BLOGS
Ciencias mixtas Ciencias mixtas

Los secretos de las ciencias para
los que también son de letras

Entradas etiquetadas como ‘exobiología’

Diez reglas que debería cumplir todo alienígena (también los de ficción)

Hace cosa de un mes, un equipo de zoólogos de la Universidad de Oxford publicaba un estudio destinado a especular sobre cuál podría ser el retrato biológico de un alienígena. Como ya he contado aquí, los científicos no suelen arriesgarse a lanzar divagaciones de este tipo, y cuando lo hacen es en tiempo de extraescolares, después de quitarse la bata. Las revistas científicas tampoco son el lugar donde ponerse a inventar ciencia ficción.

Pero el estudio de Oxford era tan contenido que resultaba casi frustrante. El trabajo de los investigadores puede resumirse en dos ideas: los alienígenas estarán sometidos a evolución por selección natural, como nosotros los terrícolas, y estarán formados por partes más pequeñas en una jerarquía de niveles, como nosotros los terrícolas (genes, células, tejidos, órganos, individuos, sociedades…).

Tal vez no parezcan pistas como para parar las máquinas, aunque como guinda y gancho de cara a los medios, los autores se permitían adornarlo con una propina: el octomita, nombre que daban a un alienígena hipotético basado en estas reglas y que les presento aquí. Aclaro que su aspecto es puramente imaginario; lo esencial del octomita es el esquema basado en niveles crecientes de organización.

El octomita, un alienígena hipotético. Imagen de Levin et al., International Journal of Astrobiology 2017.

El octomita, un alienígena hipotético. Imagen de Levin et al., International Journal of Astrobiology 2017.

Si el estudio no llegaba más allá es porque un trabajo científico (también los teóricos) solo debe llegar hasta donde le deja el suelo bajo sus pies. Mirado de este modo, el hecho de que la argumentación teórica permita sostener estos dos requisitos de la vida extraterrestre cierra bastante el campo de lo que podríamos encontrarnos por ahí fuera, si es que existe algo y si es que algún día lo encontramos.

Como ya expliqué en dos entregas anteriores (aquí y aquí), no todo vale en biología, ni aquí ni en GN-z11 (la galaxia más lejana conocida, a 13.400 millones de años luz). Por tanto, no todo vale a la hora de imaginar la vida extraterrestre. Estudios como el de Oxford, que aplican las reglas de la biología, restringen el repertorio de opciones posibles para cualquier tipo de vida que pueda considerarse como tal, con independencia de cómo sea su planeta natal.

Es más: como les conté anteriormente, y por mucho que las ideas del biólogo y divulgador Stephen Jay Gould sobre la imprevisibilidad absoluta de la evolución hayan calado no solo en la comunidad científica, sino incluso entre el público interesado en estas cosas, los experimentos tienden a quitarle al menos una parte de razón: si nos fiamos de los datos reales que tenemos hasta hoy (y no podemos fiarnos de otra cosa), parece que la evolución tiene algo de margen para lo diferente, pero también algo de determinismo, convergencia y cánones comunes; lo que el biólogo Víctor Soria Carrasco llamaba “un tema central”.

Vida en la atmósfera de un planeta similar a Júpiter, según Carl Sagan. Imagen de la serie Cosmos (1980) / PBS.

Vida en la atmósfera de un planeta similar a Júpiter, según Carl Sagan. Imagen de la serie Cosmos (1980) / PBS.

En conclusión, la idea que por ahí circula sobre vida alienígena tan diferente de nosotros que tal vez ni siquiera la veríamos delante de nuestras narices es un buen argumento para el cine, los periódicos y las charlas de café, pero no se compadece con las reglas de la biología.

Así, recogiendo trocitos como el aportado por los investigadores de Oxford y otros, y añadiendo unas gotas de biología esencial, podemos armar una lista con unos cuantos requisitos que debería cumplir todo alienígena, por muy diferente que sea de la vida terrícola; también los de ficción, si pretenden ser plausibles. Por supuesto que esta es una lista en construcción y provisional, que trataré de ir actualizando-completando-rectificando con los datos que nos traigan los nuevos estudios.

  1. Todo ser vivo debe nacer, crecer, (tener capacidad de) reproducirse y morir. De acuerdo, esto es ponerlo muy fácil; pero es la definición más básica y clásica de la vida, aunque hoy se prefiere introducir criterios metabólicos y evolutivos. Qué menos que empezar por esto, pero también tiene su miga: algo tan aparentemente sencillo es uno de los motivos (el otro es el metabolismo, a lo que iré más abajo) por los cuales se discute si los virus son seres vivos. No solamente es que sean parásitos dependientes de piezas ajenas; muchos otros seres vivos también lo son. Es que los virus no crecen.
  2. Todo ser vivo está constituido por materia. Sí, también es fácil llegar a sacar un 2 en esta prueba. Pero ¿en cuántas películas los alienígenas se nos presentan como seres de energía pura que pueden adoptar cualquier forma que se les antoje? Si algo no está formado por materia no es un ser vivo, sino un poltergeist, por muy alienígena que sea. El payaso de It no es un ser vivo.
  3. Todo ser vivo debe estar formado por unidades elementales repetidas en varios niveles jerárquicos, la más básica de las cuales es un gen. La biología se basa en un principio de construcción según el cual hay una coherencia entre las partes pequeñas y el conjunto, o entre genes, células, órganos, individuos y sociedades. Por ejemplo, con células humanas no se puede construir un perro, ni con células alienígenas se puede construir un humano. Esto implica la existencia de genes en sentido amplio; no necesariamente como los terrestres, pero sí como unidades materiales mínimas que llevan la información esencial para construir el siguiente nivel jerárquico.
  4. Todo ser vivo debe respetar las leyes universales de la física. No es posible violar los principios de conservación de la materia, la energía o la cantidad de movimiento, o las leyes de la termodinámica en general.
  5. Todo ser vivo debe estar sujeto a evolución por selección natural y exhibir un cierto grado de adaptación a su entorno de origen. La evolución funciona a escalas temporales dependientes de los procesos biológicos, y estos a su vez dependen de la velocidad de los ritmos físicos y químicos. La evolución funciona en escalas espaciales que permitan la interacción entre un ser vivo y su entorno.
  6. Todo ser vivo debe estar enclavado en un ecosistema que lo sostenga. Una especie alienígena no puede ser la única forma de vida presente en su planeta, a no ser que sea la primera (esta sería una discusión interesante, pero lo cierto es que la abiogénesis aún es una caja negra para la biología) o la última superviviente, en cuyo caso está abocada a la extinción. Un ser vivo, incluso los quimio o fotosintéticos, es parte de la biomasa, pertenece a un ecosistema que lo alimenta pero también lo limita, actuando como cinta transportadora de la energía a lo largo de la cadena alimentaria.
  7. Todo ser vivo debe mantener poblaciones mínimas viables y conexas. La idea del Arca de Noé no permite la supervivencia de una especie. Debe existir un número suficiente de ejemplares en un mismo entorno físico que asegure un tamaño de diversidad genética capaz de sostener la supervivencia de la especie. Para los científicos esta es una estimación compleja que varía para cada especie y que hoy se calcula con simulaciones matemáticas por ordenador. Pero la naturaleza lo sabe.
  8. Todo ser vivo debe tener un metabolismo y una fisiología intrínsecamente plausibles y coherentes. Por ejemplo, los procesos metabólicos producen energía, y parte de esta energía se traduce en calor. Esto impone ciertas limitaciones de cara a construir un organismo, sin importar cómo sean las condiciones de su planeta de origen. Si un ser vivo es muy grande, también lo será el calor interno generado. Su temperatura de funcionamiento debe mantener el solvente biológico (en nuestro caso, el agua) en un estado que facilite las reacciones químicas y que permita a las biomoléculas conservar su configuración estructural nativa (en nuestro caso, el ADN y las proteínas pierden su estructura a temperaturas demasiado altas). Por tanto, toda forma de vida está limitada por su propio rango de temperaturas. Por otra parte, esta regla impone también la necesidad de un metabolismo, al menos durante alguna fase de la vida. Volvemos a lo mencionado antes sobre los virus: no tienen metabolismo cuando están en forma de virión (estado libre), pero sí cuando se activan en su célula hospedadora, aunque para ello utilicen piezas ajenas (algo que también necesitan otros parásitos). Desde este punto de vista, un virión puede entenderse como una fase de resistencia, como una espora o una semilla, y un virus puede caber en la definición de ser vivo. Incluso en cierto sentido, el hecho de subcontratar el metabolismo puede interpretarse como un refinamiento evolutivo que permite ahorrar energía, al menos si es que los virus se han desarrollado a partir de otros organismos que sí tenían metabolismo propio.
  9. Todo ser vivo debe tener un metabolismo y una fisiología plausibles en las condiciones de su entorno original. Por ejemplo, para que un parásito prospere, incluso aunque sea capaz de parasitar formas de vida como los humanos con las que nunca antes haya tenido contacto (lo cual puede ocurrir), ha tenido que coevolucionar con algún hospedador original en su entorno primitivo.
  10. Todo alienígena que baje a la Tierra y prospere debe tener una biología compatible con las restricciones impuestas por las condiciones terrestres. Por ejemplo, es posible que un ser de cincuenta kilos (medidos en condiciones de gravedad terrestre) pueda flotar sin esfuerzo en la atmósfera densa de su planeta de origen, como podría ocurrir en Venus si estuviera habitado. Pero en la Tierra no puede seguir haciendo lo mismo impunemente.

¿Son plausibles los alienígenas (parecidos a nosotros) de la ciencia ficción? (II)

Un humano es un organismo con forma de tubo (boca y ano), simetría bilateral, un bloque central que contiene los órganos internos flanqueado por pares de extremidades para la movilidad y la interacción, y un control centralizado (el cerebro) situado en un apéndice específico (la cabeza) que contiene además los principales mecanismos sensoriales.

