Entradas etiquetadas como ‘exoplanetas’

Dos ideas infundadas sobre la vida en el universo

Hace unos días, un programa de radio abría una encuesta entre sus oyentes: los acusados en el juicio del proceso catalán, ¿han cometido delito de rebelión o de sedición? Se me ocurrió pensar: ¿cómo osaría yo pronunciarme sobre semejante cosa? Para mí tanto podrían haber cometido rebelión o sedición como allanamiento, estupro, brujería, phishing, bullying, mobbing, coworking, spinning, o nada de lo anterior. Pero sí, los oyentes osaban. Y la encuesta no distinguía entre expertos en leyes, que los habría, o en ebanistería húngara medieval.

Y si esto se aplica a algo completamente artificial y construido por el ser humano como son las leyes, ¿cómo no va a aplicarse a algo como la naturaleza, que no hemos hecho nosotros, sino que nos limitamos a intentar comprenderla, y sobre la cual aún ni siquiera podemos estar seguros de si es más lo que sabemos o lo que nos falta por saber? Sin embargo, también en esto hay cuestiones en las que todo el mundo osa.

Un ejemplo: la existencia de vida alienígena.

En concreto, la opinión más extendida dice que la vida tiene que ser algo muy común en todo el universo. Si ha surgido en la Tierra, ¿por qué no en cualquier otro lugar, dado que el nuestro no tiene por qué ser en ningún sentido un planeta excepcional? La vida es algo inevitable, dicen muchos, allí donde puede darse. Y esto, curiosamente, a pesar de que en realidad el argumento no viene avalado por ninguna prueba que conozcamos hasta ahora.

Es más: en la Tierra la vida ha sido inevitable… solo una vez a lo largo de más de 5.000 millones de años. Pero la biología no es una carrera de caballos, donde las apuestas se cierran una vez que se da la salida. Si es tan inevitable, ¿por qué no se ha producido cientos, miles o millones de veces? (Nota: sabemos por diferentes pruebas que todos los seres terrícolas que conocemos proceden de un único antepasado común; es decir, que la vida en la Tierra solo ha surgido una única vez).

Ilustración artística de la superficie del exoplaneta TRAPPIST-1f. Imagen de NASA / JPL-Caltech.

Ilustración artística de la superficie del exoplaneta TRAPPIST-1f. Imagen de NASA / JPL-Caltech.

Pero un momento: ¿no son los propios científicos quienes han defendido reiteradamente esta omnipresencia de la vida? Así que no se trata solo de la opinión de los expertos en ebanistería húngara medieval.

En efecto, es cierto. Tradicionalmente, el interés en la posible existencia de vida alienígena fue un campo impulsado sobre todo por físicos y matemáticos. Dado que aún no conocemos vida alienígena y no pueden existir expertos en algo que no conocemos (y que la astrobiología se inventó mucho más tarde), parecía razonable preguntar a los expertos en conjeturas, como los físicos y los matemáticos. Y si nos atenemos a las conjeturas, parece mucho más probable que el nuestro sea un planeta normal en el que ha surgido la vida normalmente, según dicta el principio de mediocridad: una cosa elegida al azar de entre muchas tiende a un perfil promedio de esas muchas.

Pero hay algo que ha enturbiado el debate: durante décadas ha existido un cierto pudor intelectual en torno a la posible excepcionalidad de la Tierra y de la vida terrestre. Para algunos, reconocerle a la Tierra un carácter extraordinario sería como hacer una concesión al diseño inteligente, mientras que para otros supondría aceptar el principio antrópico, que el universo existe porque nosotros estamos aquí para observarlo.

Sin embargo, si por algo debe distinguirse la ciencia es por no dejarse condicionar por esquemas ideológicos preconcebidos (o ni siquiera intelectuales): si las observaciones revelan que ciertas constantes del universo, que en principio podrían tomar cualquier valor, parecen extrañamente ajustadas a los valores precisos que permiten la existencia del propio universo, de la materia y de la vida, no puede negarse el hecho simplemente porque pueda dar cierta cancha al creacionismo y al diseño inteligente. Si se oyen ruidos en el sótano y no hay nadie allí, negar los ruidos solo porque uno no cree en fantasmas es tan absurdo como atribuirlos a fantasmas antes de haber descartado absolutamente todas las posibles explicaciones no sobrenaturales. En el caso del ajuste fino del universo, lo más obvio es manejar la hipótesis del multiverso: de todos los universos surgidos, solo aquellos en los que esas constantes han tomado por azar ciertos valores concretos son los que prosperan.

Algo similar ocurre con la aparición de la vida: aunque sin duda aún es pronto para hablar de un cambio de tendencia, lo cierto es que cada vez parecen ser más los científicos que comienzan a abandonar el principio de mediocridad para apoyar la hipótesis contraria, que la Tierra es un planeta más excepcional de lo que sospechábamos. Y que, como quizá ocurra con todos los universos del multiverso, solo en esos raros planetas excepcionales como la Tierra, donde por puro azar se ha producido un afortunado jackpot de numerosas variables independientes entre sí, puede haber surgido la vida.

Recientemente he ido contando algunos de esos estudios que apoyan la excepcionalidad de la Tierra. Hace ya más de una década, quienes nos dedicamos a esto escribíamos que era inminente el momento en el que se encontraría un planeta gemelo del nuestro. Pero el tiempo no ha dado la razón a esta idea, sino que aún seguimos esperando: de los más de 4.000 exoplanetas ya conocidos, ni uno solo parece ser la versión 2.0 de la Tierra.

Es más, ninguno de ellos parece reunir todas las condiciones que hasta ahora se han planteado como las adecuadas para la presencia de vida, al menos vida compleja: el único que podría tener un campo magnético potente como el nuestro, Kepler-186f, necesitaría niveles letales de CO2 para mantener una temperatura habitable, como concluía un estudio que conté hace unos días. Aunque probablemente el gemelo terrestre acabará apareciendo tarde o temprano, no será un planeta mediocre, sino uno tan excepcional como el nuestro, único entre miles.

Representación artística de Kepler-186f. Imagen de NASA Ames/SETI Institute/JPL-Caltech.

Representación artística de Kepler-186f. Imagen de NASA Ames/SETI Institute/JPL-Caltech.

Como ya he explicado aquí, esas condiciones de habitabilidad que van proponiendo diversos estudios son ya bastante numerosas. Ahora se añade una más: si solo recientemente ha comenzado a apreciarse que no basta con lo que hay en su superficie para hacer a un planeta habitable, sino que también intervienen su estructura y composición interiores y la historia de su evolución, un nuevo estudio viene a añadir que tampoco basta simplemente con las características del propio planeta, sino que es toda la configuración de su Sistema Solar la que debe ser adecuada para que se produzca esa rara conjunción de factores necesarios para la vida.

El estudio, que según ha anunciado el Instituto SETI (siglas en inglés de Búsqueda de Inteligencia Extraterrestre) se publicará próximamente en la revista The Astronomical Journal, detalla los resultados de la mitad de las observaciones que el instrumento Gemini Planet Imager (GPI), perteneciente al telescopio Gemini South en Chile, ha recogido durante cuatro años. Este rastreo ha buscado planetas gigantes como Júpiter o Saturno en 531 estrellas cercanas y jóvenes. Para sorpresa de los investigadores, los datos muestran que estos planetas gigantes en torno a estrellas similares al Sol son más raros de lo que se pensaba.

Y respecto a lo que puede concluirse del estudio, esto es lo que dice su coautor Franck Marchis, del Instituto SETI: “Sospechamos que en nuestro Sistema Solar Júpiter y Saturno esculpieron la arquitectura final que influye en las propiedades de los planetas terrestres como Marte y la Tierra, incluyendo los elementos básicos para la vida como el transporte de agua y las tasas de impactos [de asteroides]”.

Y añade: “Un sistema planetario con solo planetas terrestres y sin planetas gigantes será probablemente muy diferente al nuestro, y esto podría tener consecuencias sobre la posibilidad de la existencia de vida en algún otro lugar de nuestra galaxia”.

