticuerpo, y eso activa a la célula B correspondiente para multiplicarse y comenzar a inundar el torrente sanguíneo con millones y millones y millones de copias de esos anticuerpos concretos. La otra parte de la respuesta inmune adaptativa, los linfocitos T, utiliza también un mecanismo similar para colocar un receptor en su membrana que también reconoce los antígenos.

Imagen tomada con microscopio electrónico y coloreada del coronavirus SARS-CoV-2. Imagen de NIAID.

Imagen tomada con microscopio electrónico y coloreada del coronavirus SARS-CoV-2. Imagen de NIAID.

En estos tiempos se ha confirmado que, en efecto, la inmunología es la cosa más importante del mundo: en ella confiamos para que nos saque de esta, gracias a las vacunas. Y como inmunólogo, aunque ya no ejerciente, me llena de orgullo y satisfacción, como decía aquel, que sean mis colegas, y no Bruce Willis ni Will Smith, quienes vayan a salvar el mundo.

En los últimos meses han sido tan intensos los estudios inmunológicos sobre la COVID-19 que incluso han llegado a desvelar nuevos secretos sobre cómo funciona el sistema inmune. Una de las grandes incógnitas es cómo pararlo para que no sobreactúe; entre los inmunólogos suele decirse que la mitad del sistema inmune sirve para frenar a la otra mitad, ya que demasiada respuesta puede ser peor que ninguna respuesta.

Como ya he contado aquí, en muchos de los pacientes más graves de cóvid –sucede también con otras infecciones– lo que les mata no es el virus, sino la reacción exagerada de su cuerpo contra el virus. El sistema inmune sobreactúa y sume al organismo en un grave estado de inflamación generalizada sin que sus mecanismos de control puedan impedirlo (se llama Síndrome de Liberación de Citoquinas o tormenta de citoquinas, o, de forma más general, Síndrome de Respuesta Inflamatoria Sistémica; esto incluye una complicación de la cóvid que ocurre de forma rara en niños). Y los enfermos mueren del éxito de su propia respuesta inmune.

Un nuevo estudio ha encontrado el porqué, o al menos uno de los más importantes porqués, aunque el cómo detenerlo llevará más tiempo. Un grupo de investigadores de la Universidad de Pittsburgh, el centro médico Cedars-Sinai de Los Ángeles y la Universidad Martin Luther de Alemania ha descubierto que la proteína Spike del SARS-CoV-2, la que el virus utiliza como llave para entrar en las células (y su principal antígeno; los test de anticuerpos detectan anticuerpos contra Spike, y los test de antígenos utilizan anticuerpos contra Spike para detectar si la persona tiene esa Spike, lo que revela la presencia del virus), tiene un trocito similar a un conocido superantígeno presente en algunas bacterias.

Un superantígeno es lo que su nombre indica: un antígeno capaz de provocar una superrespuesta. Y esa superrespuesta es mala; sume al cuerpo en esa vorágine inflamatoria que puede resultar fatal. En este caso, los científicos han encontrado en la proteína Spike una parte de estructura y secuencia muy similares a la enterotoxina B del estafilococo, un conocido superantígeno, y que no está presente en otros coronavirus parecidos como el del SARS original.

Este superantígeno se une directamente –este “directamente” es importante, porque es lo que hace a un antígeno “súper”– a los receptores de las células T mencionados arriba de forma no específica, provocando una estimulación de céluas que no están destinadas a responder contra ese patógeno, pero cuya sobreactivación lleva a la hiperinflamación. En bacterias, ese superantígeno produce el llamado Síndrome de Shock Tóxico (SST), una enfermedad que se hizo popular porque en algunos casos venía provocada por tampones demasiado absorbentes que se utilizaban durante demasiado tiempo; las bacterias crecían en los tampones y provocaban la enfermedad.

Los investigadores han comprobado también que, en las personas con cóvid grave y síntomas de hiperinflamación, ese presunto superantígeno efectivamente está funcionando como tal: en estos pacientes se ha encontrado una abundancia de células T con un repertorio concreto de receptores en sus membranas que revela una activación por el superantígeno.

Esta no es ni mucho menos la única pista que la inmunología está aportando en la lucha contra la pandemia. En los últimos meses se han publicado numerosos estudios que revelan cómo el sistema inmune responde a la infección del coronavirus, y cómo las personas con un determinado perfil inmunológico pueden tener mayor riesgo de padecer enfermedad grave. En particular, dos estudios recientes han encontrado que hasta un 14% de los pacientes graves –una minoría, pero importante– tiene una avería en su sistema de interferón I.

Los interferones son nuestros principales antivirales naturales, moléculas que produce nuestro propio organismo en respuesta a una infección viral para luchar contra el virus. Los humanos tenemos más de veinte, clasificados en tres tipos, I, II y III. En concreto, los investigadores han descubierto que ese grupo de pacientes tiene, o bien un defecto genético innato que afecta al funcionamiento de su interferón de tipo I, o bien anticuerpos que bloquean su interferón de tipo I.

Tener anticuerpos contra componentes de nuestro propio organismo es raro, pero no excepcional. En condiciones normales, nuestro sistema inmune sabe distinguir entre lo que es nuestro y lo que no: produce anticuerpos y células T contra los antígenos extraños, pero aprende a tolerar nuestras propias proteínas; por eso es clave la compatibilidad en los trasplantes, para que el organismo no rechace el órgano nuevo como algo ajeno. Sin embargo, a veces esa regulación no funciona bien y el sistema nos ataca a nosotros mismos, provocando enfermedades autoinmunes como el lupus, la esclerosis múltiple, la artritis reumatoide y otras. En el caso de ese grupo de pacientes de cóvid, se ha observado que producen anticuerpos contra su interferón de tipo I. En condiciones normales, probablemente esto no les produce ningún trastorno, pero les dificulta luchar contra el virus en caso de infección.

En la práctica, todos estos hallazgos aportan pistas que pueden ayudar a enfocar los tratamientos para salvar vidas. Dado que para los virus no existe una bala mágica como los antibióticos contra las bacterias, los tratamientos deben ser mucho más específicos, no ya dependiendo del virus concreto, sino de cómo afecta a cada perfil de paciente. Los pacientes con un defecto de interferón de tipo I podrían recibir una suplementación terapéutica de este antiviral que les falta; los que producen anticuerpos contra este interferón podrían beneficiarse de un tratamiento con interferón de otro tipo o con reactivos que bloqueen su autoanticuerpos. Y en general, saber qué perfiles inmunológicos son los más propensos a desarrollar una respuesta dañina puede informar a los médicos sobre qué tipo de inmunomoduladores utilizar en cada caso: esteroides, bloqueantes de la tormenta de citoquinas, inmunoglobulina intravenosa (que contiene anticuerpos contra el superantígeno del estafilococo)…

No, por desgracia, el antiviral único y milagroso que aparece en las películas (a veces erróneamente llamado antídoto) no existe en la realidad, y es dudoso que vaya a existir alguna vez. De todos los antivirales que ya se conocen y que se emplean contra distintos virus, no hay ninguno de eficacia equiparable a la de un antibiótico contra las bacterias. Los virus son bichos extremadamente duros de pelar; por algo son los organismos (sí, en mi opinión son seres vivos) más abundantes de la Tierra. Y por ello la clave para luchar contra ellos no está tanto en ellos como en nosotros, en aprender a domar nuestro propio sistema inmune para que luche contra el virus sin matarnos en la batalla.

Si hay vida en Venus, quizá no sea tan alienígena

Si los autores del reciente hallazgo sobre un nuevo y posible indicio de vida en Venus logran confirmar su descubrimiento –es decir, verificar la señal en otras longitudes de onda para comprobar que es real y no un artefacto del procesamiento de los datos–, sería de esperar que en adelante nuestro planeta vecino suba puestos en la consideración de quienes aprueban las misiones espaciales, para poder enviar algo a aquella atmósfera cuanto antes, algo que sea capaz de sacarnos de dudas antes de que no nos queden uñas que mordernos.

El administrador de la NASA ya ha dicho que es hora de priorizar Venus, y se espera que esta agencia apruebe al menos una de dos misiones ya propuestas antes del descubrimiento. Nuestra ESA tiene también un par de propuestas pendientes para enviar sondas a Venus, mientras que Rusia e India tienen misiones ya en desarrollo. Incluso alguna empresa privada podría entrar en el juego: de inmediato tras el anuncio de la detección del gas fosfano en Venus, Breakthrough Initiatives, el proyecto fundado en 2015 por el magnate ruso-israelí Yuri Milner y centrado en la búsqueda de vida alienígena, anunció la puesta en marcha de un amplio estudio multidisciplinar destinado a indagar en la posible existencia de vida en Venus y a analizar las posibilidades de enviar una sonda que solvente la incógnita.

Pero en cualquier caso, deberemos esperar. Curiosamente y dado que el anuncio del fosfano ha pillado a las agencias espaciales con el paso cambiado, más centradas en Marte, asteroides y el Sistema Solar Exterior, quien podría llegar primero a Venus es un actor insospechado: la misión india Shukrayaan-1, un orbitador que observará la atmósfera y la superficie de Venus, tiene su lanzamiento previsto para 2023, aunque no sería raro que se retrasara. La Venera-D rusa no se lanzará antes de 2026, y las misiones propuestas por la NASA y la ESA difícilmente estarán preparadas antes de finales de esta década o comienzos de la próxima.

