Entradas etiquetadas como ‘Alien’

¿Son plausibles los alienígenas (parecidos a nosotros) de la ciencia ficción? (II)

Un humano es un organismo con forma de tubo (boca y ano), simetría bilateral, un bloque central que contiene los órganos internos flanqueado por pares de extremidades para la movilidad y la interacción, y un control centralizado (el cerebro) situado en un apéndice específico (la cabeza) que contiene además los principales mecanismos sensoriales.

Desde los hombrecillos verdes o grises hasta las variaciones como los xenomorfos de Alien, infinidad de películas nos presentan seres antropomorfos, que comparten con nosotros estos mismos planos generales de construcción. Pero ¿es esto posible? ¿Es plausible que un alienígena se parezca tanto a nosotros?

Alienígenas de 'Encuentros en la tercera fase'. Imagen de Columbia Pictures.

Alienígenas de ‘Encuentros en la tercera fase’. Imagen de Columbia Pictures.

La respuesta corta es que nadie lo sabe, dado que, una vez más, aún no conocemos alienígena. Para la respuesta larga, debemos comenzar respondiendo a otra pregunta: ¿la evolución es determinista o indeterminista? Es decir: a partir de una situación inicial y si jugamos la partida dos veces, en la Tierra y en otro planeta, ¿cuánto se parecerá el resultado final en los dos casos?

A su vez, la respuesta corta a esta pregunta es que nadie lo sabe. Hay quienes intuyen que un alienígena debería parecerse algo a nosotros, porque… ¿no? Y hay quienes intuyen que debería ser completamente distinto, porque… también, ¿no?

Pero la simple intuición no responde a la pregunta de hasta qué punto un experimento evolutivo paralelo encontraría o no algunas de las mismas soluciones como adaptaciones favorables en un medio parecido o diferente del terrestre. Haría falta repetir el experimento completo de la evolución, primero en nuestra propia Tierra, después en otros planetas habitables.

Por desgracia, esto no está a nuestro alcance. Tal vez algún día la Inteligencia Artificial logre refinar una simulación lo bastante completa como para darnos pistas reales, pero son tantas las variables implicadas que no será tarea fácil aproximarse lo suficiente a un escenario comparable a la realidad. Sería la simulación más complicada jamás emprendida.

A pesar de todo, tampoco estamos completamente perdidos. Tenemos teorías razonables, y tenemos también algunos datos experimentales que pueden tirar algún que otro raíl en el camino hacia estas respuestas. A continuación les cuento algunas de estas pistas, pero ya les adelanto que la conclusión nos devuelve a la respuesta corta: en realidad, nadie lo sabe.

E. T. Imagen de Universal Pictures.

E. T. Imagen de Universal Pictures.

Comencemos por la teoría. En los años 70 Stephen Jay Gould, una de las mentes más preclaras de la biología evolutiva del siglo XX, defendió la hipótesis de que la evolución no es determinista sino imprevisible, y que si pudiéramos rebobinar la cinta del planeta Tierra unos cuantos millones de años y volver a ejecutar el programa, los humanos ni siquiera estaríamos aquí.

Hay que tener en cuenta que toda la vida en la Tierra (al menos la que conocemos hasta ahora) procede de un antepasado común, el cual ya había adoptado ciertas opciones evolutivas que todos hemos heredado. Al ir diversificándose en ramas separadas, estas a su vez también fueron optando por determinadas soluciones que restringían el repertorio de configuraciones de sus descendientes. Pero según la hipótesis de Gould, que siguen muchos otros biólogos evolutivos, si pudiéramos regresar al comienzo quizá la segunda vez se elegirían soluciones diferentes y todos tendríamos, por ejemplo, simetría radial, como los equinodermos (estrellas y erizos de mar).

La teoría de Gould tendería a rechazar la posibilidad de alienígenas antropomorfos. Pero no todos los expertos están de acuerdo con él. Otros biólogos evolutivos, como Richard Dawkins o Simon Conway Morris, piensan que la evolución es al menos en parte un proceso determinista. Es decir, que desde la misma situación de partida, hay sucesos que tienden a repetirse.