En otras palabras: los datos llevan a Marchis a admitir la posibilidad de que tal vez la vida sea un fenómeno muy raro en la galaxia, si lo habitual en otros sistemas estelares es que no exista ese equilibrio entre planetas terrestres (rocosos) interiores y gigantes gaseosos exteriores que en nuestro sistema ha propiciado la arquitectura correcta y los procesos que han dependido de ella, como el transporte de agua a la Tierra. No está de más mencionar que Marchis trabaja en un instituto cuya razón de ser es precisamente la búsqueda de inteligencia extraterrestre, así que no puede decirse que le mueva el interés de demostrar que no existe la vida alienígena. Pero los datos son los datos.

En resumen, la idea de que la Tierra es un lugar mediocre como cualquier otro del universo está comenzando a pasar para muchos científicos de simple conjetura infundada a hipótesis refutada por los datos.

Pero respecto a la vida alienígena siempre se apunta una coletilla, y es la existencia de vida “tal como la conocemos”. Por supuesto, creer que cualquier forma de vida deba ser parecida a las terrestres sería terracentrismo. Hace unos días daban en la 2 de TVE una de las películas más extrañas de ciencia ficción (si así puede llamarse) que he visto, en la que sendos dobles alienígenas de Juan y Junior, cantantes españoles de los años 60 y 70, suplantaban a los originales como primer paso de una invasión y colonización a gran escala. El exoplaneta de la película era tan idéntico a la Tierra que incluso sus habitantes humanos eran dobles exactos de los terrícolas.

Y por supuesto, si por el contrario la vida alienígena es muy diferente de la terrestre, también podrían serlo las condiciones que para ella resultan habitables. ¿No?

Pero lo cierto es que esta es la segunda idea infundada de quienes defienden un universo lleno de vida. Para que la vida pueda llamarse vida, tiene que cumplir una serie de requisitos mínimos que diferencian a algo vivo de algo que no lo está, como una piedra. Y tanto las opciones disponibles como las condiciones que las permiten están limitadas; en biología no todo vale. Como veremos mañana.

Muchos planetas “habitables” tienen niveles de gases tóxicos incompatibles con la vida compleja

Hace unos días contaba aquí que, frente al optimismo de muchos sobre cuándo un planeta puede considerarse habitable, las aportaciones de científicos de diversas disciplinas han reducido bastante esa supuesta franja de habitabilidad. Ya no se trata solo de que un exoplaneta, además de tener un suelo rocoso y una atmósfera, se encuentre a la distancia apropiada de su estrella como para que su superficie no sea ni ardiente ni gélida y pueda existir agua en forma líquida, lo que se conoce como la zona “Ricitos de Oro” (por la niña del cuento que no quería la sopa muy caliente ni muy fría).

A esta condición básica, distintos expertos han añadido como requisitos para la vida la existencia de un campo magnético, un nivel de radiación moderado, una rotación no sincrónica, la presencia de una química precisa, una evolución inicial favorable, una dinámica tectónica activa y un ciclo sostenible de carbonatos-silicatos. Recientemente un análisis de los datos de los exoplanetas rocosos conocidos estimaba que solo uno, Kepler-186f, podría tener un campo magnético potente; lo que, de ser cierto, enfría bastante las esperanzas de que alguno de los planetas ya descubiertos pueda albergar vida, o al menos vida compleja.

Ilustración del sistema TRAPPIST-1. Imagen de NASA/JPL-Caltech.

Ilustración del sistema TRAPPIST-1. Imagen de NASA/JPL-Caltech.

Ahora, un nuevo estudio viene a recortar aún más las posibilidades de vida compleja en los exoplanetas. Investigadores de varias instituciones de EEUU, incluyendo la NASA, se han planteado la siguiente cuestión: nuestro propio planeta depende de un potente efecto invernadero creado por el dióxido de carbono (CO2) para mantener temperaturas compatibles con la vida. También en lo que se refiere al CO2 hay una zona Ricitos de Oro: Marte y Venus tienen atmósferas compuestas sobre todo por este gas; pero mientras que la de Marte es muy tenue, dando como resultado un planeta gélido, la de Venus es aplastante, con un efecto invernadero catastrófico que convierte a este planeta en el más caliente del Sistema Solar. Y sin embargo, ambos están situados en la zona de habitabilidad del Sol; para un exoastrónomo que nos observara desde la distancia, Venus y Marte serían tan habitables como la Tierra.

El objetivo de los autores del estudio es evitar este error a la hora de valorar la habitabilidad de los exoplanetas. Según cuentan en su trabajo, la definición actual de la zona habitable de un planeta extrasolar contempla la existencia de un efecto invernadero que en buena parte de esa franja requiere concentraciones de CO2 incompatibles con la vida compleja terrestre. Es más, y dado que muchos de los exoplanetas descubiertos orbitan en torno a estrellas enanas rojas –las más abundantes de la galaxia–, los autores añaden que “el tipo y la intensidad de radiación ultravioleta de estas estrellas pequeñas y frías puede conducir a altas concentraciones de monóxido de carbono (CO), otro gas letal”.

Basándose en estos datos, los autores concluyen que en dos de las estrellas más próximas a nosotros y en las que residían buenas esperanzas de hallar vida, Proxima Centauri y TRAPPIST-1, la zona habitable simplemente no existe. En otras estrellas, estos condicionantes reducen seriamente la posible franja de habitabilidad, y dejan fuera de ella a ciertos planetas que parecían también prometedores; por ejemplo, Kepler-186f quedaría en una zona de excesiva toxicidad por CO2, como puede verse en el gráfico.

En esta figura, toda la zona coloreada marca la franja de habitabilidad tal como se entiende tradicionalmente, basada solo en la temperatura de la estrella y en su luz. De toda esta franja, solo la parte azul contiene concentraciones de CO y CO2 compatibles con la vida compleja. Las partes en amarillo y rojo claro señalan respectivamente las zonas con exceso de CO2 y CO, mientras que en la zona de rojo oscuro ambos gases están presentes en concentraciones letales.

Según el director del estudio, Timothy Lions, de la Universidad de California en Riverside, sus resultados indican que “los ecosistemas complejos como los nuestros no pueden existir en la mayoría de las regiones de la zona habitable tal como se define tradicionalmente”. Por su parte, el primer autor del estudio, Edward Schwieterman, dice: “Pienso que mostrar lo raro y especial que es nuestro planeta refuerza la necesidad de protegerlo”. Y añade: “Hasta donde sabemos, la Tierra es el único planeta del universo que puede sostener la vida humana”.

Naturalmente, esto no implica que la Tierra sea el único planeta del universo que puede sostener la vida en general. De hecho, ciertos microbios pueden prosperar perfectamente en atmósferas ricas en CO2 e incluso en CO. Los propios autores del nuevo estudio han publicado recientemente otro trabajo en el que muestran cómo la presencia de altos niveles de CO no es necesariamente un signo de un planeta sin vida; pero en estos casos la vida solo podría restringirse a formas simples microbianas sin posibilidad de que existan organismos multicelulares, descartando la existencia de una civilización inteligente.

En un futuro cercano, los nuevos telescopios van a permitir obtener firmas espectrales (por el espectro de luz) de la composición atmosférica de muchos exoplanetas. Sin duda estos estudios ayudarán a valorar con más precisión qué planetas poseen atmósferas realmente habitables y cuáles no. Pero por el momento, quizá no estaría de más que resultados como los de Schwieterman, Lions y sus colaboradores se tengan en cuenta a la hora de presentar los nuevos exoplanetas descubiertos como “habitables”. Sobre todo para evitar la falsa impresión de que los lugares habitables en el universo son muy abundantes; una idea que hoy, como mínimo, solo puede calificarse de infundada.

Un planeta habitable no es solo cálido, y la Tierra es un caso muy raro

La Tierra es un raro y excepcional oasis, el único en un volumen de espacio de al menos 33,5 años luz cúbicos, o unos 3.500 hexillones de kilómetros cúbicos (millones de millones de millones de millones de millones de millones), si no me han fallado las cuentas.

Esto, considerando que el Sistema Solar se extiende hasta un radio de unos 2 años luz, que es a donde alcanza la influencia gravitatoria del Sol. Pero naturalmente, el espacio en el que la Tierra es el único reducto de vida es en realidad mucho mayor, extendiéndose hasta al menos la distancia donde alcanza la influencia gravitatoria de las estrellas más próximas. Si es que alguna de ellas acoge algún planeta con vida, que hasta ahora no nos consta.

