Entradas etiquetadas como ‘bioquímica’

Ya hay al menos tres indicios de posible vida microbiana en la atmósfera de Venus

Venus no es el gran olvidado de las misiones espaciales. O sí. Depende de a quién se pregunte. En 2017, un artículo en The Atlantic firmado por David Brown alegaba que la estrategia de la NASA de «seguir el agua» había arrumbado a nuestro vecino más cercano, porque no hay agua líquida en la superficie de Venus. Pero como reconocía el propio Brown, hay otras razones, y es que Venus es un infierno difícilmente explorable: temperatura en la superficie, más de 400 grados; presión atmosférica en la superficie, 100 atmósferas, más o menos la equivalente a 1.000 metros bajo el agua aquí en la Tierra.

Pero no, Venus no es un hueco en blanco en la historia de la exploración espacial. De hecho, fue el primer planeta visitado por sondas terrestres, sobrevolado por primera vez por la soviética Venera 1 en 1961, después por la estadounidense Mariner 2 al año siguiente, hollado (presuntamente) por la Venera 3 en el 66, y después por las 4, 5, 6, 7 y 8, las dos últimas con aterrizajes suaves; fotografiado en la superficie por la Venera 9, visitado por las Pioneer Venus de la NASA, etcétera, etcétera… Hay una buena cantidad de chatarra humana sobre la superficie de Venus; de hecho, más que en Marte.

Así vio (en imagen UV) Venus la sonda de la NASA Pioneer Venus en 1979. Imagen de NASA

Así vio (en imagen UV) Venus la sonda de la NASA Pioneer Venus en 1979. Imagen de NASA

Sin embargo, es cierto que nada ha aterrizado allí desde la soviética Vega 2 en 1984, ni penetrado en su atmósfera desde la estadounidense Magellan en 1994. Pero es que ningún aparato ha llegado a funcionar durante más de 127 minutos en aquel infierno. Y cuando los fondos para la exploración espacial no hacen sino disminuir cada vez más, los científicos tratan de sacar más ciencia por menos dinero, y Venus no es el destino más adecuado para esto.

Hubo un tiempo en que Venus era el gran candidato a albergar vida extraterrestre del tipo más deseado, la que piensa. Su tamaño similar a la Tierra y su gruesa atmósfera invitaban a pensar que podía ser una versión tropical de nuestro planeta. El hecho de que una densa capa de nubes ocultara a la vista los detalles de su superficie no hacía sino disparar las fantasías sobre una gran civilización venusiana. Todavía a mediados del siglo XX, autores de ciencia ficción como Ray Bradbury escribían sobre la vida en Venus.

Hasta que la ciencia vino a aguar la fiesta. Fue en los años 60 cuando las sondas espaciales revelaron que nada vivo puede existir en la superficie de Venus, puesto que no hay posibilidad alguna de bioquímica, moléculas biológicas, a 400 grados centígrados. Ningún «pero ¿y si…?». Nada que podamos llamar vida, salvo que llamemos vida a otras cosas que no lo son.

Sin embargo, también la ciencia a veces abre una puerta cuando cierra otra. Y quedaba un resquicio: la atmósfera de Venus, allá arriba en las nubes. En una franja aproximada entre los 50 y 60 kilómetros de altura, el rango de temperaturas es similar al terrestre, la presión atmosférica es tolerable y la radiación es moderada.

Hace unos años, la NASA ideó un concepto de exploración tripulada de la atmósfera de Venus mediante dirigibles que flotarían en un justo punto dulce a 55 kilómetros de altura: 27 grados de temperatura, gravedad casi como la terrestre, y media atmósfera de presión, más o menos la de una montaña terrestre de 5.500 metros. El gran truco consistiría en que, dada la mayor densidad de la atmósfera de Venus por su gran cantidad de CO2, estos dirigibles simplemente tendrían que ir rellenos de aire, nuestro aire normal y respirable, para flotar libremente sobre las nubes venusianas como los globos de helio flotan en la Tierra.

Con todo, esta posible habitabilidad es relativa: la atmósfera de Venus es mayoritariamente CO2, casi nada de oxígeno, poco vapor de agua y, sobre todo, nubes de ácido sulfúrico, que dificultan bastante cualquier intento de diseñar una nave que pueda funcionar y perdurar allí. De existir vida en la atmósfera de Venus, tendría que ser anaerobia; sin aire. Pero en la Tierra sí existe vida anaerobia: sobre todo células simples, bacterias y arqueas, pero en los últimos años se han descubierto algunos microorganismos multicelulares que también viven sin aire.

En 1967, justo cuando se confirmaba que la superficie de Venus era inhabitable, el ínclito Carl Sagan y el biofísico Harold Morowitz publicaban en Nature una hipótesis de vida en la atmósfera venusiana: una vejiga flotante del tamaño de una pelota de ping pong, rellena de hidrógeno que fabricaría por fotosíntesis absorbiendo agua de la atmósfera, y que comería minerales volantes a través de su superficie inferior pegajosa.

La propuesta de Sagan y Morowitz era una pura especulación teórica, pero tenía un fundamento, pues por entonces ya se conocía el que era:

El primer indicio de vida en Venus: el absorbedor desconocido de UV

Hace más de un siglo, las observaciones de Venus en el espectro de luz ultravioleta, más allá de la luz visible, revelaron extrañas manchas oscuras. Algo estaba absorbiendo la mayor parte de la luz UV solar e incluso algo del violeta, lo que inspiró la propuesta de Sagan y Morowitz de que podría tratarse de organismos fotosintéticos, capaces de captar la energía del sol para fabricar moléculas orgánicas a partir del agua y el CO2.

El «absorbedor desconocido de UV» de la atmósfera de Venus ha sido objeto de muchos estudios. El año pasado, las observaciones de los telescopios y las sondas espaciales descubrieron además un patrón de cambios a largo plazo que se corresponde con variaciones en el clima venusiano. Se ha propuesto que ciertos compuestos de azufre presentes en la atmósfera venusiana podrían ser en parte responsables de esta absorción, pero la posible participación de microbios no se ha descartado.

Pero si este es el más antiguo signo de posible vida en Venus, no es el único. Las observaciones de las diversas sondas que han analizado la atmósfera venusiana han revelado:

El segundo indicio de vida en Venus: sulfuro de carbonilo

La presencia de distintos compuestos en la atmósfera de Venus puede explicarse por las reacciones químicas que tienen lugar allí de forma espontánea. Pero algunos investigadores han llamado la atención sobre el hecho de que varios de ellos no se encuentran en el equilibrio químico que se esperaría. En la Tierra, la causa de estos desequilibrios es la presencia de vida, desde los microbios a la actividad humana.

Uno de los compuestos más intrigantes en la atmósfera venusiana es el sulfuro de carbonilo, o COS. Esta molécula es el compuesto de azufre más abundante de forma natural en la atmósfera terrestre, y en nuestro planeta se considera un indicador de vida, ya que no es fácil producirlo de forma inorgánica. Una parte de nuestro COS proviene de la actividad industrial, pero otra procede de los océanos y los volcanes. Y aunque la presencia de COS en Venus no es ni mucho menos garantía de que exista allí algo vivo, un dato intrigante es que a este compuesto se le atribuye un posible papel en el origen de la vida terrestre, ya que actúa como catalizador para unir entre sí a los aminoácidos, las unidades que forman las proteínas.

Conviene tener en cuenta que hasta hace muy poco se pensaba que la antigua actividad volcánica en Venus se había extinguido mucho tiempo atrás. Pero después de algunas observaciones previas que sugerían lo contrario, en enero de este año se publicó un estudio según el cual algunas coladas de lava solo tienen unos pocos años de edad; aún hay volcanes activos allí. Y aunque esto quizá podría justificar la presencia del COS, en cambio los expertos no creen que sirva para explicar:

El tercer indicio de vida en Venus: fosfano

Llegamos así a lo nuevo y último, lo publicado esta semana: la presencia en la atmósfera venusiana de un compuesto, PH3, llamado trihidruro de fósforo, fosfano o fosfina (pero NO fosfatina, como ya se ha escrito por ahí). Como el COS, el fosfano no debería estar allí, ya que en la Tierra es un indicador de vida. Aquí se produce sobre todo por microbios anaerobios, y puede encontrarse en la descomposición de la materia orgánica y en los intestinos de algunos animales. Más que un signo de vida, es un signo de muerte, pero donde hay algo muerto antes hubo algo vivo. Pero a pesar de la enorme cantidad de fuentes de fosfano en la Tierra, su presencia en la atmósfera es solo residual, porque se oxida rápidamente.