Para comprender lo complicado que resulta teorizar sobre esto, tengamos en cuenta que incluso desde enfoques opuestos puede llegarse a conclusiones parecidas, pero también desde un mismo enfoque puede llegarse a conclusiones opuestas. Dos ejemplos: Conway Morris es creyente, Dawkins es ateo, y ambos son deterministas. Conway Morris es determinista, Gould lo contrario, y ambos se basan en las mismas pruebas, el esquisto de Burgess, un conjunto de fósiles hallado en Canadá a comienzos del siglo XX.

Un fósil de Anomalocaris del esquisto de Burgess. Imagen de Wikipedia / Keith Schengili-Roberts.

Un fósil de Anomalocaris del esquisto de Burgess. Imagen de Wikipedia / Keith Schengili-Roberts.

La razón principal que suelen esgrimir los deterministas es la evolución convergente. A lo largo de la historia de la vida en la Tierra, ha habido innumerables ocasiones en que la evolución ha encontrado las mismas soluciones en ramas independientes del árbol genealógico de los seres vivos.

Por ejemplo, los murciélagos y las aves tienen alas, pero las desarrollaron de forma independiente. Los ojos de los pulpos son pasmosamente parecidos a los nuestros, pero es evidente que ellos y nosotros no procedemos de un antepasado común con ojos. Este año un estudio descubrió que el apéndice, ese colgajo intestinal al que tradicionalmente no se le suponía otra función que llevarnos a Urgencias, ha surgido en la evolución más de 30 veces de forma independiente en unos animales y otros. ¡Más de 30 veces! Esto no solamente nos dice que muy probablemente el apéndice sirve para algo más, sino que es otro magnífico ejemplo de evolución convergente. El propio Conway Morris ha documentado muchos ejemplos en los fósiles de Burgess.

Así que la teoría no nos ofrece una respuesta clara. Pasemos ahora a la práctica: ¿qué nos dicen los experimentos? Obviamente, no podemos regresar al pasado, volver a jugar la partida de la evolución desde el principio y ver qué ocurre. Pero sí podemos hacer lo segundo mejor: ver qué hace la naturaleza en situaciones de evolución a corto plazo, y diseñar experimentos en condiciones controladas donde puedan estudiarse estos trocitos parciales de evolución.

Sobre lo primero, se han estudiado casos en animales como peces y lagartos. Respecto a lo segundo, hace tres años y medio les conté aquí un precioso ejemplo, un experimento con insectos palo llevado a cabo por el español Víctor Soria-Carrasco en la Universidad de Sheffield (Reino Unido). Los investigadores emplearon un tipo de insecto palo californiano que prácticamente nace, vive y muere en la misma planta, y del que existen dos variedades diferentes adaptadas al camuflaje en dos tipos de arbustos. Intercambiando los bichos de planta en unos lugares y otros, podían comparar los cambios genéticos que se producían entre dos de estos experimentos evolutivos independientes.

El resultado fue que en la evolución de estos bichos palo había un 80% de cambios diferentes y un 20% de cambios comunes. O sea, que a pesar de que mayoritariamente la evolución seguía caminos distintos en dos partidas diferentes, había un 20% de evolución convergente, o un 20% de determinismo evolutivo. Por supuesto que entre este caso y la evolución de la vida en otro planeta media un abismo, pero esta era la especulación de Soria-Carrasco sobre si los alienígenas podrían seguir caminos evolutivos parecidos a los nuestros: «muchas cosas serían diferentes, pero probablemente seríamos capaces de distinguir un tema central que siempre sería el mismo».

El experimento más extenso de la historia de la ciencia para entender cómo funciona la evolución se desarrolla desde hace 30 años en la Universidad de Harvard. En febrero de 1988, el biólogo evolutivo Richard Lenski sembró bacterias Escherichia coli en 12 frascos con medio líquido de cultivo, algo habitual en muchos laboratorios de biología. Pero Lenski dejó a las bacterias la glucosa justa solo para sobrevivir durante la noche hasta la mañana siguiente, y por la tarde recogió a las supervivientes para trasvasarlas a un nuevo cultivo. Así, día tras día, durante más de 29 años.

Con la limitación de alimento, Lenski introducía un factor de presión para dirigir la evolución de las bacterias; tal como hace la selección natural, solo las bacterias mejor adaptadas al medio sobrevivirían. Cada 75 días, lo que equivale a unas 500 generaciones de E. coli, los investigadores congelan una parte de los cultivos para capturar una foto del proceso evolutivo. Analizando los genes de las bacterias en estos distintos momentos del proceso, pueden observar cómo están evolucionando, y comparar las 12 líneas entre sí para analizar si siguen los mismos caminos evolutivos o no. En total, en los casi 30 años del experimento se han sucedido más de 68.000 generaciones de bacterias, lo que equivale a más de un millón de años de evolución humana.