Para entonces, es muy probable que ya se hayan hallado nuevos indicios, a favor o en contra de la presencia de vida. Al contrario de lo que siempre hemos visto en cine y televisión, viene tendiendo a ser algo improbable que la confirmación de la vida alienígena llegue con un ovni aterrizando en el jardín de la Casa Blanca o fundiendo la torre Eiffel con un rayo; más bien será algo como esto, sospechas de vida microbiana en otros mundos del vecindario solar, analizadas paso a paso, de forma muy dilatada a lo largo del tiempo, y lo peor será que tal vez nos cueste mucho llegar a dar el último paso, el de la prueba irrefutable.

¿Hay vida entre las nubes de Venus? Imagen de NASA/JPL (David Seal).

¿Hay vida entre las nubes de Venus? Imagen de NASA/JPL (David Seal).

Más aún cuando ni siquiera está del todo claro a qué podremos llamar “vida alienígena”. En cuanto a “vida”, y como ya conté aquí, no existe una definición científica formal universalmente aceptada. Y no existe porque, si existiera, probablemente sería errónea. Según me decía recientemente con ocasión de un reportaje para otro medio el astrofísico Charley Lineweaver, un escéptico de la vida alienígena inteligente de quien ya he hablado aquí en alguna ocasión, hasta tal punto no nos aclaramos que ni siquiera los biólogos nos ponemos de acuerdo sobre si los virus, los organismos más abundantes de la Tierra, están vivos o no (yo opino que sí, pero esa es otra historia).

Y en cuanto a “alienígena”, si algún día llegamos a confirmar la presencia de microbios en otro mundo del Sistema Solar, ¿serán realmente alienígenas? Es decir, ¿podremos estar seguros de que su origen es independiente del de la vida terrestre? A propósito del mismo reportaje mencionado, el astrobiólogo español Alfonso Dávila, que investiga en el centro Ames de la NASA, me subrayaba algo ya conocido: durante la infancia del Sistema Solar, hubo un tráfico pesado de rocas entre los diferentes planetas; cientos de miles de rocas terrestres se estrellaron en Marte, y millones en Venus, según Dávila. Estos asteroides podrían haber transportado microbios de un lugar a otro, por lo que, incluso si se confirma la vida venusiana, tal vez aquellos organismos y nosotros procedamos de un mismo antepasado común.

Lo cual abre las apuestas: si llega a encontrarse algo vivo por ahí fuera, ¿serán parientes nuestros o no? Lo malo es que quizá no lleguemos a poder estar seguros; incluso si su biología básica se parece a la nuestra, con un ácido nucleico (ADN o ARN) que codifique la producción de proteínas, no necesariamente significaría que somos parientes, ya que en muchos casos la evolución sigue caminos comunes de forma separada (se llama evolución convergente).

Tradicionalmente se ha propuesto como posible prueba de orígenes separados de la vida el hecho de que, mientras que ciertos bloques básicos de la vida –aminoácidos de las proteínas o azúcares del ADN y ARN– pueden adoptar dos conformaciones que son imágenes en el espejo una de la otra, a la derecha (dextrógiros) o a la izquierda (levógiros), en los seres terrestres los aminoácidos son levógiros y los azúcares dextrógiros; dado que no hay una razón biológica para esta exclusividad, se suponía que fue una elección casual al principio de los tiempos, y que si se encontraran seres en otro mundo cercano con la misma quiralidad (así se llama esta propiedad) que la terrestre, probablemente estaríamos ante un origen común. Pero hoy sabemos que quizá tampoco esto sea necesariamente así, ya que la quiralidad predominante en los seres vivos podría no ser algo elegido al azar, sino que podría venir marcada por el distinto efecto de los rayos cósmicos sobre cada una de estas dos conformaciones. Dicho de otro modo: la radiación que barre el espacio podría determinar una misma quiralidad homogénea en bichos que nacen en planetas distintos a partir de orígenes totalmente independientes.

Lo cierto es que la pregunta de si posibles microbios venusianos y nosotros procedemos del mismo antepasado común es de enorme trascendencia: si la respuesta es sí, seguiríamos como antes; no sabríamos si la vida podría haber surgido en otros lugares. Si la respuesta es no, entonces podríamos tener la casi seguridad de que la vida debe de ser algo muy común en todo el universo, allí donde se dan las condiciones adecuadas.

Lo cual nos lleva a la pregunta: con las condiciones infernales de Venus, ¿es posible que la vida haya surgido allí? Vaya por delante que realmente aún no sabemos cómo nació la vida aquí, en la Tierra. Pero hay escenarios probables. Y todos ellos tienen algo en común: necesitan agua líquida a temperaturas moderadas –no los actuales 400 grados en la superficie de Venus– y en un pequeño entorno local donde pueda acumularse una alta concentración de moléculas biogénicas, aquellas que reaccionarán para producir alguna entidad autorreplicativa, con una fuente de energía disponible y una fuente de carbono.

Venus no ha sido siempre el infierno que es hoy. Suele decirse que Venus y la Tierra fueron planetas gemelos al comienzo de su historia (aunque la antigua existencia de océanos allí aún es motivo de debate). Y mientras que aquí fue la colonización de los mares por las cianobacterias la que logró reconducir el clima, la química atmosférica y la geodinámica para hacer de este mundo un lugar habitable, en cambio Venus fue el Anakin Skywalker del Sistema Solar, arrastrado hacia el lado oscuro a través de un catastrófico efecto invernadero que le hizo perder casi toda su agua y lo convirtió en el infierno actual.

Pero si en un principio las condiciones en ambos planetas no eran muy diferentes, esto significa que allí podrían haberse dado los mismos procesos que tuvieron lugar aquí y que dieron origen a la vida primigenia. O quizás, según lo dicho, la vida llegó a Venus desde la Tierra. Pero en cualquier caso, en momentos tempranos de la historia de los dos planetas, ambos podrían haber estado en situación parecida respecto a la presencia de algún tipo de microorganismo muy simple para nuestros cánones actuales de vida, muy sofisticado para lo que entonces era la química planetaria.

Sin embargo, el salto de aquellos posibles microbios acuáticos de la superficie de Venus a la presencia actual –si existe– de una comunidad biológica a decenas de kilómetros de altura, flotando en las nubes, no es inmediato. Hay científicos que en estos días se han mostrado muy escépticos. Pero tampoco es imposible. Aquí en la Tierra, sabemos que la vida es extraordinariamente resistente; ha colonizado la práctica totalidad de los hábitats terrestres. Incluyendo la atmósfera: varios estudios han demostrado la presencia de bacterias y hongos en la estratosfera terrestre, a decenas de kilómetros sobre el suelo.

Claro que esto no permite trazar una analogía directa con el caso de Venus. Algunos de los microbios encontrados en la estratosfera terrestre estaban en forma de esporas, fases latentes que ciertos microorganismos adoptan cuando las condiciones del entorno no les permiten crecer y multiplicarse. Es decir, son microbios transeúntes, dependientes de la superficie terrestre para volver a su estado activo. Estos no nos sirven, ya que en Venus cualquier posible organismo presente debería ser un habitante exclusivo de la atmósfera, puesto que no tiene tierra habitable a la que regresar.

También en nuestro planeta se han encontrado especies bacterianas que no se habían detectado antes en la superficie. Pero esto tampoco implica necesariamente que sean habitantes exclusivos de las alturas, evolucionados para nacer, crecer y morir en los aerosoles flotantes sin importarles si debajo existe una tierra habitable o no. Con todo, también es cierto que los moradores de la atmósfera venusiana tendrían algunas ventajas respecto a los de la estratosfera terrestre: a 55 kilómetros de altura sobre Venus, la temperatura y la presión son equivalentes a la Tierra a nivel del suelo; si bien también deberían enfrentarse a una química mucho más hostil, sin apenas agua y con nubes de ácido sulfúrico.

Pero aunque la posibilidad de comunidades microbianas totalmente autónomas en la atmósfera de Venus aún no convence a muchos científicos, la ubicuidad de la vida terrestre nos enseña que la vida, una vez presente, se abre camino. Venus no se convirtió en un infierno de la noche a la mañana. Y durante su lento tránsito de millones de años hacia el lado oscuro de la habitabilidad planetaria, quizá ciertos organismos mejor preparados para soportar una vida atmosférica pudieron sobrevivir y evolucionar hasta convertirse en moradores flotantes como los que imaginó Carl Sagan, comiendo minerales volantes y chupando las escasas gotitas de agua o el vapor de la atmósfera de Venus. Quién sabe. Al fin y al cabo, aún sabemos muy poco sobre eso que llamamos vida, sin saber realmente por qué lo llamamos vida.