Sin embargo, resulta que en Venus el fosfano es mil veces más abundante que en la Tierra.

Existen otras maneras de fabricar fosfano que no necesitan algo vivo. En Júpiter y Saturno se genera en el interior denso y caliente de estos gigantes gaseosos. También las tormentas eléctricas o los impactos de meteoritos pueden producirlo. Y el rozamiento entre las placas tectónicas, o las erupciones volcánicas. Pero Venus no es un planeta gaseoso como Júpiter y Saturno, sino rocoso, y ninguno de estos mecanismos explica la gran cantidad de fosfano. Los autores del nuevo estudio, dirigido por la astrónoma de la Universidad de Cardiff Jane Greaves, calcularon que se necesitaría una actividad volcánica 200 veces mayor que la terrestre para justificarlo. De hecho, examinaron una a una casi cien maneras distintas de producir fosfano que no requirieran la presencia de vida. Ninguna de ellas servía para explicar la presencia abundante y sostenida de un gas que debería desaparecer rápidamente.

¿Significa esto que ya puede darse casi por segura la presencia de vida en Venus? Aún no. Aunque el nuevo estudio es concienzudo y riguroso, los expertos han advertido de que la señal de fosfano es débil, y que harán falta nuevas observaciones en otras longitudes de onda para confirmar que no es un artefacto introducido en el procesamiento de los datos. Los investigadores esperaban haber abordado ya estos estudios, pero la COVID-19 los ha demorado.

Incluso si se confirma la presencia de fosfano y no existe otra manera imaginable de explicarla, aún puede existir una manera todavía no imaginable. A lo largo de la historia de la búsqueda de algo vivo fuera de la Tierra, todo lo que se creía que eran signos de vida ha resultado ser el producto de fenómenos naturales inorgánicos, algunos de ellos descubiertos por primera vez gracias a esas observaciones intrigantes. En este caso, podría ser que un proceso químico aún no descrito o una actividad geológica insospechada estuvieran produciendo el misterioso gas.

En cualquier caso, parece claro que, a partir de ahora, el fosfano venusiano va a atraer tanta atención como el metano de Marte, otro gas cuyo origen podría revelar la presencia de microbios. El Sistema Solar huele cada vez más a vida, aunque este olor sea tan nauseabundo como el del fosfano.

Así es el sistema de guiado de los mosquitos hacia nosotros (y por qué a unos pican más que a otros)

Que levante la mano quien pueda acabar el verano sin una sola picadura de mosquito en su piel. Pero sí, es cierto que no a todos nos pican por igual. En todo grupo humano siempre parece haber quienes son para los mosquitos como la máquina de vending de la oficina.

Antiguamente, y quizá todavía, se decía eso de que hay personas con la sangre más dulce, lo cual es otro más de los mitos del verano, como el corte de digestión. Todo el que se pare un momento a pensarlo se dará cuenta inmediatamente del absurdo: incluso suponiendo que la sangre fuera dulce, que no, y que los mosquitos fueran golosos, que tampoco –en realidad buscan en nuestra sangre las proteínas y el hierro que necesitan para el crecimiento de sus huevos, ya que solo las hembras pican–, ¿cómo iba a saber el mosquito el grado de dulzor de la sangre de una persona sin picarla antes?

Nuestras diferencias personales en el atractivo que ejercemos para los mosquitos se basan, lógicamente, en pistas que pueden percibir antes de picar: señales olfativas, sustancias químicas que produce nuestro cuerpo y que los guían hasta nosotros. Pero no es solo nuestro olor lo que los atrae, ni tampoco se trata de que unas personas suden más que otras. En realidad, los insectos más molestos del verano –y, dicho sea de paso, también los animales que más muertes causan en el mundo– utilizan un complejo y sofisticado sistema de guiado perfeccionado a lo largo de millones de años de evolución.

Un mosquito picando. Imagen de CDC.

Un mosquito picando. Imagen de CDC.

Así es como funciona. Al respirar, emitimos dióxido de carbono, CO2. Esta es la señal primaria que alerta a los mosquitos de que una posible presa se encuentra cerca. Tan eficientes son detectando este gas que pueden percibirlo a 50 metros de distancia. Imaginemos lo que esto supone: aunque normalmente pensemos que solo los mosquitos que vemos posados en el techo son los que nos tienen en su punto de mira, en realidad el gas de nuestra respiración está atrayendo a todos los chupasangres presentes en 50 metros a la redonda. Y no hay nada que podamos hacer para evitarlo… si es que queremos seguir respirando.

A continuación, el mosquito comienza a volar hacia la fuente que está emitiendo ese CO2. Lo cual a veces no es tan sencillo como podría parecer: dado que el gas es transportado por las corrientes de aire, el mosquito tiene que volar en contra del viento, lo que hace moviéndose en zigzag, de forma algo parecida a como hacen los veleros para navegar a contraviento.

Pero mientras tanto, ha ocurrido algo asombroso: el olor del dióxido de carbono ha disparado una señal en el cerebro del mosquito (más complejo de lo que creen quienes lo utilizan como insulto) que activa las neuronas encargadas de controlar la visión. Así, en el momento en que el mosquito huele el CO2, pasa a modo visual: ahora será su visión la que comience a buscar formas que puedan relacionarse con la figura de una presa.

A unos 10 metros de distancia, el mosquito ya puede vernos, pero aún no nos ha identificado como un objetivo. En realidad, su visión es rudimentaria; no pensemos que tiene la capacidad de distinguir a un humano de una barra horizontal en movimiento (un modelo utilizado por algunos investigadores). Por el momento, aún somos solo uno más de los objetos que entran en su campo de visión; todavía no ha localizado la pista de aterrizaje.

Entonces comienza un proceso de eliminación que se basa en señales térmicas, como los sistemas de guiado de los misiles. El mosquito sobrevuela los objetos de su entorno en busca de calor. Nosotros lo desprendemos; nuestro sofá, no. A unos 20 centímetros de distancia, ya puede detectar esta señal térmica y distinguirnos del sofá. Ya está más cerca de su merienda.

En ese momento, el mosquito se olvida por completo del CO2. Al fin y al cabo, no le interesa dirigirse a nuestra boca o nuestra nariz, que son nuestras chimeneas, sino a un lugar accesible de nuestra piel. Y para ello, vuelve a pasar por última vez a modo olfativo: a unos tres centímetros de distancia de nuestra piel es cuando se produce ese “target locked” de los aviones en las películas. Cuando el mosquito integra en su panel de control la señal térmica con la humedad que produce nuestro cuerpo y con el olor de otros compuestos que desprendemos, como ácido láctico, amoniaco, ciertos ácidos orgánicos, acetona y sulcatona… ya no tenemos escapatoria: somos su cena.

Tan asombroso es el sistema de guiado de los mosquitos que incluso puede funcionar prescindiendo de algunas de estas señales. Por ejemplo, incluso aunque pudiéramos dejar de respirar y detener nuestra emisión de CO2, el insecto hace batidas por las formas que detectan sus ojos en busca de señales térmicas, y estas pueden ser suficientes para localizar a su presa.

Todo lo anterior lo hemos ido conociendo en los últimos años gracias a las investigaciones de científicos como Jeffrey Riffell, de la Universidad de Washington, y Michael Dickinson, del Instituto Tecnológico de California. Los experimentos de estos investigadores son para dejar a cualquiera con la boca abierta.

Por ejemplo, la activación del sistema visual del mosquito por las señales olfativas es el resultado de un estudio publicado este mes en la revista Current Biology, y para el cual los científicos han utilizado el siguiente sistema (mostrado en la imagen): un pequeño recinto, tamaño insecto, rodeado por una pantalla circular de LED en la que se proyectan estímulos visuales a un mosquito que permanece en el centro atado con un alambre de tungsteno, mientras un sensor óptico debajo de él registra los movimientos de sus alas, y un tubo le suministra las señales olfativas necesarias. Para observar cómo se activan las regiones cerebrales encargadas del olfato y la visión, los investigadores utilizan mosquitos transgénicos cuyas neuronas se iluminan en color verde fluorescente cuando están en funcionamiento.

Sistema empleado por los investigadores para estudiar el comportamiento de los mosquitos. Imagen de Kiley Riffell/U. Washington.

Sistema empleado por los investigadores para estudiar el comportamiento de los mosquitos. Imagen de Kiley Riffell/U. Washington.

Pero volvamos a lo quizá se estén preguntando: ¿Por qué a mí? ¿Por qué yo soy esa máquina de vending en la oficina de los mosquitos?