Y después de todo esto, el resultado es…

Durante los primeros miles de generaciones, los investigadores observaron que las bacterias seguían caminos al menos no totalmente separados. Los diferentes cultivos tendían a mostrar mutaciones diferentes, pero en los mismos genes. E incluso con las diferencias, todas mostraban un patrón común: las células se hacían más grandes, crecían más deprisa y aprovechaban mejor la glucosa. Esto parece un claro caso de evolución convergente.

Pero ¡oh, sorpresa! De repente, transcurridas unas 31.000 generaciones, una de las 12 líneas empezó a dejar de lado la glucosa y a comer citrato, otra fuente de carbono presente en el medio. Solo una de las 12 líneas. Dado que una característica de E. coli es la incapacidad de metabolizar el citrato, esta línea está evolucionando por el camino de convertirse en una nueva especie diferente. Y esto parece un claro caso de evolución no determinista.

Con todo esto, ¿qué opinan Lenski y sus colaboradores sobre el grado de determinismo de la evolución? Según su último estudio, esto: «nuestros resultados muestran que la adaptación a largo plazo a un ambiente constante puede ser un proceso más complejo y dinámico de lo que a menudo se asume».

Sí, sí, vuelvan a leer la frase, y la segunda vez les dirá lo mismo: nada. Una paráfrasis para decir que, en realidad, no se sabe. Ya les advertí de que aún no tenemos una respuesta definitiva sobre si Gould o Conway Morris, y por tanto sobre si sería posible que en otro planeta evolucionara una especie básicamente similar a la nuestra. Pero quiero dejarles otro ejemplo de un experimento natural que nos ha permitido observar cómo funciona la evolución. Ese experimento se llama Australia.

La idea, de la que también les hablé aquí, es del científico planetario Charley Lineweaver. Es lo que él llama «la falacia del planeta de los simios», o la idea popular de que, como decía Carl Sagan, en otros planetas habitados debe llegarse a un equivalente funcional del ser humano. Lineweaver pone como ejemplo su propio país, una gran isla separada del resto de los continentes desde hace unos 100 millones de años.

De este modo, Australia ha sido un experimento natural de evolución independiente durante millones de años. Y como decía Lineweaver, ¿qué es lo que ha surgido allí? Canguros. La aparición de los humanos en el gran bloque Eurasiafricano no ha interferido absolutamente de ninguna manera en la evolución australiana. Y sin embargo, allí la evolución no ha producido nada similar a los seres humanos. Si Australia fuera la única tierra seca de todo el planeta, no estaríamos aquí. Y por tanto, no hay evolución convergente; si los canguros tienen brazos y piernas como nosotros, es solo porque el antepasado común que compartimos con ellos ya los tenía.

Por todo lo anterior, los científicos no suelen arriesgarse a inventar aliens, a riesgo de ver su credibilidad dañada. Hay excepciones: en los años 70, Carl Sagan propuso un ecosistema modelo para un planeta joviano, un gigante gaseoso como Júpiter. Sagan imaginó varios linajes de seres voladores que controlarían su flotación a través de los distintos niveles de densidad de la atmósfera, formando una cadena alimentaria cuya base estaría sustentada por una especie de plancton atmosférico que se alimentaría de los nutrientes moleculares presentes en el gas. Así lo contaba Sagan en su mítica serie Cosmos:

Como resumen de todo lo contado aquí, mejor quédense con esta cita del gran maestro Sagan:

La biología es más parecida a la historia que a la física. Hay que conocer el pasado para comprender el presente. No hay predicciones en la biología, igual que no hay predicciones en la historia. La razón es la misma: ambas materias son todavía demasiado complicadas para nosotros. Aunque podemos comprendernos mejor comprendiendo otros casos.

A pesar de todo, si es extremadamente difícil aventurar cómo podría ser un alienígena, en cambio es más posible predecir cómo no podría ser. Como les contaba en la entrega anterior, no todo vale, y con esto podríamos arriesgarnos a construir una lista de reglas que debería cumplir un alienígena de ficción para ser mínimamente plausible. Vuelvan otro día y se lo cuento.