Ya hay al menos tres indicios de posible vida microbiana en la atmósfera de Venus

Venus no es el gran olvidado de las misiones espaciales. O sí. Depende de a quién se pregunte. En 2017, un artículo en The Atlantic firmado por David Brown alegaba que la estrategia de la NASA de “seguir el agua” había arrumbado a nuestro vecino más cercano, porque no hay agua líquida en la superficie de Venus. Pero como reconocía el propio Brown, hay otras razones, y es que Venus es un infierno difícilmente explorable: temperatura en la superficie, más de 400 grados; presión atmosférica en la superficie, 100 atmósferas, más o menos la equivalente a 1.000 metros bajo el agua aquí en la Tierra.

Pero no, Venus no es un hueco en blanco en la historia de la exploración espacial. De hecho, fue el primer planeta visitado por sondas terrestres, sobrevolado por primera vez por la soviética Venera 1 en 1961, después por la estadounidense Mariner 2 al año siguiente, hollado (presuntamente) por la Venera 3 en el 66, y después por las 4, 5, 6, 7 y 8, las dos últimas con aterrizajes suaves; fotografiado en la superficie por la Venera 9, visitado por las Pioneer Venus de la NASA, etcétera, etcétera… Hay una buena cantidad de chatarra humana sobre la superficie de Venus; de hecho, más que en Marte.

Así vio (en imagen UV) Venus la sonda de la NASA Pioneer Venus en 1979. Imagen de NASA

Así vio (en imagen UV) Venus la sonda de la NASA Pioneer Venus en 1979. Imagen de NASA

Sin embargo, es cierto que nada ha aterrizado allí desde la soviética Vega 2 en 1984, ni penetrado en su atmósfera desde la estadounidense Magellan en 1994. Pero es que ningún aparato ha llegado a funcionar durante más de 127 minutos en aquel infierno. Y cuando los fondos para la exploración espacial no hacen sino disminuir cada vez más, los científicos tratan de sacar más ciencia por menos dinero, y Venus no es el destino más adecuado para esto.

Hubo un tiempo en que Venus era el gran candidato a albergar vida extraterrestre del tipo más deseado, la que piensa. Su tamaño similar a la Tierra y su gruesa atmósfera invitaban a pensar que podía ser una versión tropical de nuestro planeta. El hecho de que una densa capa de nubes ocultara a la vista los detalles de su superficie no hacía sino disparar las fantasías sobre una gran civilización venusiana. Todavía a mediados del siglo XX, autores de ciencia ficción como Ray Bradbury escribían sobre la vida en Venus.

Hasta que la ciencia vino a aguar la fiesta. Fue en los años 60 cuando las sondas espaciales revelaron que nada vivo puede existir en la superficie de Venus, puesto que no hay posibilidad alguna de bioquímica, moléculas biológicas, a 400 grados centígrados. Ningún “pero ¿y si…?”. Nada que podamos llamar vida, salvo que llamemos vida a otras cosas que no lo son.

Sin embargo, también la ciencia a veces abre una puerta cuando cierra otra. Y quedaba un resquicio: la atmósfera de Venus, allá arriba en las nubes. En una franja aproximada entre los 50 y 60 kilómetros de altura, el rango de temperaturas es similar al terrestre, la presión atmosférica es tolerable y la radiación es moderada.

Hace unos años, la NASA ideó un concepto de exploración tripulada de la atmósfera de Venus mediante dirigibles que flotarían en un justo punto dulce a 55 kilómetros de altura: 27 grados de temperatura, gravedad casi como la terrestre, y media atmósfera de presión, más o menos la de una montaña terrestre de 5.500 metros. El gran truco consistiría en que, dada la mayor densidad de la atmósfera de Venus por su gran cantidad de CO2, estos dirigibles simplemente tendrían que ir rellenos de aire, nuestro aire normal y respirable, para flotar libremente sobre las nubes venusianas como los globos de helio flotan en la Tierra.

Con todo, esta posible habitabilidad es relativa: la atmósfera de Venus es mayoritariamente CO2, casi nada de oxígeno, poco vapor de agua y, sobre todo, nubes de ácido sulfúrico, que dificultan bastante cualquier intento de diseñar una nave que pueda funcionar y perdurar allí. De existir vida en la atmósfera de Venus, tendría que ser anaerobia; sin aire. Pero en la Tierra sí existe vida anaerobia: sobre todo células simples, bacterias y arqueas, pero en los últimos años se han descubierto algunos microorganismos multicelulares que también viven sin aire.

En 1967, justo cuando se confirmaba que la superficie de Venus era inhabitable, el ínclito Carl Sagan y el biofísico Harold Morowitz publicaban en Nature una hipótesis de vida en la atmósfera venusiana: una vejiga flotante del tamaño de una pelota de ping pong, rellena de hidrógeno que fabricaría por fotosíntesis absorbiendo agua de la atmósfera, y que comería minerales volantes a través de su superficie inferior pegajosa.

La propuesta de Sagan y Morowitz era una pura especulación teórica, pero tenía un fundamento, pues por entonces ya se conocía el que era:

El primer indicio de vida en Venus: el absorbedor desconocido de UV

Hace más de un siglo, las observaciones de Venus en el espectro de luz ultravioleta, más allá de la luz visible, revelaron extrañas manchas oscuras. Algo estaba absorbiendo la mayor parte de la luz UV solar e incluso algo del violeta, lo que inspiró la propuesta de Sagan y Morowitz de que podría tratarse de organismos fotosintéticos, capaces de captar la energía del sol para fabricar moléculas orgánicas a partir del agua y el CO2.

El “absorbedor desconocido de UV” de la atmósfera de Venus ha sido objeto de muchos estudios. El año pasado, las observaciones de los telescopios y las sondas espaciales descubrieron además un patrón de cambios a largo plazo que se corresponde con variaciones en el clima venusiano. Se ha propuesto que ciertos compuestos de azufre presentes en la atmósfera venusiana podrían ser en parte responsables de esta absorción, pero la posible participación de microbios no se ha descartado.

Pero si este es el más antiguo signo de posible vida en Venus, no es el único. Las observaciones de las diversas sondas que han analizado la atmósfera venusiana han revelado:

El segundo indicio de vida en Venus: sulfuro de carbonilo

La presencia de distintos compuestos en la atmósfera de Venus puede explicarse por las reacciones químicas que tienen lugar allí de forma espontánea. Pero algunos investigadores han llamado la atención sobre el hecho de que varios de ellos no se encuentran en el equilibrio químico que se esperaría. En la Tierra, la causa de estos desequilibrios es la presencia de vida, desde los microbios a la actividad humana.

Uno de los compuestos más intrigantes en la atmósfera venusiana es el sulfuro de carbonilo, o COS. Esta molécula es el compuesto de azufre más abundante de forma natural en la atmósfera terrestre, y en nuestro planeta se considera un indicador de vida, ya que no es fácil producirlo de forma inorgánica. Una parte de nuestro COS proviene de la actividad industrial, pero otra procede de los océanos y los volcanes. Y aunque la presencia de COS en Venus no es ni mucho menos garantía de que exista allí algo vivo, un dato intrigante es que a este compuesto se le atribuye un posible papel en el origen de la vida terrestre, ya que actúa como catalizador para unir entre sí a los aminoácidos, las unidades que forman las proteínas.

Conviene tener en cuenta que hasta hace muy poco se pensaba que la antigua actividad volcánica en Venus se había extinguido mucho tiempo atrás. Pero después de algunas observaciones previas que sugerían lo contrario, en enero de este año se publicó un estudio según el cual algunas coladas de lava solo tienen unos pocos años de edad; aún hay volcanes activos allí. Y aunque esto quizá podría justificar la presencia del COS, en cambio los expertos no creen que sirva para explicar:

El tercer indicio de vida en Venus: fosfano

Llegamos así a lo nuevo y último, lo publicado esta semana: la presencia en la atmósfera venusiana de un compuesto, PH3, llamado trihidruro de fósforo, fosfano o fosfina (pero NO fosfatina, como ya se ha escrito por ahí). Como el COS, el fosfano no debería estar allí, ya que en la Tierra es un indicador de vida. Aquí se produce sobre todo por microbios anaerobios, y puede encontrarse en la descomposición de la materia orgánica y en los intestinos de algunos animales. Más que un signo de vida, es un signo de muerte, pero donde hay algo muerto antes hubo algo vivo. Pero a pesar de la enorme cantidad de fuentes de fosfano en la Tierra, su presencia en la atmósfera es solo residual, porque se oxida rápidamente.

Sin embargo, resulta que en Venus el fosfano es mil veces más abundante que en la Tierra.

Existen otras maneras de fabricar fosfano que no necesitan algo vivo. En Júpiter y Saturno se genera en el interior denso y caliente de estos gigantes gaseosos. También las tormentas eléctricas o los impactos de meteoritos pueden producirlo. Y el rozamiento entre las placas tectónicas, o las erupciones volcánicas. Pero Venus no es un planeta gaseoso como Júpiter y Saturno, sino rocoso, y ninguno de estos mecanismos explica la gran cantidad de fosfano. Los autores del nuevo estudio, dirigido por la astrónoma de la Universidad de Cardiff Jane Greaves, calcularon que se necesitaría una actividad volcánica 200 veces mayor que la terrestre para justificarlo. De hecho, examinaron una a una casi cien maneras distintas de producir fosfano que no requirieran la presencia de vida. Ninguna de ellas servía para explicar la presencia abundante y sostenida de un gas que debería desaparecer rápidamente.