Los investigadores coinciden en señalar que es la fuerza de esas combinaciones de señales la que atrae más a los mosquitos hacia unas personas que hacia otras, sin que probablemente exista un único factor determinante. Un dato curioso es que los mosquitos parecen picar más por igual a los gemelos idénticos que a los mellizos, lo que sugiere la intervención de factores genéticos que probablemente influyan en el olor corporal. Otra pista interesante es que el mayor o menor atractivo de una persona para los mosquitos depende de la microbiota de su piel, es decir, de los microbios que viven sobre nosotros, que a su vez también son responsables del olor corporal. Así que, en definitiva, todo lleva a lo mismo: se reduce a nuestro olor corporal. Para los mosquitos, algunos olemos más apetitosos que otros.

Para terminar, no está de más recordar algo que ya debería ser suficientemente conocido, pero tal vez no: lo único que evita las picaduras de los mosquitos son las barreras físicas y los repelentes químicos (sobre todo el DEET). Los repelentes electrónicos por ultrasonidos no sirven absolutamente para nada, e incluso pueden ser perjudiciales para quienes los utilizan.

Los piojos han inventado uno de los pegamentos más potentes del mundo

Ayer les decía que el verdadero problema de los piojos no son los propios bichos, sino las liendres. Si estos huevos, que la hembra pone a razón de hasta 10 al día, se eliminaran fácilmente con un lavado o un cepillado, cualquier intruso en nuestras cabezas acabaría muriendo tarde o temprano sin dejar herederos a los que legar ese paisaje capilar hasta donde se extiende la vista. Sería enormemente sencillo librarnos de ellos, y probablemente los piojos se habrían extinguido mucho tiempo atrás.

Así, la mayor parte del éxito de la estrategia evolutiva del piojo, la que le ha permitido seguir infestando cada año a cientos de millones de humanos, descansa en ese firme agarre de la liendre al pelo que lo resiste casi todo, y contra el que poco pueden hacer incluso los insecticidas: el huevo solo está comunicado con el aire exterior por un poro llamado opérculo, en el que nuestras lociones apenas consiguen entrar. Digan lo que digan las campañas publicitarias, los expertos aseguran que ningún producto mata el 100% de las liendres, y ninguno de ellos es capaz de desprenderlas del pelo eficazmente.

Una liendre muerta en un pelo humano. Imagen de Gilles San Martin / Flickr / CC.

Una liendre muerta en un pelo humano. Imagen de Gilles San Martin / Flickr / CC.

Por este motivo, conocer el sistema de adhesión de la liendre al cabello es un buen primer paso para lograr, tal vez, diseñar nuevos productos antipiojos que ataquen el problema desde su raíz. Ahora, gracias a un grupo de investigadores coreanos y a su estudio publicado en la revista Scientific Reports, conocemos mucho mejor la respuesta a esta incógnita. Y la respuesta es esta: la fuerte unión de la liendre al pelo se debe a un increíble pegamento producido por los piojos hembras, y que no se parece a ningún otro conocido hasta ahora.

Analizar los componentes de la cubierta de la liendre no ha resultado tan fácil como podría preverse. Cuando los científicos quieren hacer un estudio de este tipo, lo que hacen es disolver el material de base, en este caso las liendres, utilizando algún disolvente apropiado, y después se determina la composición de la muestra líquida utilizando un aparato llamado espectrómetro de masas.

Antes se creía que la cubierta de las liendres estaba compuesta por quitina, el polisacárido (azúcar) que forma el exoesqueleto de los insectos y los crustáceos; la cáscara de la gamba, digamos. Sin embargo, estudios recientes sugerían que en su lugar parecía más bien de naturaleza proteica, así que los investigadores sumergieron las liendres en un disolvente de proteínas: la urea.

Después de este tratamiento, comprobaron que todos los embriones de los huevos habían muerto y que sus proteínas se habían disuelto en la solución de urea. Pero en cambio, las cubiertas de las liendres seguían sin inmutarse. Así que probaron con otro tratamiento más fuerte, y luego con otro, y otro. Todos fallaron. Ni los disolventes orgánicos como el DMSO (dimetilsulfóxido), el etanol o el ciclohexano, ni los detergentes de laboratorio como el SDS (dodecil sulfato sódico), el Triton X-100 o el DDAO (N-óxido de N,N-dimetildodecilamina) lograron destruir los huevos.

Ante esta especie de adamantium piojil, a los investigadores solo les quedó la opción de analizar las liendres por otros métodos indirectos y luego tratar de encajar las piezas del puzle. En primer lugar, confirmaron la naturaleza proteica de la liendre empleando una técnica llamada espectroscopía de infrarrojos de transformada de Fourier (FTIR), que es capaz de revelar las estructuras de las proteínas intactas incluso en una muestra sólida. Utilizando una sola liendre, consiguieron verificar que su cemento estaba hecho de proteínas, aunque no lograron desentrañar la estructura de estas.

A continuación pasaron al método radical: ácido clorhídrico concentrado. Por suerte, los piojos aún no han completado el camino para convertirse en los aliens de Ridley Scott. El ácido destruyó los huevos, pero también las proteínas. El resultado de este tratamiento fue una sopa de aminoácidos, los eslabones que forman las proteínas. Pero esta sopa solo contiene los eslabones sueltos, como si al agitar un libro todas sus palabras se mezclaran; imposible conocer cómo son las proteínas originales.

Sin embargo, lo que sí puede conocerse de este caldo es su lista de ingredientes, los aminoácidos concretos presentes (como glicina, alanina, valina…), y sus porcentajes. Con estos datos, los investigadores se fueron a la base de datos que contiene la secuencia del genoma del piojo. Dado que el ADN se traduce en proteínas, la tarea consistía en buscar genes de cuyas secuencias pudieran predecirse proteínas con la misma composición de aminoácidos y los mismos porcentajes que los obtenidos en la sopa de aminoácidos de liendres.

Y allí aparecieron dos genes, que los investigadores coreanos han denominado Proteína de la Cubierta de la Liendre del Piojo 1 y 2, respectivamente (en inglés, Louse Nit Sheath Protein o LNSP 1 y 2). Por último, se trataba de comprobar si efectivamente estas proteínas existían en el piojo, y de producirlas in vitro para estudiar qué hacían.

En cuanto a lo primero, el resultado mostró que los investigadores habían dado en el clavo: las LNSP 1 y 2 existen en los piojos, pero más concretamente en las hembras adultas en fase de puesta de huevos, y aún más concretamente están presentes en su glándula accesoria, la que segrega el pegamento encargado de fijar la liendre al pelo.

Para lo segundo, los autores del estudio introdujeron un fragmento del gen de la LNSP 1 en bacterias Escherichia coli, utilizadas en los laboratorios como diminutas vacas lecheras para producir cualquier proteína que se desee. De este modo, las bacterias fabricaban una LNSP 1 parcial, que luego podía purificarse para estudiar sus propiedades.

Ya al estudiar la secuencia de aminoácidos de LNSP 1 y 2, los modelos bioinformáticos utilizados por los investigadores habían pronosticado que se trataría de proteínas con una tendencia a formar cadenas β que se compactarían fuertemente en láminas β; dicho de otro modo, que serían bastante pegajosas.

Esto se confirmó al poner en marcha la producción en bacterias: a medida que aumentaba la concentración de la proteína en la solución, los investigadores vieron que se volvía pringosa, y que al evaporarse el agua era capaz de adherir un pelo humano a un tapón de plástico, o un tubo de plástico a una placa Petri.

La proteína de la liendre LNSP 1 adhiere el pelo a un tapón de plástico y un tubo a una placa Petri. Imagen de Park et al, Scientific Reports 2019 / CC.

La proteína de la liendre LNSP 1 adhiere el pelo a un tapón de plástico y un tubo a una placa Petri. Imagen de Park et al, Scientific Reports 2019 / CC.

Para evaluar el poder adhesivo de LNSP 1, los científicos lo compararon con el Tisseel, un pegamento biológico comercial que se usa en cirugía para cerrar heridas y que está compuesto por fibrina, una proteína implicada en la coagulación de la sangre. El resultado fue que el pegamento de la liendre es unas 500 veces más potente que el Tisseel, y esto solo para el fragmento parcial producido en las bacterias; según los modelos, la proteína completa será aún más potente. Y a esto se añade que probablemente el pegamento del piojo contenga otras proteínas además de LNSP 1 y 2.

De hecho, y aunque en algunos aspectos estas proteínas se parecen a la tela de araña, otras peculiaridades de sus secuencias las diferencian de cualquier otro adhesivo biológico conocido, asemejándolas más a las proteínas que se acumulan y forman grumos en el cerebro en ciertas enfermedades neurodegenerativas como el Huntington.