¿Son plausibles los alienígenas de la ciencia ficción? (I)

En una ocasión ya conté aquí que ocurre algo muy curioso con la relación entre cine y ciencia. Mientras que múltiples expertos en mútiples webs suelen llevar las películas de ciencia ficción a la rueda de interrogatorios para destripar su plausibilidad científica y sacar a relucir sus errores, tanto los expertos como los errores suelen ceñirse a la física. En cambio, la biología suele olvidarse. Al fin y al cabo, como aún no tenemos la menor idea de cómo son los alienígenas –si es que existen–, todo vale. ¿No?

Pues no, no todo vale. De hecho, probablemente no valgan más cosas de las que valen. La biología tiene sus propias reglas. En último término, la biología es una aplicación de la física y la química, y aunque el mayor número de variables aumenta la cota de incertidumbre, está claro que hay cosas que no pueden ser de ninguna manera.

Por ejemplo, las críticas científicas de la saga Alien analizan los bocados relativos a las naves, el espacio, la presión, la gravedad y cosas por el estilo. Pero nunca he leído ninguna (aunque probablemente exista sin que yo la haya descubierto) que abra el siguiente y evidente melón: es enormemente cuestionable que un organismo pueda multiplicar su tamaño y peso de forma desmedida en horas o días; pero desde luego, es absolutamente imposible que lo haga sin alimentarse de la materia necesaria para ganar ese aumento de peso y volumen.

Alien: Covenant. Imagen de 20th Century Fox.

Alien: Covenant. Imagen de 20th Century Fox.

La materia no se crea ni se destruye; para que un ser vivo multiplique su peso por diez, necesita incorporar una cantidad de materia aún mayor, teniendo en cuenta que una gran parte de su alimento se excretará en forma de desechos o para mantener funciones básicas como la refrigeración (sudor). Conclusión: a no ser que se inflen simplemente con aire, ni un pulpo, ni un percebe ni un xenomorfo pueden crecer de la nada en unas horitas.

Plantear un alienígena plausible no es tarea fácil, dado que en efecto aún no conocemos ninguno. Pero son tantos los frentes a cubrir, el biofísico, el bioquímico, el bioenergético, el fisiológico, el ecológico o el evolutivo, que casi todo alienígena inventado corre el riesgo de hacer aguas por un lado u otro, incluso en aspectos tan aparentemente nimios como el que ya conté aquí a propósito de Chewbacca: dado que el folículo piloso y la glándula sudorípara son especializaciones de la piel mutuamente excluyentes, los animales peludos (salvo los caballos, un caso peculiar que también comenté) no sudan lo suficiente como para regular su temperatura, por lo que los wookies deberían pasarse toda la saga de Star Wars jadeando como los perros.

Ya, ya, es cierto que George Lucas nunca ha pretendido que Star Wars sea científicamente creíble. (Pero esperen: ¿no era este el mismo tipo que se inventó aquello de los midiclorianos en analogía con la teoría de la endosimbiosis para convertir la Fuerza en, según sus propias palabras, «una metáfora de una relación simbiótica que permite la existencia de vida»?)

Es más; incluso solucionar el problema del frío cubriendo a los alienígenas de una gruesa capa de pelo es cuando menos infundado. Hoy parece suficientemente demostrado que el pelo de los mamíferos y las plumas de las aves proceden evolutivamente de las escamas de los reptiles, y que los genes específicos para fabricar pelo ya existían en estos últimos antes de que engendraran las ramas que darían lugar a los otros dos grupos.

Por lo tanto, los mamíferos no inventaron realmente el material básico del pelo, sino que se limitaron a modificar algo que habían heredado de los reptiles para acomodarlo a sus necesidades (por decirlo de algún modo; entiéndase que la evolución no tiene propósitos ni intenciones); entre ellas, la protección térmica. Esto de aprovechar un invento de la evolución para otro fin diferente al original se conoce en biología como exaptación.

Pero los reptiles en los que surgió el material necesario para crear el pelo vivían en climas cálidos, por lo que originalmente este mecanismo no era un invento contra el frío. En resumen, es probable que una especie alienígena que ha evolucionado en un planeta helado no lleve pelo para abrigarse, sino algún otro tipo de ingenio evolutivo más específicamente adaptado a esa misión.