¿Significa esto que ya puede darse casi por segura la presencia de vida en Venus? Aún no. Aunque el nuevo estudio es concienzudo y riguroso, los expertos han advertido de que la señal de fosfano es débil, y que harán falta nuevas observaciones en otras longitudes de onda para confirmar que no es un artefacto introducido en el procesamiento de los datos. Los investigadores esperaban haber abordado ya estos estudios, pero la COVID-19 los ha demorado.

Incluso si se confirma la presencia de fosfano y no existe otra manera imaginable de explicarla, aún puede existir una manera todavía no imaginable. A lo largo de la historia de la búsqueda de algo vivo fuera de la Tierra, todo lo que se creía que eran signos de vida ha resultado ser el producto de fenómenos naturales inorgánicos, algunos de ellos descubiertos por primera vez gracias a esas observaciones intrigantes. En este caso, podría ser que un proceso químico aún no descrito o una actividad geológica insospechada estuvieran produciendo el misterioso gas.

En cualquier caso, parece claro que, a partir de ahora, el fosfano venusiano va a atraer tanta atención como el metano de Marte, otro gas cuyo origen podría revelar la presencia de microbios. El Sistema Solar huele cada vez más a vida, aunque este olor sea tan nauseabundo como el del fosfano.

El caso del coronavirus chino: preocupante y a la vez esperanzador

En poco más de un mes, el nuevo coronavirus chino 2019-nCoV ya ha recibido inmensamente más atención mediática y pública que el aún vigente brote de ébola en la República Democrática del Congo en casi año y medio. Y ello a pesar de que el segundo ya ha causado 2.237 muertes entre 3.416 casos (65% de mortalidad), mientras que el primero ha matado a 26 personas (datos de hoy) entre un millar de afectados que podrían subir hasta los 4.000, según el Centro de Análisis de Enfermedades Infecciosas Globales del Medical Research Council de Reino Unido.

No es una novedad, ni requiere explicación, ni por ello deja de ser triste, que los virus de por ahí abajo no preocupan siempre que no se les ocurra cruzar a este lado del Sáhara. Pero a primera vista resultaría curioso: aunque aún no se han publicado datos oficiales de la tasa de mortalidad del 2019-nCoV –un nombre provisional que en algún momento se sustituirá por el definitivo–, actualmente se maneja una cifra en torno a un 2% de los pacientes sintomáticos; podría ser menor si se descubriera que la condición asintomática es frecuente. Y en cambio, el ébola tiene una mortalidad de hasta el 90%. Por arrojar un dato de comparación, la gripe de 1918 mató a entre el 10 y el 20% de los infectados, mientras que la mortalidad de las gripes actuales es menor del 1%.

El personal de la estación de ferrocarril de Wuhan controla en los monitores la temperatura de los viajeros. Imagen de China News Service / Wikipedia.

El personal de la estación de ferrocarril de Wuhan controla en los monitores la temperatura de los viajeros. Imagen de China News Service / Wikipedia.

Pero a segunda vista, lo cierto es que hay motivos para que el 2019-nCoV sea incluso más preocupante que el ébola para la población en general. En primer lugar, y mientras que la posibilidad de transmisión del temible virus africano por el aire (aerosoles) aún es controvertida, en el caso del nuevo coronavirus chino parece confirmada, lo que apunta a un contagio fácil como el de una gripe. Y este es precisamente uno de los rasgos que los expertos suelen atribuir al hipotético virus que podría causar la próxima gran pandemia.

Por otra parte, también suele señalarse que el ébola mata demasiado y demasiado deprisa, por lo que resulta más asequible localizarlo y contenerlo. El causante ideal de una futura pandemia global sería, dicen los expertos, un virus con síntomas más leves e inespecíficos, lo que dificultaría su reconocimiento, y con una mortalidad baja, lo que le daría ocasión de expandirse. Pero incluso con una letalidad de solo un 2%, su impacto podría ser devastador; pensemos que la gripe de 1918 infectó a la tercera parte de la población mundial. Si algo semejante llegara a ocurrir hoy, imaginemos lo que supondrían más de 300.000 víctimas mortales en una población como la española.

En resumen, el coronavirus chino se parece bastante al retrato robot del virus que a juicio de los expertos podría causar el próximo gran desastre epidémico. Y aunque en estos días a todos aquellos que tenemos una cierta relación con estos asuntos suelen preguntarnos si hay motivos para la preocupación, en realidad no se trata tanto de temer la posibilidad de que un virus como este pueda llevarnos al otro barrio a cada uno de nosotros en particular, sino de la perspectiva, que nadie puede descartar, de un azote global que deje una herida profunda en nuestro mundo, como lo hizo la gripe de 1918.

Al menos existe también una visión esperanzadora, y es la respuesta que se ha puesto en marcha. Sea cual sea el sentido de la flecha que define cuál es la causa y cuál el efecto, lo cierto es que la gran atención mediática ha venido acompañada por medidas rápidas, algunas de ellas sin precedentes, como las cuarentenas en ciudades y las cancelaciones de festivales. Nadie sabe aún si todo esto bastará para minimizar o contener el contagio. En este momento, ni el más experto de los expertos se atrevería a apostar cuál será el alcance de la epidemia de aquí a unos meses. Pero entre la comunidad científica y adláteres circula ya desde hace años la idea de que la pregunta no es si la nueva gran pandemia llegará, sino cuándo. Y ya iría siendo hora de que todos empezáramos a tomarnos interés por lo verdaderamente preocupante.

Más cerca de la píldora del ejercicio físico, ahorrándonos el sudor y el chándal

Hubo un tiempo en que los humanos aquejados por alguna dolencia acudíamos al brujo o al chamán, quien nos administraba una pócima preparada con hierbajos y raíces, de sabor repugnante y que llevaba inherente el tributo a los dioses en forma de otros efectos indeseados, pero que al menos era capaz de aliviar hasta cierto punto algunos de esos males que motivaban la consulta.

Entra la ciencia. Y entonces, los químicos conseguían identificar lo que se llamó principios activos, compuestos concretos de esos hierbajos y raíces que eran responsables del poder curativo. Por ejemplo, el chamán no sabía que el espíritu benéfico que vivía en las hojas del sauce en realidad no era tal, sino el ácido 2-hidroxibenzoico, también llamado ácido salicílico. Así, con el tiempo se logró purificar esos ingredientes y separarlos de otros no tan beneficiosos, de modo que, por ejemplo, ya no era necesario beber tanta pócima para notar la mejora que otros compuestos de las hierbas nos dejaran los riñones como papas arrugás. O que hubiera que comerse tantos mohos que algunos de ellos a la larga provocaran cáncer de hígado.

Aún más, incluso se logró que ya no fuera necesario recoger hierbas, sino que esos principios activos pudieran crearse a partir de piezas más básicas. Por ejemplo, el ácido acetilsalicílico, una versión mejorada del ácido salicílico que hoy conocemos como aspirina, podía obtenerse mezclando cloruro de acetilo con salicilato sódico, y este a su vez se preparaba con dióxido de carbono y fenolato sódico, y este resultaba de combinar fenol e hidróxido sódico, y así.

Como resultado de todo ello, hoy ya no vamos al brujo o al chamán, sino al médico y a la farmacia. Por supuesto que los efectos secundarios adversos siempre existirán incluso con compuestos sintéticos puros, porque un organismo biológico no es un videojuego en el que uno gana o pierde vidas, sino un sistema muy complejo que mantiene un equilibrio llamado homeostasis, como un inmenso castillo de dominó, donde al mover una pieza se mueven también otras.

Pero no, en contra de lo que pueda parecer, esto de hoy no va de quimiofobia ni de chamanismo, sino que todo esto tiene también otra veta interesante. Si hemos conseguido aislar los principios activos buenos de las plantas medicinales para no tener que llevarnos todo el lote, ¿no podríamos hacer lo mismo con otras cosas que pueden proporcionarnos beneficios, recortando la parte que no queremos?

¿Por ejemplo, el ejercicio físico?

Imagen de pxfuel.

Imagen de pxfuel.

Cierto ejercicio físico reporta beneficios para la salud, en términos de regulación metabólica y capacidad motora. Esto es escasamente discutible, ya que está suficientemente avalado por la ciencia. Pero entran los matices: “cierto”, porque no todo. También la ciencia ha descubierto que un exceso de ejercicio físico puede ser perjudicial; los corredores de maratón sufren daño renal agudo, con lesiones estructurales en sus túbulos renales. O también la ciencia ha mostrado, por si hacía falta mostrarlo, que los niños con mayor actividad deportiva sufren más daños osteomusculares.

(Nota: a pesar de ello, en la Comunidad de Madrid, en la que vivo, a algún genio se le ha ocurrido que es una buena idea aumentar en una hora más a la semana la educación física en los colegios, algo a lo que alguna otra voz más sensata ya ha respondido advirtiendo de que se hará a costa de la enseñanza de las ciencias. Total, qué importa tener niños un poco más necios, siempre que estén más esbeltos y fuertotes, si al fin y al cabo somos una potencia mundial en deportes, no en ciencias).

