Entradas etiquetadas como ‘vida inteligente’

Según la biología, podríamos ser la única especie inteligente en el universo

El universo no es eterno, y por lo tanto comenzó en algún momento. Lo cual implica que hubo un tiempo en que la vida no existía. Y tan evidente como esto es también que hoy la vida existe; al menos nosotros, todos los seres terrícolas, estamos aquí.

La conclusión es innegable: en algún episodio de la historia del cosmos, al menos una vez, la vida pasó de no ser a ser. Esto es lo que se conoce como abiogénesis. Y es un problema. Un gran problema, porque nadie sabe cómo se produjo. De hecho, es el problema central de la biología: ¿cómo comenzó todo?

Estas rocas de la región de Pilbara, en Australia, contienen los fósiles de microbios más antiguos conocidos, de 3.500 millones de años de antigüedad. Imagen de Baumgartner et al., Geology, 2019.

Estas rocas de la región de Pilbara, en Australia, contienen los fósiles de microbios más antiguos conocidos, de 3.500 millones de años de antigüedad. Imagen de Baumgartner et al., Geology, 2019.

La dificultad de la abiogénesis es obvia: que la vida aparezca a partir de la no vida es algo que, en principio, no ocurre. Solemos llamarlo generación espontánea, y Pasteur y otros demostraron que no existe. Hay ciertas diferencias considerables entre la generación espontánea y la abiogénesis: una de ellas, que rescataremos más abajo, es que la primera ocurriría de forma rápida y rutinaria, como una especie de mecanismo naturalmente programado, mientras que la segunda sería un proceso lento, gradual y excepcional. Pero en el fondo, el resumen es el mismo: vida que surge de algo no vivo.

Tan grande es el problema que tradicionalmente ha dado pie a muchos a defender explicaciones sobrenaturales de la aparición de la vida (en contra de lo que muchos creen, la evolución definida primero por Darwin y Wallace y después reconstituida por otros no explica el origen de la vida, sino solo cómo unas especies dan lugar a otras). Francis Crick, codescubridor de la doble hélice del ADN y un crítico feroz de las religiones, trató de salvar el obstáculo de la abiogénesis proponiendo la panspermia dirigida, la idea de que una civilización alienígena sembró la vida terrestre a propósito.

Lo cual, en realidad, no solamente no resolvía el problema, sino que le daba una patada para alejarlo (¿cómo surgió la vida de la que esa civilización evolucionó?); y, en el fondo, ¿cuál es la diferencia entre hablar de Dios y de una entidad alienígena inteligente, creadora y con un poder incomprensible para nosotros?

Todo hay que decirlo, Crick moderó su postura en años posteriores, cuando se descubrió la capacidad catalítica del ARN, que rompía el ciclo del huevo y la gallina: si la formación del ADN requiere proteínas y la formación de proteínas requiere ADN, ¿cómo empieza el proceso? El descubrimiento de las ribozimas, ARN que actúa como enzimas, conseguía cortar el círculo y convertirlo en una línea con una casilla de salida.

Pero incluso con las ribozimas, la abiogénesis continúa siendo hoy una píldora difícil de tragar. O lo sería, si no fuera porque tenemos la prueba irrefutable de su existencia: nosotros. Por supuesto y dado que la vida es un fenómeno natural, recurrir a explicaciones sobrenaturales es solo negarnos a nosotros mismos nuestra capacidad para comprender el universo por medio del razonamiento y la investigación.

Esta explicación sobre la abiogénesis sirve para entender por qué se ha popularizado tanto la idea de que la vida es abundante en el universo, y por qué en cambio esta idea es, como mínimo, poco razonable. Los primeros que comenzaron a interesarse científicamente por la vida alienígena fueron físicos y matemáticos, como los fundadores de los proyectos SETI (Búsqueda de Inteligencia Extraterrestre). Para un físico, la naturaleza funciona aquí lo mismo que en GN-z11, que creo es la galaxia más lejana conocida hasta ahora. Para un matemático, es un disparate estadístico pensar que la vida terrestre es un fenómeno único.

Físicos y matemáticos han ignorado tradicionalmente el punto de vista biológico, y el público en general simplemente lo desconoce. Desde este enfoque, la vida es lo normal. Pero cuando se introduce el problema espinoso y aún inexplicado de la abiogénesis, lo normal es pensar que la vida es algo muy raro. Y que la vida inteligente, como nosotros, es algo que sencillamente no debería existir.

Pero mejor lo explica Nick Longrich. Este paleontólogo y biólogo evolutivo de la Universidad de Bath, en Inglaterra, atrajo el foco de los medios en 2015 gracias a un hallazgo espectacular, el primer fósil conocido de una serpiente de cuatro patas que vivió en el Cretácico, en la era de los dinosaurios. Este animal, llamado Tetrapodophis, rellenaba el hueco del fósil de transición entre los lagartos y las serpientes; lo que suele llamarse un eslabón perdido.

Reconstrucción de Tetrapodophis, la serpiente de cuatro patas del Cretácico. Imagen de Julius T. Cstonyi.

Reconstrucción de Tetrapodophis, la serpiente de cuatro patas del Cretácico. Imagen de Julius T. Cstonyi.