Recordando los alienígenas de casi cualquier película que nos venga a la mente, es inmediato que suelen fallar en un aspecto u otro, o en todos. Por ejemplo, todo ser complejo tiene una forma definida, ya que es una regla básica de la biología que la complejidad requiere un alto grado de especialización estructural. Así que no es posible cambiar de forma alegremente cada minuto o tomar el aspecto de otros organismos, salvo que seas algo tan poco inteligente como un moho mucilaginoso. Adiós a La cosa y a las múltiples versiones de La invasión de los ultracuerpos.

La cosa (versión de 1982). Imagen de Universal Pictures.

La cosa (versión de 1982). Imagen de Universal Pictures.

Tampoco existen los seres vivos aislados, ni como especies ni como individuos. En su día, el astrofísico Carl Sagan hizo un cálculo de cuántos monstruos del lago Ness podrían existir si existía alguno, aunque aplicó exclusivamente criterios de física de colisiones. Pero además todo organismo necesita lo que en biología se conoce como Población Mínima Viable, un número de ejemplares que permita la supervivencia de la especie con una diversidad genética suficiente como para perpetuarse sin acabar degenerando hasta la extinción. Y toda especie requiere un aporte de biomasa, así que un alienígena viable depende de un ecosistema que le sostiene.

Otro error frecuente es pasear a los alienígenas por el medio terrestre como si estuvieran en su casa. No se trata solo de la respiración de nuestra atmósfera, sino que la Tierra impone una multitud de condiciones ambientales que podrían resultar hostiles y hasta invivibles para una especie surgida en otro planeta diferente, desde nuestra gravedad hasta nuestros niveles de irradiación, o incluso las amenazas biológicas que nosotros hemos aprendido durante millones de años a mantener a raya.

Un ejemplo muy bien concebido de esto último eran los marcianos de H. G. Wells en La guerra de los mundos, que sucumbían a las bacterias terrestres al carecer de nuestra inmunidad. Wells era biólogo, así que ya hace un siglo predecía que el mayor riesgo para un marciano durante una invasión terrestre no serían los humanos, sino las infecciones.

La guerra de los mundos (versión de 2005). Imagen de Paramount Pictures / DreamWorks Pictures.

La guerra de los mundos (versión de 2005). Imagen de Paramount Pictures / DreamWorks Pictures.

En cuanto a las presuntas bioquímicas alternativas propuestas a menudo en la ciencia ficción, a veces son pura fantasía sin el menor sustento científico. El ejemplo más clásico es el silicio como alternativa al carbono. Una regla básica de la vida es que empleamos materia para alimentar nuestros procesos vitales gracias a la energía almacenada en los enlaces químicos de esas sustancias. Como resultado del proceso, generamos compuestos degradados con un nivel energético menor; es una simple resta. Cuando los organismos terrestres consumimos compuestos orgánicos para alimentarnos, producimos agua y dióxido de carbono (CO2) como productos finales. Son los residuos oxidados de la actividad biológica.

El CO2 es un gas a temperatura ambiente, motivo por el cual lo evacuamos fácilmente. Pero aunque el silicio ofrezca una estructura atómica equiparable a la del carbono en sus posibilidades de formar enlaces, algunos de sus compuestos tienen propiedades químicas notablemente diferentes.

Por ejemplo, el dióxido de silicio (SiO2) es sólido; para entendernos, básicamente es arena. Su temperatura de fusión es de 1.713 ºC, y la de ebullición es de 2.950 ºC; nos pongamos como nos pongamos, temperaturas incompatibles con cualquier forma de vida. En la Tierra, muchos organismos emplean SiO2 precisamente por su dureza, como material de construcción o defensa contra depredadores. Pero una situación muy diferente sería producirlo como residuo metabólico, ya que sería muy difícil eliminarlo de forma constante y en grandes cantidades. ¿Imaginan cómo podríamos estar continuamente expulsando arena de nuestros pulmones?

Un alienígena basado en el silicio en el episodio 'The Devil in the Dark' de la serie 'Star Trek' (1967). Imagen de CBS Television Distribution.

Un alienígena basado en el silicio en el episodio ‘The Devil in the Dark’ de la serie ‘Star Trek’ (1967). Imagen de CBS Television Distribution.

En la próxima entrega seguiremos hablando de esta cuestión, entrando en otro de los clásicos de la ciencia ficción: los alienígenas con forma más o menos humana. ¿Es plausible que en un planeta muy diferente del nuestro evolucionen seres antropomorfos?