Cierto que incluso estas gigantescas cifras suponen solo una minúscula y despreciable porción del universo visible. Pero para situar las cosas en su perspectiva adecuada, de vez en cuando conviene tratar de imaginar lo que estos números representan para ser conscientes de que no vivimos en un lugar cualquiera; en contra del principio de mediocridad –que en este caso es más una premisa que un principio–, todo lo que vamos conociendo sobre la Tierra y sobre otros planetas nos lleva a la idea de que el nuestro sí es un planeta excepcional.

Imagen de Max Pixel.

Imagen de Max Pixel.

Recientemente hemos sabido del descubrimiento de 18 nuevos exoplanetas de tamaño parecido al de la Tierra, que permanecían ocultos en los datos del telescopio espacial Kepler y se han revelado al aplicar un nuevo algoritmo. El hallazgo de planetas en otros sistemas estelares se ha convertido ya en algo casi rutinario; ya se conocen más de 4.000. De ellos, muchos se han presentado como “habitables”; es decir, que orbitan a una distancia adecuada de su estrella como para que las temperaturas en su superficie sean moderadas y permitan la posible existencia de agua líquida. Uno de los 18 nuevos exoplanetas podría cumplir esta condición.

Pero evidentemente, es fácil imaginar que una temperatura moderada no basta para hacer a un planeta habitable. Hace un par de meses conté aquí un estudio según el cual solo uno de los exoplanetas rocosos conocidos podría tener un campo magnético similar al terrestre, que en nuestro planeta protege la atmósfera y la vida del viento y la radiación estelar y ha ayudado a que la Tierra no pierda su agua.

De hecho, una frecuente objeción a la posible presencia de vida en otros planetas es la radiación a la que pueden estar sometidos. Algunos expertos actualmente favorecen las estrellas enanas rojas, tal vez las más abundantes en nuestra galaxia, como las mejores candidatas para albergar planetas con vida. Pero muchas de estas estrellas son fulgurantes, de temperamento tan violento que pueden duplicar su brillo en unos minutos, y la radiación de esas llamaradas súbitas puede hacer sus presuntos planetas habitables realmente inhabitables.

Además, los planetas en zona “habitable” (entiéndase, cálida) de las enanas rojas suelen estar tan cerca de su estrella que tienen acoplamiento mareal; es decir, siempre dan la misma cara, como la Luna a la Tierra. Lo cual probablemente implique que uno de los lados está permanentemente a temperaturas que congelan hasta los gases.

Con todo lo anterior ya tenemos no una, sino siete condiciones que debería cumplir un planeta para ser teóricamente habitable: una temperatura moderada, un sustrato de roca, una atmósfera, agua, un fuerte campo magnético, una estrella no demasiado violenta y preferiblemente una rotación no sincronizada con la de su estrella. La Tierra cumple todas estas condiciones. Es el único planeta del Sistema Solar que las cumple. Y como ya he dicho, hasta ahora solo se conoce un único exoplaneta que posiblemente cumpliría tres de ellas.

Un exoplaneta considerado "habitable" podría ser esto. Imagen de Max Pixel.

Un exoplaneta considerado “habitable” podría ser esto. Imagen de Max Pixel.

Pero aquí no acaban los requisitos. Recientemente, la revista Science publicaba un artículo en el que un grupo de investigadores de la Institución Carnegie para la Ciencia (EEUU) analizaba precisamente cuáles son las condiciones necesarias para considerar que un planeta podría ser habitable. Y entre ellas, destacaban la importancia de algo que suele olvidarse: el interior.

En resumen, los autores vienen a subrayar que el movimiento de las placas tectónicas en la Tierra es crucial para preservar el clima adecuado del que depende la vida. La tectónica de placas mantiene el ciclo de carbonatos-silicatos, por el que se reciclan los materiales geológicos entre la superficie y el interior de la Tierra. El cambio climático tiene mucho que ver con la alteración de este ciclo por las emisiones antropogénicas de gases de efecto invernadero; de hecho, la catástrofe de este ciclo fue lo que convirtió a Venus en un infierno inhabitable. Al mismo tiempo, la tectónica de placas mantiene también la convección en el interior de la Tierra que crea el campo magnético que a su vez nos protege de la radiación.

Habitabilidad de un exoplaneta. Imagen de Shahar et al / Science.

Habitabilidad de un exoplaneta. Imagen de Shahar et al / Science.

Y todo esto, sugieren los autores, a su vez depende de la composición química de la Tierra. Es decir, que elementos fundamentales en la geología de los planetas rocosos como carbono, oxígeno, hidrógeno, hierro, silicio o magnesio, tal vez tengan que hallarse en las proporciones precisas y haber sufrido unos determinados procesos de calentamiento y enfriamiento en la infancia del planeta para que exista esa geodinámica que sustenta la vida. Si esos mismos elementos se encuentran en proporciones diferentes, o la evolución del planeta es distinta, tal vez no sea posible la vida.

Así que ya tenemos: una temperatura moderada, un sustrato de roca, una atmósfera, agua, un fuerte campo magnético, una estrella no demasiado violenta, preferiblemente una rotación no sincronizada con la de su estrella, presencia de ciertos elementos químicos en proporciones precisas, una evolución favorable en la historia inicial del planeta, tectónica de placas y un ciclo estable y adecuado de carbonatos-silicatos. Todo esto es lo que posiblemente se necesite, según distintos expertos, para decir que un planeta podría ser habitable.

Así que, sí, la Tierra es un lugar extremadamente raro. Tanto que hasta ahora no se ha encontrado otro igual. Por supuesto, a todo este asunto de la habitabilidad planetaria se le suele aplicar esa famosa coletilla: vida “tal como la conocemos”. Sobre la otra hay mucha ciencia ficción. Pero dado que en el mundo real ningún científico serio y acreditado ha aportado el menor indicio creíble de que pueda haberla de otro tipo, ni siquiera en teoría, dejémoslo en que vida “tal como la conocemos” es sencillamente “vida”. Al menos, mientras nadie demuestre lo contrario.

La radiación estelar, un arma de doble filo para la vida en otros planetas

La semana pasada, dos científicos del Instituto Carl Sagan de la Universidad de Cornell publicaban un interesante estudio con una conclusión sugerente: la alta irradiación estelar que reciben algunos de los exoplanetas descubiertos no sería un obstáculo para la supervivencia, ya que la Tierra logró engendrar vida a pesar de que en sus comienzos también estaba sometida a un elevado nivel de radiación del Sol.

En su estudio, publicado en Monthly Notices of the Royal Astronomical Society, Lisa Kaltenegger y Jack O’Malley-James cuentan que Proxima-b, un planeta rocoso en la zona habitable de Proxima Centauri (una de las estrellas del sistema estelar más cercano a nosotros, Alfa Centauri), recibe 30 veces más radiación ultravioleta (UV) que la Tierra actual y 250 veces más bombardeo de rayos X.

En su día, estos datos desinflaron las expectativas de encontrar vida allí, ya que estos niveles de radiación se consideraban demasiado hostiles. Algo similar ocurre con otros exoplanetas potencialmente habitables que también orbitan en torno a enanas rojas, estrellas pequeñas, poco brillantes y templadas que suelen tener un comportamiento temperamental.

Kaltenegger y O’Malley-James han construido modelos de simulación computacional del ambiente de radiación UV en los cuatro exoplanetas habitables más próximos, Proxima-b, TRAPPIST-1e, Ross-128b y LHS-1140b, y con distintas composiciones atmosféricas para imponer diferentes grados de protección frente a los embates de sus estrellas, todas ellas enanas rojas. Al mismo tiempo, los dos investigadores simularon también las condiciones a lo largo de la historia de la Tierra, desde hace 3.900 millones de años hasta hoy.

Ilustración de un planeta habitable en la órbita de una estrella enana roja. Imagen de Jack O’Malley-James/Cornell University.

Ilustración de un planeta habitable en la órbita de una estrella enana roja. Imagen de Jack O’Malley-James/Cornell University.

Los resultados muestran que incluso en las peores condiciones atmosféricas y de irradiación, los exoplanetas analizados soportarían niveles de UV inferiores a los que experimentaba nuestro planeta hace 3.900 millones de años, cuando posiblemente la vida comenzaba a dar sus primeros pasos; unos primeros pasos que llegaron increíblemente lejos. “Dado que la Tierra temprana estaba habitada, mostramos que la radiación UV no debería ser un factor limitante para la habitabilidad de los planetas”, escriben los investigadores. “Nuestros mundos vecinos más cercanos permanecen como objetivos interesantes para la búsqueda de vida más allá de nuestro Sistema Solar”.

