Archivo de la categoría ‘Espacio’

Pedro Duque, un astronauta para el despegue de la ciencia española

Imagino que quienes tenemos alguna relación con el mundo de la ciencia, incluso los que no nos adherimos a ninguna bandera, esperábamos casi como apuesta segura que el nuevo rumbo político pusiera fin a lo que ha sido en los últimos años un desmantelamiento del sistema científico español por activa y por pasiva.

Cualquiera que haya querido interesarse por ello ha podido leer en los medios que la desidia práctica del anterior gobierno con respecto a la ciencia y la tecnología no era una cuestión de apreciaciones partisanas coloreadas por sesgos ideológicos, sino una realidad que en los últimos años ha hecho retroceder a España un puesto en el ránking mundial por número de publicaciones, según datos del Journal & Country Rank de SCImago.

Y esto por citar solo un ejemplo concreto de una de las principales magnitudes que miden objetivamente el desempeño científico de un país, sin entrar siquiera en el malestar y el desánimo que han cundido entre la comunidad científica; en otros sectores, una falta de sintonía tan evidente suele hacerse muy visible a través de medidas como las huelgas generales. En ciencia los efectos de esta situación no se ven mirando por la ventana, sino que se sienten a largo plazo, y es por esto que la política cortoplacista prefiere barrerlos bajo la alfombra.

Pero además de la esperada noticia de la restauración del Ministerio de Ciencia, hoy ha sido una magnífica sorpresa la designación de Pedro Duque a su frente. El astronauta (ellos suelen decir que «ex» no se es) e ingeniero es, por primera vez en la historia de este país, una persona con sólida competencia científica al frente de un Ministerio de Ciencia. No, no me he olvidado de otras personas que asumieron el mismo cargo, y me reafirmo en lo dicho.

Pedro Duque. Imagen de GTRES.

Pedro Duque. Imagen de GTRES.

Pedro Duque cuenta, en mi opinión, con rasgos que le convierten en un ministro de ciencia ideal, tanto por lo que es como por lo que no es. Respecto a esto último, no han faltado en Twitter las opiniones (minoritarias, hasta donde he podido ver) que reprochan al nuevo presidente Pedro Sánchez el haber elegido a un técnico, y no a un fiel soldado. En este blog ya me he declarado cien por cien partidario de la tecnocracia cuando se trata de gestionar asuntos que solo una persona con la formación técnico-científica necesaria puede comprender. Los bustos parlantes no arreglan problemas, sino que se limitan a tratar de hacer ver que no existen.

Es más: hoy muchos de los países más desarrollados cuentan también con comités científicos asesores con interlocución al más alto nivel en los gobiernos, ya que hoy es imposible gobernar sin contar con aquello que los científicos tienen que decir sobre el impacto de la actividad humana en múltiples campos que a su vez tienen una influencia clave en la economía.

Pero además, el hecho de que Duque no sea un personaje político le convierte en una figura transversal, cuya gestión al frente de la ciencia española podrá ser evaluada también de forma transversal. La ciencia depende de la política y, por lo dicho, la política depende de la ciencia mucho más de lo que algunos quieren creer. Pero con independencia de las inclinaciones políticas que predominen entre los miembros del estamento científico, la política científica no puede estar sujeta a quién clava su bandera en la colina.

Otro mérito de Duque es su amplia experiencia mixta, en lo público, en lo privado, en el terreno internacional y en el ámbito interdisciplinar. Los astronautas asignados a funciones científicas en la Estación Espacial Internacional (ISS) deben tener la capacidad de actuar como aquellos naturalistas de las antiguas expediciones de exploración que sabían de todo, ya que deben manejarse con experimentos de distintas disciplinas, desde la física a la biología, tanto en su ejecución directa como en la interlocución con los investigadores responsables. Además, su carrera como creador de empresas innovadoras le convierte en un buen conocedor de cómo funciona ese torrente sanguíneo que da vida al sistema de ciencia y tecnología, el flujo desde la investigación básica a la aplicada, al desarrollo de nuevas tecnologías y a su traducción en el impulso innovador de un país.

Pero añadido a todo lo anterior, Pedro Duque es una figura de autoridad universalmente conocida y reconocida en este país, y no hay muchas personas más que cumplan este perfil. A través de su popularidad, puede actuar también hacia el gran público como canalizador de la ciencia y como concienciador de su importancia.

Por último, tampoco es un detalle irrelevante que su sector de especialización sea el aeroespacial. Se trata de una disciplina cada vez más pujante en todo el mundo y que está atravesando transformaciones con un inmenso potencial. En España su situación es ambigua: existe una base muy potente de investigadores y empresas, pero a menudo se han quejado del insuficiente apoyo en un país que ni siquiera cuenta con una agencia espacial propia.

En resumen, Pedro Duque tiene por delante un reto complicado, devolver la ciencia española al lugar del que nunca debió salir. Pero ya tiene experiencia en despegues.

¿Y si los alienígenas nos enviaran un virus por correo electrónico?

A estas alturas todo usuario del correo electrónico debería saber que los mensajes sospechosos se tiran sin abrirlos, e incluso sin previsualizarlos, y que jamás de los jamases debe cometerse la insensatez de pinchar en un enlace contenido en un mensaje de cuya legitimidad tengamos la más mínima duda. Imagino que a la mayoría el simple uso nos ha entrenado para saber reconocer los mensajes sospechosos, incluso cuando llegan disfrazados bajo la dirección de correo de nuestro mejor amigo.

Pero ¿y si un día recibiéramos el primer correo electrónico desde fuera de nuestro Sistema Solar? ¿Deberíamos abrirlo?

Imagen de William Warby / Flickr / CC.

Imagen de William Warby / Flickr / CC.

Esto es lo que opinan al respecto el astrónomo amateur Michael Hippke y el astrofísico John Learned, autores de un nuevo estudio disponible en la web arXiv.org y aún no publicado formalmente:

Un mensaje complejo del espacio puede requerir el uso de ordenadores para mostrarlo, analizarlo y comprenderlo. Un mensaje semejante no puede descontaminarse con seguridad, y los riesgos técnicos pueden suponer una amenaza existencial. Los mensajes complejos deberían destruirse en el caso de aversión al riesgo.

Hace algo menos de un año les hablaba aquí de la teleexploración. Actualmente los humanos estamos teleexplorando nuestro Sistema Solar, es decir, utilizando sondas robóticas que trabajan a distancia sin nuestra presencia física. Por medio de transmisiones de radio, los responsables de estas misiones reciben información de los robots y les envían comandos para ejecutar determinadas acciones, pero los aparatos también tienen una capacidad limitada de actuar por sí solos de acuerdo a su programación previa; por ejemplo, si detectan una amenaza a su integridad pueden proteger sus sistemas entrando en modo de reposo.

En el futuro, podemos esperar que el desarrollo de la Inteligencia Artificial nos lleve a fabricar sondas que sean capaces de diseñar sus propias programaciones, y que por tanto actúen de forma autónoma: a dónde dirigirse, qué muestras recoger, cómo analizarlas, cómo actuar en función de los resultados… Como conté, algunas misiones actuales ya utilizan plataformas de software con cierta capacidad de tomar decisiones complejas.

En un futuro aún más lejano, tal vez sea posible extender esta telepresencia de las máquinas a la creación de organismos biológicos en el lugar a explorar. Es decir, que los robots sean capaces de imprimir seres vivos. En los laboratorios ya se utilizan impresoras 3D que emplean células en lugar de plástico para crear tejidos y simulaciones de órganos. En otros casos, se imprime en 3D una especie de base biodegradable que sirve como esqueleto para que las células crezcan sobre él y fabriquen un tejido con la forma deseada. Un ejemplo es un estudio publicado el mes pasado, en el que científicos chinos han fabricado orejas para cinco niños con las propias células de cada paciente.

Pero el futuro de la teleimpresión biológica podría ir mucho más allá: como conté aquí, ya existe una máquina capaz de imprimir virus a distancia a partir de sus componentes básicos (los virus más simples solo son cristales de proteínas con un ADN o ARN dentro), y algunos científicos contemplan la idea de crear una especie de bacteria nodriza, a la que una máquina pueda cargarle el ADN de otra especie (por ejemplo, la humana) para recrear ese organismo (por ejemplo, un humano) en el lugar deseado. Y no son guionistas de ciencia ficción, sino investigadores líderes en biología sintética quienes fantasean con la idea de utilizar este sistema para que el ser humano se expanda por el cosmos, enviando naves ocupadas por bacterias que lleven el genoma humano o de otras especies y que puedan crear personas, animales y plantas en rincones alejados del universo. O sea, una versión futurista del Arca de Noé.

Imagen de Pixabay.

Imagen de Pixabay.

