Entradas etiquetadas como ‘gripe’

La gripe se contagia solo con la respiración, sin tos ni estornudos

Nunca es de agradecer que a uno le estornuden o le tosan encima. Y si después de la agresión aérea notamos una cierta humedad en el área afectada por el disparo, la cosa se torna francamente repugnante. Pero al menos a partir de ahora podrán estar más tranquilos, o más preocupados, según se mire: más tranquilos, porque ese estornudo tan grosero del vecino con el que acaban de cruzarse no necesariamente va a contagiarles su gripe; más preocupados porque, de hecho, basta con que les haya respirado cerca para que se la hayan llevado puesta a casa.

Imagen de James Gathany / Wikipedia.

Imagen de James Gathany / Wikipedia.

Uno de los mayores enigmas científicos sobre la gripe es por qué la sufrimos sobre todo en invierno. En el hemisferio sur les ocurre lo mismo que a nosotros, la padecen en sus meses invernales. En los países tropicales tampoco se libran de esta enfermedad, pero a diferencia de nosotros, ellos no tienen un pico anual en una temporada concreta, sino una transmisión más repartida a lo largo del año.

Tradicionalmente se decía que el invierno favorece el contagio de gripe porque los humanos nos apelotonamos en los espacios cerrados, pero este argumento ha perdido sentido en sociedades donde pasamos la mayor parte de nuestro tiempo en interiores y en los mismos lugares tanto en verano como en invierno, con calefacción o aire acondicionado, así que hacía falta otra explicación más plausible. Como ya conté aquí hace un par de años, ciertos estudios muestran que el frío y la sequedad ambiental, condiciones típicas del invierno, favorecen la transmisión de la gripe. Es decir, que en contra de lo que normalmente se cree, es más fácil que nos contagiemos en la calle, y no en el lugar de trabajo.

Sin embargo, los porqués aún no están del todo resueltos. Se habla tanto de factores del propio virus como de las vías respiratorias: a bajas temperaturas el virus es más estable, pero también parece que en frío y en experimentos con cobayas, los animales producen virus durante 40 horas más, lo que se atribuye a que en estas condiciones el moco es más espeso y permanece durante más tiempo.

En cuanto a la humedad, también se especula con razones relativas al cenagoso mundo del moco, pero se apunta otra posibilidad que parece tener sentido: dado que el virus se transporta por el aire en diminutas gotas llamadas aerosoles, cuando el aire es seco estas gotitas son más pequeñas y pueden recorrer mayores distancias, mientras que en tiempo húmedo recogen más agua del ambiente, crecen demasiado y tienden a caer.

Este contagio a través del aire es lo que ha estudiado ahora un equipo de investigadores de la Universidad de Maryland, según publica la revista PNAS. Los científicos se preguntaron con cuánta facilidad podía transmitirse el virus de la gripe a través de la simple respiración, en comparación con lo que normalmente entendemos como papeletas de premio seguro, la tos y el estornudo.

Para ello reunieron a 142 voluntarios, griposos confirmados, y les recogieron 218 muestras de moco con bastoncillos, junto a otras 218 muestras de aire exhalado en la respiración, tos y estornudo, durante los tres primeros días de síntomas. A continuación analizaron la presencia de virus activo y de ARN del virus (su genoma) en todas las muestras.

Como era de esperar, el material más peligroso resulta ser el moco: 150 muestras, el 89% del total, llevaban el virus. En cambio, solo 52 muestras (el 39%) de los aerosoles eran infecciosos. Pero lo curioso en este último caso es que los investigadores han detectado el virus en el 48% de las muestras de aerosoles sin tos, es decir, solo de la respiración. “Los estornudos son raros, y ni el estornudo ni la tos son necesarios para la generación de un aerosol infeccioso”, concluyen los autores. Pese a todo, admiten la posibilidad de que los estornudos contribuyan a la contaminación de superficies con el virus.

Los resultados están en consonancia con otros estudios anteriores en animales. En el de las cobayas mencionado más arriba, los autores notaban que no había toses ni estornudos, y que los animalitos simplemente se contagiaban la gripe unos a otros a través de los aerosoles que expulsaban al aire y que circulaban entre las jaulas. Por muy tentador que resulte interpretar la tos y el estornudo como mecanismos evolutivos conseguidos por el virus de la gripe para transmitirse más fácilmente, parece que no es así, sino que simplemente tosemos y estornudamos porque tenemos las vías respiratorias irritadas, sin que esto le aporte al virus ninguna ventaja.

Finalmente, el hecho de que el virus se transmita fácilmente solo con respirar es un motivo más para que todo afectado por la gripe se quede unos días en casa cuando aparece la enfermedad. Los autores del nuevo estudio descubren también que la presencia del virus en los aerosoles desciende en los tres primeros días desde que comienzan los síntomas, aunque no así en el moco. Pero cuando llevamos el virus a cuestas, nuestros movimientos no son una decisión personal que nos afecte únicamente a nosotros, sino que podemos contagiar a otros. Así que no pensemos en la epidemia de gripe de cada año solo como algo de lo que podemos ser víctimas, sino también como algo de lo que podemos ser responsables.

¿Una vacuna para dominarlos a todos (los virus de la gripe)?

Si leyeron mi artículo de ayer, se habrán quedado con la firme impresión de que es imposible fabricar una vacuna única, un comodín que, como el anillo de Tolkien, pueda dominar a todos los virus de la gripe con independencia de si son orcos o enanos. Pero no, no lo es. Posible, sí; fácil, no. Ya tenemos una en pruebas que podría llegar a su brazo preferido en unos años.

Como les contaba ayer, el problema con la inmunización contra la gripe es que las vacunas van dirigidas contra unos pinchos con forma de arbolito en la superficie del virus, formados por dos proteínas llamadas hemaglutinina (H) y neuraminidasa (N), que tienen una pasmosa facilidad para cambiar de forma.

Ilustración del virus de la gripe disponiéndose a infectar una célula a la que se une a través de su proteína hemaglutinina. Imagen de CSIRO / Wikipedia.

Ilustración del virus de la gripe disponiéndose a infectar una célula a la que se une a través de su proteína hemaglutinina. Imagen de CSIRO / Wikipedia.

La acción de las vacunas se basa en crear una memoria inmunológica que prepare la respuesta contra futuros ataques del mismo enemigo. Estimulando el sistema inmunitario con un virus muerto (ya he contado aquí que –y por qué– soy partidario de calificar a los virus como seres vivos, pero si no están de acuerdo, cambien “muerto” por “inactivado”) o con esas proteínas sueltas, creamos esa memoria que después repelerá un ataque real con fiereza. Si no creamos antes esa memoria, el organismo también reaccionará contra el invasor, pero padeciendo la enfermedad que este le provoca.