En resumen, todo indica que los piojos han inventado uno de los pegamentos más potentes que existen. Los investigadores sugieren que, una vez se conozca su composición con más detalle, podría desarrollarse industrialmente como adhesivo biológico de alto rendimiento. Esto ya se ha hecho, por ejemplo, con el pegamento que utilizan los mejillones para aferrarse a las rocas y a partir del cual se ha creado un adhesivo más potente que el Super Glue y resistente al agua. Al menos tal vez acabemos sacando algo aprovechable de la lacra de los piojos.

Por qué el Nobel para Mojica es mucho más complicado de lo que parece

Un año más, los Nobel de ciencia se han saldado dejándonos sin premio para Francisco Martínez Mojica, el microbiólogo de la Universidad de Alicante descubridor de los fundamentos que han originado el sistema CRISPR. Para quien aún no lo sepa, resumo brevísimamente que CRISPR es una herramienta molecular de corta-pega de ADN en la que están depositadas las mayores esperanzas para la curación de enfermedades genéticas en las próximas décadas, y que por ello suele presentarse como la gran revolución genética del siglo XXI. O al menos, de este primer tramo.

Como ya expliqué ayer, CRISPR aún no se ha bregado en el campo clínico como para merecer un Nobel de Medicina, pero en cambio sí ha demostrado su enorme potencia en los laboratorios como para merecer un Nobel de Química. Conviene aclarar que estos premios los otorgan comités diferentes de instituciones distintas: el de Fisiología o Medicina depende del Instituto Karolinska, mientras que el de Química es competencia de la Real Academia Sueca de Ciencias (no de la «Academia Sueca», como suele decirse, ya que esta solo concede el premio de Literatura).

Francisco JM Mojica. Imagen de Roberto Ruiz / Universidad de Alicante.

Francisco JM Mojica. Imagen de Roberto Ruiz / Universidad de Alicante.

Por el momento, deberemos seguir a la espera otro año más. Pero el hecho de que el hallazgo y desarrollo de CRISPR aún no haya sido distinguido con el más lustroso de los premios científicos (aunque no el mejor dotado económicamente) no es una mala noticia; cada año suenan estas seis letras en las apuestas, y hoy lo más natural es confiar en que más tarde o más temprano acabarán saliendo en la papeleta ganadora. La verdadera mala noticia sería que, cuando a CRISPR le salga el billete dorado en la chocolatina, no sea a Mojica a quien le toque.

Ayer dejé caer en el último párrafo que la decisión sobre a quiénes premiar por el hallazgo y desarrollo de CRISPR no es precisamente inmediata. Y esto requiere una explicación. Los Premios Nobel tienen pocas reglas, pero se siguen a rajatabla. Una de ellas dice que cada premio solo pueden compartirlo un máximo de tres científicos o científicas (todavía ellas son minoría), y ayer mencioné que en el caso de CRISPR hay al menos cuatro nombres en liza. Pero en realidad son más de cuatro. Y por anacrónica que resulte hoy en día la idea de que haya tres lobos solitarios trabajando en sus laboratorios del sótano y a quienes se les ocurra lo que no se le ha ocurrido a nadie más en todo el planeta, no está previsto que las normas de los Nobel vayan a cambiar.

Pero entremos en la cuestión de los nombres. Entre todos ellos hay dos que parecen indiscutibles, y ambos son de mujer. La estadounidense Jennifer Doudna y la francesa Emmanuelle Charpentier fueron las primeras en publicar la descripción de CRISPR como herramienta genética, desarrollada y adaptada a partir del descubrimiento del sistema original que en las bacterias actúa como mecanismo de inmunidad contra los virus.

Jennifer Doudna. Imagen de Jussi Puikkonen / KNAW / Wikipedia.

Jennifer Doudna. Imagen de Jussi Puikkonen / KNAW / Wikipedia.

 

Emmanuelle Charpentier. Imagen de Carries mum / Wikipedia.

Emmanuelle Charpentier. Imagen de Carries mum / Wikipedia.

En el tercer nombre es donde surgen las dudas. Mojica, quien primero publicó el hallazgo del sistema original en las bacterias (y le puso la denominación por la que ahora se conoce), es uno de los firmes candidatos. Pero por desgracia, no es el único: hay hasta tres científicos más que podrían optar a rellenar esa terna.

Comencemos por Mojica, el descubridor original del sistema. En realidad hubo otros grupos que casi de forma simultánea llegaron a conclusiones similares; pero dado que él fue el primero en publicarlas, retendría ese derecho a la primicia del descubrimiento. Las cosas comienzan a complicarse cuando avanzamos en la historia de CRISPR.

Después de Mojica, fue el argentino Luciano Marraffini, por entonces en la Universidad Northwestern de Illinois (EEUU), quien primero demostró cómo funciona CRISPR cortando ADN, una función que sería esencial para que Charpentier y Doudna convirtieran una curiosidad de la naturaleza en una herramienta utilizable.

A su vez, Marraffini colaboró con el chino Feng Zhang, del Instituto Broad de Harvard y el MIT (Instituto Tecnológico de Massachussetts), quien demostró por primera vez la utilidad de CRISPR en células no bacterianas, las de los organismos superiores y, en concreto, de los mamíferos.

Luciano Marraffini. Imagen de Sinc.

Luciano Marraffini. Imagen de Sinc.

 

Feng Zhang. Imagen de National Science Foundation.

Feng Zhang. Imagen de National Science Foundation.

El problema es que en ciencia no existe una autoridad que decida quién debe ser considerado el autor oficial de un descubrimiento, y por tanto los comités que conceden los Premios Nobel son muy libres de elegir los ingredientes que más les gusten de esta ensalada de nombres y apartar los demás. Pero ¿según qué criterio?

Un aspecto interesante es que CRISPR es un descubrimiento transformado en tecnología; y, a diferencia de lo que sucede en ciencia, en tecnología sí existe una autoridad que decide quién es su inventor: los organismos de patentes. Doudna y Charpentier poseen las patentes originales del sistema CRISPR, pero las dos investigadoras mantienen una agria disputa con Zhang por la patente de su aplicación en células de mamíferos, que finalmente ha tenido que resolverse en los tribunales.

Según han explicado los expertos en propiedad industrial, la manzana de la discordia es el significado del término «no obvio» aplicado a este caso concreto. La Oficina de Patentes y Marcas de EEUU solo concede una patente de aplicación cuando esta se considera no obvia, por lo que se admite como nueva invención. Cuando Zhang comprobó la utilidad de CRISPR en células de mamíferos (que publicó solo unas semanas antes que sus competidoras), solicitó una patente alegando que esta aplicación no era obvia, y el organismo de patentes aceptó su argumento. Pero poco después la Universidad de California, en representación de Doudna, impugnó la patente de Zhang aduciendo que se trataba de una aplicación obvia. El asunto ha coleado hasta que finalmente el pasado 10 de septiembre un tribunal federal de EEUU ha dictaminado en favor de Zhang.

Así pues, ¿sería capaz el comité Nobel de premiar a Doudna, Charpentier y Mojica, dejando fuera a quien es el poseedor en EEUU (aunque no en Europa) de la patente de aplicación de CRISPR en células humanas?

Pero la cosa aún puede complicarse más. Y es que, si se detienen a contar los nombres mencionados, notarán que todavía falta uno más para llegar a los seis que completan la primera línea de los candidatos al reconocimiento de CRISPR. Se trata del bioquímico lituano Virginijus Šikšnys, de la Universidad de Vilnius, que en 2012 y de forma independiente llegó a los mismos resultados que Doudna y Charpentier, aunque su estudio fue rechazado y terminó publicándose más tarde que el de las dos investigadoras.

Según las reglas habituales, Šikšnys perdió la primicia del descubrimiento. Pero se da la circunstancia de que presentó una solicitud de patente, que fue aprobada, semanas antes de que lo hiciera la Universidad de California, por lo que el lituano podría tumbar la patente de las dos científicas si se lo propusiera.

Virginijus Šikšnys. Imagen de NTNU / Flickr / CC.

Virginijus Šikšnys. Imagen de NTNU / Flickr / CC.

Todo lo cual sitúa a los jurados de los Nobel en un laberinto de difícil salida. Otros premios sin restricción en el número de galardonados han optado por diferentes soluciones: el Breakthrough (el mejor dotado económicamente en biomedicina) distinguió únicamente a Doudna y Charpentier, lo mismo que hizo con sonrojante ridículo nuestro Princesa de Asturias. Por su parte, el premio noruego Kavli reconoció a Doudna, Charpentier y Šikšnys. El más salomónico ha sido el Albany Medical Center Prize, el cuarto mejor dotado del mundo en biomedicina, que solo dejó fuera a Šikšnys, premiando a los otros cinco investigadores.