Pero no solo sería ampliamente cuestionable que a todos los efectos se metan en el mismo saco la actividad física beneficiosa y el deporte extremo agresivo hacia el organismo y causante de dolencias que también suman al gasto sanitario. Sino que, además, es ampliamente rechazable que se identifiquen ejercicio físico y deporte. La distinción es lo suficientemente clara como para no tener que explicarla. Pero se concederá que uno puede apreciar los beneficios científicamente avalados de la actividad física sin que necesariamente tenga por qué gustarle el deporte.

Conozco personas que no han leído un libro desde que dejaron los estudios –si es que lo leyeron entonces–, y otros muchos que si leen algo –no, Twitter no cuenta– es por la información que ese algo les aporta (libros de autoayuda, ensayos políticos o históricos, etcétera, etcétera, etcétera), y no por disfrutar del placer de la lectura, porque carecen del gen (gen en sentido metafórico) del placer de la lectura. Para estas personas, leer es como máximo un peaje a pagar para obtener otra cosa, y están en su perfecto derecho. Algunos carecemos del gen del disfrute del deporte y lo sufrimos más bien como una tortura si queremos obtener el beneficio que puede reportarnos. También estamos en nuestro perfecto derecho. Y nos llevaremos bien, siempre que los unos no nos pongamos pelmazos tratando de convertir a los otros a nuestra causa.

Así que, para ese sector de la población no practicante del culto al deporte, y que pondríamos en una lista cien cosas más gratificantes y enriquecedoras para ocupar cualquier retal de nuestro tiempo antes que ponernos un chándal, ¿no sería posible que la ciencia recreara ese principio activo beneficioso del ejercicio físico sin tener que tragarnos el resto?

Bien, pues aunque esto aún no existe, la buena noticia es que sí hay investigadores trabajando en ello desde hace tiempo. El último estudio en esta línea acaba de publicarse ahora en Nature Communications. Un equipo de investigadores de la Universidad de Michigan y la Universidad Estatal Wayne de Detroit ha indagado en los resortes genéticos mediadores de esos beneficios metabólicos del ejercicio físico. Es decir, qué genes se activan gracias a la actividad física y qué hacen las proteínas producidas por ellos para poner en marcha esos efectos provechosos.

Los científicos han descubierto en todo ello un papel central para las sestrinas, una familia de proteínas ya conocidas por su intervención en la respuesta al estrés: se activan cuando el ADN sufre daños, o en condiciones de hipoxia o de daño oxidativo. Según lo que se conoce, las sestrinas son como una especie de brigada de emergencias, entrando en acción para proteger el organismo de ciertas agresiones y restablecer la homeostasis. Y hacen todo esto actuando sobre otras moléculas implicadas en distintas vías metabólicas, del mismo modo que la brigada de emergencias moviliza a los bomberos o a los sanitarios.

El estudio muestra que en moscas y ratones las sestrinas son “mediadores críticos de los beneficios del ejercicio”, escriben los autores: no solo se activan en respuesta al ejercicio, sino que este no produce ningún provecho cuando estas proteínas faltan. Y del mismo modo, al promover la activación de las sestrinas, se mimetizan los efectos favorables del ejercicio sin necesidad de practicarlo. Los investigadores han identificado también los efectores de las sestrinas en estos casos, las moléculas sobre las cuales actúan.

Sin embargo, no debe perderse de vista un detalle esencial: todo lo anterior se aplica a moscas y ratones. Los autores mencionan que se ha descrito también la activación de las sestrinas en humanos en respuesta al ejercicio físico, y estas proteínas aparecen evolutivamente conservadas en distintas especies, pero ello no quiere decir que automáticamente los resultados sean aplicables a nosotros. Se llenarían las bodegas del Titanic hasta hundirlo de nuevo con los estudios de resultados en animales que no han sido finalmente extrapolables a humanos.

Pero aún hay más: un segundo estudio, publicado también ahora en la misma revista y dirigido por investigadores de la Universidad Pompeu Fabra de Barcelona y el Centro Nacional de Investigaciones Cardiovasculares (CNIC), en colaboración con algunos de los autores del trabajo anterior, muestra que la activación de las sestrinas previene la atrofia de los músculos debida a la edad o a la inactividad.

Todo lo cual convierte a las sestrinas en las nuevas proteínas favoritas de quienes carecemos del gen del gusto por el deporte. Y aunque obviamente aún queda mucho camino por recorrer, estos estudios sugieren que la idea de llegar algún día a obtener los beneficios del ejercicio físico con una píldora, ahorrándonos el chándal y el sudor a quienes no nos agradan el chándal ni el sudor, ya no es una mera fantasía. Qué grande es la ciencia.

Según la biología, podríamos ser la única especie inteligente en el universo

El universo no es eterno, y por lo tanto comenzó en algún momento. Lo cual implica que hubo un tiempo en que la vida no existía. Y tan evidente como esto es también que hoy la vida existe; al menos nosotros, todos los seres terrícolas, estamos aquí.

La conclusión es innegable: en algún episodio de la historia del cosmos, al menos una vez, la vida pasó de no ser a ser. Esto es lo que se conoce como abiogénesis. Y es un problema. Un gran problema, porque nadie sabe cómo se produjo. De hecho, es el problema central de la biología: ¿cómo comenzó todo?

Estas rocas de la región de Pilbara, en Australia, contienen los fósiles de microbios más antiguos conocidos, de 3.500 millones de años de antigüedad. Imagen de Baumgartner et al., Geology, 2019.

Estas rocas de la región de Pilbara, en Australia, contienen los fósiles de microbios más antiguos conocidos, de 3.500 millones de años de antigüedad. Imagen de Baumgartner et al., Geology, 2019.

La dificultad de la abiogénesis es obvia: que la vida aparezca a partir de la no vida es algo que, en principio, no ocurre. Solemos llamarlo generación espontánea, y Pasteur y otros demostraron que no existe. Hay ciertas diferencias considerables entre la generación espontánea y la abiogénesis: una de ellas, que rescataremos más abajo, es que la primera ocurriría de forma rápida y rutinaria, como una especie de mecanismo naturalmente programado, mientras que la segunda sería un proceso lento, gradual y excepcional. Pero en el fondo, el resumen es el mismo: vida que surge de algo no vivo.

Tan grande es el problema que tradicionalmente ha dado pie a muchos a defender explicaciones sobrenaturales de la aparición de la vida (en contra de lo que muchos creen, la evolución definida primero por Darwin y Wallace y después reconstituida por otros no explica el origen de la vida, sino solo cómo unas especies dan lugar a otras). Francis Crick, codescubridor de la doble hélice del ADN y un crítico feroz de las religiones, trató de salvar el obstáculo de la abiogénesis proponiendo la panspermia dirigida, la idea de que una civilización alienígena sembró la vida terrestre a propósito.

Lo cual, en realidad, no solamente no resolvía el problema, sino que le daba una patada para alejarlo (¿cómo surgió la vida de la que esa civilización evolucionó?); y, en el fondo, ¿cuál es la diferencia entre hablar de Dios y de una entidad alienígena inteligente, creadora y con un poder incomprensible para nosotros?

Todo hay que decirlo, Crick moderó su postura en años posteriores, cuando se descubrió la capacidad catalítica del ARN, que rompía el ciclo del huevo y la gallina: si la formación del ADN requiere proteínas y la formación de proteínas requiere ADN, ¿cómo empieza el proceso? El descubrimiento de las ribozimas, ARN que actúa como enzimas, conseguía cortar el círculo y convertirlo en una línea con una casilla de salida.

Pero incluso con las ribozimas, la abiogénesis continúa siendo hoy una píldora difícil de tragar. O lo sería, si no fuera porque tenemos la prueba irrefutable de su existencia: nosotros. Por supuesto y dado que la vida es un fenómeno natural, recurrir a explicaciones sobrenaturales es solo negarnos a nosotros mismos nuestra capacidad para comprender el universo por medio del razonamiento y la investigación.

Esta explicación sobre la abiogénesis sirve para entender por qué se ha popularizado tanto la idea de que la vida es abundante en el universo, y por qué en cambio esta idea es, como mínimo, poco razonable. Los primeros que comenzaron a interesarse científicamente por la vida alienígena fueron físicos y matemáticos, como los fundadores de los proyectos SETI (Búsqueda de Inteligencia Extraterrestre). Para un físico, la naturaleza funciona aquí lo mismo que en GN-z11, que creo es la galaxia más lejana conocida hasta ahora. Para un matemático, es un disparate estadístico pensar que la vida terrestre es un fenómeno único.

Físicos y matemáticos han ignorado tradicionalmente el punto de vista biológico, y el público en general simplemente lo desconoce. Desde este enfoque, la vida es lo normal. Pero cuando se introduce el problema espinoso y aún inexplicado de la abiogénesis, lo normal es pensar que la vida es algo muy raro. Y que la vida inteligente, como nosotros, es algo que sencillamente no debería existir.