Así, y dado que el perfil grabado por la vacuna en la memoria inmunológica viene determinado por H y N, cuando estas cambian es como si el organismo se enfrentara a un virus casi completamente nuevo, aunque todo lo que haya por debajo de esos pinchos variables sea básicamente lo mismo que antes.

La pregunta entonces es: ¿no sería posible dirigir la vacuna contra algo que no cambie tanto en el virus de la gripe? La respuesta es que sí, sí lo es, pero encontrar la estrategia perfecta es complicado. Numerosos equipos de investigación en todo el mundo están trabajando en la creación de una vacuna universal contra la gripe, que pueda protegernos de una vez y para siempre (o al menos, para un buen número de años) no solo contra la estacional de cada año, sino contra cepas más raras de las que provocan pandemias como la mal llamada “gripe española” de 1918.

Como conté aquí hace un par de años, los expertos temen que en cualquier momento pueda brotar una cepa de un tipo exótico de gripe, como H9N2 o H10N8, que de repente convierta nuestra semanita de malestar y baja laboral en una amenaza muy seria para la vida. Y la posibilidad de contar con una inmunización que actúe a largo plazo permitiría aplicar la vacuna a los niños, cuando la respuesta es más fuerte, y no como ahora a edades avanzadas cuando el sistema inmunitario ya sufre de los mismos achaques que el resto del cuerpo.

Así, los intentos actuales de los investigadores por diseñar una vacuna universal contra la gripe se resumen en estas dos líneas:

1. Utilizar la base de los pinchos, menos variable que la cabeza

Las proteínas H y N del virus de la gripe varían mucho en sus cabezas, la parte más expuesta al exterior, pero no tanto en sus tallos, la parte que está unida a la cubierta del virus. Algunos grupos de investigación están tratando de lograr que el sistema inmunitario pueda reaccionar contra la base de los pinchos; pero dado que es menos accesible que la cabeza, está menos expuesta al reconocimiento de los anticuerpos de nuestro organismo, así que el desafío consiste en encontrar la manera de que sea más visible para el sistema inmune.

Un equipo de EEUU lo está intentando con nanopartículas cubiertas de pinchos a los que se les han cortado las cabezas para dejar sus tallos expuestos. Utilizando de este modo un pincho basado en la proteína H1, los científicos han conseguido proteger totalmente a los ratones y parcialmente a los hurones (dos modelos animales muy utilizados para los estudios de gripe) contra una infección letal de otro virus, el H5N1, llamado gripe aviar. Con una idea parecida, pero con los tallos de H1 en pequeños grupos como aparecen en el virus, el Instituto de Vacunas Crucell de Leiden (Países Bajos) ha logrado también neutralizar el H5N1 en ratones y monos.

Partículas del virus de la gripe al microscopio electrónico. Imagen de Pixnio.

Partículas del virus de la gripe al microscopio electrónico. Imagen de Pixnio.

2. Utilizar antígenos internos del virus

Un antígeno es todo aquello contra lo que nuestro organismo es capaz de producir anticuerpos, moléculas en forma de Y cuyos extremos encajan con la forma del antígeno como las piezas de un puzle. Nuestras venas y arterias están continuamente patrulladas por una inmensa legión de linfocitos, células del sistema inmunitario. Uno de sus tipos, las células B, están especializadas en producir cada una un tipo de anticuerpo capaz de reconocer y unirse a un antígeno concreto, llevando este anticuerpo en la superficie. Cuando por casualidad una célula B se topa con el antígeno que encaja en sus anticuerpos, lo captura y se lo traga, rompiéndolo en trozos que luego expone de nuevo en su superficie.

Esta célula espera entonces la ayuda de otras llamadas células T helper o Th (colaboradoras). Cuando una célula Th reconoce los trozos de antígeno expuestos en la cubierta de la célula B, produce una serie de moléculas llamadas linfoquinas que obligan a la célula B a multiplicarse. Algunas de las células resultantes de esta multiplicación se convierten en células de memoria, que se quedan a la espera, preparadas para responder a una futura infección (este es uno de los mecanismos que aprovechan las vacunas), mientras que otras se convierten en células plasmáticas, capaces de producir anticuerpos en masa que se liberan a la sangre.

Una vez circulando por la sangre, estos anticuerpos esperarán a encontrarse con su antígeno diana para unirse a él, recubriendo el virus y neutralizándolo. A menudo, los virus así recubiertos de antígenos serán después engullidos y eliminados por otros tipos de células llamadas fagocitos.

He explicado esto para que se entienda cuál es el problema: los virus también llevan antígenos en su interior, pero dado que están ocultos cuando el virus circula por el organismo, no pueden disparar esta respuesta que se conoce como humoral, llamada así por los anticuerpos que viajan libres por el humor o fluido sanguíneo. Pero por suerte, nuestro sistema inmunitario cuenta con otra respuesta llamada celular. Algunas células se tragan los virus y rompen todos sus componentes, incluyendo los internos, en pedazos que después exponen en su superficie. Ciertas células T reconocerán estos trozos para poner en marcha la respuesta de anticuerpos, como he explicado arriba, pero también se activan otras llamadas T citotóxicas o Tc que matan las células infectadas por el virus.

Por lo tanto, los antígenos internos del virus también pueden disparar la respuesta celular. Pero en general las vacunas se diseñan para provocar una fuerte respuesta humoral de memoria, y en cambio son poco eficaces en la respuesta celular. Actualmente muchas investigaciones sobre vacunas buscan precisamente esto, aumentar la respuesta celular para mejorar la reacción inmunitaria y ofrecer protección a más largo plazo.

Vacuna contra la gripe. Imagen de CDC.

Vacuna contra la gripe. Imagen de CDC.

Así, si fuera posible diseñar una vacuna capaz de poner en marcha una fuerte respuesta celular contra algún antígeno interno que varíe poco a lo largo del tiempo y entre unos virus y otros, tendríamos el anillo único, la vacuna universal contra la gripe. Para provocar una mayor respuesta celular, se ensayan vacunas con virus vivos debilitados en lugar de virus muertos o trozos sueltos como en las actuales, con la idea de que dispararán una buena respuesta celular.