Pero además de este rompecabezas sin solución aparente, hay otro motivo que quizá podría detraer a los comités Nobel de conceder un premio al hallazgo y desarrollo de CRISPR en un futuro próximo, y es precisamente el vergonzoso espectáculo ofrecido por Doudna, Charpentier y Zhang con sus dentelladas por la carnaza de las patentes. Según se cuenta, ni siquiera las dos investigadoras son ya las grandes amigas que fueron. Los tres crearon sus respectivas empresas para explotar sus tecnologías. Y aunque es incuestionable que el inventor de un método para curar tiene el mismo derecho a vivir de sus hallazgos que quien inventa la rosca para clavar sombrillas, es posible que los jurados de los Nobel no se sientan ahora muy inclinados a premiar a quienes han protagonizado un ejemplo tan poco edificante para la ciencia.

Claro que, aunque no sirva de mucho, desde aquí lanzo una propuesta: ¿qué tal Mojica, Šikšnys y Marraffini?

Por qué Mojica no gana el Nobel de Medicina (pero debería ganar el de Química)

Los fallos de los Premios Nobel son tan imprevisibles como pueden serlo estas cosas. Ni siquiera los profesionales de estas apuestas (no, que yo sepa William Hill y 888 no lo cubren) atinan más de lo que fallan, y si aciertan es gracias a los premios cantados, como los de Física a los descubridores del bosón de Higgs o las ondas gravitacionales. En el fondo, se trata de la decisión de un comité que solo se atiene a sus propios criterios, siempre que encajen en las muy escuetas reglas definidas por Alfred Nobel en su testamento hace más de un siglo.

Pero en general, a lo largo de la trayectoria de los premios el Nobel de Medicina se ha concedido a investigadores que han aportado una contribución esencial de repercusiones probadas en la salud humana, o bien a aquellos que han descubierto mecanismos cruciales del funcionamiento de la biología con clara aplicación a nuestra especie; este segundo enfoque es el que suele omitirse cuando se cita el Premio Nobel de Medicina, olvidando que en realidad es de Fisiología o Medicina.

Francisco Martínez Mojica, en su laboratorio de la Universidad de Alicante. Imagen de Roberto Ruiz / Universidad de Alicante.

Francisco Martínez Mojica, en su laboratorio de la Universidad de Alicante. Imagen de Roberto Ruiz / Universidad de Alicante.

El sistema CRISPR, cuyas bases fundamentales sentó el investigador alicantino (ilicitano, para más señas) Francisco Martínez Mojica, es la herramienta de edición genética –o más llanamente, corrección de genes– más potente, sencilla y precisa jamás inventada. Dado que la terapia génica se configura como uno de los tratamientos estrella de este siglo para cualquier enfermedad que tenga algo que ver con los genes, se vaticina que en las próximas décadas CRISPR podría convertirse en un recurso clínico tan imprescindible como hoy lo son los antibióticos.

Pero ese momento aún no ha llegado. Aunque CRISPR se ha empleado ya para corregir genes humanos en sistemas experimentales (aunque con resultados a veces controvertidos), los ensayos clínicos para llevar a la práctica el poder de este tipex genético aún se resisten; y en cambio, actualmente existen numerosos ensayos con pacientes que están logrando buenos resultados con terapia génica empleando sistemas de la generación anterior.

Así, por el momento no hay una justificación clara para que Mojica y/u otros investigadores implicados en el desarrollo de CRISPR, como la estadounidense Jennifer Doudna y la francesa Emmanuelle Charpentier, reciban un premio en una categoría en la que el sistema todavía no ha demostrado su eficacia. Y dado que CRISPR es una caja de herramientas moleculares creadas a partir de mecanismos de las bacterias, tampoco representa una contribución al conocimiento de la fisiología humana.

En cambio, otro caso diferente es el del Nobel de Química. Esta es una categoría paraguas en la cual entra cualquier cosa relacionada con la química, una ciencia inmensamente amplia. En el campo concreto de la bioquímica, la química de la vida, el ámbito del premio de Química puede solapar con el de Fisiología o Medicina, pero en este caso no prima el criterio de la relevancia del descubrimiento para la salud humana.

Y desde luego, así como CRISPR aún tendrá que batirse en la arena clínica contra otros sistemas más veteranos, en cambio hoy es insustituible en el área de la investigación básica. Miles de científicos en todo el mundo han abandonado otras herramientas más antiguas, salvo casos específicos, para comenzar a utilizar CRISPR en sus experimentos de biología molecular. Basta una simple búsqueda en las bases de datos de publicaciones científicas para comprobar que ya son cerca de 11.000 los estudios en los que de un modo u otro está implicado este sistema. Lo cual es sencillamente impresionante para algo que a comienzos de esta década ni siquiera existía.

La contribución que CRISPR ya ha aportado a infinidad de proyectos de investigación sí justifica un Premio Nobel de Química. Otra cosa es que el comité encargado de la concesión sea capaz de solventar cómo seleccionar a tres ganadores –el límite impuesto por las reglas del premio– cuando son como mínimo cuatro (a Mojica, Doudna y Charpentier se suma el chino-estadounidense Feng Zhang) quienes merecerían el reconocimiento.

El Nobel de Química que murió en España

Los nombres de Santiago Ramón y Cajal y Severo Ochoa son hoy de sobra conocidos incluso para el ciudadano medio sin conocimientos de ciencia. Pero esto, más que un motivo para celebrar, es una razón para el sonrojo: son las dos únicas personas nacidas en España que han alcanzado el reconocimiento de un Nobel de ciencia.

El número de españoles ganadores de un Nobel de Literatura más que duplica esta cifra (cinco, para ser exactos). El historiador del CSIC Ricardo Campos, en un estudio sobre la eugenesia del franquismo (que conté en detalle aquí), escribía que el psiquiatra franquista Juan José López Ibor definía al hombre español como “estoico, sobrio, buscador de gloria militar y literaria, despectivo hacia la ciencia y la técnica e impasible frente la muerte”. Y así hemos llegado a donde estamos.

Para un estadounidense o un británico, aprenderse la lista de sus científicos laureados con el Nobel sería casi misión imposible. Y ni siquiera la diferencia entre su potencia científica y la nuestra es suficiente justificación: como conté aquí en una ocasión, España es el undécimo país en número de publicaciones científicas (de hecho, cuando lo conté éramos los décimos, pero la reciente edad oscura para la ciencia española nos ha hecho perder un puesto que será muy complicado volver a recuperar), pero se queda en un vergonzoso vigésimo séptimo lugar en número de premios Nobel de ciencia, a la altura de Luxemburgo o Lituania.

Wendell Meredith Stanley en 1946, el año en que ganó el Nobel de Química. Imagen de Wikipedia.

Wendell Meredith Stanley en 1946, el año en que ganó el Nobel de Química. Imagen de Wikipedia.

Todo lo anterior me ha venido al hilo del recuerdo de un episodio poco conocido, y es que si este país solo ha alumbrado dos Nobel de ciencia, en cambio ha matado a uno más. Es un decir, claro; en realidad fue su corazón lo que mató a Wendell Meredith Stanley el 15 de junio de 1971, unas horas después de pronunciar una conferencia en la Universidad de Salamanca. Al día siguiente, 16 de junio, el diario ABC (que daba la noticia a toda página bajo el epígrafe “vida cultural”) contaba que Stanley, profesor de la Universidad de Berkeley y Nobel de Química en 1946, había fallecido de madrugada a la edad de 67 años por un infarto de miocardio en su alojamiento, el Colegio Fonseca.

Stanley había viajado a Barcelona con motivo de un congreso científico en compañía de Severo Ochoa, con quien mantenía amistad, y había sido invitado a Salamanca por el bioquímico Julio Rodríguez Villanueva, quien antes de la conferencia de Stanley advirtió de que “las preguntas que formularan al premio Nobel se le hicieran despacio, a causa de que había sufrido varios ataques al corazón”, contaba ABC. La preocupación de Villanueva no pudo ser más premonitoria.

Pero ¿quién era Wendell Meredith Stanley? Resulta curioso que para un país como EEUU un Nobel de ciencia sea algo tan de andar por casa que algunos de ellos sean casi unos completos desconocidos. Fuera de los círculos de la microbiología y la biología molecular (y tal vez dentro), el nombre de Stanley solo invita a encoger los hombros, e incluso su página en la Wikipedia inglesa no le dedica más de cuatro o cinco párrafos.