Desde los hombrecillos verdes o grises hasta las variaciones como los xenomorfos de Alien, infinidad de películas nos presentan seres antropomorfos, que comparten con nosotros estos mismos planos generales de construcción. Pero ¿es esto posible? ¿Es plausible que un alienígena se parezca tanto a nosotros?

Alienígenas de 'Encuentros en la tercera fase'. Imagen de Columbia Pictures.

Alienígenas de ‘Encuentros en la tercera fase’. Imagen de Columbia Pictures.

La respuesta corta es que nadie lo sabe, dado que, una vez más, aún no conocemos alienígena. Para la respuesta larga, debemos comenzar respondiendo a otra pregunta: ¿la evolución es determinista o indeterminista? Es decir: a partir de una situación inicial y si jugamos la partida dos veces, en la Tierra y en otro planeta, ¿cuánto se parecerá el resultado final en los dos casos?

A su vez, la respuesta corta a esta pregunta es que nadie lo sabe. Hay quienes intuyen que un alienígena debería parecerse algo a nosotros, porque… ¿no? Y hay quienes intuyen que debería ser completamente distinto, porque… también, ¿no?

Pero la simple intuición no responde a la pregunta de hasta qué punto un experimento evolutivo paralelo encontraría o no algunas de las mismas soluciones como adaptaciones favorables en un medio parecido o diferente del terrestre. Haría falta repetir el experimento completo de la evolución, primero en nuestra propia Tierra, después en otros planetas habitables.

Por desgracia, esto no está a nuestro alcance. Tal vez algún día la Inteligencia Artificial logre refinar una simulación lo bastante completa como para darnos pistas reales, pero son tantas las variables implicadas que no será tarea fácil aproximarse lo suficiente a un escenario comparable a la realidad. Sería la simulación más complicada jamás emprendida.

A pesar de todo, tampoco estamos completamente perdidos. Tenemos teorías razonables, y tenemos también algunos datos experimentales que pueden tirar algún que otro raíl en el camino hacia estas respuestas. A continuación les cuento algunas de estas pistas, pero ya les adelanto que la conclusión nos devuelve a la respuesta corta: en realidad, nadie lo sabe.

E. T. Imagen de Universal Pictures.

E. T. Imagen de Universal Pictures.

Comencemos por la teoría. En los años 70 Stephen Jay Gould, una de las mentes más preclaras de la biología evolutiva del siglo XX, defendió la hipótesis de que la evolución no es determinista sino imprevisible, y que si pudiéramos rebobinar la cinta del planeta Tierra unos cuantos millones de años y volver a ejecutar el programa, los humanos ni siquiera estaríamos aquí.

Hay que tener en cuenta que toda la vida en la Tierra (al menos la que conocemos hasta ahora) procede de un antepasado común, el cual ya había adoptado ciertas opciones evolutivas que todos hemos heredado. Al ir diversificándose en ramas separadas, estas a su vez también fueron optando por determinadas soluciones que restringían el repertorio de configuraciones de sus descendientes. Pero según la hipótesis de Gould, que siguen muchos otros biólogos evolutivos, si pudiéramos regresar al comienzo quizá la segunda vez se elegirían soluciones diferentes y todos tendríamos, por ejemplo, simetría radial, como los equinodermos (estrellas y erizos de mar).

La teoría de Gould tendería a rechazar la posibilidad de alienígenas antropomorfos. Pero no todos los expertos están de acuerdo con él. Otros biólogos evolutivos, como Richard Dawkins o Simon Conway Morris, piensan que la evolución es al menos en parte un proceso determinista. Es decir, que desde la misma situación de partida, hay sucesos que tienden a repetirse.

Para comprender lo complicado que resulta teorizar sobre esto, tengamos en cuenta que incluso desde enfoques opuestos puede llegarse a conclusiones parecidas, pero también desde un mismo enfoque puede llegarse a conclusiones opuestas. Dos ejemplos: Conway Morris es creyente, Dawkins es ateo, y ambos son deterministas. Conway Morris es determinista, Gould lo contrario, y ambos se basan en las mismas pruebas, el esquisto de Burgess, un conjunto de fósiles hallado en Canadá a comienzos del siglo XX.

Un fósil de Anomalocaris del esquisto de Burgess. Imagen de Wikipedia / Keith Schengili-Roberts.

Un fósil de Anomalocaris del esquisto de Burgess. Imagen de Wikipedia / Keith Schengili-Roberts.

La razón principal que suelen esgrimir los deterministas es la evolución convergente. A lo largo de la historia de la vida en la Tierra, ha habido innumerables ocasiones en que la evolución ha encontrado las mismas soluciones en ramas independientes del árbol genealógico de los seres vivos.

Por ejemplo, los murciélagos y las aves tienen alas, pero las desarrollaron de forma independiente. Los ojos de los pulpos son pasmosamente parecidos a los nuestros, pero es evidente que ellos y nosotros no procedemos de un antepasado común con ojos. Este año un estudio descubrió que el apéndice, ese colgajo intestinal al que tradicionalmente no se le suponía otra función que llevarnos a Urgencias, ha surgido en la evolución más de 30 veces de forma independiente en unos animales y otros. ¡Más de 30 veces! Esto no solamente nos dice que muy probablemente el apéndice sirve para algo más, sino que es otro magnífico ejemplo de evolución convergente. El propio Conway Morris ha documentado muchos ejemplos en los fósiles de Burgess.

Así que la teoría no nos ofrece una respuesta clara. Pasemos ahora a la práctica: ¿qué nos dicen los experimentos? Obviamente, no podemos regresar al pasado, volver a jugar la partida de la evolución desde el principio y ver qué ocurre. Pero sí podemos hacer lo segundo mejor: ver qué hace la naturaleza en situaciones de evolución a corto plazo, y diseñar experimentos en condiciones controladas donde puedan estudiarse estos trocitos parciales de evolución.

Sobre lo primero, se han estudiado casos en animales como peces y lagartos. Respecto a lo segundo, hace tres años y medio les conté aquí un precioso ejemplo, un experimento con insectos palo llevado a cabo por el español Víctor Soria-Carrasco en la Universidad de Sheffield (Reino Unido). Los investigadores emplearon un tipo de insecto palo californiano que prácticamente nace, vive y muere en la misma planta, y del que existen dos variedades diferentes adaptadas al camuflaje en dos tipos de arbustos. Intercambiando los bichos de planta en unos lugares y otros, podían comparar los cambios genéticos que se producían entre dos de estos experimentos evolutivos independientes.

El resultado fue que en la evolución de estos bichos palo había un 80% de cambios diferentes y un 20% de cambios comunes. O sea, que a pesar de que mayoritariamente la evolución seguía caminos distintos en dos partidas diferentes, había un 20% de evolución convergente, o un 20% de determinismo evolutivo. Por supuesto que entre este caso y la evolución de la vida en otro planeta media un abismo, pero esta era la especulación de Soria-Carrasco sobre si los alienígenas podrían seguir caminos evolutivos parecidos a los nuestros: “muchas cosas serían diferentes, pero probablemente seríamos capaces de distinguir un tema central que siempre sería el mismo”.

El experimento más extenso de la historia de la ciencia para entender cómo funciona la evolución se desarrolla desde hace 30 años en la Universidad de Harvard. En febrero de 1988, el biólogo evolutivo Richard Lenski sembró bacterias Escherichia coli en 12 frascos con medio líquido de cultivo, algo habitual en muchos laboratorios de biología. Pero Lenski dejó a las bacterias la glucosa justa solo para sobrevivir durante la noche hasta la mañana siguiente, y por la tarde recogió a las supervivientes para trasvasarlas a un nuevo cultivo. Así, día tras día, durante más de 29 años.

Con la limitación de alimento, Lenski introducía un factor de presión para dirigir la evolución de las bacterias; tal como hace la selección natural, solo las bacterias mejor adaptadas al medio sobrevivirían. Cada 75 días, lo que equivale a unas 500 generaciones de E. coli, los investigadores congelan una parte de los cultivos para capturar una foto del proceso evolutivo. Analizando los genes de las bacterias en estos distintos momentos del proceso, pueden observar cómo están evolucionando, y comparar las 12 líneas entre sí para analizar si siguen los mismos caminos evolutivos o no. En total, en los casi 30 años del experimento se han sucedido más de 68.000 generaciones de bacterias, lo que equivale a más de un millón de años de evolución humana.

Y después de todo esto, el resultado es…

Durante los primeros miles de generaciones, los investigadores observaron que las bacterias seguían caminos al menos no totalmente separados. Los diferentes cultivos tendían a mostrar mutaciones diferentes, pero en los mismos genes. E incluso con las diferencias, todas mostraban un patrón común: las células se hacían más grandes, crecían más deprisa y aprovechaban mejor la glucosa. Esto parece un claro caso de evolución convergente.

Pero ¡oh, sorpresa! De repente, transcurridas unas 31.000 generaciones, una de las 12 líneas empezó a dejar de lado la glucosa y a comer citrato, otra fuente de carbono presente en el medio. Solo una de las 12 líneas. Dado que una característica de E. coli es la incapacidad de metabolizar el citrato, esta línea está evolucionando por el camino de convertirse en una nueva especie diferente. Y esto parece un claro caso de evolución no determinista.

Con todo esto, ¿qué opinan Lenski y sus colaboradores sobre el grado de determinismo de la evolución? Según su último estudio, esto: “nuestros resultados muestran que la adaptación a largo plazo a un ambiente constante puede ser un proceso más complejo y dinámico de lo que a menudo se asume”.

Sí, sí, vuelvan a leer la frase, y la segunda vez les dirá lo mismo: nada. Una paráfrasis para decir que, en realidad, no se sabe. Ya les advertí de que aún no tenemos una respuesta definitiva sobre si Gould o Conway Morris, y por tanto sobre si sería posible que en otro planeta evolucionara una especie básicamente similar a la nuestra. Pero quiero dejarles otro ejemplo de un experimento natural que nos ha permitido observar cómo funciona la evolución. Ese experimento se llama Australia.