Aunque la perspectiva de inyectarse un virus vivo pueda sonar alarmante, las vacunas con virus atenuados son muy comunes y funcionan maravillosamente; la triple vírica que se aplica a los niños contra el sarampión, las paperas y la rubeola es una vacuna de virus atenuados, lo mismo que la de la fiebre amarilla que nos ponemos los viajeros. Una ventaja adicional de las vacunas con virus atenuados es que algunas pueden administrarse por la boca o la nariz; la vacuna oral de la polio pudo distribuirse masivamente en los países en desarrollo, y es un factor decisivo en el esfuerzo hacia la erradicación de esta enfermedad.

De hecho, ya existe la vacuna nasal de virus atenuado contra la gripe, pero no ha sido muy eficaz. Esta semana se ha publicado en la revista Science un nuevo diseño que parece muy prometedor. Investigadores de China y EEUU han obtenido un virus mutante que tiene todo lo deseable en una gripe para vacuna: se multiplica bien, lo que le permite ser muy visible para el sistema inmunitario, pero apenas produce síntomas y en cambio dispara una fuerte respuesta de células T; además, es hipersensible al interferón, un antivirus natural de nuestro organismo que el virus normal de la gripe consigue eludir. Aún le queda mucho recorrido hasta demostrar su utilidad, pero por el momento ha funcionado muy bien en ratones y hurones.

He dejado para el final la vacuna que está más cerca de llegar a convertirse en una realidad. La compañía Vaccitech, un spin-off de la Universidad de Oxford, ha montado antígenos internos de la gripe en un virus falso que se utiliza como vehículo. El objetivo de esta vacuna es combatir absolutamente todos los tipos de gripe A, la más preocupante y la que provoca mayor número de muertes.

De las tres fases de ensayos clínicos que deben cubrirse antes de que un producto farmacéutico llegue al mercado, Vaccitech está ahora en la segunda. En la primera ya probaron que la vacuna es segura, después de demostrar su eficacia en animales. Actualmente la fase II está testando si es capaz de proteger contra la gripe en combinación con las vacunas estacionales. Esta etapa terminará en octubre de 2019. Si todo funciona según lo esperado, la fase III emprendería las pruebas finales antes de que la vacuna esté disponible, lo que podría ocurrir dentro de 5 a 7 años. Tal vez esta sea una carrera que podamos ganar antes de que llegue la próxima gran pandemia de gripe.

Por qué la vacuna de la gripe de este año funciona mal

Este mes se cumplen 100 años de la aparición de los primeros casos de la devastadora gripe de 1918, la que llegó a llamarse “gripe española” por un error de concepto en el que nadie suele reconocer un leve hálito de xenofobia. La explicación más común de este alias es que en noviembre de 1918, después de andar durante varios meses dando vueltas por otros países, la gripe comenzó a escalar en España, donde nuestros periódicos empezaron a contar la extensión de la epidemia que en otras naciones se había silenciado porque aún estaba vigente la censura informativa de la Primera Guerra Mundial.

Lo de la xenofobia es un tirón de orejas histórico; aunque hoy todos los expertos mundiales reconocen que la gripe no era de origen español, en su día se aceptó fácilmente un sobrenombre que cargaba las culpas en otro país. Pero hoy ya nadie llama a la sífilis el “mal francés”. Y si la gripe de 1957 continúa figurando en muchas referencias como “gripe asiática”, es porque, al fin y al cabo, surgió en Asia. La gripe de 1918 nació probablemente en EEUU o en China, pero es evidente que nadie va a llamarla “gripe estadounidense”. Aún hoy, sigue apareciendo mayoritariamente como “gripe española” incluso en los estudios científicos, y es dudoso que esto vaya a cambiar.

En fin, es un detalle menor que tampoco exige una sobreactuación. Incluso dándole la vuelta al argumento y por una parte que me toca profesionalmente, siempre podemos interpretar el alias de “gripe española” como un éxito del periodismo y de la libertad de prensa en este país un siglo atrás.

El virus de la gripe al microscopio electrónico, en una imagen coloreada. Las proteínas H y N son los 'pinchos' en la cubierta. Imagen de Pixnio.

El virus de la gripe al microscopio electrónico, en una imagen coloreada. Las proteínas H y N son los ‘pinchos’ en la cubierta. Imagen de Pixnio.

Lo destacable en estas fechas es que el aniversario de la pandemia que se llevó por delante —según las estimaciones científicas más usuales— entre 40 y 50 millones de vidas, la mayoría de ellas durante el otoño de 1918, nos llega precisamente cuando la vacuna de la gripe de esta temporada se ha revelado mayoritariamente ineficaz. Hoy vengo a explicarles por qué, y por qué es muy difícil evitar que esto vuelva a ocurrir.

Cuando hablamos de gripe en realidad estamos refiriéndonos a un conjunto de virus muy amplio. Por si a alguien interesa, lo conté con más detalle aquí, pero les hago un resumen sencillo: el nombre de gripe es solo una categoría taxonómica nacida de los criterios utilizados por los virólogos para nombrar los tipos de virus, del mismo modo que a todas las razas de perros las llamamos “perros” mientras que a un pariente muy próximo lo llamamos lobo.

En realidad estas distinciones no son caprichosas, sino que responden a ciertos criterios biológicos y evolutivos. Pero lo que es útil para la biología puede dar lugar a confusiones cuando se aplica a la medicina, porque en realidad estamos metiendo en el cajón de gripe varias cosas muy diferentes que podríamos diferenciar por el nombre, pero que solo diferenciamos por el apellido: gripe A, gripe B, gripe C y gripe D. La D es un nuevo virus reconocido oficialmente en junio de 2016 y que solo afecta al ganado. También podemos dejar fuera la gripe C, que hasta ahora no ha sido gran motivo de preocupación sanitaria. Nos quedamos con las dos importantes, la A y la B.

Pero dentro de estas existen además varios subtipos que son ligeramente diferentes en dos moléculas clave para la infección, denominadas hemaglutinina (H) y neuraminidasa (N). Por ejemplo, en la gripe A existen 18 formas distintas de H, denominadas de H1 a H18, y 11 de N, de N1 a N11. Así, existen diferentes gripes A, por ejemplo H1N1, H5N3, H5N8, H3N2… En cuanto a la gripe B, suelen circular dos tipos distintos que se conocen como Yamagata y Victoria.

Ahora, para complicarlo aún más: también existen diferentes subsubtipos o cepas de, por ejemplo, gripe A H1N1. La gripe de 1918 era A H1N1, pero era diferente a la A H1N1 de la pandemia de 2009 (entonces conocida como gripe porcina), la cual a su vez era diferente a la A H1N1 estacional que circulaba por entonces y a la cual llegó a reemplazar. Toda esta variabilidad se debe a que el virus de la gripe tiene una gran facilidad para mutar, dando lugar a nuevas cepas que ocasionalmente ganan a otras competidoras en su lucha por conquistar a sus víctimas, humanas o de otras especies.