Todo lo dicho para la teleexploración podría aplicarse también a la teleinvasión. Si una civilización lo suficientemente avanzada quisiera conquistar nuevos territorios, como nuestro hermoso y fértil planeta, subyugar a distancia sería sin duda la opción recomendada por el comparador de paquetes de invasión interplanetaria. Bastaría con enviar un correo electrónico con un virus inteligente que pudiera ejecutar el programa deseado; por ejemplo, destruir todos los sistemas computacionales de la Tierra y volar por los aires todas las infraestructuras que dependen de ellos, lanzar los misiles nucleares, liberar todos los virus almacenados en los laboratorios y construir máquinas que fabriquen terminators para acabar con los flecos.

Y todo ello sin mancharse las manos o sus extremidades equivalentes; fácil, barato, rápido y limpio. Nueve de cada diez alienígenas hostiles inteligentes elegirían la teleinvasión y la recomendarían a sus amigos. Tiene mucho más sentido que otras opciones como, por ejemplo, enviar una flota de absurdas naves con forma de plato de postre que presuntamente tratan de ocultarse pero que se esconden con la misma facilidad que un elefante detrás de una palmera, ya que algún diseñador torpe las llenó de luces por todas partes. Hippke y Learned lo plantean de forma más seria:

Aunque se ha argumentado que una ETI [inteligencia extraterrestre] sostenible no será probablemente dañina, no podemos excluir esta posibilidad. Después de todo, es más barato para una ETI enviar un mensaje malicioso para erradicar a los humanos en comparación con enviar naves de guerra.

Respecto a si una ETI sería hostil o no, nadie puede saberlo. Nuestra visión fluctúa con el espíritu de los tiempos entre los invasores despiadados y los semidioses benevolentes. Desde hace años, el físico Stephen Hawking ha advertido repetidamente de que enviar mensajes al espacio delatando nuestra presencia puede no ser una buena idea. Incluso alguien que se dedica a escuchar posibles emails de las estrellas como Seth Shostak, el astrónomo jefe del Instituto SETI (Búsqueda de Inteligencia Extraterrestre), suele comparar nuestro posible encuentro con alienígenas a la llegada de los europeos a América, lo que no resultó demasiado grato para los americanos.

Si alguien decidiera teleinvadirnos, su único riesgo sería que tiráramos su correo sin abrirlo. Pero tratándose de una especie como la nuestra, incauta y deseosa de conseguir algún follower galáctico, no sería difícil hacernos caer en la trampa si recibiéramos un correo bajo el encabezado «I love you«. Sobre todo si además llevara algún emoji simpático:

Resultado de imagen de alien emoji

Ante todo este panorama, Hippke y Learned recomiendan varias líneas de acción: encerrar el mensaje en una prisión, una especie de cuarentena informática aislada de la red, aunque esto podría resultar imposible si los destinatarios fueran múltiples y en todo caso el virus podría encontrar la manera de escapar, incluso convenciendo a sus captores; descontaminarlo, aunque sería complicado garantizar una descontaminación completa, sobre todo si el mensaje no se conoce en profundidad; o simplemente imprimirlo para analizarlo, porque es difícil que el papel haga ningún daño.

Claro que en su estudio Hippke y Learned pasan por alto un salto conceptual algo aventurado, y es dar por hecho que los alienígenas serían tan expertos en nuestros sistemas de computación como para poder explotarlos en su propio beneficio. Pero en cualquier caso, concluyen que finalmente solo nos quedarían dos opciones: «podemos escoger entre destruir el mensaje o asumir el riesgo», aunque advierten de que «los posibles beneficios de unirnos a una red galáctica podrían ser considerables».

Por si acaso, y si reciben un mensaje de alguien que solicita su ayuda para sacar cien mil millones de créditos galácticos de una cuenta corriente en un banco de Alfa Centauri y a cambio les promete el 10%, mejor no lo abran: reenvíenlo al Instituto SETI, que ellos ya sabrán qué hacer. Y si no es así, al menos no habrán sido ustedes los responsables del exterminio de la humanidad.

Una bola de discoteca orbita sobre nuestras cabezas

El riesgo de la grandilocuencia siempre es caer en la pedantería. Pero cuando además nadie comparte tu visión de grandeza, corres el riesgo añadido de caer en el más sonrojante de los ridículos. Cuando el neozelandés Peter Beck decidió poner una estrella artificial en el cielo, lo hizo bajo el discurso de que «durante milenios, los humanos se han concentrado en sus problemas y vidas terrestres. Raramente nos paramos como especie, miramos a las estrellas y tomamos conciencia de nuestra posición en el universo como una mota de polvo dolorosamente minúscula en la grandeza del todo». Pero poco podía imaginar Beck que su grandioso proyecto recibiría calificativos tan afectuosos como «basura», «vandalismo astronómico», «graffiti» o «spam espacial».

Beck es el fundador de Rocket Lab, una compañía aeroespacial que ha desarrollado un cohete ligero para lanzar satélites de pequeño tamaño al espacio. Pero quién sabe cómo, a Beck se le ocurrió emplear su lanzadera para otro fin: poner en órbita una esfera geodésica de un metro de diámetro fabricada en fibra de carbono y con 76 paneles de espejo. Es decir, algo parecido a una bola de discoteca.

El creador de la idea bautizó su bola como Humanity Star, la Estrella de la Humanidad, y la lanzó al espacio el pasado 21 de enero. Según Beck, la bola gira rápidamente reflejando el sol y creando «un flash de luz que puede verse contra un fondo de estrellas». Completa una vuelta a la Tierra cada 90 minutos y será visible desde cualquier lugar del mundo (lógicamente, no al mismo tiempo) como «símbolo brillante y recordatorio para todos aquellos en la Tierra de nuestro frágil lugar en el universo».

Humanity Star. Imagen de Rocket Lab.

Humanity Star. Imagen de Rocket Lab.

Pero a Beck debió de calentársele alguna neurona, y decidió proseguir: «La humanidad es finita y no estaremos aquí para siempre. Y aún a pesar de esta casi inconcebible insignificancia, la humanidad es capaz de grandes y amables cosas cuando nos reconocemos como una especie, responsable de cuidar juntos unos de otros y de nuestro planeta…». No importa en qué lugar del mundo estés, rico o pobre, en conflicto o en paz…». «Espera a que la Estrella de la Humanidad esté sobre ti, lleva al exterior a tus seres queridos para mirar arriba y reflexionar…».

Aquí es donde, si este blog tuviera efectos sonoros, la aguja del tocadiscos saltaría chillando ese clásico «riiiiip». Porque como era de esperar, los astrónomos no solamente no han elevado sus mecheros encendidos, sino que casi han hecho un remake de aquella escena de la lapidación de La vida de Brian. Estos son algunos de sus comentarios en Twitter:

¿Así que estás bloqueando nuestra visión de las estrellas reales y creando contaminación lumínica atmosférica para recordarnos que miremos a las estrellas que no podemos ver en parte gracias a tu estúpido satélite? Buen trabajo.

Wow. Graffiti espacial intencionadamente brillante y a largo plazo. Muchas gracias, Rocket Lab.

Así que el primer acto de Nueva Zelanda como potencia espacial es contaminar el cielo nocturno. Para toda la humanidad. Esta es buena.

Lo único bueno de la Estrella de la Humanidad (también conocida como proyecto neozelandés de polución del cielo nocturno) es que se quemará en nueve meses.

Quizá estén pensando que la operación de Elon Musk y su deportivo espacial es igualmente ridícula. Puede ser, pero a diferencia de Beck, tal vez a Musk le ha salvado el no tratar de revestir su proyecto de grandilocuencia. Al contrario, cultiva una cierta imagen gamberra, como cuando justificó la elección de la carga de su cohete diciendo que cualquier otra opción habría sido «aburrida». En el fondo, lo cierto es que Musk no tenía ninguna garantía de que el cohete despegara sin volar en mil pedazos, y aprovechar el primer lanzamiento del Falcon Heavy para transportar una misión científica habría sido demasiado arriesgado.

Conviene aclarar que no todos los comentarios sobre la Humanity Star han sido negativos; buena parte del público en general ha acogido la iniciativa con agrado, pero es evidente que Beck no se ha ganado el aplauso de los astrónomos, lo cual por otra parte él ya debía de tener previsto. En el fondo, y con un presupuesto infinitamente menor que el de Musk, Beck ha conseguido algo de publicidad extra para su compañía.

Por cierto y por si les interesa verla, ya que está ahí arriba, el localizador de la web del proyecto me informa hoy de que en mi posición (cerca de Madrid) «la Humanity Star tiene la mejor oportunidad de visibilidad dentro de 17 días. Durará unos 4 minutos. Un horario más preciso estará disponible 3 días antes del paso previsto». Así que volveremos a consultarlo dentro de un par de semanas. Y si les apetece, vayan preparando el disfraz de Tony Manero.

Qué es y qué no es el lanzamiento del cohete Falcon Heavy de SpaceX

El episodio del primer lanzamiento del cohete Falcon Heavy de SpaceX ha sido lo más cool que ha ocurrido en el espacio en mucho tiempo. Si es que alguna vez ha habido algo más cool que la versión en carne y hueso de Tony Stark (Iron Man) llevando al espacio un superdeportivo rojo descapotable conducido por un astronauta maniquí al ritmo del Space Oddity de Bowie. Mi detalle favorito es que Starman, el piloto, lleve el brazo apoyado en la ventanilla.