La idea, de la que también les hablé aquí, es del científico planetario Charley Lineweaver. Es lo que él llama “la falacia del planeta de los simios”, o la idea popular de que, como decía Carl Sagan, en otros planetas habitados debe llegarse a un equivalente funcional del ser humano. Lineweaver pone como ejemplo su propio país, una gran isla separada del resto de los continentes desde hace unos 100 millones de años.

De este modo, Australia ha sido un experimento natural de evolución independiente durante millones de años. Y como decía Lineweaver, ¿qué es lo que ha surgido allí? Canguros. La aparición de los humanos en el gran bloque Eurasiafricano no ha interferido absolutamente de ninguna manera en la evolución australiana. Y sin embargo, allí la evolución no ha producido nada similar a los seres humanos. Si Australia fuera la única tierra seca de todo el planeta, no estaríamos aquí. Y por tanto, no hay evolución convergente; si los canguros tienen brazos y piernas como nosotros, es solo porque el antepasado común que compartimos con ellos ya los tenía.

Por todo lo anterior, los científicos no suelen arriesgarse a inventar aliens, a riesgo de ver su credibilidad dañada. Hay excepciones: en los años 70, Carl Sagan propuso un ecosistema modelo para un planeta joviano, un gigante gaseoso como Júpiter. Sagan imaginó varios linajes de seres voladores que controlarían su flotación a través de los distintos niveles de densidad de la atmósfera, formando una cadena alimentaria cuya base estaría sustentada por una especie de plancton atmosférico que se alimentaría de los nutrientes moleculares presentes en el gas. Así lo contaba Sagan en su mítica serie Cosmos:

Como resumen de todo lo contado aquí, mejor quédense con esta cita del gran maestro Sagan:

La biología es más parecida a la historia que a la física. Hay que conocer el pasado para comprender el presente. No hay predicciones en la biología, igual que no hay predicciones en la historia. La razón es la misma: ambas materias son todavía demasiado complicadas para nosotros. Aunque podemos comprendernos mejor comprendiendo otros casos.

A pesar de todo, si es extremadamente difícil aventurar cómo podría ser un alienígena, en cambio es más posible predecir cómo no podría ser. Como les contaba en la entrega anterior, no todo vale, y con esto podríamos arriesgarnos a construir una lista de reglas que debería cumplir un alienígena de ficción para ser mínimamente plausible. Vuelvan otro día y se lo cuento.

¿Son plausibles los alienígenas de la ciencia ficción? (I)

En una ocasión ya conté aquí que ocurre algo muy curioso con la relación entre cine y ciencia. Mientras que múltiples expertos en mútiples webs suelen llevar las películas de ciencia ficción a la rueda de interrogatorios para destripar su plausibilidad científica y sacar a relucir sus errores, tanto los expertos como los errores suelen ceñirse a la física. En cambio, la biología suele olvidarse. Al fin y al cabo, como aún no tenemos la menor idea de cómo son los alienígenas –si es que existen–, todo vale. ¿No?

Pues no, no todo vale. De hecho, probablemente no valgan más cosas de las que valen. La biología tiene sus propias reglas. En último término, la biología es una aplicación de la física y la química, y aunque el mayor número de variables aumenta la cota de incertidumbre, está claro que hay cosas que no pueden ser de ninguna manera.

Por ejemplo, las críticas científicas de la saga Alien analizan los bocados relativos a las naves, el espacio, la presión, la gravedad y cosas por el estilo. Pero nunca he leído ninguna (aunque probablemente exista sin que yo la haya descubierto) que abra el siguiente y evidente melón: es enormemente cuestionable que un organismo pueda multiplicar su tamaño y peso de forma desmedida en horas o días; pero desde luego, es absolutamente imposible que lo haga sin alimentarse de la materia necesaria para ganar ese aumento de peso y volumen.

Alien: Covenant. Imagen de 20th Century Fox.

Alien: Covenant. Imagen de 20th Century Fox.

La materia no se crea ni se destruye; para que un ser vivo multiplique su peso por diez, necesita incorporar una cantidad de materia aún mayor, teniendo en cuenta que una gran parte de su alimento se excretará en forma de desechos o para mantener funciones básicas como la refrigeración (sudor). Conclusión: a no ser que se inflen simplemente con aire, ni un pulpo, ni un percebe ni un xenomorfo pueden crecer de la nada en unas horitas.

Plantear un alienígena plausible no es tarea fácil, dado que en efecto aún no conocemos ninguno. Pero son tantos los frentes a cubrir, el biofísico, el bioquímico, el bioenergético, el fisiológico, el ecológico o el evolutivo, que casi todo alienígena inventado corre el riesgo de hacer aguas por un lado u otro, incluso en aspectos tan aparentemente nimios como el que ya conté aquí a propósito de Chewbacca: dado que el folículo piloso y la glándula sudorípara son especializaciones de la piel mutuamente excluyentes, los animales peludos (salvo los caballos, un caso peculiar que también comenté) no sudan lo suficiente como para regular su temperatura, por lo que los wookies deberían pasarse toda la saga de Star Wars jadeando como los perros.

Ya, ya, es cierto que George Lucas nunca ha pretendido que Star Wars sea científicamente creíble. (Pero esperen: ¿no era este el mismo tipo que se inventó aquello de los midiclorianos en analogía con la teoría de la endosimbiosis para convertir la Fuerza en, según sus propias palabras, “una metáfora de una relación simbiótica que permite la existencia de vida”?)

Es más; incluso solucionar el problema del frío cubriendo a los alienígenas de una gruesa capa de pelo es cuando menos infundado. Hoy parece suficientemente demostrado que el pelo de los mamíferos y las plumas de las aves proceden evolutivamente de las escamas de los reptiles, y que los genes específicos para fabricar pelo ya existían en estos últimos antes de que engendraran las ramas que darían lugar a los otros dos grupos.

Por lo tanto, los mamíferos no inventaron realmente el material básico del pelo, sino que se limitaron a modificar algo que habían heredado de los reptiles para acomodarlo a sus necesidades (por decirlo de algún modo; entiéndase que la evolución no tiene propósitos ni intenciones); entre ellas, la protección térmica. Esto de aprovechar un invento de la evolución para otro fin diferente al original se conoce en biología como exaptación.

Pero los reptiles en los que surgió el material necesario para crear el pelo vivían en climas cálidos, por lo que originalmente este mecanismo no era un invento contra el frío. En resumen, es probable que una especie alienígena que ha evolucionado en un planeta helado no lleve pelo para abrigarse, sino algún otro tipo de ingenio evolutivo más específicamente adaptado a esa misión.

Recordando los alienígenas de casi cualquier película que nos venga a la mente, es inmediato que suelen fallar en un aspecto u otro, o en todos. Por ejemplo, todo ser complejo tiene una forma definida, ya que es una regla básica de la biología que la complejidad requiere un alto grado de especialización estructural. Así que no es posible cambiar de forma alegremente cada minuto o tomar el aspecto de otros organismos, salvo que seas algo tan poco inteligente como un moho mucilaginoso. Adiós a La cosa y a las múltiples versiones de La invasión de los ultracuerpos.

La cosa (versión de 1982). Imagen de Universal Pictures.

La cosa (versión de 1982). Imagen de Universal Pictures.

Tampoco existen los seres vivos aislados, ni como especies ni como individuos. En su día, el astrofísico Carl Sagan hizo un cálculo de cuántos monstruos del lago Ness podrían existir si existía alguno, aunque aplicó exclusivamente criterios de física de colisiones. Pero además todo organismo necesita lo que en biología se conoce como Población Mínima Viable, un número de ejemplares que permita la supervivencia de la especie con una diversidad genética suficiente como para perpetuarse sin acabar degenerando hasta la extinción. Y toda especie requiere un aporte de biomasa, así que un alienígena viable depende de un ecosistema que le sostiene.

Otro error frecuente es pasear a los alienígenas por el medio terrestre como si estuvieran en su casa. No se trata solo de la respiración de nuestra atmósfera, sino que la Tierra impone una multitud de condiciones ambientales que podrían resultar hostiles y hasta invivibles para una especie surgida en otro planeta diferente, desde nuestra gravedad hasta nuestros niveles de irradiación, o incluso las amenazas biológicas que nosotros hemos aprendido durante millones de años a mantener a raya.

Un ejemplo muy bien concebido de esto último eran los marcianos de H. G. Wells en La guerra de los mundos, que sucumbían a las bacterias terrestres al carecer de nuestra inmunidad. Wells era biólogo, así que ya hace un siglo predecía que el mayor riesgo para un marciano durante una invasión terrestre no serían los humanos, sino las infecciones.

La guerra de los mundos (versión de 2005). Imagen de Paramount Pictures / DreamWorks Pictures.

La guerra de los mundos (versión de 2005). Imagen de Paramount Pictures / DreamWorks Pictures.

En cuanto a las presuntas bioquímicas alternativas propuestas a menudo en la ciencia ficción, a veces son pura fantasía sin el menor sustento científico. El ejemplo más clásico es el silicio como alternativa al carbono. Una regla básica de la vida es que empleamos materia para alimentar nuestros procesos vitales gracias a la energía almacenada en los enlaces químicos de esas sustancias. Como resultado del proceso, generamos compuestos degradados con un nivel energético menor; es una simple resta. Cuando los organismos terrestres consumimos compuestos orgánicos para alimentarnos, producimos agua y dióxido de carbono (CO2) como productos finales. Son los residuos oxidados de la actividad biológica.

El CO2 es un gas a temperatura ambiente, motivo por el cual lo evacuamos fácilmente. Pero aunque el silicio ofrezca una estructura atómica equiparable a la del carbono en sus posibilidades de formar enlaces, algunos de sus compuestos tienen propiedades químicas notablemente diferentes.