El estudio de Kaltenegger y O’Malley-James es sin duda un argumento a favor de que la vida pueda progresar en entornos más hostiles de lo que solemos imaginar (aunque no aborda otras agresiones como los rayos X). De hecho, sus implicaciones van aún más allá de lo que los autores contemplan, porque la radiación es una causa de variabilidad genética, el sustrato sobre el que actúa la evolución. La radiación mata, pero también muta: puede generar esporádicamente ciertas variantes genéticas que casualmente resulten en individuos mejor adaptados y en el primer paso hacia nuevas especies. Otro estudio reciente muestra que el sistema TRAPPIST-1 puede estar sometido a un intenso bombardeo de protones de alta energía; y una vez más, esto puede ser tan dañino para la vida como generador de diversidad.

Sin embargo, al leer el estudio es inevitable regresar al viejo problema, el principal: sí, la vida puede perdurar, pero para ello antes tiene que haber surgido. ¿Y cómo?

Hasta que un experimento logre reproducir a escala acelerada el fenómeno de la abiogénesis –un término elegante para referirse a la generación espontánea en tiempo geológico, la aparición de vida a partir de la no-vida–, o hasta que un algoritmo de Inteligencia Artificial sea capaz de simular el proceso, seguimos completamente a oscuras.

La especiación es un fenómeno continuo y abundante. La eclosión de seres complejos a partir de otros más sencillos es algo que ha ocurrido infinidad de veces a lo largo de la evolución, incluso cuando se ha hecho borrón y cuenta nueva, como pudo ser el caso de la biota ediacárica hace 542 millones de años. Pero todas las pruebas apuntan a que en 4.500 millones de años la vida solo ha surgido una única vez. Y lo cierto es que aún no tenemos la menor idea de cómo ocurrió.

Lo cual nos lleva una vez más a la misma idea planteada a menudo en este blog, y es que si la abiogénesis ha sido un fenómeno tan inconcebiblemente extraordinario y excepcional en un planeta también inusualmente raro —como conté recientemente aquí–, defender la abundancia de la vida en el universo es más un deseo pedido a una estrella fugaz que un argumento basado en ciencia. Al menos, con las pruebas que tenemos hasta ahora.

Esta ausencia de pruebas obliga a los defensores de la profusión de la vida en el universo a explicar por qué no tenemos absolutamente ninguna constancia de ello. Y a veces les empuja a esgrimir teorías que llegan a rayar en lo delirante. Como les contaré el próximo día.

¿Un universo rebosante de vida? ¿O la Tierra sí es un lugar especial?

La vida es un fenómeno bastante improbable. Sí, ya sé, ya sé. Se preguntarán de dónde sale esta afirmación. Realmente no es tal, sino solo una hipótesis. Pero una que hasta ahora tiene más apoyos a favor que la contraria.

Es lógico que la visión humana al respecto esté normalmente sesgada hacia el lado contrario, dado que nosotros estamos aquí y apenas conocemos otro lugar. Ningún ser humano ha pisado jamás otro planeta, y solo 12 han caminado sobre otro cuerpo celeste. Así que nos guiamos intuitivamente por lo único que conocemos: un planeta rebosante de vida.

Pensemos en alguien que ha vivido su existencia alejado de la civilización, que un día viaja a la ciudad, compra un billete de lotería y le toca el gran premio. Sin duda pensaría que es enormemente fácil, dado que desconoce las reglas del sorteo y las posibilidades de ganar. En términos de la lotería galáctica de la vida, nosotros, los agraciados, solemos pensar que los planetas habitados deben de ser inmensamente comunes en el universo, aunque en realidad no tengamos la menor idea de cuáles son las reglas concretas de la aparición de la vida ni la probabilidad real de que ocurra.

A esta idea común de que la vida debe de ser tan omnipresente en el cosmos como lo es en nuestro planeta –donde se encuentra incluso en los entornos más hostiles, desde los polos a los desiertos, pasando por los volcanes y las fosas oceánicas– han contribuido los astrofísicos, quienes durante décadas nos han hecho calar la idea de que la Tierra no es un lugar especial.

De hecho, esta visión empezó a incubarse cuando Copérnico se cargó el geocentrismo, y ha venido expandiéndose con las evidencias de que ni nuestro planeta, ni nuestro sistema solar, ni nuestra galaxia tienen esencialmente nada especial que los distinga de otros muchos millones, desde el punto de vista puramente astrofísico. A menudo se dice que la Tierra es solo un suburbio más de un sistema solar suburbial más en una galaxia suburbial más. Todo lo cual ha llevado a muchos físicos a encogerse de hombros: si en la Tierra hay vida, ¿por qué no en cualquier otro lugar?

Imagen de la Tierra desde el espacio tomada por la misión Apolo 17 en 1972. Imagen de NASA.

Imagen de la Tierra desde el espacio tomada por la misión Apolo 17 en 1972. Imagen de NASA.

Solo que esta visión es simplista. Y espero que se me entienda, no es un “simplista” con ánimo peyorativo. Es que la física es simplista por obligación. Había un viejo chiste sobre dos caballos de carreras, y un físico al que se le preguntaba cuál de los dos tenía más posibilidades de llegar primero a la meta. El físico decía: supongamos dos caballos totalmente esféricos y sin rozamiento…

Solo cuando los físicos comienzan a hundir los pies en el sucio cenagal de la química y la biología es cuando son realmente conscientes de que los caballos no son esféricos y sin rozamiento. O, como decía Carl Sagan, que “la biología es más parecida a la historia que a la física” porque “no hay predicciones en la biología, igual que no hay predicciones en la historia”. Y de que tal vez la Tierra después de todo sí sea un lugar más especial de lo que predice la astrofísica.

Sagan era astrofísico, pero hundió los pies. Otro ejemplo es el australiano Charley Lineweaver, astrofísico reconvertido en astro-bio-geólogo. En realidad, no crean que los astrobiólogos tienen más respuestas. Los astrobiólogos son un poco como un equipo de bomberos forestales en el desierto, siempre esperando a poder entrar en acción. A la espera de ese momento, exploran las posibilidades teóricas analizando las condiciones más raras y extremas en las que puede llegar a surgir un incendio.

Pero cuando un físico como Lineweaver comienza a añadir capas de complejidad a esa noción simplista que aplica a la Tierra el principio de mediocridad, descubre que quizá nuestro planeta no sea realmente un suburbio tan mediocre. Lineweaver suele ilustrar sus planteamientos con lo que llama la falacia del planeta de los simios, en alusión a la idea de que el universo debe de estar lleno de especies inteligentes porque la evolución conduce a eso; en la saga clásica, el declive de los humanos dejaba el hueco para que los simios dieran ese salto evolutivo.

Pero para Lineweaver, existe un experimento natural que prueba cómo la evolución no conduce necesariamente a la aparición de una especie tecnológica inteligente. Es su propio país, Australia; un continente separado del resto durante 100 millones de años y en el que todo lo que logró la evolución, según sus propias palabras, fueron los canguros.

Lineweaver propone que existe un “cuello de botella gaiano” (según la idea de Gaia, la Tierra como un sistema vivo autorregulado), un momento de crisis en el que todo planeta con vida naciente deriva hacia la catástrofe climática cuando la propia biología no consigue modificar el ciclo de carbonatos-silicatos para imponer unas condiciones de habitabilidad estables. Es posible que esto sucediera en Venus y Marte, y según Lineweaver la Tierra podría ser un caso insólito que consiguió superar ese cuello de botella. Con lo cual este planeta no sería un ejemplo mediocre de lo que es la norma en el universo, sino una excepción, una anomalía, un raro caso de éxito donde todos los demás fallan.

Por supuesto, la idea de Lineweaver no deja de ser otra hipótesis sin demostración. Pero quien defienda esa visión del universo rebosante de vida debe enfrentarse a la incómoda realidad de que los datos disponibles apoyan más bien lo contrario: aquí no ha venido nadie más, y en los miles de mundos ya confirmados aún no hay nada que invite fuertemente a sospechar la existencia de vida.