De todo esto ya habrán imaginado que cada año lo que conocemos como gripe estacional es en realidad un pequeño zoológico compuesto por varias de estas diferentes criaturas, aunque suelen predominar tres: una gripe A H1N1, una gripe A H3N2, y un tipo de gripe B. Dos veces al año la Organización Mundial de la Salud revisa la información proporcionada por los centros nacionales de más de 100 países para decidir qué tipos se incluirán en la vacuna de la próxima estación respectivamente para cada hemisferio, en febrero para la próxima temporada de invierno en el norte y en septiembre para la del sur. Las vacunas suelen ser trivalentes, contra las H1N1, H3N2 y B más extendidas, o tetravalentes, cubriendo los dos tipos de B. Pero nadie tiene una bola de cristal, y por tanto la vacuna de cada año es una apuesta, que puede acertar o fallar.

Pero el problema principal de este año no ha sido que la previsión haya fallado, sino algo aún más intrincado. Seguramente habrán escuchado que el fracaso de la vacuna se debe a que el virus ha mutado. Es cierto, pero con una matización importante: la mayor parte del problema se debe no a que haya mutado el virus que se está transmitiendo en la calle, sino el que se ha empleado para elaborar la vacuna.

La gran mayoría de las vacunas contra la gripe se elaboran en huevos de gallina mondos y lirondos. La vacuna es un caldo de virus inactivado que no provoca infección, pero que dispara la respuesta protectora preventiva de nuestro sistema inmunitario. Para disponer de suficiente cantidad de virus que luego se inactiva, es necesario hacerlo crecer en algún hospedador, y el huevo es una incubadora natural perfecta y barata.

Inyectando huevos con virus de la gripe para la producción de vacunas. Imagen de FDA.

Inyectando huevos con virus de la gripe para la producción de vacunas. Imagen de FDA.

Para que el virus crezca en el huevo, tiene que adaptarse a ese nuevo hospedador. Normalmente esto se produce sin que las variaciones afecten a nada fundamental. Pero cuando los fabricantes de vacunas inyectaron huevos con la gripe A H3N2 actual para producir la vacuna del año pasado, en la temporada 2016-17, lo que sucedió fue que el virus mutó para adaptarse al ambiente del pollo de una manera que sí afecta a la respuesta inmunitaria. Como consecuencia, la reacción del sistema inmune de las personas vacunadas no es tan buena contra el H3N2 que se está propagando en la calle; aunque existe algo de reacción cruzada, la vacuna no cumple su función: en la temporada pasada, su efectividad contra el H3N2 estacional se estimó en un 34%.

Para este año se ha cambiado la cepa H1N1 empleada para las vacunas, pero este tipo es minoritario en la temporada actual. En cambio, se ha mantenido la misma H3N2 que el año pasado. La eficacia de la vacuna ahora es aún peor, bajando a entre un 10 y un 20% para H3N2. Según los expertos, a la mutación en el pollo se une que el H3N2 también está variando en la población humana; pero además hay otro factor adicional, y es que ha crecido la extensión de la gripe B Yamagata, que solo está cubierta por la vacuna tetravalente. La gripe B suele ser menos contagiosa que la A, pero sus síntomas son los mismos.

Lo peor es que el problema tiene difícil solución. La gran mayoría de la infraestructura de producción de vacunas está preparada para utilizar el huevo como incubadora del virus. Solo en personas alérgicas se emplean vacunas elaboradas en sistemas celulares de insectos o mamíferos. También existen las llamadas vacunas recombinantes, que no se basan en crecer el virus en un sistema vivo para después inactivarlo, sino que directamente fabrican solo las moléculas similares a las del virus que por sí solas pueden disparar la reacción inmunitaria. Pero tanto las vacunas basadas en células como las recombinantes son más costosas y laboriosas de producir.

Por suerte, hay otra posible solución que podría llegar en unos pocos años, y que les contaré mañana. Pero hoy quiero terminar subrayando lo evidente: incluso con vacunas deficientes como la de este año, para los grupos con mayor riesgo alguna protección es mejor que ninguna protección. La gripe mata cada año a miles de personas, e incluso una vacuna poco eficaz puede lograr que el curso de la enfermedad sea más benigno. Por último, una parte de la efectividad de las vacunas en el mundo real se basa en la llamada inmunidad grupal: cuanta más gente se vacuna, menor es la carga de virus que circula por ahí amenazando a los más débiles.

La gripe española y El Ministerio del Tiempo

No soy muy de series. Parafraseando a Umbral, quien puestos a tragarse un argumento prefería la hora y media de una película antes que dedicar varios días a leer un libro, lo que a mí me sucede con las series es que a menudo me transmiten la impresión de estar alargando las tramas eterna e innecesariamente para continuar exprimiéndome como fuente de ingresos publicitarios. En este sentido, y aunque la tele pública de todos no atraviesa precisamente sus mejores momentos, me seduce la comodidad de ver algo en la pantalla sin inoportunos y cansinos cortes de publi.

Y entre tanta serie que explota caminos ya tan trillados como la comedia de trazo grueso, el choque de costumbrismos culturales o el thriller de asesinato que en inglés llaman Whodunit (¿Quién lo hizo?; lo malo es que en muchos casos la respuesta es: ¿Y a mí qué me importa?), la apuesta de El Ministerio del Tiempo es innovadora y, por tanto, arriesgada; algo que se agradece y que cada vez es más escaso, y más difícil encontrarlo fuera de las cadenas que no compiten en el mercado publicitario.

Ya elogié aquí en la pasada temporada el tratamiento original que hace la serie de TVE de un subgénero tan clásico como el de los viajes en el tiempo, pero al que sus creadores han sabido aplicar una fresca vuelta de tuerca, apuntando sin proponérselo a un modelo metafísico llamado Universo de Bloque Creciente. Aunque es evidente que el triunfo de la serie no se debe a que guste a los metafísicos: gusta a todos porque está bien diseñada, bien guionizada, bien realizada, bien interpretada, bien digitalizada y bien vestida. Pero además se agradece que una serie trasluzca inteligencia.

El doctor Vargas observa una muestra de sangre de un paciente. Imagen de TVE/Tamara Arranz.

El doctor Vargas observa una muestra de sangre de un paciente. Imagen de TVE/Tamara Arranz.