Por ejemplo, el dióxido de silicio (SiO2) es sólido; para entendernos, básicamente es arena. Su temperatura de fusión es de 1.713 ºC, y la de ebullición es de 2.950 ºC; nos pongamos como nos pongamos, temperaturas incompatibles con cualquier forma de vida. En la Tierra, muchos organismos emplean SiO2 precisamente por su dureza, como material de construcción o defensa contra depredadores. Pero una situación muy diferente sería producirlo como residuo metabólico, ya que sería muy difícil eliminarlo de forma constante y en grandes cantidades. ¿Imaginan cómo podríamos estar continuamente expulsando arena de nuestros pulmones?

Un alienígena basado en el silicio en el episodio 'The Devil in the Dark' de la serie 'Star Trek' (1967). Imagen de CBS Television Distribution.

Un alienígena basado en el silicio en el episodio ‘The Devil in the Dark’ de la serie ‘Star Trek’ (1967). Imagen de CBS Television Distribution.

En la próxima entrega seguiremos hablando de esta cuestión, entrando en otro de los clásicos de la ciencia ficción: los alienígenas con forma más o menos humana. ¿Es plausible que en un planeta muy diferente del nuestro evolucionen seres antropomorfos?

Repito: adiós a la señal alienígena, mientras nadie demuestre lo contrario

Esta semana, el microbiólogo ilicitano Francisco Martínez Mojica, de la Universidad de Alicante, ha recibido el prestigioso y sustancioso premio Fundación BBVA Fronteras del Conocimiento por haber descubierto un sistema de defensa de los microbios de las salinas de Santa Pola que, con el correr del tiempo y de las investigaciones, ha permitido crear CRISPR: la mejor herramienta de cortapega genético de la historia de la biología molecular, uno de los mayores hallazgos de este incipiente siglo y una promesa para la corrección de ciertas enfermedades.

¿Qué tendrá esto que ver con el título del artículo? Este Yanes ha perdido el oremus, tal vez estén pensando. Pero aguántenme un momento, que sigo para llegar a donde voy.

Mojica recibió el premio compartido en paridad con Emmanuelle Charpentier y Jennifer Doudna, las científicas que en la práctica convirtieron esta excentricidad de las bacterias (en realidad arqueas, que no son bacterias) en un valioso instrumental quirúrgico molecular. Mojica fue el descubridor; Charpentier y Doudna, las inventoras.

Hasta ahí, todo correcto. Lo interesante viene al analizar el caso más a fondo, una historia que ya expliqué aquí con detalle. Hasta hace año y medio, nadie sabía quién era Francisco Martínez Mojica. CRISPR ya era una revolución entre la comunidad científica y en los (cada vez más escasos) medios populares que se ocupan de los asuntos de ciencia, pero nadie sabía que su descubridor, y quien le puso el nombre de CRISPR, era un español que trabaja en Alicante. De hecho, nadie sabía quién era su descubridor, y a nadie parecía importarle.

Hasta que, en enero de 2016, a uno de los biólogos más influyentes del mundo, Eric Lander, le dio por investigar la historia de CRISPR para publicar un extenso artículo titulado “Los héroes de CRISPR” en la revista científica de biología número uno del mundo, Cell. Uno de aquellos héroes, especialmente reivindicado en el artículo, era Mojica.

De repente, todo cambió: poco después Mojica aparecía hasta en la Wikipedia, y su nombre comenzó a rumorearse para el Nobel. Pero para entonces, el investigador ya se había perdido los tres millones de dólares del Breakthrough Prize, que recibieron solo Charpentier y Doudna, y lo que es aún más grave, el Princesa de Asturias de Investigación 2015, que recibieron solo Charpentier y Doudna. Aún más grave, dado que el presuntamente muy docto jurado de un premio de tal prestigio no se molestó en hacer lo que después hizo Lander, investigar quién lo merecía, y así un premio español dejó fuera a un español tan acreedor de la distinción como las dos premiadas; una mancha para estos premios que difícilmente podrá repararse.

Y así llego a donde quiero llegar: amigos, por desgracia en muchos casos la ciencia está muy alejada de sus ideales de neutralidad y objetividad. Los científicos están contaminados por los mismos sesgos humanos que de repente convierten en mercancía mediática valiosa a algo como el cocinero ese. Mojica vio cómo su trabajo original era rechazado sucesivamente por la revista Nature y por otras publicaciones de primer nivel sin que siquiera fuera enviado a revisión. Solo consiguió por primera vez colar su firma en una de las revistas filiales de Nature en 2011, diluido entre un bosque de Charpentiers, Koonins, Horvaths y van der Oosts. Cuando su nombre fue descubierto por Lander y comenzó a pronunciarse en las mismas frases que la palabra “Nobel” (que, yo confío, llegará), algunos investigadores extranjeros contactados por varios medios arrugaban la nariz: ¿Nobel? ¿Alicante? ¿Dónde está eso? ¿Cerca de Magaluf?

Ahora tenemos otro posible caso. Se llama Antonio Paris y, como ya expliqué ayer, y como Mojica, no da el perfil ideal: es profesor en una universidad estatal de segunda fila, firma sus investigaciones desde su propio “centro virtual” creado por él mismo, The Center for Planetary Science, suele publicar solo y, sobre todo y para colmo, dedica parte de su tiempo a la investigación científica del fenómeno ovni.

El protagonista de la polémica, el astrónomo Antonio Paris. Imagen de The Center for Planetary Science.

El protagonista de la polémica, el astrónomo Antonio Paris. Imagen de The Center for Planetary Science.

Insisto, posible caso. Entiéndanme, ni mucho menos pretendo comparar a Paris con Mojica, pues el primero no reúne, al menos hasta hoy, los méritos del segundo. Pero como excientífico y veterano periodista de ciencia, me ha parecido que las críticas vertidas a Paris y a su trabajo (repito, no solo a su trabajo, sino a él mismo) recuerdan en cierto modo al caso de Mojica por el insoportable tufillo a contaminación por sesgo y falta de neutralidad.

El trabajo publicado recientemente por Paris, que explica la señal Wow! por el paso de dos cometas (a quien esto le suene a griego clásico, puede encontrar más información aquí), ha recibido ciertas críticas por parte de otros científicos. Esto es normal y habitual, e incluso él mismo señalaba las limitaciones de su estudio y los datos que no encajan con su explicación ni con ninguna otra (por ejemplo, a la crítica de que el radiotelescopio captó la señal con uno de sus receptores, pero no con el otro, Paris ha sugerido la posibilidad, obvia, pero de la que nadie más ha hablado ni por supuesto nadie ha rebatido, de que simplemente el telescopio fallara).

Estas críticas han sido resaltadas por varios medios, que han presentado el asunto desde distintos enfoques, desde el más prudente de la duda, hasta el más arriesgado de afirmar que los resultados de Paris han sido rebatidos por otros científicos. Cuando publiqué ayer mi artículo, algún usuario perezoso en Twitter, de los que leen titulares pero no artículos, señalaba esto último.

Pero no, los resultados de Paris no han sido (aún) rebatidos por otros científicos. Tal vez lo sean mañana, dentro de un mes o de un año. Pero para serlo, deberán serlo por la misma vía que los ha admitido: la publicación científica mediante revisión por pares. Hasta entonces, los resultados de Paris deben considerarse provisionalmente válidos, como todo en ciencia.

Aunque también criticables, como todo en ciencia. El problema en este caso, y de ahí el tufillo que las convierte en sospechosas, es el contenido de estas críticas. No soy astrofísico, y por tanto no estoy cualificado para valorar directamente la calidad de los resultados de Paris. Pero cuando se crea en Reddit un hilo en el que se atacan los resultados de alguien comenzando por cuestionar su heterodoxo perfil y sus credenciales profesionales; cuando se critica el estudio porque la revista en la que se ha publicado no es de las favoritas de los astrónomos; cuando las críticas proceden en parte del descubridor original de la señal, quien de forma más o menos soslayada siempre ha creído en su origen alienígena; cuando, y esto sí que es de chiste, se critica a Paris por hacer “ciencia de nota de prensa”, cuando los resultados de Paris no son una nota de prensa sino un estudio científico publicado, y cuando quien profiere tal crítica no ha publicado una refutación científicamente validada y por tanto sí está haciendo ciencia de nota de prensa…

Miren, yo no conozco a Paris más allá de los breves contactos motivados por los reportajes que he escrito sobre su trabajo. No tengo simpatía por él ni lo contrario. Y personalmente, me encantaría que la señal Wow! fuera realmente el primer saludo alienígena de la historia, así que los resultados de Paris no juegan a favor de lo que me gustaría.

Pero seamos neutrales, honestos y objetivos. Los resultados y sus conclusiones merecen el respeto de cualquier otra publicación científica mientras no se demuestren erróneos por la vía oficial, no en prensa, blogs y reddits. Su autor merece el respeto de cualquier otro científico mientras no se demuestre que ha falseado sus datos de mala fe. Estas son las reglas del juego de la ciencia: hoy debemos aceptar que la balanza se inclina oficialmente hacia una explicación natural de la señal. A quien no le guste, que no lo diga, que lo demuestre y lo publique, y aquí lo contaremos con mucho gusto.

Adiós a la única señal de posible origen alienígena

A los que secundamos el I want to believe, pero no nos vale con el “haberlos, haylos”, y no encontramos argumentos biológicos sólidos para defender su existencia, al menos nos quedaba el consuelo de la señal Wow! Por desgracia, ahora, parece que ya no.

Hasta la fecha, no hemos encontrado una sola prueba creíble de la existencia de alienígenas. La fiebre ovni del siglo pasado remitió sin culminar en ninguna revelación extraordinaria, y todos los rastreos de señales de alguien ahí fuera (lo que se conoce como Búsqueda de Inteligencia Extraterrestre, o SETI) han terminado hasta ahora con las manos vacías.