Cierto es que tampoco hay nada que lo excluya. Pero aunque el descubrimiento de nuevos exoplanetas ha estado afectado por un sesgo impuesto por los propios métodos de observación –por ejemplo, es más fácil descubrir planetas supergigantes gaseosos, poco aptos para la vida–, la realidad es que una vez más la Tierra sí parece ser un lugar algo especial; entre miles de mundos ya descubiertos, no parece haber tantos similares al nuestro como en un principio podría pensarse.

Lineweaver ha aportado ahora un nuevo dato más en contra de esa percepción de la Tierra como un planeta mediocre, y por tanto en contra de la idea del universo rebosante de vida. El científico australiano y sus colaboradores, los astrofísicos Sarah McIntyre y Michael Ireland, han analizado la posibilidad de que los exoplanetas rocosos conocidos hasta ahora posean un campo magnético similar al de la Tierra. El motivo, escriben los investigadores en su estudio, es que “las evidencias del Sistema Solar sugieren que, a diferencia de Venus y Marte, la presencia de un potente dipolo magnético en la Tierra ha ayudado a mantener agua líquida en su superficie”, y por tanto la vida.

Los investigadores no sostienen que la existencia de un campo magnético sea un requisito mínimo obligatorio para la vida, pero sí que aumenta sus posibilidades, al proteger el agua y la atmósfera del viento y la radiación estelar.

El resultado del estudio es que solo uno de los exoplanetas analizados, Kepler-186f, tiene un campo magnético mayor que el terrestre, “mientras que aproximadamente la mitad de los exoplanetas rocosos detectados en la región habitable de sus estrellas tienen un dipolo magnético insignificante”, escriben los investigadores.

Representación artística de Kepler-186f. Imagen de NASA Ames/SETI Institute/JPL-Caltech.

Representación artística de Kepler-186f. Imagen de NASA Ames/SETI Institute/JPL-Caltech.

Lineweaver y sus colaboradores se abstienen de concluir que sus datos descarten la posibilidad de vida en esos planetas, pero sí sugieren que la mayoría de los que se han descubierto en otros sistemas solares son probablemente menos hospitalarios para la vida que la Tierra. Y quien crea que hablar solo de vida basada en el agua y el carbono es reduccionista debería saber que, en realidad, es igualmente reduccionista proponer otras bioquímicas alternativas sin considerar sus numerosos e inmensos obstáculos, conocidos o no. En un futuro tal vez no lejano, es posible que los sistemas de Inteligencia Artificial puedan modelizar estas bioquímicas alternativas para tratar de obtener un veredicto sobre su plausibilidad real. Hasta entonces, son solo fantasías.

Pero en fin, al menos hay una buena noticia: Kepler-186f. Solo que, hasta ahora, ni siquiera los responsables del Instituto SETI (Búsqueda de Inteligencia Extraterrestre) albergan demasiadas esperanzas de que allí exista vida inteligente…

Descubierto el planeta de Spock, y podría haber vida

Tal vez un signo de que no soy lo suficientemente friki es que nunca he sido un ardiente fan de Star Trek. ¿Será porque la serie original me quedó atrás y la nueva llegó cuando ya estaba yo a otras cosas? ¿Será porque, en cambio, me acertó de pleno en el estómago el estreno de la primera trilogía de Star Wars y aquello ya no tenía vuelta atrás? ¿Será porque en mi época la Televisión Única nos enchufaba unas entonces-magníficas-hoy-supongo-que-lamentables series de ciencia ficción que la gente más joven suele desconocer por completo (e incluso muchos de mi generación), como Espacio 1999, La fuga de Logan o Los siete de Blake (esta última es para subir nota, ya que no la recuerdan ni mis propios hermanos)?

Pero en fin, hoy vengo a traerles una novedad que caerá como el maná divino a la legión de trekkers o trekkies, que no estoy seguro de cuál es la forma correcta; precisamente la advertencia anterior viene como descargo de que en realidad desconozco este extremo y otros muchos relacionados con las andanzas del capitán Kirk, su Enterprise, sus tripulaciones y sus tribulaciones. La noticia es que un equipo de investigadores de varias universidades de EEUU, con la participación del Instituto de Astrofísica de Canarias y la Universidad de La Laguna de Tenerife, dice haber encontrado el planeta natal de Spock, Vulcano.

Ilustración del planeta HD 26965b. Imagen de Universidad de Florida.

Ilustración del planeta HD 26965b. Imagen de Universidad de Florida.

Imaginarán que la presentación de la noticia tiene algo de gancho publicitario; que obviamente logra su objetivo, o tal vez yo tampoco vendría hoy a contarles esto. Mientras que los primeros exoplanetas descubiertos, allá por el año de 1992, fueron carne de titulares en todo el mundo, hoy caen a docenas, incluso a cientos, y es casi imposible estar al día. A fecha de hoy, la Enciclopedia de Planetas Extrasolares recoge 3.845 planetas en 2.866 sistemas, 636 de ellos con más de un planeta; pero este número seguirá aumentando, tal vez mañana mismo.

Por ello, si los descubridores de un exoplaneta encuentran una percha para vender su descubrimiento colgándole algún adorno que tenga tirón popular, mejor que mejor. Anteriormente nos han llegado ya varios Tatooine, planetas que orbitan en torno a dos soles como el mundo de Luke Skywalker en Star Wars. También conocimos Mimas, una luna de Saturno que tiene un divertido parecido con la Estrella de la Muerte, y otros planetas de la saga como el helado Hoth también tienen su reflejo real en el catálogo de los exoplanetas descubiertos. Ahora le ha tocado el turno a Vulcano.

La luna de Saturno Mimas y la Estrella de la Muerte. Imagen de NASA / Lucasfilm.

La luna de Saturno Mimas y la Estrella de la Muerte. Imagen de NASA / Lucasfilm.

Es más, y como curiosidad, interesa aclarar que en realidad el estudio describiendo este nuevo planeta se publicó en julio en la web de la revista Monthly Notices of the Royal Astronomical Society, sin que entonces prácticamente ningún medio se interesara por ello. Dos meses después, la Universidad de Florida publica una nota de prensa añadiendo el gancho de Spock y Vulcano, y aquí estamos contándolo.

Pero algo hay que reconocer, y es que tampoco se trata de un recurso publicitario forzado. Porque, de hecho, HD 26965b es realmente el planeta de Spock. Según explica el coautor del estudio Gregory Henry, de la Universidad Estatal de Tennessee, en julio de 1991 el creador de Star Trek, Gene Roddenberry, publicó una carta en la revista Sky and Telescope en la que confirmaba que su ficticio Vulcano orbitaba en torno a 40 Eridani A, la estrella principal del sistema triple 40 Eridani. Y resulta que 40 Eridani A es precisamente el otro nombre de HD 26965, la estrella en la que se ha encontrado el nuevo planeta. Al parecer, la conexión entre Vulcano y 40 Eridani A se remonta a dos libros sobre la serie publicados en décadas anteriores, Star Trek 2 de James Blish (1968) y Star Trek Maps de Jeff Maynard (1980).

Spock en Star Trek. Imagen de Paramount / CBS.

Spock en Star Trek. Imagen de Paramount / CBS.

Además, se da la circunstancia de que HD 26965b, más conocido ya para la eternidad como Vulcano, es un planeta aparentemente apto para la vida. Su estrella es parecida a nuestro Sol, solo ligeramente más pequeña y fría; y algo que habitualmente solo los biólogos solemos tener en cuenta, tiene prácticamente la misma edad que el Sol, lo que ha dejado tiempo suficiente para que sus planetas puedan haber desarrollado vida compleja. En cuanto al planeta, no es el típico gigante infernal que suele ser frecuente en los descubrimientos de exoplanetas, sino algo posiblemente parecido a nuestro hogar: justo en el interior de la zona habitable de su estrella y con un tamaño aproximado del doble que la Tierra, lo que se conoce como una supertierra.

Todo ello ha llevado a uno de los autores del estudio, Matthew Muterspaugh, a decir que “HD 26965 puede ser una estrella ideal para albergar una civilización avanzada”. Y todo ello a solo 16 años luz de nosotros; de hecho, la estrella es visible a simple vista en el cielo, y es la segunda más brillante con una posible supertierra y la más cercana similar al Sol con un planeta de este tipo.