Esto sucede también con el último capítulo, el 13, titulado Un virus de otro tiempo. Si podemos enviar personas a través del tiempo, ¿por qué no un virus? Esta era la brillante premisa que ponía a los personajes de la serie en un complejo apuro cuando una de sus protas, Irene (Cayetana Guillén Cuervo), se trae a la actualidad la infame gripe española que mató a unos 50 millones de personas al final de la Primera Guerra Mundial.

No pretendo afear a los guionistas su trabajo de documentación, que es impecable en cuanto a la exhumación de los datos históricos en los que se basan las tramas de la serie. Que la documentación científica sea también irreprochable tal vez sea ya mucho pedir. Ni siquiera en Hollywood esto es lo más habitual; y eso que allí cuentan con algo llamado The Science & Entertainment Exchange, un programa de la Academia Nacional de Ciencias de EEUU que presta asesoría científica gratuita a los cineastas cuando lo necesitan, incluso escribiéndoles ecuaciones reales cuando una pizarra de universidad sale en el plano.

Pero no puedo evitar hacer un par de comentarios para aclarar algunas confusiones comunes sobre la gripe española; que, como bien explicaban después en el making of, no era española, aunque se llamó así porque las primeras noticias sobre la epidemia trascendieron desde España, que no había participado en la Primera Guerra Mundial y por tanto no estaba sometida a censura informativa.

La gripe española fue una calamidad global sin parangón en la historia conocida de la epidemiología, ni siquiera igualada por los desastres de la peste negra. Aún no se conoce con exactitud por qué aquella cepa fue tan letal. Se han aportado varias explicaciones, algunas relacionadas con el propio virus (como su facilidad de contagio inusual) y otras con circunstancias históricas y sociales de la época.

Pero aunque sería muy conveniente no tener que encontrarnos de nuevo con aquel virus, parece obvio que sus repercusiones hoy no serían tan serias como las que tuvo en su época, gracias al avance de los diagnósticos y tratamientos. En 2013, un estudio modelizó el efecto que tendría en la actualidad una pandemia de aquel mismo virus, y la conclusión era que las tasas de mortalidad serían un 70% inferores a lo que fueron entonces. “Una gripe española en tiempos actuales no representa el peor escenario en términos de riesgo pandémico”, concluía el estudio.

De hecho, ya he contado aquí que son otras cepas de gripe las que hoy preocupan a los expertos; y que al contrario de lo que se afirmaba en el capítulo, la gripe de 2009 no provocó una reacción de alarma exagerada, sino el estado de alerta necesario ante una gripe que entonces era nueva y cuyos efectos eran incalculables. La Organización Mundial de la Salud, y cualquiera que estuviera en el pellejo de sus responsables, siempre preferirá haber reaccionado con contundencia ante una amenaza que luego no era para tanto, antes que tener que lamentar el haber respondido con pasividad e ineficacia ante una catástrofe sanitaria.

Una incorrección en el capítulo se ponía en boca del médico del Ministerio, quien afirmaba que Irene sobreviviría a la infección porque era fuerte y sus defensas responderían adecuadamente. Hubo algo muy peculiar con la gripe española que no se ha dado en otras epidemias de esta enfermedad, incluyendo las estacionales. Mientras que las gripes suelen ser más graves para los pacientes más débiles, como niños, ancianos o personas inmunocomprometidas, en cambio la epidemia de 1918 mataba a hombres y mujeres jóvenes y sanos.

Hay una explicación para esto que hoy se acepta de forma general: la gripe española mataba porque disparaba una tormenta de citoquinas, una reacción apabullante del sistema inmunitario que destroza el propio organismo. Y por tanto, cuanto más fuerte era el organismo del paciente, más fuerte era también la tormenta de citoquinas que la gripe le provocaba.

Ya conté aquí que este fenómeno parece ser también la causa de la letalidad del ébola. Y dado que la gripe española mataba por un mecanismo similar, una de las firmas de esta epidemia fue que sus afectados morían con síntomas más parecidos a una fiebre hemorrágica que a lo que normalmente entendemos por gripe. Aunque no hubiera quedado bonito en la pantalla, lo cierto es que las víctimas mortales de la gripe española terminaban bañadas en sangre, por dentro y por fuera.

Y por cierto, y tal como conté para el caso del ébola, en la gripe española también sucedía que las infecciones oportunistas aprovechaban la desestabilización del sistema inmunitario para causar infecciones secundarias graves. Hoy los especialistas piensan que muchos de los infectados morían en realidad de una neumonía bacteriana propiciada por la gripe, por lo que el tratamiento con antibióticos –al contrario de lo que se contaba en el capítulo– sí sería una manera adecuada de contener el empeoramiento general de los pacientes, al mantener a raya estas infecciones colaterales.

Amelia y Pacino, con las muestras del virus. Imagen de TVE/Tamara Arranz.

Amelia y Pacino, con las muestras del virus. Imagen de TVE/Tamara Arranz.

Por último, Amelia y Pacino pretendían inactivar el virus dejando el recipiente de las muestras abierto en un laboratorio con la calefacción alta. Pero por desgracia, esto no habría bastado: un estudio de 2014 determinó que el virus de 1918 solo se inactiva por completo después de 6 horas a 50 ºC. Por muy alta que fuera la temperatura del laboratorio, y dado que además Amelia y Pacino no se preocuparon de vaciar el nitrógeno líquido del contenedor, los empleados de la compañía farmacéutica podrían haber recuperado las muestras casi intactas a la mañana siguiente.

Todo lo cual, insisto, no enturbia la gran calidad de una serie que despunta entre la mediocridad general, y de la cual otras cadenas deberían tomar ejemplo. Aunque hacerlo tras la estela del triunfo ajeno siempre es lo más fácil.

“Las nuevas cepas de gripe podrían ser preocupantes”

Hoy se podrían recordar muchos pensamientos de Umberto Eco relacionados con la ciencia, pero yo tenía ya planeado seguir hablando hoy sobre la gripe. Así que rescato aquel comentario que escribió referente a los logros alcanzados por la especie humana (a pesar de su manifiesta idiotez):

En 1918, a la edad de 40 años, mi abuelo materno se vio afectado por una forma de gripe vírica, conocida comúnmente como gripe española, que diezmaba gran parte de Europa. Murió en una semana, a pesar de todos los esfuerzos de tres médicos. En 1972, a la edad de 40, me vi afectado por una grave enfermedad que parecía muy similar a la española. Gracias a la penicilina, tras una semana ya estaba en pie. Así que es fácil comprender por qué, dejando de lado la energía atómica, los viajes espaciales y el ordenador, sigo pensando que el invento más importante de nuestro siglo es la penicilina (y en general, todos los medicamentos que hacen posible que la gente alcance los 80 años, mientras que en el pasado podrían haber muerto a los 50 ó 60).