Lanzamiento del cohete Falcon Heavy de SpaceX el 6 de febrero de 2018 desde el Centro Espacial Kennedy. Imagen de SpaceX.

Lanzamiento del cohete Falcon Heavy de SpaceX el 6 de febrero de 2018 desde el Centro Espacial Kennedy. Imagen de SpaceX.

Creo inobjetable que la operación diseñada y ejecutada con éxito por Elon Musk es la mayor, más grandiosa, insuperable, estrambótica y cara maniobra publicitaria de la historia. Lo cual no implica que sea solo una maniobra publicitaria. Pero otra cuestión es que la misión en sí esté realmente a la altura de todo lo que la maniobra publicitaria ha inspirado.

Es posible que el gran éxito del espectáculo haya llevado a sobrevalorar el alcance real de lo conseguido ayer: ni es el cohete más grande de la historia, ni el primero privado que se lanza al espacio, ni el primero cuyos propulsores se recuperan para reutilizarse, ni nos llevará a Marte en el futuro. Sí es el primero que lleva un coche al espacio con un maniquí como conductor. Más detalles en esta serie de preguntas y respuestas:

¿Es el Falcon Heavy el cohete más grande de la historia?

El Falcon Heavy es el cohete más grande actualmente en servicio, pero no el mayor de la historia; este puesto continúa ocupándolo el Saturno V de la NASA, que llevó las misiones Apolo a la Luna. El Saturno V era 40 metros más alto, pesaba el doble y su capacidad de carga multiplicaba la del Falcon Heavy.

¿Qué tiene de especial el Falcon Heavy?

El cohete de Musk es, evidentemente, mucho más barato que el Saturno V, ya que sus propulsores son reutilizables. Su puesta en marcha con éxito parece garantizar que en el futuro será una de las opciones disponibles para enviar grandes cargas al espacio.

¿Es el primer cohete con propulsores reutilizables?

Una de las claves de la apuesta tecnológica de Musk es la recuperación de los propulsores de los cohetes para volver a utilizarlos en nuevas misiones, lo que abarata los costes. El Falcon Heavy sigue la estela de su hermano más pequeño el Falcon 9, que ya ha despegado en varias ocasiones con la recuperación de su fase propulsora. El Falcon Heavy lleva dos propulsores laterales y uno central. Los dos primeros han podido recuperarse, mientras que el tercero se ha perdido en el océano.

Aterrizaje de los propulsores laterales del cohete Falcon Heavy de SpaceX el 6 de febrero de 2018 en el Centro Espacial Kennedy. Imagen de SpaceX.

Aterrizaje de los propulsores laterales del cohete Falcon Heavy de SpaceX el 6 de febrero de 2018 en el Centro Espacial Kennedy. Imagen de SpaceX.

¿Por qué no se han fabricado antes cohetes reciclables?

En los tiempos de la carrera espacial entre EEUU y la URSS, es poco probable que alguien llegara a plantearse el diseño de cohetes reciclables, porque no tenía sentido. En EEUU, el gobierno federal pagaba los cohetes y los contratistas privados los construían. Parece lógico que a estas empresas les interesara seguir fabricando y vendiendo cohetes nuevos para cada misión. Por otra parte, la carrera espacial era una guerra, y en una guerra nadie se detiene a recoger los casquillos. Interesaba la eficacia, no la eficiencia. Hoy las empresas privadas no se limitan a fabricar componentes para las agencias espaciales públicas, sino que actúan también como operadores, por lo que su negocio depende de su capacidad de reducir los costes.

¿Es el primer cohete privado que se lanza al espacio?

No, no lo es. Desde 2012 SpaceX ha utilizado el antecesor del Falcon Heavy, el Falcon 9, para enviar misiones no tripuladas de suministro de carga a la Estación Espacial Internacional.

¿Nos llevará el Falcon Heavy a Marte?

Musk ha desechado ya la idea de utilizar el Falcon Heavy para su plan de establecer una colonia en Marte en la próxima década. En su lugar creará un cohete aún mayor llamado informalmente Big Fucking Rocket (BFR) y que por el momento solo es un dibujo animado. Será tarea de los expertos en ingeniería aeroespacial determinar cuánto de lo ya desarrollado para los Falcon podrá aplicarse al BFR, pero en cualquier caso, todo nuevo vehículo espacial es un proyecto diferente que deberá emprender su propia carrera de fracasos y éxitos.

¿Ha marcado el éxito del Falcon Heavy un hito histórico en la exploración espacial?

Así lo han presentado muchos medios, y desde luego que es cuestión de opiniones, pero tal vez esta afirmación sea como mínimo una exageración muy generosa. Sería acertado decir que el Falcon Heavy reabre una etapa en el transporte espacial estadounidense que se entrecerró con el fin de los grandes cohetes de la NASA, y que se cerró del todo cuando se jubiló la flota de transbordadores espaciales. Las misiones de carga han dependido en los últimos años sobre todo de los cohetes Soyuz rusos y los Ariane europeos, sin contar los de desarrollo propio que utilizan otras potencias espaciales. En cuanto a las misiones científicas, actualmente existe una gran variedad de vehículos lanzadores que se emplean regularmente, ya que en general las sondas científicas no requieren cohetes de carga muy pesada.

Los astronautas del futuro podrían (y deberían) reciclar sus heces para comer

Suele creerse que los astronautas comen píldoras, lo cual no es cierto. En los primeros vuelos espaciales se experimentó con tubos de pasta alimenticia, cubitos y comida en polvo. De hecho, en aquellos viajes pioneros los expertos ni siquiera estaban seguros de si sería posible comer en el espacio, ya que no sabían cómo la microgravedad podía afectar a la deglución.

La astronauta Sandra Magnus fue la primera que experimentó con la cocina en el espacio. Imagen de NASA.

La astronauta Sandra Magnus fue la primera que experimentó con la cocina en el espacio. Imagen de NASA.

Pero pasados aquellos tanteos iniciales, los astronautas comenzaron a alimentarse con comidas muy parecidas a las que tomamos aquí abajo, y su dieta está vigilada por nutricionistas que se aseguran de su correcta alimentación. No se preparan un solomillo Wellington, pero sí han llegado a experimentar con la cocina.

El principal problema allí arriba es que las cosas flotan, y por lo tanto no se puede echar un filete a una sartén ni hervir un huevo (el vapor no sube), se sustituye el pan por tortillas mexicanas para no crear una nube de migas y la sal viene en forma líquida. Pero comen pollo, ternera, fruta, verduras, pescado, e incluso en algunos casos pizza o hamburguesas. Las raciones preparadas suelen ir en paquetes sellados y deshidratados por comodidad y conservación, pero no por una cuestión de aligerar el peso del agua, ya que todo alimento seco debe rehidratarse, y en el espacio no es posible ir al río a por agua.

Pero todo esto se refiere a la única presencia humana actual en el espacio, la Estación Espacial Internacional (ISS). Y como siempre aclaro aquí, no olvidemos que la ISS, en términos de viajes espaciales, es casi un simulacro; la estación orbita a solo unos 400 kilómetros sobre la Tierra, algo menos de la distancia en AVE entre Madrid y Sevilla, que el tren recorre en unas dos horas y media. La diferencia en el caso de la ISS es que, al poner esos kilómetros de pie, llevar cualquier cosa allí es más complicado por la pegajosa gravedad de la Tierra. Pero recuerden que si todo flota en la ISS no es porque esté tan lejos que escapa del influjo gravitatorio terrestre, ni mucho menos, sino solo porque está continuamente en caída libre, como en esas atracciones de los parques donde te sueltan de golpe y sientes que la sangre se te sube a la cabeza.

Otra cosa muy diferente serían los viajes espaciales de verdad, esos que nunca parecen llegar. Pero si algún día ocurren, ¿cómo se alimentarán sus tripulantes? En el cine de ciencia ficción que se preocupa de estos asuntos, suelen plantearse posibilidades como los cultivos hidropónicos, que se crecen en agua y sin tierra. Esta es una opción real, y de hecho se practica en la ISS.

El astronauta Ed Lu, comiendo con palillos en la ISS. Imagen de NASA.

El astronauta Ed Lu, comiendo con palillos en la ISS. Imagen de NASA.

Pero tengamos en cuenta una realidad física: la materia no se crea ni se destruye, solo cambia de forma. Para que una tomatera produzca un tomate de 100 gramos, esos 100 gramos de materia debe robárselos a su entorno; otra cosa tiene que perder esos 100 gramos. Este es uno de los fallos más habituales en las otras películas de ciencia ficción, las que no se preocupan de estos detalles, y donde los seres crecen aparentemente de la nada.