Casi oculto, Wendell Stanley asoma la cabeza al fondo de esta foto tomada en la Casa Blanca en 1961, durante un encuentro con científicos del presidente John F. Kennedy. Imagen de White House / Wikipedia.

Casi oculto, Wendell Stanley asoma la cabeza al fondo de esta foto tomada en la Casa Blanca en 1961, durante un encuentro con científicos del presidente John F. Kennedy. Imagen de White House / Wikipedia.

Y sin embargo, podríamos decir que Wendell Stanley fue nada menos que el descubridor de los virus. Para los iniciados en el tema esta afirmación puede ser discutible, pero démosle la vuelta: si hubiera que nombrar a un solo científico/a como descubridor de los virus, ¿quién merecería este título más que Wendell Stanley?

En la segunda mitad del siglo XIX el francés Louis Pasteur y el alemán Robert Koch sentaron la teoría microbiana de la enfermedad, según la cual las infecciones estaban provocadas por los microbios. Pasteur, Koch y otros científicos comenzaron a identificar las bacterias responsables de numerosas enfermedades, y las infecciones dejaron de ser un misterio a medida que iban cayendo una tras otra bajo el microscopio de los investigadores.

Pero una se les resistía: la rabia. Nadie era capaz de aislar bajo las lentes una bacteria a la que culpar de la rabia. Lo mismo ocurría con ciertas enfermedades de las plantas, en las cuales los investigadores buscaban causas bacterianas al hilo de los trabajos de Pasteur y Koch, pero sin éxito. Uno de estos científicos era el químico alemán Adolf Mayer, que en 1886 describió una plaga a la que denominó mosaico del tabaco, que arruinaba las hojas de esta planta entonces tan apreciada. Mayer extraía savia de una planta afectada y la inoculaba en un ejemplar sano, observando que la enfermedad se transmitía. Pero cuando estudiaba la savia al microscopio, no encontraba nada.

Mayer y otros investigadores, como el ruso Dmitri Ivanovsky, descubrieron que el misterioso causante del mosaico del tabaco era algo capaz de atravesar no solo un papel de filtro, sino también unos filtros de porcelana inventados por el francés Charles Chamberland y que servían para limpiar un líquido de bacterias. ¿Qué era lo que causaba aquella infección del tabaco?

La teoría de la época suponía que se trataba de una toxina o de una bacteria diminuta, hasta que en 1898 el holandés Martinus Beijerinck se atrevió a aventurar que aquella enfermedad del tabaco estaba causada por otro tipo de agente infeccioso que no era una bacteria, al que llamó “virus”, “veneno” en latín, un término que ya se había empleado siglos antes en referencia a agentes contagiosos desconocidos. Beijerinck acertó al sugerir que el virus era algo más o menos vivo (no como una toxina), ya que solo afectaba a las células que se dividían. Pero se equivocó al proponer que era de naturaleza líquida.

A partir de los experimentos de Beijerinck, los microbiólogos comenzaron a llamar “virus” a todo agente infeccioso invisible al microscopio y que atravesaba los filtros. El primero en detectarse en animales fue el de la fiebre aftosa, y después llegaron los humanos, el de la fiebre amarilla, la rabia, la viruela y la poliomielitis. Pero aunque ya era de conocimiento común que todas estas enfermedades eran víricas, en realidad aún no se tenía la menor idea sobre qué y cómo eran estos virus. Aún se seguía admitiendo generalmente que no eran partículas, sino misteriosos líquidos infecciosos, una especie de veneno vivo.

Aquí es donde entra nuestro Stanley. En la década de los 30 apareció el microscopio electrónico, una herramienta que permitía hacer visible lo invisible al microscopio óptico tradicional. Y con el potencial que ofrecía esta nueva tecnología, en 1935 Stanley se propuso destripar de una vez por todas la naturaleza del virus del mosaico del tabaco, emprendiendo uno de esos trabajos penosos que alguien tenía que hacer en algún momento: despachurró una tonelada de hojas de tabaco, extrajo su jugo, lo purificó, y de todo ello finalmente obtuvo una exigua cucharadita de polvo blanco. Pero allí estaba el virus del mosaico del tabaco, una especie de minúsculo ser con forma alargada que seguía siendo infectivo incluso cuando estaba cristalizado; es decir, lo que llamaríamos más o menos muerto.

El virus del mosaico del tabaco al microscopio electrónico. Imagen de Wikipedia.

El virus del mosaico del tabaco al microscopio electrónico. Imagen de Wikipedia.

En realidad fueron otros investigadores los que después obtuvieron las primeras imágenes de microscopía electrónica del virus del mosaico del tabaco, y Stanley se equivocó en algunas de sus hipótesis, como cuando propuso que el virus solo estaba compuesto por proteínas. Pero no solo su virus fue realmente el primer virus que ya era algo más que un nombre, sino que aquella extraña capacidad de infectar incluso cuando estaba cristalizado descubrió para la ciencia el rasgo fundamental de los virus, y es que no son exactamente seres vivos, o al menos no como los demás. Pero esta ya es otra historia.

Sin un «segundo génesis», no hay alienígenas

Si les dice algo el nombre del lago Mono, en California, una de dos: o han estado por allí alguna vez, o recuerdan el día en que más cerca estuvimos del «segundo génesis».

Les explico. A finales de noviembre de 2010, la NASA sacudió el ecosistema científico lanzando un teaser previo a una rueda de prensa en la que iba a «discutirse un hallazgo de astrobiología que impactará la búsqueda de pruebas de vida extraterrestre». La conferencia, celebrada el 2 de diciembre, solo decepcionó a quienes esperaban la presentación de un alien, algo siempre extremadamente improbable y que el anuncio tampoco insinuaba, salvo para quien no sepa leer. Para los demás, lo revelado allí era un descubrimiento excepcional en la historia de la ciencia: una bacteria diferente a todos los demás organismos de la Tierra conocidos hasta ahora.

El lago Mono, en California. Imagen de Wikipedia.

El lago Mono, en California. Imagen de Wikipedia.

Coincidiendo con la rueda de prensa, los resultados se publicaron en la web de la revista Science bajo un título breve, simple y atrevido: «Una bacteria que puede crecer usando arsénico en lugar de fósforo». La sinopsis de la trama decía que un equipo de investigadores, dirigidos por la geobióloga Felisa Wolfe-Simon, había encontrado en el lago Mono un microorganismo capaz de emplear arsénico como sustituto del fósforo en su ADN. Lo que para otros seres terrestres es un veneno (su posible papel como elemento traza aún se discute), para aquella bacteria era comida.

Toda la vida en este planeta, desde el virus que infecta a una bacteria hasta la ballena azul, se basa en la misma bioquímica. Uno de sus fundamentos es un material genético (ADN o ARN) formado por tres componentes: una base nitrogenada, un azúcar y un fosfato. Dado que este fue el esquema fundador de la biología terrestre, todos los seres vivos estamos sujetos a él. Encontrar un organismo que empleara un sistema diferente, por ejemplo arseniato en lugar de fosfato, supondría hallar una forma de vida que se originó de modo independiente a la genealogía de la que todos los demás procedemos.

Esto se conoce informalmente como un «segundo génesis», un segundo evento de aparición de vida (que no tiene por qué ser el segundo cronológicamente). Sobre si la bacteria del lago Mono, llamada GFAJ-1, habría llegado a representar o no un segundo génesis, hay opiniones. Hay quienes piensan que no sería así, ya que la existencia de un ADN modificado habría representado más bien una adaptación extrema muy temprana dentro de una misma línea evolutiva.

Para otros, es irrelevante que el origen químico fuera uno solo: dado que la definición actual de cuándo la no-vida se transforma en vida se basa en la acción de la evolución biológica, existiría la posibilidad de que la diversificación del ADN se hubiera producido antes de este paso crucial, y por lo tanto la vida habría arrancado ya con dos líneas independientes y paralelas.

Pero mereciera o no la calificación de segundo génesis, finalmente el hallazgo se desinfló. Desde el primer momento, muchos científicos recibieron el anuncio con escepticismo por razones teóricas, como el hecho de que el ADN con arsénico en lugar de fósforo daría lugar a un compuesto demasiado inestable para la perpetuación genética (este es solo un caso más de por qué muchas de las llamadas bioquímicas alternativas con las que tanto ha jugado la ciencia ficción son en realidad pura fantasía que hace reír a los bioquímicos). La publicación del estudio confirmó las sospechas: los experimentos no demostraban realmente que el ADN contuviera arsénico. Y como después se demostró, no lo contenía.