Por supuesto, doy por hecho que Eco no estaría sugiriendo que la gripe se cura con penicilina, sino que la suya fue una enfermedad “que parecía muy similar a la española”, pero obviamente de origen bacteriano si fue el antibiótico lo que obró su curación. Pero dejando de lado este detalle, lo que quiero resaltar está perfectamente expresado en sus palabras: son los avances en nuestro estado de salud general, lo que incluye no solo la medicina sino otros factores de calidad de vida, los que hoy han convertido la gripe en una preocupación menor para la mayoría de la población de los países desarrollados, una molestia que generalmente supone pasar un par de días descansando en casa. Antes la palabra gripe inspiraba pánico, mientras que hoy nos aterra tanto como rompernos una uña.

Partículas del virus de la gripe A H1N1. Imagen de NIAID/Flickr.

Partículas del virus de la gripe A H1N1. Imagen de NIAID/Flickr.

Pero esto no necesariamente va a ser así siempre, ni lo es en todas partes. Un humano elegido hoy enteramente al azar de entre los más de 7.000 millones sería con toda probabilidad alguien que no tiene acceso a unas condiciones dignas de vida, ni a un nivel sanitario e higiénico básico. Y por otra parte, como ya he señalado aquí, ni siquiera los menos concernidos con la realidad social mayoritaria del planeta Tierra pueden seguir pensando que las enfermedades originadas en una remota selva de Guinea son un problema exclusivo de los habitantes de una remota selva de Guinea, como demuestra el último brote de ébola.

Sin necesidad de recurrir al caso de un virus tan letal como el ébola, la gripe continúa siendo una amenaza global. Aunque es sencillamente imposible saber a ciencia cierta cuántas personas mueren de gripe estacional en el mundo (los datos varían salvajemente según las fuentes, y la mayoría de los fallecimientos sintomáticamente sospechosos no son confirmados), ni siquiera es necesario asustar con el dato máximo manejado por la Organización Mundial de la Salud (OMS) de medio millón al año; nos basta con saber que la gripe y sus complicaciones matan cada año a miles, y que se ceban especialmente en los perfiles de salud más débiles.

Es por esto que, como también he comentado ya aquí, culpar a la OMS de haber sobreactuado con aquel brote de gripe de 2009 es no solo ignorante, sino también insolidario. La OMS puede tener sus muchos defectos y errores, pero entre ellos no se cuenta el de reaccionar con la mayor resonancia pública posible contra una amenaza cuyo alcance futuro es imposible predecir; solo un ciudadano sano de un país rico, sin excesiva preocupación por quienes no sean ciudadanos sanos de países ricos, puede manifestar estas críticas.

El problema con la gripe de 2009 no es que fuera necesariamente más virulenta (y no lo es), sino sobre todo que entonces era nueva. Y toda gripe nueva dejará una estela de muertos entre quienes no son ciudadanos sanos de países ricos antes de dejar de ser nueva para convertirse en la gripe nuestra de cada año, como ha sucedido después con la de 2009.

Un pequeño resumen sobre las gripes: las hay de tres tipos, A, B y C. La mayoritaria en humanos es la A. Cuando nos referimos a la gripe A de 2009, lo de menos es la “A”, ya que todas las gripes estacionales, anteriores y posteriores, suelen ser de este género. A efectos prácticos, quédense con la idea de que probablemente la mayoría de las gripes que han cogido y cogerán a lo largo de su vida son gripes A. Dentro de este género existen diversos subtipos según las variaciones de dos proteínas de su envoltura: hemaglutinina (H) y neuraminidasa (N). Se conocen 18 formas distintas de la primera, numeradas de H1 a H18, y 11 de la segunda, de N1 a N11. Así pues, existen muchas combinaciones posibles. Actualmente las más frecuentes en la gripe A estacional humana son H3N2 y H1N1.

Pero incluso dentro de un mismo subtipo, también hay variaciones. La (mal llamada) gripe española de 1918, la que mató al abuelo de Umberto Eco y a decenas de millones más, era H1N1. También era H1N1 la de 2009, pero era diferente a la española y a las gripes estacionales H1N1 que circulaban por entonces, por lo que para hacer referencia a una cepa específica hay que añadir más criterios, como H1N1/09, en referencia al año del brote; o más específicamente y dependiendo de dónde se aísle, por ejemplo A/Mexico/InDRE4487/2009(H1N1), en el caso de una muestra de la gripe A (H1N1) de la pandemia de 2009 recogida en México y perteneciente a la cepa InDRE4487.

El caso es que la gripe A H1N1/09, en su momento nueva, ha reemplazado después a la H1N1 que circulaba entonces, convirtiéndose en *la* gripe A H1N1 estacional que tenemos ahora. Y según los informes recientes, es también la mayoritaria en esta estación (por delante de la cepa actual de H3N2 y de la gripe B), por lo que si usted coge la gripe durante estas semanas lo más probable es que se trate de la H1N1 de la pandemia de 2009. La vacuna de este año protege contra esta cepa, así como una H3N2 y otra B.

El problema con las gripes es, según me cuentan Emanuele Montomoli y Claudia Trombetta, expertos en gripe de la Universidad de Siena (Italia), que “la naturaleza de los virus de la gripe los hace particularmente propensos a la variación genética, lo que resulta en diversas cepas nuevas contra las que los humanos tienen poca o ninguna inmunidad”. Montomoli ha colaborado en los estudios epidemiológicos de la OMS y del Centro Europeo para la Prevención y el Control de Enfermedades (ECDC).

Según los investigadores, “las nuevas cepas de gripe H9N2 y H10N8 podrían ser preocupantes por sus características”. Montomoli y Trombetta sitúan el mayor riesgo en un criadero tradicional de la gripe A, China y el sureste de Asia, donde “es más común el contacto estrecho entre los humanos y las aves de granja”; pollos y gallinas son a menudo las fuentes de nuevas cepas de gripe, como sucedió con la muy peligrosa gripe aviar H5N1 que surgió en Asia en 2004 y que rebrota esporádicamente.

Sin embargo, los dos expertos aseguran que “es difícil predecir cuál será la próxima cepa pandémica”, por lo que “es complicado producir una cantidad adecuada de dosis de vacuna para una campaña global en poco tiempo”. Es decir, recalco, que ni siquiera los expertos mundiales en gripe pueden anticipar qué riesgos correremos a causa de estos virus en cualquier momento futuro. Por suerte, añaden, la autoridad de vigilancia global de la OMS mantiene un constante seguimiento de la evolución de las cepas para beneficio de todos. También de aquellos, columnistas y otros virus insidiosos, que solo se acuerdan de la existencia de la OMS para criticar a toro pasado su escasa capacidad sobrenatural de adivinar el porvenir.