La estupefacción de los astrónomos ante la llamada paradoja de Fermi (según aquella idea atribuida al físico italiano: si hay tantos por ahí, ¿dónde están?) ha dado lugar a hipótesis de lo más variopinto, rayando casi en lo estrafalario; la última que leí hace unos días, de unos investigadores de Oxford y Belgrado, sugiere que los alienígenas han alcanzado tal nivel tecnológico que se han convertido en máquinas, prescindiendo de sus cuerpos biológicos. Y que como los ordenadores funcionan mejor en frío, están dormidos esperando a que el universo se expanda más y baje la temperatura para activarse de nuevo. O dicho de otro modo, que están echando la siesta hasta que pase la ola de calor. Lo cual convierte en algo muy dudoso que los veamos por la Península estos días.

Pero quedaba un indicio sin explicación, un expediente X real. En 1977, un primitivo radiotelescopio en Ohio captó una fuerte señal de radio del cielo que hasta ahora nadie había podido asignar satisfactoriamente a ningún fenómeno natural. Dado que aquel telescopio no podía moverse a izquierda y derecha (técnicamente, ascensión recta), podía captar un punto determinado del firmamento durante 72 segundos, el tiempo que la propia rotación terrestre hacía pasar ese punto por delante de la ventana de observación del telescopio. Y 72 segundos fue lo que duró la señal; al volver a escuchar posteriormente el mismo punto del cielo, sólo se encontró silencio, y jamás ha vuelto a repetirse.

La señal Wow! Imagen de Wikipedia.

La señal Wow! Imagen de Wikipedia.

El astrónomo que se encontraba aquel día dedicando parte de su tiempo libre a aquella especie de actividad extraescolar de buscar alienígenas era Jerry Ehman. Cuando Ehman descubrió la señal marcada en el papel continuo de la impresora, la rodeó con bolígrafo rojo y escribió “Wow!”. Desde entonces, se ha conocido como la señal Wow!.

La señal Wow! ha permanecido inexplicada durante casi 40 años. Hasta que a finales de 2015, un astrónomo del St. Petersburg College de EEUU llamado Antonio Paris publicó un estudio proponiendo que la presunta transmisión alienígena era en realidad el ruido producido por el paso de dos cometas llamados 266P/Christensen y P/2008 Y2 (Gibbs).

Estos cometas no se descubrieron hasta 2006, y por tanto no eran conocidos en 1977, cuando se captó la señal. Pero el cálculo de sus órbitas reveló que sus posiciones en el cielo el día de la señal Wow! eran compatibles con el lugar del que procedía la emisión. Además, la frecuencia de radio de la señal, 1.420 megahercios, coincide también con la del hidrógeno, y precisamente los cometas están rodeados por una gran nube de hidrógeno.

Paris es un tipo heterodoxo. Además de su trabajo como astrónomo y profesor, dedica parte de su tiempo a la investigación científica del fenómeno ovni. En enero de 2016 cubrí su estudio para otro medio. Cuando contacté con otros expertos para que valoraran su hipótesis, me expusieron algunas pegas; sobre todo, que la señal Wow! parecía demasiado potente para proceder de un cometa, y que estos objetos se mueven despacio en el cielo, y que por tanto la emisión debería haberse detectado otra vez cuando el telescopio de Ohio volvió a observar la misma región. Pero cuando le pregunté a Paris qué le parecían estas objeciones, se limitó a responderme con una frase de Spock en Star Trek: “soy un científico, no tengo emociones”.

La historia ha tenido ahora su continuación. Uno de los dos cometas, el 266P/Christensen, debía pasar a comienzos de este año por la misma región del cielo donde se detectó la señal Wow!. Por tanto, era una ocasión magnífica para estudiar la emisión del cometa y comprobar hasta qué punto se parecía a la señal de 1977. Para complementar sus observaciones, Paris ha estudiado también otros cometas.

Las conclusiones, publicadas hace un par de semanas, parecen confirmar la hipótesis: “Los resultados de esta investigación, por tanto, concluyen que los espectros de los cometas son detectables a 1.420 MHz y, más importante, que la señal Wow! de 1977 fue un fenómeno natural de un cuerpo del Sistema Solar”, escribe Paris.

¿Asunto zanjado? ¿Adiós a los aliens? Las objeciones originales sobre la fuerza de la señal y su rapidez aún persisten; aunque respecto a lo primero, Paris ya me advirtió el año pasado de que sería difícil cuadrar la potencia actual de la señal, dado que los cometas habrán perdido gran parte de su masa desde 1977. Pero por lo demás, algunos expertos han planteado otras nuevas pegas que resultan más bien ridículas, como que Paris ha financiado su investigación por crowdfunding, o que la revista donde ha publicado el estudio, Journal of the Washington Academy of Sciences, no es un foro donde los astrónomos suelen enviar sus trabajos.

Mientras, Ehman, que aún vive pero ya retirado, mantiene la actitud gallega que ha mantenido siempre: puede ser, o puede no ser, no se ha probado una cosa, ni la contraria. En el fondo, Ehman parece seguir albergando la esperanza de que aquel día su boli rojo subrayara el primer y hasta hoy único mensaje recibido de otro mundo. Pero por desgracia, y mientras nadie refute los resultados de Paris, hoy tenemos aún menos razones para confiar en que las pruebas que no han llegado hasta ahora acaben llegando. Bueno, tal vez aún nos queden los radiodestellos rápidos (FRB).

No se han detectado señales de vida inteligente en TRAPPIST-1

No, no es que los resultados hayan llegado de ayer a hoy. Verán, les explico: la estrella TRAPPIST-1 no ha debutado en este nuevo estudio que ha resonado esta semana por todos los rincones del planeta. Los responsables del trabajo, de la Universidad de Lieja, ya publicaron en mayo de 2016 el hallazgo de tres planetas orbitando en torno a aquel astro, pero han sido observaciones posteriores más precisas las que han desdoblado el tercer planeta en tres y han descubierto dos más, elevando el total a siete, que es lo nuevo publicado ahora.

Ilustración del sistema TRAPPIST-1. Imagen de ESO/N. Bartmann/spaceengine.org.

Ilustración del sistema TRAPPIST-1. Imagen de ESO/N. Bartmann/spaceengine.org.

Pero tal vez conviene aclarar que los científicos no acaban de proponer por primera vez el potencial para la vida de las estrellas enanas. De hecho, también orbita en torno a una enana roja Proxima b, el exoplaneta más cercano conocido hasta ahora, que también es el exoplaneta habitable más cercano conocido hasta ahora, cuyo hallazgo es obra del catalán Guillem Anglada-Escudé (declarado por ello uno de los diez científicos estelares de 2016 por la revista Nature) y que sin embargo no recibió tanto bombo y platillo como TRAPPIST-1, a pesar de que su distancia a nosotros es casi diez veces menor. Pero claro, en aquel caso no participó la NASA con su poderosa maquinaria mediática.

Hay alguien que ya desde antes creía en las estrellas enanas frías como las candidatas más prometedoras para albergar vida: se trata de Seth Shostak, director del proyecto SETI (Búsqueda de Inteligencia Extraterrestre) del Instituto SETI en California. Los científicos SETI apuntan radiotelescopios a multitud de coordenadas precisas en el cielo para tratar de detectar alguna señal de radio que pueda revelar un origen inteligente. Y Shostak lleva tiempo enfrascado en un proyecto de escucha de 20.000 estrellas enanas.

Una de esas estrellas fue TRAPPIST-1, antes de los nuevos resultados del equipo belga. A efectos de SETI, no importa que la estrella tenga tres planetas o siete, o que ni siquiera se conozca si posee alguno; los científicos SETI se saltan este paso y directamente ponen el oído en busca de posibles señales de origen no natural.

Y las noticias no son buenas. En un artículo en la web del Instituto SETI, Shostak escribe: “El Instituto SETI utilizó el año pasado su Matriz de Telescopios Allen para observar los alrededores de TRAPPIST-1, escaneando a través de 10.000 millones de canales de radio en busca de señales. No se detectó ninguna transmisión, aunque preparamos nuevas observaciones”.

Por supuesto, los resultados no excluyen por completo la existencia de vida allí, ni siquiera de vida inteligente. Aunque, como comenté ayer, y simplemente desde el punto de vista biológico, esto último es más bien improbable, algo que tal vez no se ha explicado lo suficiente. En un artículo publicado por la NASA como seguimiento de la noticia de los nuevos planetas, se daba por fin voz a una astrobióloga, Victoria Meadows, del Instituto de Astrobiología de la NASA. Meadows sopesaba las posibles condiciones de aptitud para la vida del sistema TRAPPIST-1, pero después de exponer los pros y contras, terminaba aclarando: “aquí estoy hablando solo de moho”. En otras palabras: la astrobióloga no se planteaba ni como posibilidad remota la existencia de vida inteligente en aquella estrella.

Por el momento, solo nos queda seguir esperando. Pero al menos estaremos entretenidos: ya se han escrito dos relatos, un poema y un cómic sobre TRAPPIST-1.

Por qué es improbable que haya alienígenas en TRAPPIST-1

El hallazgo es histórico: un sistema de siete planetas templados, todos ellos de tamaño similar a la Tierra, al menos seis de ellos con suelo firme, al menos tres de ellos con la casi garantía de condiciones climáticas adecuadas para la existencia de agua líquida en toda su superficie. Ya conocíamos exoplanetas de talla terrestre, ya conocíamos exoplanetas rocosos y ya conocíamos exoplanetas templados. Pero encontrar todo ello junto multiplicado varias veces significa que el sistema de TRAPPIST-1 es, desde hoy, nuestro nuevo rincón favorito del universo. Y a solo 40 años luz, lo cual es una minucia en distancias cósmicas.

Ilustración de TRAPPIST-1 f. Imagen de NASA/JPL-Caltech.

Ilustración de TRAPPIST-1 f. Imagen de NASA/JPL-Caltech.

Pero vaya una advertencia: ¡por favor, no le atribuyan el descubrimiento a la NASA! Es cierto que la agencia estadounidense ha participado, pero es que actualmente participa de una manera u otra en la casi totalidad de los descubrimientos de exoplanetas, dado que la mayoría de ellos suelen contar con alguno de sus telescopios espaciales.