En la ISS esto no supone un problema, porque los tripulantes reciben periódicamente naves de la Tierra con suministros frescos. Pero en un supuesto viaje interplanetario largo, no digamos ya interestelar, donde no pudiera llevarse toda la comida desde la Tierra y tuviera que fabricarse a bordo, los astronautas producirían sus propios alimentos, comerían, defecarían; si, como se hace en la ISS, expulsaran sus residuos al exterior, poco a poco irían robando materia al hábitat de la nave hasta que no quedara suficiente para seguir sosteniendo la producción de alimentos.

En el espacio abierto no hay materia que pueda recogerse; salvo que encontraran un oasis (como un planeta) donde repostar la química básica necesaria para sus alimentos, sobre todo carbono, hidrógeno, oxígeno, nitrógeno, fósforo y azufre, la situación sería insostenible. Por supuesto, otro tanto ocurre con el agua. Los viajeros también podrían fabricar su propia agua, pero igualmente necesitarían ir reponiendo su stock de hidrógeno y oxígeno.

Así pues, no les quedaría otro remedio: deberían reciclar sus propias heces para producir alimentos. Por asqueroso que esto pueda parecer, mirémoslo desde un punto de vista estrictamente químico: las heces son materia rica en nutrientes. La mayor parte se compone de bacterias, pero contiene todos esos elementos que los viajeros espaciales no podrían permitirse el lujo de tirar al espacio.

Simplemente, esos átomos y moléculas se encuentran en una forma no utilizable directamente, porque han perdido la energía que podemos extraer de ellos. Los seres vivos somos vampiros energéticos. Al digerir el alimento, le robamos energía (y materia, por supuesto). Para transformar esos residuos otra vez en alimento, simplemente debemos aportarles energía para convertirlos en otras formas moleculares que podamos aprovechar como fuente de energía.

Y por suerte, energía sí la hay en el espacio: hay luz, viento solar, rayos cósmicos, partículas que viajan a alta velocidad… La solución consistiría en cosechar esa energía y utilizarla para recargar las moléculas de las heces, como se recarga una pila, y así convertirlas de nuevo en alimento.

Desde hace años, en la ISS se recicla la orina de los astronautas para producir agua potable, y como conté aquí hace unos meses, en la Tierra también se están probando sistemas con este mismo fin. Lo de las heces llevará más trabajo, pero esta semana se ha publicado un estudio que aporta un sistema completo. No es ni mucho menos autosuficiente ni recicla todos los componentes de las heces sino solo un compuesto concreto, pero es un comienzo.

La astronauta italiana Samantha Cristoforetti explica el funcionamiento del retrete de la ISS. Imagen de ESA.

La astronauta italiana Samantha Cristoforetti explica el funcionamiento del retrete de la ISS. Imagen de ESA.

Los investigadores, de la Penn State University, no han utilizado (aún) heces ni orina, sino un residuo sólido y líquido que se emplea habitualmente para testar los sistemas de reciclaje; algo así como una caca humana industrial. El primer paso de su sistema consiste en utilizar ese residuo como comida para microorganismos; aunque nosotros no podemos alimentarnos directamente de nuestras heces, para muchos microbios son un manjar. Este proceso se llama digestión anaerobia. Es similar al que tiene lugar en nuestro tubo digestivo y se aplica en la Tierra al tratamiento de los residuos.

De esta digestión anaerobia, para la cual el aparato utiliza filtros modificados de los que se ponen en los acuarios, los investigadores cosecharon uno de sus preciados productos: el metano, el componente fundamental del gas natural, que contiene carbono e hidrógeno. El metano se sirve entonces a otro tipo de bacteria que lo usa como alimento y que crece muy a gusto comiéndoselo. Esta bacteria, llamada Methylococcus capsulatus, tiene un 52% de proteína y un 36% de grasa, y todo ello en forma comestible; actualmente se emplea como alimento para el ganado. Y no piensen que comer bacterias continúa siendo algo extraño y repelente; ¿qué si no es el yogur?

Los investigadores han probado su sistema asegurándose de que no crecen bacterias tóxicas, aplicando rangos de pH (acidez/alcalinidad) muy restrictivos y temperaturas altas para que la comida no se estropee. De momento es solo un prototipo y aún está muy lejos de convertirse en un aparato práctico; pero hasta el día en que tengamos naves interestelares, hay tiempo de sobra para desarrollarlo. El director del estudio, el geocientífico Christopher House, dice: «imaginen si alguien pudiera refinar nuestro sistema para poder recuperar un 85% del carbono y el nitrógeno del residuo en forma de proteínas sin tener que utilizar hidropónicos o luz artificial; sería un desarrollo fantástico para los viajes al espacio profundo».

No hay ovnis, según quien lleva toda la vida buscando a E.T., y estas son sus razones

Decíamos ayer que el Pentágono ha apoyado en secreto un programa (AATIP) para buscar ovnis en pleno siglo XXI, a pesar de que otros programas anteriores más ambiciosos y en varios países, por no hablar de las legiones de entusiastas, no han producido prueba alguna desde 1947, cuando el fenómeno comenzó sin razón aparente.

Sí, por supuesto, también hay quien sostiene que no empezó en 1947, sino que lleva existiendo desde el comienzo de los tiempos sin que se identificara como tal. Quienes defienden esta idea suelen citar el famoso pasaje de la visión celestial de Ezequiel, que creyó ver a Dios cuando en realidad estaba en mitad de un encuentro en la tercera fase. Claro que no he encontrado defensores de esta interpretación que expliquen lo siguiente: ¿por qué los alienígenas ordenaron a Ezequiel que cocinara el pan quemando heces humanas y, ante sus protestas, le permitieron que usara en su lugar boñigas de buey? ¿Cómo interpretamos este pasaje en clave alienígena? ¿O es que hay algún motivo que se me escapa para creer a pies juntillas en la visión de Ezequiel, pero no en su audición?

Grabado de la visión de Ezequiel, por Matthaeus (Matthäus) Merian (1593-1650). Imagen de Wikipedia.

Grabado de la visión de Ezequiel, por Matthaeus (Matthäus) Merian (1593-1650). Imagen de Wikipedia.

Respecto a la ausencia de pruebas, siempre hay también quien se escudará en el viejo aforismo, la ausencia de prueba no es prueba de ausencia. Pero cuidado: este argumento es tramposo cuando se refiere a algo que sencillamente no es razonable o de lo que deberían haberse encontrado pruebas si fuera cierto. Un ejemplo: la ausencia de pruebas de que actualmente tengo roedores en casa no es prueba de su ausencia, ya que es razonable que los tenga; los he tenido otras veces. Sin embargo, no puedo decir lo mismo de los dragones, porque no es razonable.

Los científicos suelen discutir los límites aceptables de argumentos como este para evaluar la validez de sus conclusiones, ya que en ciencia habitualmente es imposible demostrar un negativo. Por ejemplo, cuando los antivacunas piden a los científicos una demostración absoluta de que las vacunas no causan absolutamente ningún daño, o son muy tontos o muy listos: muy tontos si no saben que es imposible aportar tal demostración, o muy listos si lo saben y lo utilizan como argumento demagógico.

Aplicando todo esto al tema que nos ocupa, es obvio que no es posible demostrar la no existencia de los ovnis. Pero según lo visto, sencillamente no es razonable: su inexistencia puede justificarse sin siquiera abrir los ojos, simplemente pensando. Para justificarlo, traigo aquí las razones de Seth Shostak, que contó a Business Insider como reacción a la noticia sobre el programa AATIP del Pentágono.

Shostak es el astrónomo jefe del Instituto SETI (Búsqueda de Inteligencia Extraterrestre) en California. Nadie más interesado que él en estrechar la mano a E.T. Lleva casi toda su vida dedicado a intentarlo, y el éxito de esta búsqueda no solo sería una cumbre profesional que jamás antes se ha coronado, sino que además le convertiría en referencia ineludible del hallazgo más importante de la historia de la humanidad, aunque no lo descubriera él mismo.

Y sin embargo, estas son las razones de Shostak para no creer en los ovnis:

  • No ha habido tiempo suficiente para que nadie sepa que estamos aquí. «La única manera de que lo sepan sería, por ejemplo, captar señales de nuestros transmisores: televisión, radio, radar, todo eso», dice Shostak. «Pero estas señales solo llevan enviándose desde la Segunda Guerra Mundial, así que, si están a más de 35 años luz de distancia, no ha habido tiempo suficiente para que nuestras señales les lleguen y para que ellos decidan: venga, vale la pena gastar el dinero para darnos una vuelta por allí». La cifra de 35 años luz se explica porque la Segunda Guerra Mundial terminó hace más o menos 70 años, la suma de los 35 que tardaría nuestra señal en llegarles y otros 35 para que recibiéramos su respuesta o su visita. Esta última, solo si pudieran desplazarse a la velocidad de la luz. Pero naturalmente, prosigue Shostak…
  • «No pueden viajar más rápido que la luz, y probablemente tampoco a la velocidad de la luz». Este límite, mientras nadie demuestre lo contrario (y refiero de nuevo al argumento de más arriba), es una imposibilidad física inapelable. O apelable, pero hasta ahora sin éxito.
  • En un radio de 50 años luz, advierte Shostak, solo hay unos 1.400 sistemas estelares. «Puede parecer mucho, pero es un número muy pequeño si estás buscando seres inteligentes; a menos que estén ahí mismo, lo que estadísticamente es muy improbable».
Imagen de Pixabay / CC.