En resumen, para los interesados en estas cosas, un punto más al que mirar en el cielo rascándonos la cabeza. Y para los responsables de los proyectos SETI (Búsqueda de Inteligencia Extraterrestre), imagino que una nueva coordenada a la que apuntar sus antenas para tratar de captar alguna emisión de Radio Vulcano.

Una máquina descubre el octavo planeta en un sistema extrasolar

Investigadores de la Universidad de Texas en Austin y de la compañía Google han revelado esta tarde, en una rueda de prensa celebrada por la NASA, el primer hallazgo de dos exoplanetas no realizado por un ser humano, sino por un sistema de Inteligencia Artificial. Uno de los nuevos planetas, llamado Kepler-90i, hace el número ocho de los que orbitan en torno a la estrella Kepler-90, lo que convierte a este sistema en el primero conocido con el mismo número de planetas que el nuestro.

Ilustración del sistema Kepler-90. Imagen de NASA/Wendy Stenzel.

Ilustración del sistema Kepler-90. Imagen de NASA/Wendy Stenzel.

Hoy el descubrimiento de un nuevo planeta extrasolar ya no suele ser carne de titulares como lo era hace un cuarto de siglo, cuando se descubrieron los primeros. Se han confirmado ya más de 3.700 planetas fuera de nuestro Sistema Solar, por lo que la idea de que toda estrella podría tener al menos un planeta, como piensan algunos expertos, ya no sorprende. Solo los planetas más parecidos al nuestro, potencialmente aptos para la vida, suelen abrirse paso hasta las páginas y las webs de los medios generales, sobre todo si no están demasiado lejos de nosotros.

No es el caso de Kepler-90i; este planeta rocoso, un 30% más grande que la Tierra, orbita una estrella similar al Sol a 2.545 años luz, y no es precisamente acogedor: los científicos estiman que su temperatura ronda los 427 grados centígrados, similar a la de Mercurio y suficiente para fundir el plomo.

Sin embargo, Kepler-90i tiene dos argumentos para marcar un hito en la astronomía. El primero de ellos es que se trata del segundo “octavo planeta” jamás conocido por el ser humano. Desde que Plutón fue expulsado del club planetario, nuestro sistema se quedó con ocho, siendo Neptuno el octavo. Hasta ahora se había encontrado un puñado de estrellas con siete planetas a su alrededor; una de ellas, TRAPPIST-1, fue noticia el pasado febrero por albergar varios planetas en su zona habitable.

Kepler-90 también era hasta ahora un sistema de siete planetas, descubiertos gracias a los datos de la sonda Kepler de la NASA. Este telescopio espacial es un sofisticado cazador de planetas: rastrea unas 150.000 estrellas en una porción de la Vía Láctea y las vigila en busca de una pequeña atenuación que revele el tránsito de un planeta delante de ellas, como si tapamos parte del foco de una linterna con un dedo. Solo que las atenuaciones debidas al tránsito de planetas son ínfimas; las herramientas informáticas pueden identificarlas, pero es tan ingente la cantidad de datos recogidos por Kepler que los astrónomos y sus ordenadores tienen que centrarse en las señales más evidentes. Y esto implica que tal vez estén pasando por alto algún que otro planeta.

Aquí es donde entra el segundo gran argumento de Kepler-90i: es el primer planeta descubierto por una red neuronal de Inteligencia Artificial (IA). La historia comienza cuando Christopher Shallue, investigador en IA de Google, se entera de que los científicos dedicados a la búsqueda de exoplanetas hoy tienen tantos datos a su disposición que están desbordados; incluso con el uso de potentes ordenadores y con la colaboración de voluntarios a través de internet, el volumen de información es casi inmanejable.

Así, Shallue vio una oportunidad perfecta para dar de comer a sus redes neuronales, sistemas basados en algoritmos que tratan de imitar la forma de aprendizaje del cerebro humano. Los expertos en IA suelen decir que, por inmensas y complejas que sean las operaciones que un ordenador puede realizar en una fracción de segundo, hay algo en lo que la máquina más sofisticada del mundo es más torpe que el más torpe de los humanos: reconocer patrones. Algo tan elemental para nosotros como distinguir un perro de un gato es una tarea colosal para una máquina. Las redes neuronales capaces de aprender están progresando en esta habilidad que los humanos manejamos con soltura.

Shallue se puso en contacto con Andrew Vanderburg, astrónomo de la Universidad de Texas, y entre ambos entrenaron al sistema de Google para aprender a reconocer patrones de indicios de exoplanetas en los datos de atenuación de luz de estrellas recogidos por Kepler. Y allí donde los científicos habían encontrado siete planetas, en la estrella Kepler-90, la máquina encontró uno más, el octavo, con una señal tan débil que había escapado a los astrónomos. Lo mismo ocurrió con otra estrella, Kepler-80, donde el sistema de Google descubrió un sexto planeta, Kepler-80g. El estudio de los dos investigadores se publicará próximamente en la revista The Astronomical Journal.

Y esto es solo el principio. En la rueda de prensa, Vanderburg y Shallue apuntaron que por el momento solo han aplicado la red neuronal a 670 estrellas, pero que su intención es pasar los datos de las 150.000 observadas por Kepler. El sistema Kepler-90 es parecido al nuestro en el número de planetas y en su distribución, con los pequeños más cercanos a la estrella, pero es como una versión comprimida, ya que todos ellos están muy próximos a su sol; de ahí las altas temperaturas. Pero hoy los científicos ya sospechan que los sistemas multiplanetarios, incluso con muchos más planetas que el nuestro, probablemente sean algo muy corriente en nuestra galaxia. Y con la avalancha de datos de Kepler y la pericia de la máquina de Shallue, todo indica que pronto sabremos de algún sistema tan parecido al nuestro, con un planeta tan parecido al nuestro, que la presencia de vida allí parezca algo casi inevitable.

Ciencia semanal: el “planeta corchopán” y el eslabón perdido de las ballenas

Repasamos algunas noticias científicas que ha dejado esta tercera semana de mayo.

Un planeta ligero como el corchopán

Incluso entre los científicos hay quienes tienen ojo para el marketing, y quienes no. Si este amplio equipo de investigadores de varios países, dirigido por la Universidad Lehigh (EEUU), se hubiese limitado a presentar su hallazgo como el tercer exoplaneta de menor densidad bien caracterizado hasta ahora, nadie les habría prestado atención.

Pero se les ocurrió publicitarlo comparando su densidad con la del poliexpán (más correctamente, poliestireno expandido; el corcho blanco de toda la vida, aunque personalmente me gusta más llamarlo corchopán en homenaje a los geniales Gomaespuma). Y ¡bang!: el estudio se ha comentado esta semana en todos los medios de ciencia, lo que me obliga a mencionarlo también aquí.

El planeta KELT-11b, a 320 años luz de nosotros, es un 40% mayor que Júpiter, pero pesa solo la quinta parte. Los científicos aún tratan de entender qué proceso lleva a algunos de estos gigantes gaseosos a inflarse como globos. La hipótesis de los autores del estudio es que se debe a la alta dosis de radiación que KELT-11b recibe de su estrella, a la que se encuentra muy próximo y que se está expandiendo al convertirse en una gigante roja.

Ilustración del exoplaneta KELT-11b. Imagen de Walter Robinson/Lehigh University.

Ilustración del exoplaneta KELT-11b. Imagen de Walter Robinson/Lehigh University.

La ballena que perdió las patas

Aunque todos los descubrimientos de fósiles revelan datos valiosos para entender qué pasaba en nuestro planeta cuando aún no estábamos aquí, son especialmente preciados los que nos presentan una foto de la evolución en acción; lo que popularmente se conoce como eslabones perdidos, aunque esta expresión no gusta a muchos paleontólogos.

Este es el caso de Mystacodon selenensis, la ballena de hace 36,4 millones de años descrita esta semana por investigadores de Bélgica, Francia, Italia y Perú, y que es ahora la especie más próxima al momento en que los cetáceos se dividieron en dos grupos que perduran hasta hoy: los que tienen dientes (odontocetos), como el cachalote o la orca, y los que filtran su alimento del agua mediante esos filamentos llamados precisamente ballenas (misticetos).

Los científicos estiman que hace 55 millones de años un grupo de mamíferos comenzó a adaptarse a la vida acuática. Unos 14 millones de años después, sus patas delanteras se habían transformado en aletas, mientras las traseras se iban atrofiando. Hace 38 o 39 millones de años comenzaron a diferenciarse dos grupos que 15 millones de años después se definieron como hoy los conocemos, odontocetos y misticetos. Ambos fueron perdiendo las patas traseras al mismo tiempo.