Al César lo que es del César: el sistema de la estrella TRAPPIST-1 es la criatura de un equipo de astrónomos belgas trabajando con un telescopio belga en suelo chileno, cuyo nombre (el mismo de la estrella) no es casual, como sabe todo el que haya probado la típica cerveza belga trapense (trappist). Por supuesto, ha sido el telescopio espacial de infrarrojos Spitzer de la NASA el que ha permitido desdoblar lo que antes se creía un solo planeta en tres, y descubrir otros dos nuevos. Pero un edificio de Norman Foster sigue siendo de Norman Foster pese a que sea otro quien lo construya.

Los medios ya han ofrecido esta tarde toda la información básica sobre el nuevo sistema solar de bolsillo, con sus siete planetas (como mínimo) apiñados en torno a su pequeña estrella. Yo mismo también lo he contado en otro medio. Pero hay un aspecto que quisiera comentar aquí, y es lo que en el fondo más importa a la mayoría de un descubrimiento como el del sistema TRAPPIST-1: la posibilidad de que haya vida allí. Y cuando la mayoría piensa en vida, piensa en alguien a quien podríamos llegar a saludar, de una manera u otra.

Ilustración del sistema TRAPPIST-1. Imagen de NASA/JPL-Caltech.

Ilustración del sistema TRAPPIST-1. Imagen de NASA/JPL-Caltech.

Por supuesto que desde el punto de vista de los astrofísicos y los científicos planetarios aún quedan muchas condiciones por definir antes de que puedan lanzar alguna apuesta sobre la habitabilidad real de aquel sistema. Los responsables del estudio, bajo la dirección del astrónomo de la Universidad de Lieja Michaël Gillon, dijeron ayer martes en una rueda de prensa telefónica organizada por la revista Nature que TRAPPIST-1 es una estrella muy tranquila, sin grandes erupciones solares que puedan arrasar sus planetas con grandes dosis de radiación y pelar sus atmósferas.

Aun así, los científicos estiman que probablemente los planetas de TRAPPIST-1 estén sometidos a una enorme radiación ultravioleta (UV), y este es un claro impedimento para la vida. La luz UV provoca daños celulares que resultan dañinos o letales para los organismos. Los terrícolas contamos con un aliado que nos protege, y que sin duda les sonará: la capa de ozono de la atmósfera.

Pero para protegerse de esta nociva irradiación, los seres vivos también pueden refugiarse a la sombra, ya sea bajo tierra o debajo del agua. Y hay otra interesante posibilidad analizada por Jack T. O’Malley-James y Lisa Kaltenegger, dos investigadores del Instituto Carl Sagan de la Universidad de Cornell (EEUU), en un estudio de próxima publicación, y que bien podría ser aplicable al sistema de TRAPPIST-1: la biofluorescencia.

La fluorescencia consiste en emitir luz después de absorberla, pero de modo que la luz emitida tiene menos energía que la recibida, y por tanto (según una propiedad básica de la luz) mayor longitud de onda. Es decir, que por ejemplo un cuerpo fluorescente recibe luz UV y la convierte en luz visible, anulando así su efecto dañino. La fluorescencia se ha propuesto como un mecanismo de defensa de algunos organismos contra la luz UV aquí mismo, en la Tierra; en concreto, en algunos corales.

Según O’Malley-James y Kaltenegger, y suponiendo que los seres vivos de un lugar como TRAPPIST-1 desarrollaran biofluorescencia como sistema de protección contra el UV, no solo podrían vivir bajo esas condiciones, sino que incluso nosotros podríamos detectar esa luz a distancia, por ejemplo durante fuertes fogonazos de UV por parte de la estrella. Así, la fluorescencia podría ser una biofirma temporal, distinguible de la emitida por los minerales, que podría revelarnos la existencia de vida en un sistema solar lejano.

Según ha informado hoy la Universidad de Cornell, Kaltenegger tiene ahora mismo en revisión otro estudio en el que discute concretamente la posibilidad de existencia de vida en las condiciones de irradiación UV de TRAPPIST-1. Lo esperaremos con impaciencia.

Ilustración del sistema TRAPPIST-1. Imagen de NASA/JPL-Caltech.

Ilustración del sistema TRAPPIST-1. Imagen de NASA/JPL-Caltech.

Pero incluso dando todo lo anterior por supuesto, desde el punto de vista biológico hay un enorme impedimento para que en TRAPPIST-1 pueda existir una civilización con la que pudiéramos intercambiar señales cada 40 años: la estrella es demasiado joven.

En la rueda de prensa, Gillon y sus colaboradores explicaron que TRAPPIST-1 tiene unos 500 millones de años. Al tratarse de una estrella de evolución lenta, seguirá ahí cuando nuestro planeta ya no sea ni un recuerdo: mientras que el Sol se encuentra más o menos a la mitad de su vida y pueden quedarle por delante unos 5.000 millones de años, en cambio TRAPPIST-1 vivirá un billón de años, dijeron los investigadores.

Mucho tiempo por delante. Pero muy poco por detrás. Si repasamos los 4.600 millones de años de historia de nuestro Sistema Solar, o lo que sabemos de esos 4.600 millones de años, encontramos que tuvieron que pasar más de 500 millones de años hasta la aparición de las primeras células simples. Y aunque la ventana del comienzo de la vida en la Tierra suele centrarse en torno a los 4.000 millones de años atrás por los indicios químicos hallados, las pruebas fósiles más antiguas no llegan más allá de los 3.700 millones de años.

Durante la mayor parte de la historia del planeta, la Tierra ha estado habitada solo por células individuales. Aunque tampoco sabemos con certeza cuándo aparecieron los primeros organismos multicelulares (las estimaciones pueden variar salvajemente entre los 800 y los 2.000 millones de años), sí sabemos que solo hace 570 millones de años comenzaron a aparecer formas de vida más complejas, como los artrópodos.

Los mamíferos solo llevamos aquí unos 200 millones de años. Y la única especie con capacidad para comunicarse con otras civilizaciones, nosotros, somos unos recién nacidos, con unos 200.000 años de vida. Somos un decimal en la historia de la vida terrestre; este planeta ha tardado casi 4.600 millones de años en alumbrar una especie que, si no fuéramos tan bestias, podría llamarse civilizada.

Pero TRAPPIST-1 no ha tenido tanto tiempo. Si hay algo allí, apenas serán células simples.

Es cierto, se puede objetar que estas cronologías probablemente vienen marcadas tanto por fenómenos geológicos como biológicos: la Tierra recién formada tuvo que enfriarse, sufrir el cataclismo lunar, recuperarse del cataclismo lunar… Pero por desgracia, de los biológicos en realidad sabemos poco. Como aún desconocemos el proceso de la abiogénesis (la transición de la no vida a la vida), sus pasos más limitantes y su probabilidad, o si pudo existir más de un origen de la biología terrestre (segundo génesis), no podemos valorar las posibilidades reales de que la vida pueda seguir otros caminos con cronologías muy diferentes.

Así que debemos atenernos al principio de mediocridad, y suponer que la de la Tierra sería una historia típica, con su evolución geológica y biológica gradual puntuada por grandes catástrofes esporádicas que provocan extinciones masivas. Y no tenemos razones para sospechar que en TRAPPIST-1 no se aplique el principio de mediocridad.

Por otra parte, está también la vieja objeción de suponer la vida tal como la conocemos, y de olvidar que la vida podría existir tal como no la conocemos y por tanto regirse por otros parámetros bien distintos, incluyendo su cronología evolutiva. Pero sin mencionar siquiera que otras bioquímicas alternativas propuestas a veces tienen más de fantasía que de posibilidad real (algo de lo que ya he hablado más extensamente aquí en alguna otra ocasión), hay que tener en cuenta que estamos valorando la habitabilidad del sistema TRAPPIST-1, o de otros exoplanetas en general, por la comparación de sus condiciones con las terrestres. Así que en realidad estamos pensando en la vida más o menos tal como la conocemos.

En otras palabras: nadie ha refutado formalmente la posibilidad de vida exótica extremadamente rara, como la que Robert L. Forward situaba sobre una estrella de neutrones en Huevo del Dragón, y que funcionaba un millón de veces más deprisa que la terrestre. Pero los planetas de TRAPPIST-1 no son estrellas de neutrones, sino planetas parecidos a la Tierra. Y en planetas parecidos a la Tierra la biología debería funcionar de forma parecida a la de la Tierra. Y según la biología de la Tierra, o mucho nos equivocamos, o me temo que imaginar una civilización inteligente en un planeta que aún es un bebé cósmico no es más que pura fantasía.

Quizá ya se encontró vida en Marte, pero quizá nunca lo sepamos

Hace tiempo vi uno de esos espacios televisivos –me resisto a llamarlos documentales– que dicen defender la idea de que los gobiernos poseen y ocultan pruebas de la existencia de vida alienígena. Y digo “dicen defender”, porque en realidad no lo defienden; el programa era como un calentón sin sexo: una sucesión de cliffhangers que prometían revelar pruebas después de la publicidad, pero sin llegar nunca a mostrarlas, mientras por la pantalla desfilaba una serie de verdades a medias y especulaciones cien por cien irrefutables, con cero por cien de fundamento.

Primera imagen en color tomada por la Viking 1 en 1976. Imagen de NASA.

Primera imagen en color tomada por la Viking 1 en 1976. Imagen de NASA.

Entre las primeras, contaban lo de aquella famosa imagen (ver más abajo) tomada por el rover Spirit y que mostraba lo que parecía una figura humanoide; pero se olvidaban de contar que, según la escala de la foto, el presunto alienígena medía solo unos centímetros, por lo que como mucho podría ser el Playmobil que se le cayó a un marcianito.

En cuanto a las segundas, contaban también la vieja historia de la famosa “cara” de la región de Cidonia fotografiada por la Viking 1 en 1976 (ver también más abajo). Pero respecto a las nuevas imágenes de esa formación en alta resolución obtenidas en años recientes por otras varias sondas, y que no muestran nada que se parezca ni siquiera al rostro del Hombre Elefante, tenían la explicación oportuna: la cara fue destruida deliberadamente mediante un preciso bombardeo láser (o algo así, pero igual me estoy dejando llevar) para ocultar la verdad.