Imagen de Pixabay / CC.

  • ¿Por qué tomarse la molestia de venir hasta aquí para luego no hacer nada? Shostak razona que la inmensa mayoría de los casos reportados son avistamientos sin ninguna clase de interacción. «Son los mejores huéspedes de la historia, porque si están aquí, no están haciendo nada… Envían una inmensa flota de naves, preferiblemente con forma de plato de cena, solo para revolotear y agitar a la gente sin hacer nada más; es un poco raro». Shostak suele citar el ejemplo de la llegada de los europeos a América: es evidente que los nativos americanos no tuvieron duda sobre la existencia de los europeos. Naturalmente, están los casos de presuntas abducciones, pero en estos, y volvemos una vez más al argumento de arriba, habría que refutar las hipótesis más razonables, como la parálisis del sueño (que ya conté aquí).
  • «¿Por qué están aquí ahora?», continúa Shostak. «No estaban visitando a los padres fundadores en el siglo XVIII, pero sí a nosotros. A los romanos no les importunaban las visitas de los alienígenas». Y ya he mencionado arriba el problema de interpretar avistamientos de ovnis en documentos de la antigüedad.
  • El hecho de que un 10% de los casos de avistamientos no puedan explicarse no significa que sean alienígenas. «Solo significa que no se han podido explicar». Shostak razona que siempre habrá casos sin explicación, con independencia de la existencia o no de los alienígenas, por lo que estos casos no demuestran ni una cosa ni la contraria. Pero naturalmente, lo más razonable es no dar paso a las hipótesis improbables antes de haber descartado todas las probables; como decía Sherlock Holmes, «cuando todo aquello que es imposible ha sido eliminado, lo que quede, por muy improbable que parezca, es la verdad».
  • Si fuera verdad que los gobiernos ocultan la existencia de los ovnis, como alegan los defensores de las teorías de la conspiración, ¿tiene mucho sentido que revelen voluntariamente la existencia de estos proyectos reconociendo que los han ocultado y simulando que no han descubierto nada? «El gobierno dice: bueno, sí, tuvimos un programa y lo encubrimos, pero no encontramos nada», dice Shostak. Si alguien está realmente engañando a su pareja, ¿tiene sentido que le diga: «cariño, te comunico que he estado viéndome con X, pero no ha pasado nada»? ¿No tiene más sentido que simplemente sea verdad?

Las razones expuestas son demoledoramente razonables, como corresponde a un tipo con la lucidez de Seth Shostak. Pero si los alienígenas no se atienen a la razón ni a las leyes de la física, si pueden saber que estamos aquí solo por omnisciencia, materializarse y desmaterializarse a voluntad, estar en cualquier lugar que les apetezca en cada momento recorriendo distancias intergalácticas al instante, y no necesitar motivos para hacer algo o no hacerlo porque sus caminos son inescrutables… entonces no son alienígenas, sino otra cosa, y Ezequiel tenía razón.

…Y el Pentágono sigue investigando los ovnis

En diciembre, el New York Times publicaba una noticia insólita: de 2007 a 2012, el Pentágono financió con casi 22 millones de dólares de fondos reservados un programa llamado Identificación Avanzada de Amenazas Aeroespaciales (AATIP), dedicado a investigar… hombrecitos verdes: es decir, avistamientos de ovnis, presuntos contactos con alienígenas y artefactos recogidos a los que alguien atribuye un origen extraterrestre. La misma noticia aparecía también independientemente en la web de la revista Politico.

Imagen de Joe Ross / Flickr / CC.

Imagen de Joe Ross / Flickr / CC.

Pero ¿por qué esto ahora? ¿Después de décadas de ascensión y caída de la moda ovni, cuando varios países ya han desclasificado gran parte de sus investigaciones sobre esta materia sin ninguna prueba ni otro resultado que una montaña de, como decía Carl Sagan, casos interesantes que son poco fiables y casos fiables que son poco interesantes, cuando se destaparon fraudes como el de Roswell, cuando incluso investigadores científicos tiraron la toalla reconociendo que el fenómeno ovni no era físico, sino sociológico, y cuando al final de todo ello no ha ocurrido absolutamente nada?

La respuesta está en el hecho de que la política estadounidense parece funcionar a golpe de lobby, y el AATIP nació de uno de estos grupos de presión encabezado por dos personajes: el senador de Nevada Harry Reid, entonces líder de la mayoría demócrata en el Senado, y el empresario del New Space Robert Bigelow, un hotelero de Las Vegas que desde su compañía Bigelow Aerospace diseña y construye hábitats inflables para las órbitas terrestre y lunar.

Basándose en su convencimiento de que, pese a todo, haberlos, haylos, Reid y Bigelow consiguieron decantar en su favor los apoyos suficientes como para que el programa se financiara, en secreto y con fondos opacos. Pero no perdamos de vista un detalle: los 22 millones de dólares no fueron a otro lugar que a Bigelow Aerospace, donde presuntamente el empresario los ha empleado para subcontratar investigaciones. Repito, fondos opacos; una tarjeta black interplanetaria.

Aunque el NYT pudo confirmar la existencia del AATIP, no se ha revelado cuáles han sido las conclusiones del programa; al parecer, parte de él continúa clasificado. Lo más chocante es que en 2009 Reid solicitó mayor seguridad para proteger «descubrimientos extraordinarios». «Se han hecho muchos progresos en la identificación de varios hallazgos aeroespaciales altamente sensibles y no convencionales», escribía Reid en una carta a un alto funcionario de Defensa. Según el NYT, Bigelow habría habilitado algunas instalaciones en Las Vegas para almacenar ciertos artefactos encontrados. También en 2009, un informe interno del programa decía que «lo que solía considerarse ciencia ficción ahora es hecho científico», y que EEUU era incapaz de defenderse contra algunas de las tecnologías descubiertas.

Imagen de Pixabay / CC.

Imagen de Pixabay / CC.

Entonces, ¿debemos ya ponernos el sombrero de Albal? Todo lo anterior suena enigmático y emocionante. Pero antes de que los verdaderos expertos nos chafen el enigma y la emoción (sí, es un spoiler), detengámonos un momento en la inconsistencia de lo anterior con las declaraciones del oficial de la Inteligencia del Pentágono que estuvo a cargo del programa, Luis Elizondo. Elizondo dijo que los fenómenos estudiados no parecían proceder de ningún otro país, y añadió: «este hecho no es algo que ningún gobierno o institución debería clasificar para mantener en secreto». Pero si por «este hecho» se refiere a las tecnologías presuntamente descubiertas, ¿por qué piensa Elizondo que ningún gobierno tendría motivos para clasificar avances extraordinarios contra los que no existe manera de defenderse y para los que los responsables del AATIP pidieron un mayor nivel de secreto? Algo no cuadra, ¿no creen?

Por su parte y una vez agotada la financiación del programa, Elizondo y otros implicados en el programa han montado una web sobre una iniciativa algo estrambótica llamada To the Stars… Academy of Arts & Science que pretende continuar investigando el fenómeno ovni, desarrollar tecnologías y producir contenido audiovisuales para, se supone, divulgar sus hallazgos e indagaciones… pero cuya lectura enciende el piloto rojo de la pseudociencia cuando llegamos a la parte de las tradiciones esotéricas, los templos mayas y la telepatía. Por no hablar de las típicas referencias a ir más allá de las fronteras de la ciencia, desfiar el conocimiento «convencional», hacer realidad la ciencia ficción… En fin, todo eso que ya hemos leído tantas veces.

Pero al parecer y según el NYT, aunque el AATIP ya no tenga soporte financiero, esto no significa que se le haya dado carpetazo. Desde que se cerró el grifo black, funcionarios implicados en el programa han continuado entresacando ratos de su tiempo para recoger e investigar testimonios de experiencias y avistamientos de miembros del personal de Defensa. «El programa sigue existiendo», dice el diario.

Pero noten que en toda esta historia hasta ahora no se ha mencionado el nombre de un solo científico. No estaría mal añadir unas gotas de ciencia por parte de quien está cualificado para hacerlo, es decir, un científico experto en la materia. El próximo día seguiremos con ello.

Una máquina descubre el octavo planeta en un sistema extrasolar

Investigadores de la Universidad de Texas en Austin y de la compañía Google han revelado esta tarde, en una rueda de prensa celebrada por la NASA, el primer hallazgo de dos exoplanetas no realizado por un ser humano, sino por un sistema de Inteligencia Artificial. Uno de los nuevos planetas, llamado Kepler-90i, hace el número ocho de los que orbitan en torno a la estrella Kepler-90, lo que convierte a este sistema en el primero conocido con el mismo número de planetas que el nuestro.

Ilustración del sistema Kepler-90. Imagen de NASA/Wendy Stenzel.