Biología sintética y los ingenieros de Alien: ¿vuelven los ‘carros de los dioses’?

Aún no he tenido ocasión de ver el nuevo fascículo de la saga Alien. Los que aún tenemos polluelos estamos un poco limitados en nuestras salidas, así que más allá de lo puramente cinematográfico, todavía ignoro qué nuevos hilos aporta Alien: Covenant sobre la trama básica de la serie que comenzó a desvelarse en Prometheus, y que planteaba el argumento de una civilización alienígena autora de nuestra existencia, a la que se daba el nombre de «los ingenieros».

Uno de los ingenieros de 'Prometheus'. Imagen de 20th Century Fox.

Uno de los ingenieros de ‘Prometheus’. Imagen de 20th Century Fox.

La idea de que podríamos ser las criaturas de algo superior es posiblemente tan antigua como el pensamiento humano, algo natural en una especie capaz de intentar comprenderse a sí misma. Para algunos académicos, es un ejemplo de lo que el biólogo evolutivo Stephen Jay Gould llamó exaptación, una característica que surge como subproducto de una adaptación favorable: nuestra capacidad cognitiva nos resulta útil para la supervivencia, pero también nos mete en camisas de once varas a la hora de tratar de explicar la naturaleza, incluido nuestro propio origen.

Así, para algunos expertos, ideas como Dios o los llamados antiguos astronautas tienen orígenes psicológicamente parecidos. Hay quienes en la misma línea añaden otros fenómenos, como las teorías de la conspiración o lo que se conoce entre sus adeptos como el Nuevo Orden Mundial: en todos los casos se supone la existencia de una inteligencia oculta que es responsable de las cosas que ocurren, las cuales ocurren con un propósito diseñado por esa inteligencia oculta.

Es curioso, porque la idea ha ido tomando diversas formas en función del estado del conocimiento humano en cada época y de lo que se denomina el Zeitgeist, el signo de los tiempos, o lo que la gente piensa en cada momento histórico. En tiempos antiguos era lo sobrenatural: los dioses o el Dios; más modernamente la ciencia introdujo el positivismo natural; y en el siglo XX hubo quienes trataron de crear una narrativa continua entre ambas formas de pensamiento: los antiguos astronautas, popularizados en los años 70 por autores como el suizo Erich von Däniken y sus «carros de los dioses», que para este autor y otros eran un fenómeno natural –alienígenas– interpretado por sus presuntos testigos como uno sobrenatural –dioses–.

Hay quienes han situado el origen de las ideas de von Däniken en fuentes muy dispares, desde la mitología de Cthulhu de H. P. Lovecraft y su escalofriante novela En las montañas de la locura (por cierto, mitos que el escritor inventó como simple ficción), hasta las especulaciones del mismísimo Carl Sagan sobre antiguos contactos alienígenas. También se acusó al autor suizo de haber plagiado las ideas de otros.

Pero naturalmente, la hipótesis de von Däniken es pseudociencia, no corroborable ni refutable por métodos científicos, y que por tanto puede perpetuarse en la mente de quienes creen en ello sin tener que rendirse jamás a ninguna evidencia contraria. Lo cual, entre otras cosas y unido a lo provocador de la idea, mantuvo un rentable nicho de mercado para su autor, con independencia de que él realmente creyera en ello. Otros también han encontrado su filón en argumentos similares, como el español J. J. Benítez.

Paralelamente, dentro del ámbito de la ciencia hay también una larga tradición en la propuesta de que la vida pudo llegar a la Tierra desde el espacio; se conoce como panspermia. De hecho, suele atribuirse al filósofo griego Anaxágoras la primera mención de este término, al que en el siglo XIX se le dio una definición más científica como la siembra de vida a través del universo mediante microbios presentes en cuerpos viajeros; por ejemplo, asteroides y cometas.

La panspermia ha tenido sus defensores más significados en dos astrónomos, el británico Fred Hoyle y su alumno, el ceilanés Chandra Wickramasinghe. El primero, ya fallecido, aportó valiosos hallazgos sobre los procesos físico-químicos en las estrellas, además de acuñar el término Big Bang, aunque fuera con una intención irónica hacia una teoría en la que no creía. Pero tanto Hoyle como Wickramasinghe se han distinguido por sus propuestas estrambóticas y contrarias al conocimiento científico, como el rechazo a la evolución biológica o la afirmación de que la llamada gripe española de 1918 y otras graves pandemias llegaron a la Tierra desde el espacio. Hoyle llegó a decir que la posibilidad de que surja una célula a partir de sus componentes básicos es como si un tornado barre una chatarrería y ensambla un Boeing 747.