Y sin embargo, sabemos que todos esos argumentos calan. ¿He dicho ya que la guerra contra las pseudociencias no puede ganarse?

Lo más curioso de todo es que, si los explotadores de estas patrañas se preocuparan por informarse sobre la ciencia real, descubrirían que hay argumentos mucho más interesantes, basados en pruebas auténticas, y que son suficientes para dejarle a uno rascándose la barbilla.

Foto tomada por el rover Spirit mostrando una extraña formación rocosa. Imagen de NASA.

Foto tomada por el rover Spirit mostrando una extraña formación rocosa. Imagen de NASA.

La "cara" de Marte fotografiada por la sonda MRO. En el recuadro, imagen tomada por la Viking 1. Imágenes de NASA.

La “cara” de Marte fotografiada por la sonda MRO. En el recuadro, imagen tomada por la Viking 1. Imágenes de NASA.

Voy a contarles una historia. En 1976, dos sondas consiguieron por fin posarse sobre la superficie de Marte en perfecto estado de funcionamiento, después de varios intentos frustrados. Eran las Viking 1 y 2 de la NASA. Aquellos dos aparatos gemelos eran una apuesta a todo trapo: iban equipados con cuatro experimentos biológicos con el fin de esclarecer a la primera y de una vez si había vida en Marte. Vida microbiana, por supuesto; era ya evidente que de la otra no la había.

Uno de los experimentos de las Viking, el de Liberación Marcada o Labeled Release (LR), consistía en tomar una muestra de suelo y añadirle nutrientes. Si había microbios allí, debían comerse la pitanza suministrada por las sondas y producir a cambio minúsculos eructos de CO2. Gracias a que los nutrientes llevaban carbono-14, el experimento detectaría una posible liberación de este isótopo radioactivo en forma de CO2.

Pues bien, el resultado fue positivo: las dos Viking, las dos, detectaron liberación de CO2 de sendas muestras de suelo en lugares diferentes. Es más: al tratar las muestras con calor para esterilizarlas, la presunta actividad biológica desaparecía.

Aquello habría llenado las primeras páginas de los periódicos del mundo con el titular “Hay vida en Marte”, si no hubiera sido por otro resultado contrario. Otro experimento de las sondas llamado Cromatógrafo de Gases –  Espectrómetro de Masas (GCMS, en inglés), destinado a detectar materia orgánica, salió negativo. La ausencia de compuestos de carbono en el suelo de Marte fue una sorpresa para los investigadores. Pero sobre todo, echaba por tierra los resultados del LR: sin materia orgánica, era imposible la presencia de vida.

La conclusión final aceptada por la mayoría de los científicos fue que el resultado del LR era un falso positivo. Pero las explicaciones propuestas no convencieron a todos, y nunca se dio carpetazo definitivo a los experimentos de las Viking.

Así pasaron 38 años, y saltamos hasta 2014. En diciembre de ese año, la NASA confirmaba que el rover Curiosity había realizado “la primera detección definitiva de moléculas orgánicas en Marte”. “Aunque el equipo no puede concluir que hubo vida en el cráter Gale [donde el Curiosity hizo su análisis], el descubrimiento muestra que el entorno antiguo ofreció un suministro de moléculas orgánicas reducidas para uso como ladrillos básicos de la vida y fuente de energía para la vida”, decía la NASA.

Entrando en detalles: lo que el Curiosity detectó fueron cortas cadenas simples de carbono y cloro, correspondientes a moléculas que en la Tierra no se encuentran de forma natural, sino que forman parte de algunos procesos industriales. Pero los investigadores no estaban seguros de que esos compuestos de cloro se encontraran tal cual en la superficie marciana; dado que en el suelo de Marte se han encontrado anteriormente perclorato, un compuesto de cloro muy oxidante, pudiera ser que las moléculas orgánicas originales no contuvieran cloro (es decir, que fueran moléculas más parecidas a las de los seres vivos), y que este se hubiera unido a ellas durante la reacción dentro del propio experimento del Curiosity.

Este detalle es importante, porque el perclorato podría ser también la causa de la oxidación de los nutrientes de las Viking para producir CO2. Es decir, puede que este no tuviera un origen bioquímico, sino simplemente químico. O en otras palabras, no biológico, sino geológico. De hecho, en realidad las Viking sí encontraron algo orgánico: compuestos simples de cloro con un solo átomo de carbono. Entonces se pensó que era una simple contaminación terrestre de los aparatos, porque aún no se conocía la presencia del perclorato. Pero ahora podría entenderse que aquellas moléculas eran realmente marcianas, fuera su origen biológico o no.

¿Y por qué el Curiosity ha podido detectar lo que las Viking no encontraron? La respuesta es muy sencilla: los instrumentos del Curiosity son más potentes y sensibles. En cambio, el nuevo rover no está equipado con experimentos biológicos. Después de las Viking no ha vuelto a posarse en Marte una sola sonda equipada para detectar vida, por lo que aquellos experimentos nunca han podido repetirse.

Resumiendo todo lo anterior: en 1976, un experimento pareció detectar vida en Marte. El resultado fue descartado porque no se encontró materia orgánica, pero después ese impedimento ha desaparecido. Es más: el pasado diciembre, durante una reunión científica, una investigadora del equipo del Curiosity dijo estar convencida de que las moléculas orgánicas están “por todo Marte”. También se han encontrado bocanadas de metano en la atmósfera marciana, un gas que podría proceder de procesos químicos, pero que en la Tierra tiene sobre todo un origen biológico.

Resumiendo el resumen, nos quedan dos posibilidades: o todos los descubrimientos anteriores se deben a un afortunado cúmulo de reacciones químicas, lo cual no es descartable… o realmente hay vida en Marte. Hoy ya nadie podría sensatamente calificar esta opción como imposible. Entre lo simplemente posible y lo muy probable, quédense con lo que prefieran; a día de hoy nadie podrá rebatírselo. Algunos de los investigadores encargados en su día de los experimentos biológicos de las Viking aún siguen defendiendo que encontraron vida en Marte.

Y ahora viene la mala noticia: tal vez nunca lo sepamos con certeza. Actualmente, y hasta donde sé, no hay planificada ni una sola misión a Marte expresamente diseñada para buscar vida. Aún peor: con la puesta en marcha de los protocolos de protección planetaria, ahora se evita específicamente enviar sondas a los lugares donde se cree que pudiera existir vida, para evitar una contaminación de origen terrestre que pudiera llevar a su extinción.

¿Qué nos queda entonces? Obviamente, las misiones tripuladas. Un bioquímico en la superficie de Marte podría dar respuesta en menos de una hora a 40 años de interrogantes. Pero hoy aún es poco creíble que esto vaya a ocurrir en las próximas décadas… a no ser por Elon Musk.

Sin un “segundo génesis”, no hay alienígenas

Si les dice algo el nombre del lago Mono, en California, una de dos: o han estado por allí alguna vez, o recuerdan el día en que más cerca estuvimos del “segundo génesis”.

Les explico. A finales de noviembre de 2010, la NASA sacudió el ecosistema científico lanzando un teaser previo a una rueda de prensa en la que iba a “discutirse un hallazgo de astrobiología que impactará la búsqueda de pruebas de vida extraterrestre”. La conferencia, celebrada el 2 de diciembre, solo decepcionó a quienes esperaban la presentación de un alien, algo siempre extremadamente improbable y que el anuncio tampoco insinuaba, salvo para quien no sepa leer. Para los demás, lo revelado allí era un descubrimiento excepcional en la historia de la ciencia: una bacteria diferente a todos los demás organismos de la Tierra conocidos hasta ahora.

El lago Mono, en California. Imagen de Wikipedia.

El lago Mono, en California. Imagen de Wikipedia.

Coincidiendo con la rueda de prensa, los resultados se publicaron en la web de la revista Science bajo un título breve, simple y atrevido: “Una bacteria que puede crecer usando arsénico en lugar de fósforo”. La sinopsis de la trama decía que un equipo de investigadores, dirigidos por la geobióloga Felisa Wolfe-Simon, había encontrado en el lago Mono un microorganismo capaz de emplear arsénico como sustituto del fósforo en su ADN. Lo que para otros seres terrestres es un veneno (su posible papel como elemento traza aún se discute), para aquella bacteria era comida.

Toda la vida en este planeta, desde el virus que infecta a una bacteria hasta la ballena azul, se basa en la misma bioquímica. Uno de sus fundamentos es un material genético (ADN o ARN) formado por tres componentes: una base nitrogenada, un azúcar y un fosfato. Dado que este fue el esquema fundador de la biología terrestre, todos los seres vivos estamos sujetos a él. Encontrar un organismo que empleara un sistema diferente, por ejemplo arseniato en lugar de fosfato, supondría hallar una forma de vida que se originó de modo independiente a la genealogía de la que todos los demás procedemos.

Esto se conoce informalmente como un “segundo génesis”, un segundo evento de aparición de vida (que no tiene por qué ser el segundo cronológicamente). Sobre si la bacteria del lago Mono, llamada GFAJ-1, habría llegado a representar o no un segundo génesis, hay opiniones. Hay quienes piensan que no sería así, ya que la existencia de un ADN modificado habría representado más bien una adaptación extrema muy temprana dentro de una misma línea evolutiva.

Para otros, es irrelevante que el origen químico fuera uno solo: dado que la definición actual de cuándo la no-vida se transforma en vida se basa en la acción de la evolución biológica, existiría la posibilidad de que la diversificación del ADN se hubiera producido antes de este paso crucial, y por lo tanto la vida habría arrancado ya con dos líneas independientes y paralelas.