Lo más viral en febrero: la gripe

Esto les resultará curioso, pero lo cierto es que aún no sabemos por qué cogemos la gripe en invierno. Sí, habrán escuchado por ahí esa explicación tradicional: en la estación fría, los humanos nos apiñamos en espacios cerrados, donde viciamos el aire con nuestros gérmenes que compartimos alegremente.

Ilustración del virus de la gripe A atacando una célula. Imagen de H. Kolds&ostroke;/Oxford.

Ilustración del virus de la gripe A atacando una célula. Imagen de H. Kolds&ostroke;/Oxford.

Pero está claro que, al menos desde el éxodo rural de la Revolución Industrial y de la invención de la calefacción, este argumento simplón podría ser una explicación, si es que lo es, pero claramente no es la explicación. De las 24 horas de un día medio, unas 16 las pasamos haciendo lo mismo en verano y en invierno: trabajando y durmiendo en los mismos espacios cerrados. Y desde la invención de la climatización, muchos prefieren también pasar la mayor parte de su veraniego tiempo libre al fresquito del aire enlatado.

En realidad lo más probable es que el fenómeno sea mucho más complejo y obedezca a un conjunto de factores relacionados con la fisiología humana y el fitness del virus en cada estación. El problema que se encuentran los investigadores a la hora de estudiar este virus y su enfermedad es que el ratón, el rey de los modelos animales de mamíferos en biología, es un desastre como simulador de gripe: solo ciertas cepas de ratones de laboratorio contraen solo ciertas cepas de gripe, y sus síntomas ni siquiera se parecen a los nuestros; no moquean, ni tosen, ni padecen fiebre. Las investigaciones sobre gripe tradicionalmente han empleado hurones, pero imaginen ustedes lo que supone mantener una colonia de hurones.

Hace unos años, los científicos redescubrieron que la cobaya o conejillo de indias es un modelo estupendo para estudiar la gripe. *Re*descubrieron, porque, a pesar de que el nombre de este animal se emplea popularmente para referirse a un sujeto de experimentación, lo cierto es que hoy en día no suelen emplearse cobayas en los laboratorios. Y sin embargo, han vuelto debido a lo valiosos que resultan para investigar la gripe.

Precisamente empleando cobayas, un estudio de 2007 descubrió que el frío y el ambiente seco favorecen la transmisión de la gripe. Lo cual apunta y dispara al mito de los espacios cerrados de aire calentito: la conclusión sería que precisamente tenemos más probabilidad de coger la infección afuera, en el frío.

Curiosamente, frío y sequedad operan mediante dos mecanismos distintos. Según revelaban los investigadores, las condiciones de humedad afectan al propio virus y a las gotitas de líquido que lo dispersan en el aire. Algún otro estudio posterior ha confirmado que las epidemias repuntan después de períodos de mayor sequedad en invierno. Sin embargo, el efecto de la temperatura se debe al hospedador, el animal: a más frío, se dificulta el aclaramiento del moco en las vías respiratorias, por lo que las cobayas continúan liberando virus durante más tiempo; concretamente, 40 horas más.

Esto ya tiene bastante más sentido biológico. Y a ello se añade otro estudio publicado al año siguiente, cuya conclusión fue que la envoltura externa del virus de la gripe es más estable a bajas temperaturas, y esto fomenta su capacidad infecciosa para pasar de una persona a otra. Lo cual, de nuevo, apoya la idea de que la verdad (sobre el contagio de la gripe) está ahí fuera, y no aquí dentro.

Y esto nos lleva a una consecuencia interesante. A veces un mito se intenta desbancar con un contramito que resulta ser aún más falso. A saber: la explicación de los espacios cerrados se oponía a la idea de que la gripe se coge a causa del frío. Pero de los estudios recientes se deriva que uno sí puede enfermar por exponerse al tiempo gélido; siempre, claro, que haya otro allí para pasarle el virus. Y por cierto, basta con la respiración para contagiarse: en el estudio de las cobayas no hubo ni una sola tos o estornudo –ni mucho menos apretones de manos–, sino solo aire en circulación desde unas jaulas a otras. El aire transporta el virus en pequeñas gotitas de agua, o aerosoles.

Por supuesto que con toda seguridad hay otros factores que aún escapan. Por ejemplo, todavía no se ha estudiado extensamente la influencia estacional en nuestra buena forma inmunitaria, aunque algún estudio apunta a una posible mayor debilidad del organismo frente al virus de la gripe durante el invierno.

Lo único seguro es que la gripe no falta a su cita anual. Estos días ya estamos leyendo en los medios que el virus está multiplicando su incidencia en febrero, el mes favorito de los brotes de cada año. Si diciembre trae la Navidad y enero los Reyes Magos, febrero nos trae la gripe.

La primera “penicilina viral” tiene genes diana en el ébola

Hace unos días conté aquí la publicación del descubrimiento de un mecanismo bioquímico que justifica por qué la madreselva se ha utilizado tradicionalmente en China para tratar la gripe. Mi reacción natural ante lo que se conoce como medicina tradicional es fruncir el ceño (por supuesto, me refiero a las versiones de esta práctica que se basan en interacciones químicas, y no a las que esgrimen presuntas energías literalmente inconmensurables, de las cuales ya ni hablamos). Como ya escribí entonces, no es que dude de las propiedades medicinales de ciertas plantas, pero sí de los intentos de presentar algunos de estos remedios como purgas de Benito y de que muchos de los efectos pretendidos aguanten un asalto en el laboratorio.

En el caso de la madreselva (Lonicera japonica) y la gripe, un equipo de científicos de la Universidad de Nanjing ha descubierto que esta planta produce un micro ARN o miRNA llamado MIR2911 que inhibe específicamente dos genes del virus de la gripe A llamados NS1 y PB2, y tanto los experimentos realizados como su publicación en la revista Cell Research, del grupo Nature, avalan la conclusión de que existe un mecanismo bioquímico en el que apoyar este efecto terapéutico. Dado que esta acción afecta a un amplio espectro de los virus de la gripe, los investigadores proponen que se trata de la primera “penicilina virológica”.

Té de flores secas de madreselva. Imagen de Amazon.co.uk.

Té de flores secas de madreselva. Imagen de Amazon.co.uk.