Entre la comunidad científica, la panspermia como la definieron Hoyle y Wickramasinghe provoca ceños fruncidos, cuando no reacciones más airadas. Lo cierto es que no existe ningún indicio para pensar que un microbio pueda sobrevivir a un largo viaje espacial en una roca, ni siquiera en estados de latencia como las esporas. Por el contrario, en los últimos años se han encontrado pruebas de que ciertas moléculas orgánicas propias de la vida sí pueden hacer tales viajes, una versión más débil de la panspermia que sí cuenta con el apoyo de algunos científicos. Y que no solo es diferente, sino casi opuesta a lo defendido por Hoyle y Wickramasinghe, ya que para estos no puede surgir la vida a partir de componentes simples.

Hay una tercera modalidad de panspermia aún más arriesgada, que es la dirigida: la idea de que la vida en la Tierra ha sido deliberadamente sembrada. Así volvemos a los antiguos astronautas de von Däniken o los ingenieros de Prometheus. Lo curioso es que esta idea también pseudocientífica ha obtenido casi más interés por parte de algunos científicos que la panspermia de Hoyle y Wickramasinghe. Uno de sus proponentes más notables fue Francis Crick, el codescubridor de la doble hélice de ADN; aunque en su descargo debe aclararse que Crick publicó su hipótesis en 1973, antes de saberse que el ARN es capaz de replicarse por sí mismo sin la intervención de otras moléculas.

Ya he mencionado arriba que Sagan, sin proponérselo, inspiró a autores como von Däniken al especular sobre posibles antiguas visitas alienígenas a la Tierra. El astrofísico y divulgador fue devastadoramente crítico con las ideas del suizo, y sobre la hipótesis de Crick escribió: “aunque no sabemos de nada que rigurosamente excluya la idea de la panspermia dirigida, de igual modo no hay nada que la apoye fuertemente”. A pesar de lo que circula por internet, no hay ninguna prueba de que Sagan creyera en teorías de antiguos astronautas, y en cambio sí hay pruebas de lo contrario.

Lo más llamativo de todo esto es que, según conté ayer, hoy podemos encontrar científicos reputados como Adam Steltzner, ingeniero jefe del rover marciano Curiosity, reflexionando públicamente y sin rubor sobre ideas que no son otra cosa que panspermia dirigida, antiguos astronautas e ingenieros. Por supuesto que Steltzner no estaba sentando cátedra cuando lo dijo, pero tampoco era una charla de café, sino una conferencia anual en Washington dedicada a explorar las fronteras de la ciencia. Y Steltzner es un ejemplo, pero no el único. Los biólogos sintéticos trabajan bajo la premisa de que esta tecnología puede avanzar espectacularmente en la recreación de múltiples procesos naturales de la vida. Y como también conté ayer, algunos no son contrarios a la idea de que estos avances, tal vez conseguidos ya por civilizaciones más avanzadas, puedan propagarse a través del universo. Dos y dos son cuatro.

Cuando Elon Musk, el magnate de SpaceX que quiere llevarnos a Marte, afirma que muy probablemente seamos el resultado de una simulación informatizada de nuestros futuros descendientes, en el fondo no es más que una nueva versión digital de la panspermia dirigida. Una diferencia esencial entre gente como von Däniken y gente como Musk es que los segundos se ganan el respeto con sus progresos reales. Y con ello, están extendiendo ideas audaces que están calando entre la comunidad científica, aunque solo sea como ciencia-espectáculo.

No creo que a Ridley Scott, artífice de la saga Alien, le haya pasado por alto el hecho de que con sus ingenieros tal vez haya pinchado en una veta de renovada actualidad. Es difícil determinar cuáles son causas y cuáles efectos. Pero en fin, todo esto está bien en la medida en que favorece la reflexión, la discusión y la creación de historias para que pasemos un buen rato en el cine. Siempre que no olvidemos que a día de hoy no tenemos absolutamente ningún indicio de que realmente haya alguien más en el universo.