La nueva especie, descubierta en la costa de Perú, se convierte ahora en la más próxima a ese momento en que las dos ramas se separaron, acercándose un par de millones de años más que la especie más antigua conocida hasta ahora. Esta ballena, del tamaño de un delfín, aún tenía patas traseras residuales. También conservaba los dientes, pero según los científicos estaba especializada en alimentarse sorbiendo pequeñas presas del fondo marino, abriendo el camino hacia la alimentación por filtración que se impondría en los misticetos hace unos 23 millones de años.

Ilustración de 'Mystacodon selenensis'. Imagen de Alberto Gennari.

Ilustración de ‘Mystacodon selenensis’. Imagen de Alberto Gennari.

El continente blanco se vuelve verde

A estas alturas los signos del cambio climático ya no deberían ser una sorpresa para nadie, pero cada nuevo estudio es una oportunidad para transmitirnos una llamada de urgencia ante lo que está ocurriendo. En otros lugares del mundo un paisaje que verdea es una buena noticia, pero no en la Antártida, donde la proliferación de musgo observada por investigadores británicos es un hecho preocupante, consecuencia de la desaparición progresiva de los hielos. Y si a esto añadimos que otras regiones del planeta se están calentando a un ritmo mucho más rápido que la Antártida, el panorama es aún más alarmante.

Bancos de musgo en la Antártida. Imagen de Matt Amesbury.

Bancos de musgo en la Antártida. Imagen de Matt Amesbury.

El mordisco catastrófico del T-rex

Con la desaparición de los dinosaurios no aviares perdimos joyas de la naturaleza, pero el mundo sería un lugar mucho más complicado para nosotros si tuviéramos que compartirlo con el tiranosaurio rex. Un nuevo estudio de dos investigadores de EEUU pone cifras a lo incómodo que habría resultado el mordisco de un T-rex: el dinosaurio más mítico ejercía una presión con las mandíbulas de más de 3.600 kilos, más del doble que los cocodrilos, los actuales campeones del bocado. Esta presión transmitía a sus dientes una fuerza de casi 200.000 kilos por pulgada cuadrada. Con tales mordiscos el tiranosaurio era capaz de provocar en sus víctimas lo que los investigadores definen como una “catastrófica explosión de los huesos” para comerse la médula, como hoy hacen las hienas.

Imagen de Florida State University.

Imagen de Florida State University.

Un hallazgo en un cometa complica la búsqueda de vida alienígena

¿Cómo puede un descubrimiento en un cometa complicar la búsqueda de vida alienígena? Si les interesa, sigan leyendo.

Tal vez recuerden que hace dos años y medio hasta algunos telediarios abrieron con el primer aterrizaje de un artefacto espacial en un cometa: se trataba de Philae, un módulo separable de la sonda Rosetta de nuestra Agencia Europea del Espacio (ESA). Philae solo pudo operar durante un par de días debido a que su aterrizaje defectuoso lo dejó en un lugar bastante escondido de la luz del sol, pero su breve vida fue suficiente para hacer ciencia muy valiosa. Por su parte, su nodriza Rosetta concluyó su misión en septiembre de 2016 estrellándose contra el objeto de su estudio, el cometa 67P/Churyumov–Gerasimenko.

Imagen del cometa 67P/Churyumov–Gerasimenko tomada por la sonda Rosetta. Imagen de ESA/Rosetta/NAVCAM.

Imagen del cometa 67P/Churyumov–Gerasimenko tomada por la sonda Rosetta. Imagen de ESA/Rosetta/NAVCAM.

Entre los descubrimientos que Rosetta ha aportado al conocimiento, en 2015 los científicos de la misión anunciaron el hallazgo de oxígeno molecular en la atmósfera del cometa. El oxígeno molecular es lo que respiramos, una molécula formada por dos átomos de oxígeno, O2. Y a pesar de que el oxígeno como elemento es uno de los más abundantes en el universo (el tercero, después de hidrógeno y helio), su forma molecular, la respirable, es extremadamente rara, que sepamos hasta ahora. Hasta 2011 no se confirmó por primera vez su existencia fuera del Sistema Solar, y no fue precisamente aquí al lado: en una región formadora de estrellas de la nebulosa de Orión, a unos 1.500 años luz. Posteriormente se ha detectado también en otra zona de formación de estrellas de la nebulosa Rho Ophiuchi.

La rareza del oxígeno molecular estriba en que es muy reactivo, muy oxidante, por lo que tiende a reaccionar rápidamente con otros compuestos y desaparecer en esta forma; por ejemplo, con el hidrógeno para producir agua. Así que, cuando los científicos encontraron oxígeno molecular en el cometa 67P, la reacción lógica se resumía en tres letras: WTF?

La explicación que sugirieron los investigadores de Rosetta era que el oxígeno estaba congelado en el cometa desde su formación, en los tiempos del origen del Sistema Solar, y que se iba liberando por el calor del sol. Sin embargo, la hipótesis fue cuestionada porque incluso en este caso parecía improbable que el oxígeno pudiera haber permanecido intacto, sin reaccionar, durante miles de millones de años.

Ahora, por fin existe una explicación para el oxígeno de 67P, y ha llegado de una fuente inesperada: un ingeniero químico que se dedica a la investigación de nuevos componentes electrónicos. Konstantinos Giapis, de Caltech (EEUU), se dedica desde hace 20 años a cosas como bombardear semiconductores con chorros de átomos cargados a alta velocidad para estudiar las reacciones químicas que se producen.

Cuando Giapis supo del descubrimiento de Rosetta, de repente se dio cuenta de que el cometa podía ser un ejemplo real de los experimentos que él realiza en el laboratorio: el hielo presente en 67P se calienta con el sol, liberando vapor de agua que se ioniza con la radiación ultravioleta solar y se estrella de nuevo a alta velocidad con el cuerpo del cometa por el efecto del viento solar. Cuando estas moléculas de agua chocan contra la superficie de 67P, arrancan átomos de oxígeno que se combinan con el oxígeno del agua para formar O2.

Ilustración del experimento de Konstantinos Giapis. Al bombardear con moléculas de agua (izquierda) una superficie de materiales similares a los del cometa 67P, se desprende oxígeno molecular (en rojo; el hidrógeno, en azul). Imagen de Caltech.

Ilustración del experimento de Konstantinos Giapis. Al bombardear con moléculas de agua (izquierda) una superficie de materiales similares a los del cometa 67P, se desprende oxígeno molecular (en rojo; el hidrógeno, en azul). Imagen de Caltech.

No es solo una teoría: Giapis lo ha puesto a prueba en su laboratorio, simulando el proceso que tiene lugar en el cometa, y ha demostrado que se produce oxígeno molecular. Así que la presencia de este compuesto en 67P no es una reliquia de la época del nacimiento del cometa, sino una reacción que está ocurriendo ahora para generar oxígeno respirable fresco.

Lo cual nos lleva de vuelta al título de este artículo. Y es que, aunque el estudio de Giapis aporta un interesante hallazgo en el campo de la astrofísica/química, sus repercusiones pueden complicar aún más la búsqueda de firmas de vida en planetas extrasolares: incluso si se detecta oxígeno en la atmósfera de alguno de estos lejanos planetas, ya hay otro mecanismo más que podría explicar su origen sin necesidad de que exista algo vivo allí.

El drama de la búsqueda de vida en el universo es que difícilmente llegaremos jamás a tener una prueba directa, una confirmación absoluta. Todos los intentos de encontrar biología en planetas extrasolares, que cada vez son más (los intentos y los planetas), deben conformarse con buscar indicios indirectos, como señales que no sean fácilmente atribuibles a un fenómeno natural. Los nuevos instrumentos de observación van a facilitar en los próximos años el análisis de las atmósferas de muchos exoplanetas, y con ello será posible sospechar que tal o cual composición atmosférica podría indicar la existencia de vida.

Naturalmente, la más evidente de estas posibles firmas biológicas atmosféricas es el oxígeno. Nunca se ha pretendido que esta fuese una firma definitiva: existen procesos geológicos y químicos que pueden dar lugar a la generación de este gas sin intervención de nada vivo. Por ejemplo, Europa y Ganímedes, dos de las grandes lunas de Júpiter, tienen atmósferas de oxígeno muy tenues, pero allí este gas se forma por la ruptura del agua (H2O) causada por la radiación, o radiolisis.