Pero mejor lo explica Nick Longrich. Este paleontólogo y biólogo evolutivo de la Universidad de Bath, en Inglaterra, atrajo el foco de los medios en 2015 gracias a un hallazgo espectacular, el primer fósil conocido de una serpiente de cuatro patas que vivió en el Cretácico, en la era de los dinosaurios. Este animal, llamado Tetrapodophis, rellenaba el hueco del fósil de transición entre los lagartos y las serpientes; lo que suele llamarse un eslabón perdido.

Reconstrucción de Tetrapodophis, la serpiente de cuatro patas del Cretácico. Imagen de Julius T. Cstonyi.

Reconstrucción de Tetrapodophis, la serpiente de cuatro patas del Cretácico. Imagen de Julius T. Cstonyi.

Recientemente, Longrich ha publicado un artículo en The Conversation cuyo título resume perfectamente el mensaje: “La evolución nos dice que podríamos ser la única vida inteligente en el universo”. Y sí, por supuesto que, como siempre ocurre con esta hipótesis, quienes no observan la naturaleza desde el conocimiento de la biología saldrán a opinar que tal cosa es absurda, que por narices (las narices de los físicos y matemáticos) la vida, incluyendo la inteligente, tiene que ser algo inmensamente extendido por todo el cosmos, y que blablablá… Pero de verdad, lean a Longrich.

En resumen, lo que el biólogo viene a exponer es que, si bien no tenemos ejemplos de vida extraterrestre que poder estudiar, al menos tenemos 4.500 millones de años de historia terrestre. Y eso equivale a muchísimos datos, a un experimento natural inmensamente rico.

Lo primero que podemos concluir de ese experimento natural es que, en un planeta tan sumamente habitable como el nuestro, y en más de 4.500 millones de años, la abiogénesis solo se ha producido una única vez. Si la vida surge inevitablemente allí donde puede, como han defendido los físicos, ¿por qué aquí solo una vez? ¿Por qué no dos, tres, miles, millones?

Este argumento biológico, llamado del segundo génesis (por un segundo origen independiente de la vida, y un tercero, y un cuarto…), ha sido comentado en este blog innumerables veces. Es un argumento que físicos y matemáticos pasaron por alto completamente cuando crearon esas fantasías de un universo rebosante de vida alienígena. Y es un argumento demoledor. Si la vida fuera algo de aparición tan común, en la Tierra lo veríamos casi a diario. Según lo dicho arriba, sería una especie de mecanismo naturalmente programado. En el fondo, lo que defiende la idea de la vida como fenómeno inevitable es una especie de generación espontánea. Pero entonces no tendría ningún sentido biológico que este fuera un proceso autolimitado a una vez por planeta a lo largo de toda su historia de miles de millones de años. Se mire como se mire, se llega a una reducción al absurdo.

Lo que hace Longrich en su artículo es aplicar la misma línea de razonamiento a otros pasos críticos para conducir desde la aparición de la vida, una célula simple, a algo tan complejo como nosotros. Por supuesto, con una célula sencilla no acaba el problema: hay otros muchos complicados procesos que tienen que darse para llevar a la vida inteligente. Y para cada uno de esos pasos, se pregunta Longrich, ¿existe una segunda ocasión en que se haya repetido?

Longrich da cuenta de cómo, en efecto, en muchos casos la evolución ha repetido sus soluciones en distintos linajes de la vida. El ejemplo más típico es el de las alas: las aves vuelan, pero también los insectos y los murciélagos. En todos estos casos las alas aparecieron de forma independiente en distintas líneas evolutivas. Es lo que llamamos evolución convergente. Otro ejemplo son los ojos, que surgieron de modo separado en los vertebrados y en diferentes líneas de invertebrados como los artrópodos, las medusas o los moluscos.

Entonces la pregunta es: ¿ha ocurrido esto mismo en ciertos pasos críticos, como semáforos de la evolución que deben superarse en el camino desde la célula simple a la vida inteligente? De ser así, dice Longrich, la aparición de vida compleja inteligente no solo sería probable, sino casi inevitable.

Pero la respuesta, oh sorpresa, es que no es así: no solo la propia aparición de la vida, sino también la célula eucariota, los seres multicelulares, la reproducción sexual, la fotosíntesis, el esqueleto, y por supuesto la inteligencia, todo ello apareció en la evolución solo una única vez. Según Longrich, “la convergencia parece ser la norma, y nuestra evolución parece probable. Pero cuando buscas la no convergencia, está por todas partes, y las adaptaciones críticas complejas parecen ser las menos repetidas, y por tanto improbables”.

“Estas innovaciones únicas, golpes de suerte críticos, pueden crear una cadena de cuellos de botella evolutivos o filtros”, escribe Longrich. “Si es así, nuestra evolución no fue como ganar la lotería. Fue como ganar la lotería una vez, y otra, y otra, y otra. En otros mundos, estas adaptaciones críticas pueden haber evolucionado demasiado tarde para que emergiera la inteligencia antes de que sus soles hayan degenerado, o no haber evolucionado nunca”.

Longrich hace unos números rápidos: si la aparición de vida inteligente depende, por ejemplo, de siete de estos semáforos evolutivos críticos, cada uno de ellos con un 1% de posibilidades de ponerse en verde (lo cual sería infinitamente mayor de lo que nos muestra el experimento natural de la Tierra), entonces la inteligencia ocurre en uno de cada cien billones de mundos habitables; 100.000.000.000.000. Y, continúa Longrich, “si los mundos habitables son raros, entonces podríamos ser la única vida inteligente en la galaxia, o incluso en todo el universo visible”.

Y lo cierto es que sí, los mundos habitables parecen ser raros. En los últimos años, los científicos planetarios parecen estar asumiendo con perplejidad una evidencia inesperada: hasta ahora y de más de 4.000 exoplanetas conocidos, no hay ni uno solo similar a la Tierra. En un reportaje reciente, el científico planetario Edward Schwieterman, de la Universidad de California en Riverside y el Instituto de Astrobiología de la NASA, me decía: “No debería sorprendernos si las condiciones exactas que encontramos hoy en la Tierra resultan ser raras”.

Así que, antes de caer en ese pensamiento simple de que la vida debe de estar por todas partes, escuchen a la biología; que si de algo sabe, es de vida.

Esto es lo que ha matado a dos millones de murciélagos en España

Esta semana se ha celebrado una reunión entre responsables del Ministerio para la Transición Ecológica (MITECO) y representantes de la Asociación Española para la Conservación y el Estudio de los Murciélagos (SECEMU), la entidad que agrupa a los científicos y otras personas dedicadas a la investigación y conservación del grupo de mamíferos con mayor número de especies en los ecosistemas terrestres españoles: por aquí contamos nada menos que con 35 especies, y en todo el mundo superan las 1.300, siendo la quinta parte de todos los mamíferos que existen y el segundo grupo más numeroso después de los roedores.

Nos acordamos poco de los murciélagos, quizá porque sus costumbres los suelen mantener a escondidas de nosotros, y tal vez porque han sido objeto de supersticiones y leyendas; curiosamente, la existencia de murciélagos hematófagos (bebedores de sangre) en América se conocía al menos desde 1526, aunque estos animales no aparecieron en la literatura científica hasta 1810. Entonces se tiró del viejo mito euroasiático de los vampiros para llamar así a estos murciélagos tropicales de América. Enterado de ello o quizá no, que al parecer no está claro, en 1897 Bram Stoker decidió que su famoso conde Drácula podía transformarse en murciélago o en lobo, y de aquella novela inmortal –o deberíamos decir no-muerta– nació la idea de asociar a los murciélagos con los vampiros de ficción.

Pero aunque la obra de Stoker nos legara uno de los iconos imprescindibles de la cultura popular, si los murciélagos pudieran opinar sin duda renegarían de una novela que ha hecho tanto daño a su imagen. Por supuesto, sobra decir que no hay murciélagos hematófagos en Europa, y que los americanos no suelen morder a los humanos. Pero la aparición casual de un murciélago en una vivienda provoca en muchos casos más miedo que fascinación.

Por supuesto que manipular un murciélago sin unos gruesos guantes protectores no es una buena idea, pero lo mismo puede decirse de cualquier animal salvaje que podamos encontrarnos. Y quienes tenemos la suerte de poder contemplar sus revoloteos al atardecer, mientras cumplen la importante misión de mantener las poblaciones de insectos a raya, lo que sentimos es pura fascinación.

Un murciélago de cueva Miniopterus schreibersii, la especie en la que se encontró el virus de Lloviu. Imagen de Steve Bourne / Wikipedia.

Un murciélago de cueva Miniopterus schreibersii. Imagen de Steve Bourne / Wikipedia.

Hasta que ese vuelo queda bruscamente interrumpido por las aspas giratorias de un aerogenerador o molino eólico. Lo cual no es un fenómeno raro, sino inusitadamente común; tanto que en los últimos 20 años han muerto en España dos millones de murciélagos a causa de los parques eólicos. Y este ha sido precisamente el motivo de la reunión del Comité de energía eólica de la SECEMU con los responsables del MITECO.

Obviamente, la SECEMU reconoce “la necesidad de promover, desarrollar y optimizar sistemas de aprovechamiento energético sin emisiones asociadas”, dicen en una nota de prensa. Sin embargo, añaden que una energía considerada limpia debe respetar el medio ambiente en el que se produce, y parece claro que este no es el caso de los parques eólicos.