Ilustración del sistema Kepler-90. Imagen de NASA/Wendy Stenzel.

Hoy el descubrimiento de un nuevo planeta extrasolar ya no suele ser carne de titulares como lo era hace un cuarto de siglo, cuando se descubrieron los primeros. Se han confirmado ya más de 3.700 planetas fuera de nuestro Sistema Solar, por lo que la idea de que toda estrella podría tener al menos un planeta, como piensan algunos expertos, ya no sorprende. Solo los planetas más parecidos al nuestro, potencialmente aptos para la vida, suelen abrirse paso hasta las páginas y las webs de los medios generales, sobre todo si no están demasiado lejos de nosotros.

No es el caso de Kepler-90i; este planeta rocoso, un 30% más grande que la Tierra, orbita una estrella similar al Sol a 2.545 años luz, y no es precisamente acogedor: los científicos estiman que su temperatura ronda los 427 grados centígrados, similar a la de Mercurio y suficiente para fundir el plomo.

Sin embargo, Kepler-90i tiene dos argumentos para marcar un hito en la astronomía. El primero de ellos es que se trata del segundo «octavo planeta» jamás conocido por el ser humano. Desde que Plutón fue expulsado del club planetario, nuestro sistema se quedó con ocho, siendo Neptuno el octavo. Hasta ahora se había encontrado un puñado de estrellas con siete planetas a su alrededor; una de ellas, TRAPPIST-1, fue noticia el pasado febrero por albergar varios planetas en su zona habitable.

Kepler-90 también era hasta ahora un sistema de siete planetas, descubiertos gracias a los datos de la sonda Kepler de la NASA. Este telescopio espacial es un sofisticado cazador de planetas: rastrea unas 150.000 estrellas en una porción de la Vía Láctea y las vigila en busca de una pequeña atenuación que revele el tránsito de un planeta delante de ellas, como si tapamos parte del foco de una linterna con un dedo. Solo que las atenuaciones debidas al tránsito de planetas son ínfimas; las herramientas informáticas pueden identificarlas, pero es tan ingente la cantidad de datos recogidos por Kepler que los astrónomos y sus ordenadores tienen que centrarse en las señales más evidentes. Y esto implica que tal vez estén pasando por alto algún que otro planeta.

Aquí es donde entra el segundo gran argumento de Kepler-90i: es el primer planeta descubierto por una red neuronal de Inteligencia Artificial (IA). La historia comienza cuando Christopher Shallue, investigador en IA de Google, se entera de que los científicos dedicados a la búsqueda de exoplanetas hoy tienen tantos datos a su disposición que están desbordados; incluso con el uso de potentes ordenadores y con la colaboración de voluntarios a través de internet, el volumen de información es casi inmanejable.

Así, Shallue vio una oportunidad perfecta para dar de comer a sus redes neuronales, sistemas basados en algoritmos que tratan de imitar la forma de aprendizaje del cerebro humano. Los expertos en IA suelen decir que, por inmensas y complejas que sean las operaciones que un ordenador puede realizar en una fracción de segundo, hay algo en lo que la máquina más sofisticada del mundo es más torpe que el más torpe de los humanos: reconocer patrones. Algo tan elemental para nosotros como distinguir un perro de un gato es una tarea colosal para una máquina. Las redes neuronales capaces de aprender están progresando en esta habilidad que los humanos manejamos con soltura.

Shallue se puso en contacto con Andrew Vanderburg, astrónomo de la Universidad de Texas, y entre ambos entrenaron al sistema de Google para aprender a reconocer patrones de indicios de exoplanetas en los datos de atenuación de luz de estrellas recogidos por Kepler. Y allí donde los científicos habían encontrado siete planetas, en la estrella Kepler-90, la máquina encontró uno más, el octavo, con una señal tan débil que había escapado a los astrónomos. Lo mismo ocurrió con otra estrella, Kepler-80, donde el sistema de Google descubrió un sexto planeta, Kepler-80g. El estudio de los dos investigadores se publicará próximamente en la revista The Astronomical Journal.

Y esto es solo el principio. En la rueda de prensa, Vanderburg y Shallue apuntaron que por el momento solo han aplicado la red neuronal a 670 estrellas, pero que su intención es pasar los datos de las 150.000 observadas por Kepler. El sistema Kepler-90 es parecido al nuestro en el número de planetas y en su distribución, con los pequeños más cercanos a la estrella, pero es como una versión comprimida, ya que todos ellos están muy próximos a su sol; de ahí las altas temperaturas. Pero hoy los científicos ya sospechan que los sistemas multiplanetarios, incluso con muchos más planetas que el nuestro, probablemente sean algo muy corriente en nuestra galaxia. Y con la avalancha de datos de Kepler y la pericia de la máquina de Shallue, todo indica que pronto sabremos de algún sistema tan parecido al nuestro, con un planeta tan parecido al nuestro, que la presencia de vida allí parezca algo casi inevitable.

Diez reglas que debería cumplir todo alienígena (también los de ficción)

Hace cosa de un mes, un equipo de zoólogos de la Universidad de Oxford publicaba un estudio destinado a especular sobre cuál podría ser el retrato biológico de un alienígena. Como ya he contado aquí, los científicos no suelen arriesgarse a lanzar divagaciones de este tipo, y cuando lo hacen es en tiempo de extraescolares, después de quitarse la bata. Las revistas científicas tampoco son el lugar donde ponerse a inventar ciencia ficción.

Pero el estudio de Oxford era tan contenido que resultaba casi frustrante. El trabajo de los investigadores puede resumirse en dos ideas: los alienígenas estarán sometidos a evolución por selección natural, como nosotros los terrícolas, y estarán formados por partes más pequeñas en una jerarquía de niveles, como nosotros los terrícolas (genes, células, tejidos, órganos, individuos, sociedades…).

Tal vez no parezcan pistas como para parar las máquinas, aunque como guinda y gancho de cara a los medios, los autores se permitían adornarlo con una propina: el octomita, nombre que daban a un alienígena hipotético basado en estas reglas y que les presento aquí. Aclaro que su aspecto es puramente imaginario; lo esencial del octomita es el esquema basado en niveles crecientes de organización.

El octomita, un alienígena hipotético. Imagen de Levin et al., International Journal of Astrobiology 2017.

El octomita, un alienígena hipotético. Imagen de Levin et al., International Journal of Astrobiology 2017.

Si el estudio no llegaba más allá es porque un trabajo científico (también los teóricos) solo debe llegar hasta donde le deja el suelo bajo sus pies. Mirado de este modo, el hecho de que la argumentación teórica permita sostener estos dos requisitos de la vida extraterrestre cierra bastante el campo de lo que podríamos encontrarnos por ahí fuera, si es que existe algo y si es que algún día lo encontramos.

Como ya expliqué en dos entregas anteriores (aquí y aquí), no todo vale en biología, ni aquí ni en GN-z11 (la galaxia más lejana conocida, a 13.400 millones de años luz). Por tanto, no todo vale a la hora de imaginar la vida extraterrestre. Estudios como el de Oxford, que aplican las reglas de la biología, restringen el repertorio de opciones posibles para cualquier tipo de vida que pueda considerarse como tal, con independencia de cómo sea su planeta natal.

Es más: como les conté anteriormente, y por mucho que las ideas del biólogo y divulgador Stephen Jay Gould sobre la imprevisibilidad absoluta de la evolución hayan calado no solo en la comunidad científica, sino incluso entre el público interesado en estas cosas, los experimentos tienden a quitarle al menos una parte de razón: si nos fiamos de los datos reales que tenemos hasta hoy (y no podemos fiarnos de otra cosa), parece que la evolución tiene algo de margen para lo diferente, pero también algo de determinismo, convergencia y cánones comunes; lo que el biólogo Víctor Soria Carrasco llamaba «un tema central».

Vida en la atmósfera de un planeta similar a Júpiter, según Carl Sagan. Imagen de la serie Cosmos (1980) / PBS.

Vida en la atmósfera de un planeta similar a Júpiter, según Carl Sagan. Imagen de la serie Cosmos (1980) / PBS.

En conclusión, la idea que por ahí circula sobre vida alienígena tan diferente de nosotros que tal vez ni siquiera la veríamos delante de nuestras narices es un buen argumento para el cine, los periódicos y las charlas de café, pero no se compadece con las reglas de la biología.

Así, recogiendo trocitos como el aportado por los investigadores de Oxford y otros, y añadiendo unas gotas de biología esencial, podemos armar una lista con unos cuantos requisitos que debería cumplir todo alienígena, por muy diferente que sea de la vida terrícola; también los de ficción, si pretenden ser plausibles. Por supuesto que esta es una lista en construcción y provisional, que trataré de ir actualizando-completando-rectificando con los datos que nos traigan los nuevos estudios.