Pero mereciera o no la calificación de segundo génesis, finalmente el hallazgo se desinfló. Desde el primer momento, muchos científicos recibieron el anuncio con escepticismo por razones teóricas, como el hecho de que el ADN con arsénico en lugar de fósforo daría lugar a un compuesto demasiado inestable para la perpetuación genética (este es solo un caso más de por qué muchas de las llamadas bioquímicas alternativas con las que tanto ha jugado la ciencia ficción son en realidad pura fantasía que hace reír a los bioquímicos). La publicación del estudio confirmó las sospechas: los experimentos no demostraban realmente que el ADN contuviera arsénico. Y como después se demostró, no lo contenía.

La bacteria GFAJ-1 del lago Mono resultó ser simplemente una extremófila más, un bicho capaz de crecer en aguas muy salinas, alcalinas y ricas en arsénico. Tenía una tolerancia fuera de lo común a este elemento, pero no lo empaquetaba en su ADN; se limitaba a acumularlo, construyendo su material genético con el fósforo que reciclaba destruyendo otros componentes celulares en tiempos de escasez. Su única utilidad real fue conseguir el propósito expresado en su nombre, GFAJ, formado por las iniciales de Give Felisa A Job (“dadle un trabajo a Felisa”): aunque el estudio fuera refutado, le sirvió a Wolfe-Simon como trampolín para su carrera.

Bacterias GFAJ-1. Imagen de Wikipedia.

Bacterias GFAJ-1. Imagen de Wikipedia.

Por algún motivo que desconozco, el estudio nunca ha sido retractado, cuando debería haberlo sido. Me alegro de que a Wolfe-Simon le vaya bien, pero desde el principio el suyo fue un caso de ciencia contaminada: no descubrió el GFAJ-1 por casualidad, sino que estaba previamente convencida de la existencia de bacterias basadas en el arsénico, algo que ya había predicado antes en conferencias y que le hizo ganar cierta notoriedad. El siguiente paso era demostrar que tenía razón, fuera como fuese.

Hoy seguimos sin segundo génesis terrestre. Y su ausencia es una razón que a algunos nos aparta de esa idea tan común sobre la abundancia de la vida alienígena. Afirmar que el hecho de que estemos aquí implica que la vida debe de ser algo muy común en el universo es sencillamente una falacia, porque no lo implica en absoluto. Es solo pensamiento perezoso; una idea que cualquiera puede recitar si le ponen en la boca un micrófono de Antena 3 mientras se compra unos pantalones en Zara, pero que si se piensa detenidamente y sobre argumentos científicos, no tiene sustento racional.

Pensémoslo un momento: si creemos que la vida es omnipresente en el universo, esto equivale a suponer que dado un conjunto de condiciones adecuadas para algún tipo de vida, por diferentes que esas condiciones fueran de las nuestras y que esa vida fuera de la nuestra, esta aparecería con una cierta frecuencia apreciable.

Pero la Tierra es habitable desde hace miles de millones de años. Y sin embargo, esa aparición de la vida solo se ha producido una vez, que sepamos hasta ahora. Si suponemos que los procesos naturales han actuado del mismo modo en todo momento (esto se conoce como uniformismo), debería haber surgido vida en otras ocasiones; debería estar surgiendo vida nueva hoy. Y hasta donde sabemos, no es así. Hasta donde sabemos, solo ha ocurrido una vez en 4.500 millones de años.

¿Por qué? Bien, podemos pensar que el uniformismo no es una regla pura, dado que sí han existido procesos excepcionales, como episodios globales de vulcanismo o impactos de grandes asteroides que han cambiado drásticamente las reglas del juego de la vida. Esto se conoce como catastrofismo, y la situación real se acerca más a un uniformismo salpicado con algunas gotas esporádicas de catastrofismo.

Pero si aceptamos que el catastrofismo fue determinante en el comienzo de la vida en la Tierra, la conclusión continúa siendo la misma: si deben darse unas condiciones muy específicas e inusuales, una especie de tormenta bioquímica perfecta, entonces estamos también ante un fenómeno extremadamente raro, que en 4.500 millones de años no ha vuelto a repetirse. De una manera o de otra, llegamos a la conclusión de que la vida es algo muy improbable. Desde el punto de vista teórico, para que la idea popular tenga algún viso de ser otra cosa que seudociencia debería antes refutarse la hipótesis nula (una explicación sencilla aquí).

A lo anterior hay una salvedad, y es la posibilidad de que la “biosfera en la sombra” (un término ya acuñado en la biología) procedente de un segundo génesis fuera eliminada por selección natural debido a su mayor debilidad, o sea eliminada una y otra vez, por muchos génesis que se produzcan sin siquiera enterarnos.

Esta hipótesis no puede descartarse a la ligera, pero tampoco darse por sentada: si en su día la existencia de algo como la bacteria GFAJ-1 no resultaba descabellada, es porque la idea de una biosfera extremófila en la sombra es razonable; una segunda línea evolutiva surgida en un nicho ecológico muy marginal, como el lago Mono, tendría muchas papeletas para prosperar, quizá más que un invasor del primer génesis pasando por un trabajoso proceso de adaptación frente a un competidor especializado. Y sin embargo, hasta ahora el resultado de la búsqueda en los ambientes más extremos de la Tierra ha sido el mismo: nada. Solo parientes nuestros que comparten nuestro único antepasado común.

Si pasamos de la teoría a la práctica, es aún peor. Hasta hoy no tenemos absolutamente ni siquiera un indicio de que exista vida en otros lugares del universo. En la Tierra la vida es omnipresente, y no se esconde. Nos encontramos con pruebas de su presencia a cada paso. Incluso en el rincón más remoto del planeta hay testigos invisibles de su existencia, porque en el rincón más remoto del planeta uno puede encender un GPS o un Iridium y recibir una señal de radio por satélite. Si el universo bullera de vida, bulliría también de señales. Y sin embargo, si algo sabemos es que el cosmos parece un lugar extremadamente silencioso.

Como respuesta a lo anterior, algunos científicos han aportado la hipótesis de que la vida microbiana sea algo frecuente, pero que a lo largo de su evolución exista un cuello de botella complicado de superar en el que casi inevitablemente fracasa, impidiendo el progreso hacia formas de vida superiores; lo llaman el Gran Filtro. Otros investigadores sugieren que tal vez la Tierra haya llegado demasiado pronto a la fiesta, y que la inmensa mayoría de los planetas habitables todavía no existan. Pero también con estas dos hipótesis llegamos a la misma conclusión: que en este momento no hay nadie más ahí fuera.

Pero esto es ciencia, y eso significa que aquello que nos gustaría no necesariamente coincide con lo que es; y debemos atenernos a lo que es, no a lo que nos gustaría. Personalmente, I want to believe; me encantaría que existiera vida en otros lugares y quisiera vivir para verlo. Pero por el momento, aquello del “sí, claro, si nosotros estamos aquí, ¿por qué no va a haber otros?”, mientras alguien rebusca en los colgadores de Zara, no es ciencia, sino lo que en inglés llaman wishful thinking, o pensamiento ilusorio.

Claro que todo esto cambiaría si por fin algún día tuviéramos constancia de ese segundo génesis terrestre. Y aunque seguimos esperando, hay una novedad potencialmente interesante. Un nuevo estudio de la Universidad de Washington, el Instituto de Astrobiología de la NASA y otras instituciones, publicado en la revista PNAS, descubre que en la Tierra existió un episodio de oxigenación frustrado, previo al que después daría lugar a la aparición de la vida compleja.

Hoy sabemos que hace unos 2.300 millones de años la atmósfera terrestre comenzó a llenarse de oxígeno (esto se conoce como Gran Oxidación), gracias al trabajo lento y constante de las cianobacterias fotosintéticas. Los fósiles más antiguos de células eucariotas (la base de los organismos complejos) comienzan a encontrarse en abundancia a partir de unos 1.700 millones de años atrás, aunque aún se discute cuándo surgieron por primera vez. Pero si de algo no hay duda, es de que fue necesaria una oxigenación masiva de la atmósfera para que la carrera de la vida tomara fuerza y se consolidara.

Los investigadores han estudiado rocas de esquisto de entre 2.320 y 2.100 millones de años de edad, la época de la Gran Oxidación, en busca de la huella de la acción del oxígeno sobre los isótopos de selenio. La idea es que la oxidación del selenio actúa como testigo del nivel de oxígeno en la atmósfera presente en aquella época.

Lo que han descubierto es que la historia del oxígeno en la Tierra no fue un “nada, después algo, después mucho”, en palabras del coautor del estudio Roger Buick, sino que al principio hubo una Gran Oxidación frustrada: los niveles de oxígeno subieron para después bajar por motivos desconocidos, antes de volver a remontar para quedarse y permitir así el desarrollo de toda la vida que hoy conocemos.

Este fenómeno, llamado “oxygen overshoot“, ya había sido propuesto antes, pero el nuevo estudio ofrece una imagen clara de un episodio en la historia de la Tierra que fue clave para el desarrollo de la vida. Según Buick, “esta investigación muestra que había suficiente oxígeno en el entorno para permitir la evolución de células complejas, y para convertirse en algo ecológicamente importante, antes de lo que nos enseñan las pruebas fósiles”.

El interés del estudio reside en que crea un escenario propicio para que hubiera surgido una “segunda” biosfera (primera, en orden cronológico) de la que hoy no tenemos constancia, y que tal vez pudo quedar asfixiada para siempre cuando los niveles de oxígeno se desplomaron por causas desconocidas. Pero Buick deja claro: “esto no quiere decir que ocurriera, sino que pudo ocurrir”.

E incluso asumiendo que la propuesta de Buick fuera cierta, en el fondo tampoco estaríamos hablando de un segundo génesis, sino de un primer spin-off frustrado a partir de un único génesis anterior; las bacterias, los primeros habitantes de la Tierra, ya llevaban por aquí cientos de millones de años antes del oxygen overshoot. El estudio podría decirnos algo sobre la evolución de la vida, pero no sobre el origen de la vida a partir de la no-vida, la abiogénesis, ese gran problema pendiente que muchos dan por resuelto, aunque aún no tengamos la menor idea de cómo resolverlo.