Recientemente, Longrich ha publicado un artículo en The Conversation cuyo título resume perfectamente el mensaje: “La evolución nos dice que podríamos ser la única vida inteligente en el universo”. Y sí, por supuesto que, como siempre ocurre con esta hipótesis, quienes no observan la naturaleza desde el conocimiento de la biología saldrán a opinar que tal cosa es absurda, que por narices (las narices de los físicos y matemáticos) la vida, incluyendo la inteligente, tiene que ser algo inmensamente extendido por todo el cosmos, y que blablablá… Pero de verdad, lean a Longrich.

En resumen, lo que el biólogo viene a exponer es que, si bien no tenemos ejemplos de vida extraterrestre que poder estudiar, al menos tenemos 4.500 millones de años de historia terrestre. Y eso equivale a muchísimos datos, a un experimento natural inmensamente rico.

Lo primero que podemos concluir de ese experimento natural es que, en un planeta tan sumamente habitable como el nuestro, y en más de 4.500 millones de años, la abiogénesis solo se ha producido una única vez. Si la vida surge inevitablemente allí donde puede, como han defendido los físicos, ¿por qué aquí solo una vez? ¿Por qué no dos, tres, miles, millones?

Este argumento biológico, llamado del segundo génesis (por un segundo origen independiente de la vida, y un tercero, y un cuarto…), ha sido comentado en este blog innumerables veces. Es un argumento que físicos y matemáticos pasaron por alto completamente cuando crearon esas fantasías de un universo rebosante de vida alienígena. Y es un argumento demoledor. Si la vida fuera algo de aparición tan común, en la Tierra lo veríamos casi a diario. Según lo dicho arriba, sería una especie de mecanismo naturalmente programado. En el fondo, lo que defiende la idea de la vida como fenómeno inevitable es una especie de generación espontánea. Pero entonces no tendría ningún sentido biológico que este fuera un proceso autolimitado a una vez por planeta a lo largo de toda su historia de miles de millones de años. Se mire como se mire, se llega a una reducción al absurdo.

Lo que hace Longrich en su artículo es aplicar la misma línea de razonamiento a otros pasos críticos para conducir desde la aparición de la vida, una célula simple, a algo tan complejo como nosotros. Por supuesto, con una célula sencilla no acaba el problema: hay otros muchos complicados procesos que tienen que darse para llevar a la vida inteligente. Y para cada uno de esos pasos, se pregunta Longrich, ¿existe una segunda ocasión en que se haya repetido?

Longrich da cuenta de cómo, en efecto, en muchos casos la evolución ha repetido sus soluciones en distintos linajes de la vida. El ejemplo más típico es el de las alas: las aves vuelan, pero también los insectos y los murciélagos. En todos estos casos las alas aparecieron de forma independiente en distintas líneas evolutivas. Es lo que llamamos evolución convergente. Otro ejemplo son los ojos, que surgieron de modo separado en los vertebrados y en diferentes líneas de invertebrados como los artrópodos, las medusas o los moluscos.

Entonces la pregunta es: ¿ha ocurrido esto mismo en ciertos pasos críticos, como semáforos de la evolución que deben superarse en el camino desde la célula simple a la vida inteligente? De ser así, dice Longrich, la aparición de vida compleja inteligente no solo sería probable, sino casi inevitable.

Pero la respuesta, oh sorpresa, es que no es así: no solo la propia aparición de la vida, sino también la célula eucariota, los seres multicelulares, la reproducción sexual, la fotosíntesis, el esqueleto, y por supuesto la inteligencia, todo ello apareció en la evolución solo una única vez. Según Longrich, “la convergencia parece ser la norma, y nuestra evolución parece probable. Pero cuando buscas la no convergencia, está por todas partes, y las adaptaciones críticas complejas parecen ser las menos repetidas, y por tanto improbables”.

“Estas innovaciones únicas, golpes de suerte críticos, pueden crear una cadena de cuellos de botella evolutivos o filtros”, escribe Longrich. “Si es así, nuestra evolución no fue como ganar la lotería. Fue como ganar la lotería una vez, y otra, y otra, y otra. En otros mundos, estas adaptaciones críticas pueden haber evolucionado demasiado tarde para que emergiera la inteligencia antes de que sus soles hayan degenerado, o no haber evolucionado nunca”.

Longrich hace unos números rápidos: si la aparición de vida inteligente depende, por ejemplo, de siete de estos semáforos evolutivos críticos, cada uno de ellos con un 1% de posibilidades de ponerse en verde (lo cual sería infinitamente mayor de lo que nos muestra el experimento natural de la Tierra), entonces la inteligencia ocurre en uno de cada cien billones de mundos habitables; 100.000.000.000.000. Y, continúa Longrich, “si los mundos habitables son raros, entonces podríamos ser la única vida inteligente en la galaxia, o incluso en todo el universo visible”.

Y lo cierto es que sí, los mundos habitables parecen ser raros. En los últimos años, los científicos planetarios parecen estar asumiendo con perplejidad una evidencia inesperada: hasta ahora y de más de 4.000 exoplanetas conocidos, no hay ni uno solo similar a la Tierra. En un reportaje reciente, el científico planetario Edward Schwieterman, de la Universidad de California en Riverside y el Instituto de Astrobiología de la NASA, me decía: “No debería sorprendernos si las condiciones exactas que encontramos hoy en la Tierra resultan ser raras”.

Así que, antes de caer en ese pensamiento simple de que la vida debe de estar por todas partes, escuchen a la biología; que si de algo sabe, es de vida.