  1. Todo ser vivo debe nacer, crecer, (tener capacidad de) reproducirse y morir. De acuerdo, esto es ponerlo muy fácil; pero es la definición más básica y clásica de la vida, aunque hoy se prefiere introducir criterios metabólicos y evolutivos. Qué menos que empezar por esto, pero también tiene su miga: algo tan aparentemente sencillo es uno de los motivos (el otro es el metabolismo, a lo que iré más abajo) por los cuales se discute si los virus son seres vivos. No solamente es que sean parásitos dependientes de piezas ajenas; muchos otros seres vivos también lo son. Es que los virus no crecen.
  2. Todo ser vivo está constituido por materia. Sí, también es fácil llegar a sacar un 2 en esta prueba. Pero ¿en cuántas películas los alienígenas se nos presentan como seres de energía pura que pueden adoptar cualquier forma que se les antoje? Si algo no está formado por materia no es un ser vivo, sino un poltergeist, por muy alienígena que sea. El payaso de It no es un ser vivo.
  3. Todo ser vivo debe estar formado por unidades elementales repetidas en varios niveles jerárquicos, la más básica de las cuales es un gen. La biología se basa en un principio de construcción según el cual hay una coherencia entre las partes pequeñas y el conjunto, o entre genes, células, órganos, individuos y sociedades. Por ejemplo, con células humanas no se puede construir un perro, ni con células alienígenas se puede construir un humano. Esto implica la existencia de genes en sentido amplio; no necesariamente como los terrestres, pero sí como unidades materiales mínimas que llevan la información esencial para construir el siguiente nivel jerárquico.
  4. Todo ser vivo debe respetar las leyes universales de la física. No es posible violar los principios de conservación de la materia, la energía o la cantidad de movimiento, o las leyes de la termodinámica en general.
  5. Todo ser vivo debe estar sujeto a evolución por selección natural y exhibir un cierto grado de adaptación a su entorno de origen. La evolución funciona a escalas temporales dependientes de los procesos biológicos, y estos a su vez dependen de la velocidad de los ritmos físicos y químicos. La evolución funciona en escalas espaciales que permitan la interacción entre un ser vivo y su entorno.
  6. Todo ser vivo debe estar enclavado en un ecosistema que lo sostenga. Una especie alienígena no puede ser la única forma de vida presente en su planeta, a no ser que sea la primera (esta sería una discusión interesante, pero lo cierto es que la abiogénesis aún es una caja negra para la biología) o la última superviviente, en cuyo caso está abocada a la extinción. Un ser vivo, incluso los quimio o fotosintéticos, es parte de la biomasa, pertenece a un ecosistema que lo alimenta pero también lo limita, actuando como cinta transportadora de la energía a lo largo de la cadena alimentaria.
  7. Todo ser vivo debe mantener poblaciones mínimas viables y conexas. La idea del Arca de Noé no permite la supervivencia de una especie. Debe existir un número suficiente de ejemplares en un mismo entorno físico que asegure un tamaño de diversidad genética capaz de sostener la supervivencia de la especie. Para los científicos esta es una estimación compleja que varía para cada especie y que hoy se calcula con simulaciones matemáticas por ordenador. Pero la naturaleza lo sabe.
  8. Todo ser vivo debe tener un metabolismo y una fisiología intrínsecamente plausibles y coherentes. Por ejemplo, los procesos metabólicos producen energía, y parte de esta energía se traduce en calor. Esto impone ciertas limitaciones de cara a construir un organismo, sin importar cómo sean las condiciones de su planeta de origen. Si un ser vivo es muy grande, también lo será el calor interno generado. Su temperatura de funcionamiento debe mantener el solvente biológico (en nuestro caso, el agua) en un estado que facilite las reacciones químicas y que permita a las biomoléculas conservar su configuración estructural nativa (en nuestro caso, el ADN y las proteínas pierden su estructura a temperaturas demasiado altas). Por tanto, toda forma de vida está limitada por su propio rango de temperaturas. Por otra parte, esta regla impone también la necesidad de un metabolismo, al menos durante alguna fase de la vida. Volvemos a lo mencionado antes sobre los virus: no tienen metabolismo cuando están en forma de virión (estado libre), pero sí cuando se activan en su célula hospedadora, aunque para ello utilicen piezas ajenas (algo que también necesitan otros parásitos). Desde este punto de vista, un virión puede entenderse como una fase de resistencia, como una espora o una semilla, y un virus puede caber en la definición de ser vivo. Incluso en cierto sentido, el hecho de subcontratar el metabolismo puede interpretarse como un refinamiento evolutivo que permite ahorrar energía, al menos si es que los virus se han desarrollado a partir de otros organismos que sí tenían metabolismo propio.
  9. Todo ser vivo debe tener un metabolismo y una fisiología plausibles en las condiciones de su entorno original. Por ejemplo, para que un parásito prospere, incluso aunque sea capaz de parasitar formas de vida como los humanos con las que nunca antes haya tenido contacto (lo cual puede ocurrir), ha tenido que coevolucionar con algún hospedador original en su entorno primitivo.
  10. Todo alienígena que baje a la Tierra y prospere debe tener una biología compatible con las restricciones impuestas por las condiciones terrestres. Por ejemplo, es posible que un ser de cincuenta kilos (medidos en condiciones de gravedad terrestre) pueda flotar sin esfuerzo en la atmósfera densa de su planeta de origen, como podría ocurrir en Venus si estuviera habitado. Pero en la Tierra no puede seguir haciendo lo mismo impunemente.

¿Son plausibles los alienígenas (parecidos a nosotros) de la ciencia ficción? (II)

Un humano es un organismo con forma de tubo (boca y ano), simetría bilateral, un bloque central que contiene los órganos internos flanqueado por pares de extremidades para la movilidad y la interacción, y un control centralizado (el cerebro) situado en un apéndice específico (la cabeza) que contiene además los principales mecanismos sensoriales.

Desde los hombrecillos verdes o grises hasta las variaciones como los xenomorfos de Alien, infinidad de películas nos presentan seres antropomorfos, que comparten con nosotros estos mismos planos generales de construcción. Pero ¿es esto posible? ¿Es plausible que un alienígena se parezca tanto a nosotros?

Alienígenas de 'Encuentros en la tercera fase'. Imagen de Columbia Pictures.

Alienígenas de ‘Encuentros en la tercera fase’. Imagen de Columbia Pictures.

La respuesta corta es que nadie lo sabe, dado que, una vez más, aún no conocemos alienígena. Para la respuesta larga, debemos comenzar respondiendo a otra pregunta: ¿la evolución es determinista o indeterminista? Es decir: a partir de una situación inicial y si jugamos la partida dos veces, en la Tierra y en otro planeta, ¿cuánto se parecerá el resultado final en los dos casos?

A su vez, la respuesta corta a esta pregunta es que nadie lo sabe. Hay quienes intuyen que un alienígena debería parecerse algo a nosotros, porque… ¿no? Y hay quienes intuyen que debería ser completamente distinto, porque… también, ¿no?

Pero la simple intuición no responde a la pregunta de hasta qué punto un experimento evolutivo paralelo encontraría o no algunas de las mismas soluciones como adaptaciones favorables en un medio parecido o diferente del terrestre. Haría falta repetir el experimento completo de la evolución, primero en nuestra propia Tierra, después en otros planetas habitables.

Por desgracia, esto no está a nuestro alcance. Tal vez algún día la Inteligencia Artificial logre refinar una simulación lo bastante completa como para darnos pistas reales, pero son tantas las variables implicadas que no será tarea fácil aproximarse lo suficiente a un escenario comparable a la realidad. Sería la simulación más complicada jamás emprendida.

A pesar de todo, tampoco estamos completamente perdidos. Tenemos teorías razonables, y tenemos también algunos datos experimentales que pueden tirar algún que otro raíl en el camino hacia estas respuestas. A continuación les cuento algunas de estas pistas, pero ya les adelanto que la conclusión nos devuelve a la respuesta corta: en realidad, nadie lo sabe.

E. T. Imagen de Universal Pictures.

E. T. Imagen de Universal Pictures.

Comencemos por la teoría. En los años 70 Stephen Jay Gould, una de las mentes más preclaras de la biología evolutiva del siglo XX, defendió la hipótesis de que la evolución no es determinista sino imprevisible, y que si pudiéramos rebobinar la cinta del planeta Tierra unos cuantos millones de años y volver a ejecutar el programa, los humanos ni siquiera estaríamos aquí.

Hay que tener en cuenta que toda la vida en la Tierra (al menos la que conocemos hasta ahora) procede de un antepasado común, el cual ya había adoptado ciertas opciones evolutivas que todos hemos heredado. Al ir diversificándose en ramas separadas, estas a su vez también fueron optando por determinadas soluciones que restringían el repertorio de configuraciones de sus descendientes. Pero según la hipótesis de Gould, que siguen muchos otros biólogos evolutivos, si pudiéramos regresar al comienzo quizá la segunda vez se elegirían soluciones diferentes y todos tendríamos, por ejemplo, simetría radial, como los equinodermos (estrellas y erizos de mar).