Durante años se ha hablado del daño que estas instalaciones causan a las poblaciones de aves, pero el caso de los murciélagos ha pasado hasta ahora bajo el radar de los medios y del público: actualmente, dice la SECEMU, “los parques eólicos convencionales se han convertido ya en la primera causa de mortalidad de los murciélagos a nivel mundial”, y “el número de ejemplares muertos es además notablemente superior al de las aves”.

En contra de lo que a veces se cree, los murciélagos no son ciegos. De hecho, algunos de ellos ven mejor que nosotros, sobre todo en condiciones de poca luz. Según las especies, las hay que ven colores e incluso el ultravioleta, pero muchas de ellas tienen además un sexto sentido: la ecolocalización, el sonar que les permite escuchar el entorno y sus obstáculos por el eco de los sonidos que ellos mismos producen.

Claro que probablemente ni la vista ni la ecolocalización sirven de mucho cuando a un pequeño animalito se le viene encima una inmensa aspa giratoria a toda velocidad. Según la SECEMU, con 20.306 turbinas eólicas funcionando en España, y creciendo, no es de extrañar que la expansión de estos generadores esté ya amenazando la supervivencia de algunas especies de murciélagos. Y el panorama en otros países europeos y en Norteamérica es similar. Se da el agravante, añade la SECEMU, de que estos animales se recuperan muy mal de la zozobra de sus poblaciones, ya que las hembras generalmente solo tienen una cría al año.

Una turbina eólica. Imagen de freestockphotos.biz.

Una turbina eólica. Imagen de freestockphotos.biz.

Ante este problema, la SECEMU pide intervenciones eficaces, antes de que tengamos que comenzar a tachar especies del todavía nutrido inventario de murciélagos de nuestro país. Una solución tan obvia como perentoria, dice la asociación, es un mayor rigor en la evaluación del impacto ambiental de los parques eólicos; que estos estudios no sean “un mero formalismo burocrático más”. La SECEMU denuncia que no se tienen en cuenta los criterios adecuados, que se ignora a los murciélagos o que los estudios se realizan en fechas de baja actividad de estos animales, por lo que no reflejan la realidad del problema.

Los expertos están especialmente preocupados por el hecho de que en la próxima década está previsto que se duplique con creces la producción de energía eólica en España. “De mantenerse la situación actual, sin adoptar actuaciones tan básicas como por ejemplo evitar el arranque de las máquinas a bajas velocidades de viento (menos del 1 % de la producción de energía), cuando se registra la mayor mortalidad, el impacto supondrá una mortalidad de otros dos millones de murciélagos, pero en apenas diez años”, advierten.

Esto es lo que hizo Margarita Salas, y este es el reconocimiento que nunca se le dio

Esta semana conocíamos la triste noticia del fallecimiento de Margarita Salas, bioquímica y bióloga molecular, probablemente la científica más importante en toda la historia de España, al menos hasta los comienzos de este siglo; existen ahora otros numerosos ejemplos brillantes de investigadoras con carreras ya distinguidas por grandes logros y aún con mucho recorrido por delante.

Comprensiblemente, en estos días los medios se han centrado de forma preferente, a veces casi exclusiva, en la cuestión de género: cómo Salas sufrió discriminación en épocas anteriores por su condición de mujer y cómo su trayectoria ha servido de escaparate para visibilizar el trabajo de las mujeres científicas y de modelo para presentar a las niñas en esa difícil etapa de la elección de carrera.

Nunca está de más recordar esto. Es necesario promocionar el trabajo de las mujeres investigadoras y seguir insistiendo en fomentar la vocación por la ciencia entre las niñas. Y sin duda también en la ciencia quedan sexismo y barreras por demoler.

Margarita Salas en 2011, recibiendo el doctorado honoris causa por la UNED. Imagen de honoris023 / Wikipedia.

Margarita Salas en 2011, recibiendo el doctorado honoris causa por la UNED. Imagen de honoris023 / Wikipedia.

Pero dejarlo aquí sería hacer un demérito al perfil de Salas o reducir su figura a la de una pancarta, a la de alguien que solo destacó por lo que dijo (lo cual sería admisible en quienes solo se dedican a decir). No es así: Margarita Salas no era una activista, sino una científica. Destacó por lo que hizo, no por lo que dijo. Y tanto su trabajo como su legado se abrieron paso simplemente por su importancia y su calidad, no por el hecho de que en algún momento haya resultado oportuno ondear una bandera concreta.

Dicho de otro modo, la importancia de su trabajo y de su legado es independiente del hecho de que fuera mujer u hombre. E incluso considerando que el éxito de su carrera haya tenido un mérito mayor por el hecho de haber sido mujer en una época de ciencia dominada por hombres, en la ciencia no cuenta el mérito; solo los resultados, que se acaban abriendo paso.

Anteriormente he contado aquí la historia de Jocelyn Bell Burnell, la astrofísica primero ignorada por el Nobel y después ampliamente reconocida. Algunos trataron de convertirla en una bandera; ella no se dejó, porque eran sus resultados lo único que podía colocarla en el lugar que merecía. Esto es ciencia, no política. Y para quienes piensan que la política debería introducirse en la ciencia, este es un claro argumento en contra.

En cuanto al legado de Margarita Salas, ha sido omnipresente para todos los que nos hemos dedicado a la biología molecular. Un servidor lleva ya décadas sin coger una pipeta, pero en aquellos tiempos era habitual encontrarse continuamente con Margarita Salas a través de sus exbecarios (trabajé con alguno de ellos) y los exbecarios de sus exbecarios. Formó a varias generaciones de científicos y científicas, que salían preparados para dirigir muchos de los mejores grupos del país. Ser exbecario de Margarita era casi el mejor argumento que podía presentarse en un currículum. Ella era como un hub de la biología molecular española. Y a pesar de ello nunca cayó en el divismo; era afable, cordial, sencilla.

En cuanto a su trabajo, los medios ya han resaltado la enorme rentabilidad de sus patentes. Pero esto tampoco le hace justicia. Para comprender lo que hizo y su importancia, hay que contar que en 1993 un norteamericano loco (muy loco) llamado Kary Mullis ganó el premio Nobel por inventar una técnica llamada Reacción en Cadena de la Polimerasa, o PCR.

En cierto modo, la PCR es algo parecido a un microscopio: amplifica algo que no podemos apreciar directamente por su pequeño tamaño. El microscopio nos ofrece una imagen magnificada de algo minúsculo, mientras que la PCR produce muchas copias de ese algo para que podamos detectarlo, estudiarlo y trabajar con ello. Lo que amplifica la PCR es el ADN presente en una muestra. Para hacer copias de un ADN es necesario disponer de una enzima fotocopiadora llamada ADN polimerasa. Existen muchas de estas, cada especie tiene la suya propia, y la clave del método de Mullis fue encontrar una que hacía exactamente lo que se necesitaba. Gracias a la PCR hoy existe la genómica; por ejemplo, pudo secuenciarse el genoma humano.

En 1989, pocos años después de que Mullis inventara la PCR (1983), Margarita Salas y sus colaboradores descubrieron una nueva ADN polimerasa en el fago Φ29. Un fago es el diminutivo de un virus bacteriófago, llamado así porque infecta a las bacterias, no a otras especies como nosotros. Los fagos son seres (si vivos o no, es una eterna polémica en biología) muy simples y es sencillo trabajar con ellos en el laboratorio. Y en cuanto a esto, Φ, es la letra griega Phi (“fi“).

La ADN polimerasa del Φ29 resultó tener unas propiedades muy interesantes. Con el tiempo llegó a utilizarse para desarrollar una técnica alternativa a la PCR llamada Multiple Displacement Amplification (MDA), o Amplificación por Desplazamiento Múltiple. La MDA hace básicamente lo mismo que la PCR, pero tiene ciertas ventajas frente a algún inconveniente.

Entre las primeras, produce cadenas de ADN más largas con menos errores, por lo que es especialmente apropiada para muestras muy escasas –como el ADN de una sola célula– donde interesa amplificar fragmentos largos sin errores –por ejemplo, genes humanos donde puede haber una mutación de una sola letra del ADN–. Entre los segundos, cuando en una muestra hay dos versiones del mismo ADN ligeramente diferentes –por ejemplo, las dos copias de un gen que hemos recibido de papá y mamá–, la polimerasa del Φ29 tiene una molesta tendencia a amplificar una de ellas y olvidarse de la otra.

En los últimos años, la MDA se ha convertido en una verdadera alternativa a la PCR, utilizándose extensamente para amplificar y leer genomas completos, incluso de una sola célula. Entre sus usos destacan la detección de mutaciones causantes de enfermedades genéticas o las pruebas forenses de ADN; lo que hace el CSI. Pero no olvidemos que frente a estos usos más populares, las técnicas de amplificación de ADN son lo que hoy sostiene toda la investigación en genética y biología molecular en todo el mundo; siempre que oigan o lean sobre un nuevo avance biomédico, casi seguro que se ha podido llegar a él gracias al uso intensivo de las técnicas de amplificación de ADN.