La bacteria GFAJ-1 del lago Mono resultó ser simplemente una extremófila más, un bicho capaz de crecer en aguas muy salinas, alcalinas y ricas en arsénico. Tenía una tolerancia fuera de lo común a este elemento, pero no lo empaquetaba en su ADN; se limitaba a acumularlo, construyendo su material genético con el fósforo que reciclaba destruyendo otros componentes celulares en tiempos de escasez. Su única utilidad real fue conseguir el propósito expresado en su nombre, GFAJ, formado por las iniciales de Give Felisa A Job («dadle un trabajo a Felisa»): aunque el estudio fuera refutado, le sirvió a Wolfe-Simon como trampolín para su carrera.

Bacterias GFAJ-1. Imagen de Wikipedia.

Bacterias GFAJ-1. Imagen de Wikipedia.

Por algún motivo que desconozco, el estudio nunca ha sido retractado, cuando debería haberlo sido. Me alegro de que a Wolfe-Simon le vaya bien, pero desde el principio el suyo fue un caso de ciencia contaminada: no descubrió el GFAJ-1 por casualidad, sino que estaba previamente convencida de la existencia de bacterias basadas en el arsénico, algo que ya había predicado antes en conferencias y que le hizo ganar cierta notoriedad. El siguiente paso era demostrar que tenía razón, fuera como fuese.

Hoy seguimos sin segundo génesis terrestre. Y su ausencia es una razón que a algunos nos aparta de esa idea tan común sobre la abundancia de la vida alienígena. Afirmar que el hecho de que estemos aquí implica que la vida debe de ser algo muy común en el universo es sencillamente una falacia, porque no lo implica en absoluto. Es solo pensamiento perezoso; una idea que cualquiera puede recitar si le ponen en la boca un micrófono de Antena 3 mientras se compra unos pantalones en Zara, pero que si se piensa detenidamente y sobre argumentos científicos, no tiene sustento racional.

Pensémoslo un momento: si creemos que la vida es omnipresente en el universo, esto equivale a suponer que dado un conjunto de condiciones adecuadas para algún tipo de vida, por diferentes que esas condiciones fueran de las nuestras y que esa vida fuera de la nuestra, esta aparecería con una cierta frecuencia apreciable.

Pero la Tierra es habitable desde hace miles de millones de años. Y sin embargo, esa aparición de la vida solo se ha producido una vez, que sepamos hasta ahora. Si suponemos que los procesos naturales han actuado del mismo modo en todo momento (esto se conoce como uniformismo), debería haber surgido vida en otras ocasiones; debería estar surgiendo vida nueva hoy. Y hasta donde sabemos, no es así. Hasta donde sabemos, solo ha ocurrido una vez en 4.500 millones de años.

¿Por qué? Bien, podemos pensar que el uniformismo no es una regla pura, dado que sí han existido procesos excepcionales, como episodios globales de vulcanismo o impactos de grandes asteroides que han cambiado drásticamente las reglas del juego de la vida. Esto se conoce como catastrofismo, y la situación real se acerca más a un uniformismo salpicado con algunas gotas esporádicas de catastrofismo.

Pero si aceptamos que el catastrofismo fue determinante en el comienzo de la vida en la Tierra, la conclusión continúa siendo la misma: si deben darse unas condiciones muy específicas e inusuales, una especie de tormenta bioquímica perfecta, entonces estamos también ante un fenómeno extremadamente raro, que en 4.500 millones de años no ha vuelto a repetirse. De una manera o de otra, llegamos a la conclusión de que la vida es algo muy improbable. Desde el punto de vista teórico, para que la idea popular tenga algún viso de ser otra cosa que seudociencia debería antes refutarse la hipótesis nula (una explicación sencilla aquí).

A lo anterior hay una salvedad, y es la posibilidad de que la «biosfera en la sombra» (un término ya acuñado en la biología) procedente de un segundo génesis fuera eliminada por selección natural debido a su mayor debilidad, o sea eliminada una y otra vez, por muchos génesis que se produzcan sin siquiera enterarnos.

Esta hipótesis no puede descartarse a la ligera, pero tampoco darse por sentada: si en su día la existencia de algo como la bacteria GFAJ-1 no resultaba descabellada, es porque la idea de una biosfera extremófila en la sombra es razonable; una segunda línea evolutiva surgida en un nicho ecológico muy marginal, como el lago Mono, tendría muchas papeletas para prosperar, quizá más que un invasor del primer génesis pasando por un trabajoso proceso de adaptación frente a un competidor especializado. Y sin embargo, hasta ahora el resultado de la búsqueda en los ambientes más extremos de la Tierra ha sido el mismo: nada. Solo parientes nuestros que comparten nuestro único antepasado común.

Si pasamos de la teoría a la práctica, es aún peor. Hasta hoy no tenemos absolutamente ni siquiera un indicio de que exista vida en otros lugares del universo. En la Tierra la vida es omnipresente, y no se esconde. Nos encontramos con pruebas de su presencia a cada paso. Incluso en el rincón más remoto del planeta hay testigos invisibles de su existencia, porque en el rincón más remoto del planeta uno puede encender un GPS o un Iridium y recibir una señal de radio por satélite. Si el universo bullera de vida, bulliría también de señales. Y sin embargo, si algo sabemos es que el cosmos parece un lugar extremadamente silencioso.

Como respuesta a lo anterior, algunos científicos han aportado la hipótesis de que la vida microbiana sea algo frecuente, pero que a lo largo de su evolución exista un cuello de botella complicado de superar en el que casi inevitablemente fracasa, impidiendo el progreso hacia formas de vida superiores; lo llaman el Gran Filtro. Otros investigadores sugieren que tal vez la Tierra haya llegado demasiado pronto a la fiesta, y que la inmensa mayoría de los planetas habitables todavía no existan. Pero también con estas dos hipótesis llegamos a la misma conclusión: que en este momento no hay nadie más ahí fuera.

Pero esto es ciencia, y eso significa que aquello que nos gustaría no necesariamente coincide con lo que es; y debemos atenernos a lo que es, no a lo que nos gustaría. Personalmente, I want to believe; me encantaría que existiera vida en otros lugares y quisiera vivir para verlo. Pero por el momento, aquello del «sí, claro, si nosotros estamos aquí, ¿por qué no va a haber otros?», mientras alguien rebusca en los colgadores de Zara, no es ciencia, sino lo que en inglés llaman wishful thinking, o pensamiento ilusorio.

Claro que todo esto cambiaría si por fin algún día tuviéramos constancia de ese segundo génesis terrestre. Y aunque seguimos esperando, hay una novedad potencialmente interesante. Un nuevo estudio de la Universidad de Washington, el Instituto de Astrobiología de la NASA y otras instituciones, publicado en la revista PNAS, descubre que en la Tierra existió un episodio de oxigenación frustrado, previo al que después daría lugar a la aparición de la vida compleja.

Hoy sabemos que hace unos 2.300 millones de años la atmósfera terrestre comenzó a llenarse de oxígeno (esto se conoce como Gran Oxidación), gracias al trabajo lento y constante de las cianobacterias fotosintéticas. Los fósiles más antiguos de células eucariotas (la base de los organismos complejos) comienzan a encontrarse en abundancia a partir de unos 1.700 millones de años atrás, aunque aún se discute cuándo surgieron por primera vez. Pero si de algo no hay duda, es de que fue necesaria una oxigenación masiva de la atmósfera para que la carrera de la vida tomara fuerza y se consolidara.

Los investigadores han estudiado rocas de esquisto de entre 2.320 y 2.100 millones de años de edad, la época de la Gran Oxidación, en busca de la huella de la acción del oxígeno sobre los isótopos de selenio. La idea es que la oxidación del selenio actúa como testigo del nivel de oxígeno en la atmósfera presente en aquella época.

Lo que han descubierto es que la historia del oxígeno en la Tierra no fue un «nada, después algo, después mucho», en palabras del coautor del estudio Roger Buick, sino que al principio hubo una Gran Oxidación frustrada: los niveles de oxígeno subieron para después bajar por motivos desconocidos, antes de volver a remontar para quedarse y permitir así el desarrollo de toda la vida que hoy conocemos.

Este fenómeno, llamado «oxygen overshoot«, ya había sido propuesto antes, pero el nuevo estudio ofrece una imagen clara de un episodio en la historia de la Tierra que fue clave para el desarrollo de la vida. Según Buick, «esta investigación muestra que había suficiente oxígeno en el entorno para permitir la evolución de células complejas, y para convertirse en algo ecológicamente importante, antes de lo que nos enseñan las pruebas fósiles».

El interés del estudio reside en que crea un escenario propicio para que hubiera surgido una «segunda» biosfera (primera, en orden cronológico) de la que hoy no tenemos constancia, y que tal vez pudo quedar asfixiada para siempre cuando los niveles de oxígeno se desplomaron por causas desconocidas. Pero Buick deja claro: «esto no quiere decir que ocurriera, sino que pudo ocurrir».