La teoría de Gould tendería a rechazar la posibilidad de alienígenas antropomorfos. Pero no todos los expertos están de acuerdo con él. Otros biólogos evolutivos, como Richard Dawkins o Simon Conway Morris, piensan que la evolución es al menos en parte un proceso determinista. Es decir, que desde la misma situación de partida, hay sucesos que tienden a repetirse.

Para comprender lo complicado que resulta teorizar sobre esto, tengamos en cuenta que incluso desde enfoques opuestos puede llegarse a conclusiones parecidas, pero también desde un mismo enfoque puede llegarse a conclusiones opuestas. Dos ejemplos: Conway Morris es creyente, Dawkins es ateo, y ambos son deterministas. Conway Morris es determinista, Gould lo contrario, y ambos se basan en las mismas pruebas, el esquisto de Burgess, un conjunto de fósiles hallado en Canadá a comienzos del siglo XX.

Un fósil de Anomalocaris del esquisto de Burgess. Imagen de Wikipedia / Keith Schengili-Roberts.

Un fósil de Anomalocaris del esquisto de Burgess. Imagen de Wikipedia / Keith Schengili-Roberts.

La razón principal que suelen esgrimir los deterministas es la evolución convergente. A lo largo de la historia de la vida en la Tierra, ha habido innumerables ocasiones en que la evolución ha encontrado las mismas soluciones en ramas independientes del árbol genealógico de los seres vivos.

Por ejemplo, los murciélagos y las aves tienen alas, pero las desarrollaron de forma independiente. Los ojos de los pulpos son pasmosamente parecidos a los nuestros, pero es evidente que ellos y nosotros no procedemos de un antepasado común con ojos. Este año un estudio descubrió que el apéndice, ese colgajo intestinal al que tradicionalmente no se le suponía otra función que llevarnos a Urgencias, ha surgido en la evolución más de 30 veces de forma independiente en unos animales y otros. ¡Más de 30 veces! Esto no solamente nos dice que muy probablemente el apéndice sirve para algo más, sino que es otro magnífico ejemplo de evolución convergente. El propio Conway Morris ha documentado muchos ejemplos en los fósiles de Burgess.

Así que la teoría no nos ofrece una respuesta clara. Pasemos ahora a la práctica: ¿qué nos dicen los experimentos? Obviamente, no podemos regresar al pasado, volver a jugar la partida de la evolución desde el principio y ver qué ocurre. Pero sí podemos hacer lo segundo mejor: ver qué hace la naturaleza en situaciones de evolución a corto plazo, y diseñar experimentos en condiciones controladas donde puedan estudiarse estos trocitos parciales de evolución.

Sobre lo primero, se han estudiado casos en animales como peces y lagartos. Respecto a lo segundo, hace tres años y medio les conté aquí un precioso ejemplo, un experimento con insectos palo llevado a cabo por el español Víctor Soria-Carrasco en la Universidad de Sheffield (Reino Unido). Los investigadores emplearon un tipo de insecto palo californiano que prácticamente nace, vive y muere en la misma planta, y del que existen dos variedades diferentes adaptadas al camuflaje en dos tipos de arbustos. Intercambiando los bichos de planta en unos lugares y otros, podían comparar los cambios genéticos que se producían entre dos de estos experimentos evolutivos independientes.

El resultado fue que en la evolución de estos bichos palo había un 80% de cambios diferentes y un 20% de cambios comunes. O sea, que a pesar de que mayoritariamente la evolución seguía caminos distintos en dos partidas diferentes, había un 20% de evolución convergente, o un 20% de determinismo evolutivo. Por supuesto que entre este caso y la evolución de la vida en otro planeta media un abismo, pero esta era la especulación de Soria-Carrasco sobre si los alienígenas podrían seguir caminos evolutivos parecidos a los nuestros: «muchas cosas serían diferentes, pero probablemente seríamos capaces de distinguir un tema central que siempre sería el mismo».

El experimento más extenso de la historia de la ciencia para entender cómo funciona la evolución se desarrolla desde hace 30 años en la Universidad de Harvard. En febrero de 1988, el biólogo evolutivo Richard Lenski sembró bacterias Escherichia coli en 12 frascos con medio líquido de cultivo, algo habitual en muchos laboratorios de biología. Pero Lenski dejó a las bacterias la glucosa justa solo para sobrevivir durante la noche hasta la mañana siguiente, y por la tarde recogió a las supervivientes para trasvasarlas a un nuevo cultivo. Así, día tras día, durante más de 29 años.

Con la limitación de alimento, Lenski introducía un factor de presión para dirigir la evolución de las bacterias; tal como hace la selección natural, solo las bacterias mejor adaptadas al medio sobrevivirían. Cada 75 días, lo que equivale a unas 500 generaciones de E. coli, los investigadores congelan una parte de los cultivos para capturar una foto del proceso evolutivo. Analizando los genes de las bacterias en estos distintos momentos del proceso, pueden observar cómo están evolucionando, y comparar las 12 líneas entre sí para analizar si siguen los mismos caminos evolutivos o no. En total, en los casi 30 años del experimento se han sucedido más de 68.000 generaciones de bacterias, lo que equivale a más de un millón de años de evolución humana.

Y después de todo esto, el resultado es…

Durante los primeros miles de generaciones, los investigadores observaron que las bacterias seguían caminos al menos no totalmente separados. Los diferentes cultivos tendían a mostrar mutaciones diferentes, pero en los mismos genes. E incluso con las diferencias, todas mostraban un patrón común: las células se hacían más grandes, crecían más deprisa y aprovechaban mejor la glucosa. Esto parece un claro caso de evolución convergente.

Pero ¡oh, sorpresa! De repente, transcurridas unas 31.000 generaciones, una de las 12 líneas empezó a dejar de lado la glucosa y a comer citrato, otra fuente de carbono presente en el medio. Solo una de las 12 líneas. Dado que una característica de E. coli es la incapacidad de metabolizar el citrato, esta línea está evolucionando por el camino de convertirse en una nueva especie diferente. Y esto parece un claro caso de evolución no determinista.

Con todo esto, ¿qué opinan Lenski y sus colaboradores sobre el grado de determinismo de la evolución? Según su último estudio, esto: «nuestros resultados muestran que la adaptación a largo plazo a un ambiente constante puede ser un proceso más complejo y dinámico de lo que a menudo se asume».

Sí, sí, vuelvan a leer la frase, y la segunda vez les dirá lo mismo: nada. Una paráfrasis para decir que, en realidad, no se sabe. Ya les advertí de que aún no tenemos una respuesta definitiva sobre si Gould o Conway Morris, y por tanto sobre si sería posible que en otro planeta evolucionara una especie básicamente similar a la nuestra. Pero quiero dejarles otro ejemplo de un experimento natural que nos ha permitido observar cómo funciona la evolución. Ese experimento se llama Australia.

La idea, de la que también les hablé aquí, es del científico planetario Charley Lineweaver. Es lo que él llama «la falacia del planeta de los simios», o la idea popular de que, como decía Carl Sagan, en otros planetas habitados debe llegarse a un equivalente funcional del ser humano. Lineweaver pone como ejemplo su propio país, una gran isla separada del resto de los continentes desde hace unos 100 millones de años.

De este modo, Australia ha sido un experimento natural de evolución independiente durante millones de años. Y como decía Lineweaver, ¿qué es lo que ha surgido allí? Canguros. La aparición de los humanos en el gran bloque Eurasiafricano no ha interferido absolutamente de ninguna manera en la evolución australiana. Y sin embargo, allí la evolución no ha producido nada similar a los seres humanos. Si Australia fuera la única tierra seca de todo el planeta, no estaríamos aquí. Y por tanto, no hay evolución convergente; si los canguros tienen brazos y piernas como nosotros, es solo porque el antepasado común que compartimos con ellos ya los tenía.

Por todo lo anterior, los científicos no suelen arriesgarse a inventar aliens, a riesgo de ver su credibilidad dañada. Hay excepciones: en los años 70, Carl Sagan propuso un ecosistema modelo para un planeta joviano, un gigante gaseoso como Júpiter. Sagan imaginó varios linajes de seres voladores que controlarían su flotación a través de los distintos niveles de densidad de la atmósfera, formando una cadena alimentaria cuya base estaría sustentada por una especie de plancton atmosférico que se alimentaría de los nutrientes moleculares presentes en el gas. Así lo contaba Sagan en su mítica serie Cosmos:

Como resumen de todo lo contado aquí, mejor quédense con esta cita del gran maestro Sagan:

La biología es más parecida a la historia que a la física. Hay que conocer el pasado para comprender el presente. No hay predicciones en la biología, igual que no hay predicciones en la historia. La razón es la misma: ambas materias son todavía demasiado complicadas para nosotros. Aunque podemos comprendernos mejor comprendiendo otros casos.

A pesar de todo, si es extremadamente difícil aventurar cómo podría ser un alienígena, en cambio es más posible predecir cómo no podría ser. Como les contaba en la entrega anterior, no todo vale, y con esto podríamos arriesgarnos a construir una lista de reglas que debería cumplir un alienígena de ficción para ser mínimamente plausible. Vuelvan otro día y se lo cuento.