Así pues, ¿habría merecido un Nobel el trabajo de Margarita Salas? Bueno, en su momento la PCR ofreció la posibilidad de hacer fácilmente cosas que hasta entonces no podían hacerse o era demasiado laborioso, y a eso fue Mullis quien llegó primero. Una segunda técnica alternativa no suele llevarse un Nobel. También debe tenerse en cuenta que el desarrollo de la MDA fue un trabajo de varios grupos a lo largo del tiempo, aunque también hubo otros implicados en la invención de la PCR que, como siempre ocurre con los Nobel, se quedaron sin premio. Pero mientras que la PCR es una técnica ya veterana, la MDA está en crecimiento, y se han destacado sus aplicaciones en campos relativamente nuevos como la biología sintética. Como mínimo, lo que sí puede decirse es que su trabajo está a la altura de un Nobel.

De lo que no puede caber la menor duda es de que, por muchos galardones y reconocimientos que haya recibido en vida, Margarita Salas era sobrada acreedora de un premio que nunca se le concedió: el Príncipe/Princesa de Asturias.

En estos premios irregulares, el fallo del jurado a veces es un fallo garrafal; por ejemplo, cuando se otorgó a las creadoras del sistema de edición genómica CRISPR olvidando a quien descubrió aquello que lo hizo posible, el español Francis Mojica. En otros casos los fallos parecen venir motivados por criterios no estrictamente científicos (dejando aparte el de la nacionalidad, que se supone). E incluso teniendo en cuenta que en dicho jurado se ha sentado alguna persona que le debe mucho a Margarita Salas, la más importante científica del siglo XX en España nos ha dejado sin haber recibido el máximo galardón que se concede a la ciencia en este país. Los premios no se hacen grandes por quien los concede, sino por los premiados.

Los bebés CRISPR, un año después: confusión, mala ciencia e incoherencia

Nada es ciencia de verdad hasta que sale en los papeles. El experimento de los bebés CRISPR al que ayer me refería, anunciado hace ya casi un año por el investigador chino He Jiankui, no ha salido en los papeles, ni parece que vaya a salir, dado que las revistas científicas rechazan publicarlo por motivos éticos. Quizá por primera vez en la historia de la ciencia moderna, o al menos de la biología, una primicia mundial en un campo científico de gran relevancia (objetivamente es así, con independencia de todo lo demás) no va a publicarse, como si jamás hubiera ocurrido.

El problema es que sí ha ocurrido. El nacimiento de los bebés fue confirmado por las propias autoridades chinas. Y aunque no estemos hablando precisamente de una fuente de transparencia modélica, lo cierto es que nadie con un cierto conocimiento del asunto y de la ciencia implicada duda de que los experimentos de He sean reales, aunque sin una publicación sea imposible valorar hasta qué punto los resultados son tal como los ha contado.

El experto en leyes y ética de la biociencia Henry Greely, al que citaba ayer, escribe en su reciente artículo: “La escasez de las fuentes no significa que las proclamas de He sean falsas. De hecho, sospecho que la mayoría de ellas son ciertas, aunque solo sea porque, si se hubiera inventado los resultados, los habría inventado mejores”.

Y por lo tanto, dado que esto realmente sí ha ocurrido, ¿qué es preferible: que todos los detalles, los métodos y los resultados estén a disposición de la comunidad científica para que otros investigadores puedan evaluarlos y criticarlos, o que todo ello quede encerrado para siempre bajo siete llaves?

El investigador chino He Jiankui en la Segunda Cumbre Internacional de Edición del Genoma Humano, en noviembre de 2018. Imagen de VOA - Iris Tong / Wikipedia.

El investigador chino He Jiankui en la Segunda Cumbre Internacional de Edición del Genoma Humano, en noviembre de 2018. Imagen de VOA – Iris Tong / Wikipedia.

Quizá alguien podría pensar que es preferible lo segundo para evitar que otros científicos puedan repetirlo. Pero no, no es así. He no ha descubierto nada nuevo. No ha inventado la poción mágica ni la rueda; simplemente, ha traspasado una barrera que otros muchos investigadores conocedores de las mismas técnicas también podrían traspasar, pero que no lo han hecho por motivos éticos. No es necesario que el trabajo de He se publique para que otros investigadores puedan repetirlo. Y de hecho, en cambio no se suscitaron escándalos ni remotamente similares cuando se publicaron otros estudios cuya información sí podrían emplear otros con fines muy peligrosos: por ejemplo, las secuencias genéticas del virus de la viruela y de la gripe de 1918.

Otra muestra de los curiosos criterios con los que se está manejando el asunto de He la hemos conocido recientemente. El pasado junio, la revista Nature Medicine, que no es cualquier cosa, publicó un estudio en el que dos investigadores afirmaban que la mutación introducida en las niñas podía hacerlas enfermar y morir jóvenes. Los autores se basaban en un banco de datos de ADN de casi medio millón de personas de Reino Unido, en el que habían descubierto menos personas con esta mutación de las que se esperarían por azar.

De inmediato, hubo otros investigadores que repitieron el análisis y no encontraron los mismos resultados. Finalmente los propios autores han retractado su estudio, reconociendo que cometieron un error garrafal: el sistema utilizado para el genotipado en la base de datos produce un número muy elevado de falsos negativos; es decir, gente que tiene la mutación sin que esta aparezca en sus datos de ADN, porque al método utilizado se le ha escapado.

¿Cómo es posible que una revista como Nature Medicine publicara un estudio fallido, con un error que cualquier estudiante de primero de doctorado habría detectado si hubiera tenido acceso a la misma información que tenían los autores y los revisores del trabajo? ¿Es que cualquier estudio que incite a sacar las antorchas y los tridentes contra He va a aceptarse solo por este motivo, aunque sea mala ciencia?

Por supuesto, es importante aclarar que nadie en la comunidad científica ha defendido las posturas de He, porque son indefendibles. Pero frente a lo que parece una mayoría de voces relevantes que han condenado por entero la edición genómica de la línea germinal humana (embriones y células reproductoras), casi podrían contarse con los dedos los científicos que se han atrevido a defender públicamente que el problema del trabajo de He no es lo que ha hecho, sino que lo haya hecho sin las garantías, la supervisión, la aprobación ética y la transparencia que estos experimentos requieren.

La voz más prominente en este sentido ha sido la del genetista de Harvard George Church, uno de los expertos más prestigiosos y respetados en su campo. Casi podría decirse que fue la única voz relevante que después del anuncio de He se alzó defendiendo, no a este investigador ni sus experimentos, pero sí la edición genómica de la línea germinal humana. Y ello a pesar de que en 2017 un informe de las Academias Nacionales de Ciencias, Ingeniería y Medicina de EEUU abría la puerta a estos procedimientos siempre que se apliquen criterios estrictos.

Un último dato sobre la forma tan curiosa, por decirlo de forma neutra, con que la sociedad y los medios han tratado este tema. La semana pasada, todos los medios hacían la ola a un nuevo método desarrollado por David Liu, uno de los creadores de la herramienta de edición genética CRISPR. El prime editing, como ha llamado Liu a su nuevo sistema, es más limpio y preciso que la técnica original de CRISPR y más apto para un gran número de modificaciones genéticas que otras variantes obtenidas anteriormente. Según el propio Liu, podría corregir hasta un 89% de las más de 75.000 variantes genéticas patogénicas conocidas en humanos (el resto afectan a secuencias de ADN demasiado largas para el alcance de este método).

Naturalmente, no hubo medio que no elogiara lo que el trabajo de Liu supone de cara a la posible erradicación futura de muchas enfermedades genéticas de las denominadas raras. Y aunque desde luego la edición genómica en la línea somática (las células digamos normales del cuerpo) alberga también un gran potencial terapéutico para ciertas patologías, lo que ninguno de esos medios aclaraba es que la erradicación de las enfermedades raras por estas técnicas pasa por la edición genómica de la línea germinal.

Por decirlo aún más claro: la erradicación de las enfermedades raras por métodos genéticos como el creado por Liu pasa por hacer lo que He ha hecho, y que una mayoría ha condenado no por cómo lo ha hecho, sino simplemente por haberlo hecho.

En definitiva, parece lógico que He sea tratado como cualquier practicante de cualquier procedimiento clínico que no cuente con los permisos y la aprobación que son necesarios para ejercerlo. Pero cerrar la puerta a la edición genómica de la línea germinal humana es cerrar la puerta al futuro de la prevención de terribles enfermedades genéticas para las que no existe cura ni tratamiento.

Una barrera ética a superar, si es que se quieren aprovechar los inmensos beneficios que estas técnicas pueden aportar, es el hecho de que ninguno de los bebés, ni los de He ni ningún otro, podrá jamás aprobar o rechazar el procedimiento. Y otra barrera ética a superar es que el riesgo cero jamás existirá; no existe en ningún proceso, natural o creado por el ser humano. Si esta “cirugía genética” llega a aplicarse, habrá errores. Para los afectados, esos errores serán trágicos. Pero negar a una inmensa mayoría los beneficios que pueden obtenerse de estas técnicas sería como suprimir el transporte aéreo por el hecho de que algunos aviones se estrellan.