Sin embargo, con los procesos abióticos (sin vida) de fabricación de oxígeno ocurren dos cosas: primero, no parece fácil que puedan originar enormes cantidades de este gas y sostenidas a lo largo del tiempo. En el caso de la Tierra, el gran inflado de nuestra atmósfera se produjo por la proliferación de microbios fotosintéticos, y si aún hoy podemos respirar es gracias a que seguimos teniendo organismos fotosintéticos.

Segundo, en algunos casos esos procesos requieren condiciones que tampoco son hospitalarias para la vida. Por ejemplo, en planetas muy calientes y próximos a su estrella, la radiación UV de esta puede descomponer el agua. Pero si se encuentra oxígeno en un planeta así, sus propias condiciones hacen muy improbable que exista algo vivo.

En resumen, y aunque detectar oxígeno en abundancia en la atmósfera de un exoplaneta no sería una demostración de vida, sí sería un buen comienzo. O al menos, lo era, hasta el hallazgo de Giapis. Ahora sabemos que hay una manera más de producir oxígeno, que a 67P le funciona muy bien, y en la que no interviene nada parecido a la vida. Desde Caltech ya nos advierten: “otros cuerpos astrofísicos, como planetas más allá de nuestro Sistema Solar, o exoplanetas, también podrían producir oxígeno molecular por el mismo mecanismo abiótico, sin necesidad de vida. Esto puede influir en la futura búsqueda de signos de vida en exoplanetas”.

La vida extraterrestre, cada vez más cerca

Durante buena parte del siglo pasado cundía la sensación de que la confirmación de la vida extraterrestre era una fruta madura a punto de caer. Eran los años 60, 70 y 80, cuando el fenómeno ovni estaba en su apogeo y parecía que la prueba definitiva llegaría mañana o pasado. Pero después comenzaron a aparecer las cámaras digitales y los móviles con cámara (que, para los recién llegados, en realidad son anteriores a los smartphones).

Ilustración del exoplaneta LHS 1140b. Imagen de M. Weiss/CfA.

Ilustración del exoplaneta LHS 1140b. Imagen de M. Weiss/CfA.

Hoy hasta los maasáis de la sabana keniana llevan en el bolsillo una cámara de fotos de alta definición (no es broma); y en contra de lo que muchos habrían previsto, en lo referente a los ovnis seguimos estancados en la misma coyuntura de los tiempos en que una cámara era un bien escaso y rudimentario. Cada día se suben milles de millones de fotos y vídeos a internet, pero ninguno de los 7.500 millones de humanos dispersos por todos los rincones del planeta nos ha mostrado una entrevista con alienígenas recién bajados de un platillo volante, grabada en Full HD con un iPhone no-sé-cuántos-van-ya.

Ya expliqué aquí hace tiempo mis razones para no creer en los ovnis, mal que me pese; y en algún otro medio he contado cómo la ciencia ha ido desmontando uno por uno los presuntos casos de avistamientos más sonados de los últimos años. Pero si lo que piense alguien que tiende al escepticismo puede mover a otros a un escepticismo hacia el escepticismo, la cuestión es que, como conté en un reportaje hace ya ocho años, incluso algunos ufólogos hace tiempo que tiraron la toalla; claro está, aquellos que han sostenido frente al fenómeno ovni una actitud honesta y racional, no quienes tratan de seguir viviendo del cuento a toda costa.

Rescato algunos ejemplos de lo anterior que cité en aquel reportaje. Jenny Randles, ufóloga, escritora y antigua directora de investigación de la British UFO Research Association (BUFORA), reconocía: “ET no aterrizó y el mundo sigue su camino como siempre”. Wendy Connors, ufóloga estadounidense, escribió un artículo sobre la “muerte de la ufología”. El español Ricardo Campo, investigador crítico del fenómeno ovni, calificaba la ufología como “ciencia abortada”, y me contaba a su vez que muchos ufólogos se habían rendido a la evidencia. El ufólogo Vicente-Juan Ballester Olmos también cerraba el ataúd de la ufología: “Lo que no ha ocurrido ya en estos 60 años no creo que vaya a ocurrir en lo sucesivo; el misterio de los ovnis ya está momificado y es labor para historiadores, antropólogos y sociólogos”, decía.

Y a pesar de todo, en ciertos programas de televisión continúan desfilando personajes que no hacen sino confirmar aquella idea del genial Carl Sagan: “los casos fiables no son interesantes, y los casos interesantes no son fiables. Desafortunadamente, no hay casos que sean a la vez fiables e interesantes”.

Todo lo cual no significa que la creencia en los ovnis haya desaparecido de la calle. De hecho, algún análisis reciente apunta que esta fe, ya que a tales alturas no cabe otra calificación, puede estar remontando desde sus mínimos históricos, tal vez debido a las corrientes culturales cíclicas, y tal vez enmarcada dentro de un fenómeno más general de auge de las pseudociencias y del movimiento anti-Ilustración, algo de lo que ya he hablado aquí.

Pero una cosa es el fenómeno ovni, y otra muy diferente la confirmación de vida extraterrestre. Y respecto a esto último, sí podría decirse, desde un enfoque científico, que la situación actual tiene un cierto sabor a años 60-70: como entonces, hoy se diría que la noticia de que nuestro planeta no es el único lugar habitado del universo parece a punto de caer, aunque los otros puedan ser simplemente organismos simples como hongos o bacterias.

Ya conté aquí hace unos días que por primera vez se ha logrado detectar una atmósfera en un planeta de tamaño y masa similares a la Tierra. En plenas vacaciones de Semana Santa, la revista Science nos sorprendía con un bombazo: Encélado, una luna de Saturno que se postula como uno de los candidatos del Sistema Solar para albergar vida, puede tener fuentes hidrotermales en el fondo de su océano subglacial. Recordemos que hoy muchos científicos se inclinan por la hipótesis de que fue precisamente en este tipo de fumarolas submarinas donde pudo nacer la vida en la Tierra.

Ahora, esta misma semana, la revista Nature publica el hallazgo de un nuevo exoplaneta que uno de sus descubridores, Jason Dittmann, del Centro de Astrofísica Harvard-Smithsonian (CfA), califica como “el mejor objetivo para la búsqueda de vida más allá de la Tierra”. LHS 1140b, que así se llama, es una superTierra de 6,6 veces la masa terrestre y 1,4 veces su diámetro, probablemente rocosa, situada en la zona templada de su estrella, una enana roja a 40 años luz de nosotros.

Ilustración del exoplaneta LHS 1140b. Imagen de ESO/spaceengine.org.

Ilustración del exoplaneta LHS 1140b. Imagen de ESO/spaceengine.org.

Las palabras de Dittmann no solo se justifican por las condiciones propicias del planeta, sino también por las condiciones propicias para estudiarlo: el nuevo planeta transita ante la cara de su estrella desde nuestro punto de vista, algo que no sucede en todos los casos, como por ejemplo en el muy prometedor Proxima b, descubierto el año pasado. Este paso de LHS 1140b delante de su estrella permitirá estudiar la luz que lo roza para determinar si tiene atmósfera, si su composición es apta para la vida, y si podría mostrar alguna firma biológica.

Por último, LHS 1140b cuenta con dos ventajas interesantes frente a otros exoplanetas recientemente descubiertos. A diferencia de la muy cacareada TRAPPIST-1, la estrella LHS 1140 parece tranquila, sin grandes fulguraciones achicharrantes. Y también a diferencia de TRAPPIST-1, la estrella del nuevo exoplaneta parece tener una edad suficiente (según los autores del estudio, por lo menos 5.000 millones de años) como para haber dado margen a un proceso de desarrollo de vida…

…si es que este proceso ha podido llegar a ocurrir alguna vez fuera de la Tierra. Algo de lo que personalmente también me declaro escéptico, por razones que ya he contado aquí y que se resumen en una: si en 4.540 millones de años de edad de la Tierra, y que sepamos, la vida solo ha surgido aquí una única vez, ¿qué parte de este argumento nos incita a dar por supuesto que la aparición de la vida sea un fenómeno frecuente? Pero de verdad, me encantaría tener que reconocer mi equivocación aquí mañana mismo…