E incluso asumiendo que la propuesta de Buick fuera cierta, en el fondo tampoco estaríamos hablando de un segundo génesis, sino de un primer spin-off frustrado a partir de un único génesis anterior; las bacterias, los primeros habitantes de la Tierra, ya llevaban por aquí cientos de millones de años antes del oxygen overshoot. El estudio podría decirnos algo sobre la evolución de la vida, pero no sobre el origen de la vida a partir de la no-vida, la abiogénesis, ese gran problema pendiente que muchos dan por resuelto, aunque aún no tengamos la menor idea de cómo resolverlo.

¿Qué ha pasado en el ensayo clínico de Francia?

Ha resonado poco aquí el desastre del ensayo clínico de Francia que ha resultado en la muerte de una persona y en daños cerebrales graves, probablemente irreversibles, a otras. Recordemos además que se trataba de una Fase 1, dirigida solo a evaluar la seguridad del fármaco y no su eficacia, algo que comienza a estudiarse en la Fase 2. Por ello, en la Fase 1 se administra el medicamento a personas completamente sanas, no a enfermos.

Lo ocurrido en Francia debería preocuparnos más. Aunque no es el primer ensayo clínico que resulta en una catástrofe inesperada, sabemos que cada nuevo accidente aéreo obliga a revisar las normativas de la aviación y a perfeccionar la regulación o a cubrir supuestos que hasta entonces no se habían tenido en cuenta. Y así, con cada fatalidad en el aire, al menos a los familiares de los fallecidos les puede quedar el consuelo (si es que existe alguno) de que la muerte de los suyos no fue en vano, sino que sirvió para que otros viajaran más seguros (si es que esto aún hoy significa algo).

Sede en Rennes de Biotrial, el contratista de ensayos clínicos encargado del estudio. Imagen de Thomas Bregardis / EFE.

Sede en Rennes de Biotrial, el contratista de ensayos clínicos encargado del estudio. Imagen de Thomas Bregardis / EFE.

Este es el resumen de la historia. La compañía portuguesa Bial (web española aquí) desarrolló un nuevo fármaco de nombre en clave BIA 10-2474, un posible calmante destinado a tratar el dolor crónico y los desórdenes de movimiento excesivo en enfermedades como el párkinson. La empresa dijo que se trataba de un inhibidor reversible y de larga duración de la hidrolasa de amidas de ácidos grasos (en inglés, FAAH), una enzima presente en las membranas de las células que rompe un tipo de lípidos bioactivos (es decir, que no son simples grasas estructurales, sino que ejecutan funciones biológicas). La FAAH destruye sobre todo la anandamida, que es un endocannabinoide; o sea, una molécula creada por nuestro cuerpo que es parecida al ingrediente activo del cannabis. Bial aclaró que el BIA 10-2474 no es un derivado del Cannabis sativa.

Los inhibidores de la FAAH causan un aumento de los niveles de anandamida; por decirlo llanamente, tienen efectos similares al cannabis, favoreciendo un colocón natural por los cannabinoides naturales del propio cuerpo, y de ahí su acción calmante. Es por ello que desde hace unos años las compañías farmacéuticas estudian estos inhibidores como potenciales analgésicos de línea dura, digamos; no de los que uno deglute frente al espejo del baño cuando le duele la cabeza, sino de los que se administran en los hospitales a pacientes con enfermedades muy graves como el cáncer. Ya se han desarrollado anteriormente otros medicamentos que actúan en esta vía, pero hasta ahora no hay ninguno en el mercado; no porque hayan causado problemas, sino más bien por todo lo contrario: eran seguros, pero los ensayos se abandonaron en la Fase 2 porque eran ineficaces. No hacían nada.

Después de los obligatorios ensayos preclínicos en animales (incluyendo monos; yo también lo siento, pero hoy aún no hay otro modo), Bial tuvo luz verde para comenzar su estudio en humanos, que encargó a la francesa Biotrial, un contratista de ensayos clínicos con sede en Rennes. Como en todos los casos, la Fase 1 en humanos comenzó administrando bajas dosis simples del fármaco a los voluntarios (en este caso a 84), sin que se produjera ninguna reacción adversa. El problema ha llegado al aumentar esta dosificación a lo que sería el equivalente de un ensayo general en el teatro, un régimen clínico de administración del medicamento. Y aquí es cuando se ha producido la catástrofe. De los seis pacientes que han recibido el tratamiento, uno ha muerto, cuatro han resultado gravemente afectados y uno fue dado de alta.

Nadie sabe todavía qué demonios es lo que ha ido mal. Ya se conoce la estructura química concreta del fármaco (1-óxido de 3-(1-(ciclohexil(metil)carbamoil)-1H-imidazol-4-il)piridina); la Agencia de Seguridad de los Medicamentos de Francia se ha visto obligada a publicar el protocolo del ensayo después de que este documento se filtrara al diario Le Figaro. Tal vez Francia trata de responder a las críticas de falta de transparencia en ocasiones anteriores, como advertía Nature esta semana.

La publicación de la composición del compuesto permitirá a otros expertos estudiar si, por ejemplo, el efecto tóxico podría deberse a una interacción no deseada e impredecible del compuesto con otra proteína, lo que se conoce como off-target; los pacientes afectados muestran necrosis y hemorragia cerebral, por lo que lo ocurrido no es simplemente una sobredosis de cannabinoides. Sería fácil hacer demagogia contra Bial o Biotrial, ya que existe un cierto sector del público ávido por culpar a las farmacéuticas hasta de la muerte de Yoda. Pero ambas compañías tienen derecho a la presunción de inocencia habitual. Lo cierto es que esto puede haber ocurrido sin que se haya cometido ningún error o negligencia. Si la pregunta es si es posible que un compuesto produzca en humanos una interacción tóxica y fatal que solo se revele a altas dosis y que esté ausente incluso en monos, la respuesta es sí.

El caso tiene dos repercusiones interesantes. La primera se refiere a la normativa de ensayos clínicos, que en la UE se rige a nivel comunitario. Hasta ahora ha estado vigente la directiva de 2001; en 2014 se aprobó una nueva regulación que entrará en vigor este año. Es importante la diferencia entre ambos conceptos legales: la directiva es un marco general que en cada país se traspone con un cierto margen de libertad, mientras que la regulación equivale a una ley, pero aplicable en todos los países de la UE. El cambio vino motivado por las críticas que achacaban a la directiva el haber creado un panorama de reinos de taifas burocráticos que aumentaba los costes y dilataba los tiempos, lo que resultó en un descenso del 25% de los ensayos clínicos en la UE. Según la Comisión Europea, la nueva regulación armonizará procedimientos, eliminará duplicaciones y aligerará la burocracia.

Ahora bien, a raíz del caso francés, algunos expertos han subrayado la necesidad de que las regulaciones incluyan la obligación de distanciar en el tiempo la administración de fármacos en Fase 1 a distintos pacientes; es decir, que el segundo sujeto no lo reciba hasta que se haya comprobado que el primero no sufre ningún efecto adverso. Y esto no está contemplado hoy. No olvidemos además que los participantes en un ensayo clínico en Fase 1 son voluntarios sanos que cobran por prestarse como sujetos de estudio (en este caso concreto, 1.900 euros); ya podemos imaginar que a alguien con una situación económica desahogada normalmente no se le pasará por la cabeza buscar esta manera de sacarse un sustento. Un ensayo clínico es dinero fácil para alguien en situación difícil; pero no puede permitirse que esto sea a costa de poner en riesgo sus vidas.

Una segunda implicación es aún más inesperada. Resulta que anteriormente se han identificado drogas de diseño que contenían compuestos que actúan sobre la vía de FAAH (aquí y aquí). Uno de ellos, llamado LY-2183240, no solo inutiliza irreversiblemente la FAAH, sino que también tiene efecto cruzado (off-target) sobre otras enzimas de la misma familia, las serín hidrolasas, un amplio grupo de proteínas con funciones muy diversas en el organismo.

Estos cannabinoides sintéticos producen efectos similares al cannabis, salvo que no son detectables en los controles de drogas, y este parece ser el motivo por el que algunos consumidores los toman. Pero tratándose de drogas clandestinas, cada consumidor está realizando en sí mismo, sin saberlo, un ensayo clínico de un compuesto posiblemente adulterado que además puede producir peligrosas interacciones off-target. Resumiendo, hay una alternativa más segura que los inhibidores de FAAH, tanto para uso clínico como recreativo: el cannabis.