Interesado por el estudio y con algunas preguntas en el cargador, traté de ponerme en contacto con el director del trabajo, Chen-Yu Zhang, médico, profesor de Bioquímica y decano de la Facultad de Ciencias de la Vida de la Universidad de Nanjing. Tradicionalmente no ha sido fácil contactar con investigadores chinos, tanto por el idioma (muchos de ellos no dominan el inglés) como por la opacidad tan clásica en aquel país, donde los resultados científicos solían publicarse en revistas nacionales, y por supuesto en chino. Pero en los últimos años la ciencia china, tan pujante como el resto de lo que hacen allí, se ha abierto a la comunidad internacional y cada vez es más frecuente encontrar estudios de aquel país en las principales revistas científicas.

Resumiendo, por fin logré que Zhang me atendiera, y aquí traslado sus comentarios. Me explica que el origen de su trabajo se remonta a 2007, cuando él y su equipo descubrieron que las células de los mamíferos producen miRNA que se mantienen estables en el plasma y que actúan como señales de comunicación entre células, pudiendo servir como biomarcadores de enfermedades. Un año más tarde, los científicos comprobaron que la ingesta de ciertas plantas aporta miRNA que se detectan intactos en la sangre y los tejidos. “Aún más importante, una vez dentro del organismo, los miRNA exógenos procedentes de la comida pueden regular la fisiología a través de dianas génicas en el huésped”, señala Zhang.

A partir de estos datos, Zhang decidió probar suerte con la madreselva. “Dado que la sopa de madreselva se ha utilizado en China durante miles de años para tratar la gripe, planteé la hipótesis de que podría haber pequeños ARN en esta sopa que fueran absorbidos y actuaran contra el virus”. La investigación comenzó en 2008 y los resultados han validado la hipótesis, lo que tal vez aconseja una atención especial a esta enredadera como posible tratamiento contra la gripe. Y dado que en España la encontramos por todas partes, era inevitable pedir la receta. Por desgracia, Zhang no ha podido ayudarme: “Lo siento, pero no sé si se pueden utilizar las plantas del jardín para hacer té que prevenga la gripe. Yo obtuve la madreselva seca de un comercio de medicina china tradicional”. Al menos me ha aclarado una cuestión que su estudio no precisaba, y es en qué parte de la planta se encuentra el principio activo: “Hemos encontrado MIR2911 en las hojas y en las flores”.

Una pregunta que surge es hasta qué punto el uso de las infusiones de madreselva, asumiendo su eficacia contra la gripe, podría resultar en la selección y expansión de cepas resistentes, como ocurre con los antibióticos y las bacterias. Zhang y su equipo comprobaron que las variantes del virus con mutaciones en los dos genes diana eran resistentes al MIR2911. “Según nuestros resultados, los virus H1N1 mutantes son igual de infectivos y potencialmente tan dañinos como las cepas originales”, revela Zhang, admitiendo la posibilidad de la aparición de cepas resistentes: “No puedo descartarlo”, reconoce. “Si ocurriera, tendríamos versiones mejoradas para tratar los virus mutantes, ya que MIR2911 es solo el primer compuesto natural activo hallado contra los virus; pero debe de haber más miRNA en las plantas con esta función”. El investigador sugiere un paralelismo con los antibióticos, cuyas versiones mejoradas han ido reemplazando a los compuestos originales. “Este es el motivo por el que llamo al MIR2911 la penicilina viral”, alega Zhang.

El virus del Ébola, en una imagen coloreada de microscopía electrónica. Imagen de NIAID / Wikipedia.

El virus del Ébola, en una imagen coloreada de microscopía electrónica. Imagen de NIAID / Wikipedia.

La última cuestión se refiere a una insinuación que no aparece en el estudio, pero sí en la nota de prensa que la Universidad difundió para dar a conocer el trabajo. En ella se revela que los investigadores están analizando la posible acción de MIR2911 sobre el ébola, lo que resulta sorprendente teniendo en cuenta que este virus, muy diferente del de la gripe, carece de los genes NS y PB sobre los que actúa el MIR2911 en el virus H1N1. Sin embargo, Zhang detalla que en otros virus de gripe han encontrado dianas para el miRNA en genes diferentes: “Actúa sobre H5N1 y H7N9 uniéndose a los genes NP o HA, respectivamente”. En cuanto al ébola, los investigadores han cribado la secuencia genética del virus en busca de estas dianas. “Hemos demostrado que hay tres sitios de unión en dos genes del virus del Ébola”, adelanta Zhang, de acuerdo a sus resultados aún sin publicar.

Claro que aún queda camino por delante hasta demostrar que MIR2911 se une a esas dianas del ébola y, lo que es más importante, que esto logra inhibir el crecimiento del virus y por tanto frenar la infección. Pero Zhang ya está recorriendo ese camino: “Ahora estamos examinando el efecto inhibidor de MIR2911 en el virus del Ébola in vivo”. Con todo lo que hemos visto últimamente, curar el ébola con una infusión de madreselva suena a cuento de hadas. Pero un cuento de hadas con mecanismo bioquímico resulta mucho más creíble.

¿La primera ‘penicilina’ contra los virus? (Y está en nuestro jardín)

No extrañará si afirmo que soy un defensor de la medicina. Me refiero a eso que algunos denominan “medicina convencional”, y otros simplemente llamamos “medicina”. Esto no implica descartar que algunos productos de la naturaleza puedan ejercer ciertos beneficios terapéuticos en nuestro organismo. Dado que tanto nosotros como cualquiera de los seres que nos rodean somos sacos de compuestos químicos, no tiene nada de raro que la ingestión de alguno de esos seres nos cause reacciones con efectos variados. Muchas plantas pueden matarnos, como el ricino, la adelfa, el ajenjo, la cicuta o el tejo. Incluso algunos de nuestros alimentos más familiares tienen su lado venenoso, como el tomate, cuyos tallos y hojas son tóxicos, o la manzana, cuyas semillas contienen amigdalina, un precursor del cianuro presente también en los huesos del albaricoque, el melocotón, la ciruela y la cereza, y que nuestro cuerpo elimina sin problemas –siempre que no decidamos atizarnos una sobredosis–.

Y por lo tanto, tampoco es extraño que otras plantas puedan aliviarnos algunos males. No creo necesario citar ejemplos, pero sí me parece conveniente aclarar que la distinción entre “química” y “naturaleza” es falaz y artificiosa; repito, todo es química, y el ácido cítrico es el mismo en las naranjas y los limones que el que, con el nombre de E-330, se añade como conservante a muchos alimentos. De igual modo, el ácido salicílico de los cacahuetes o los champiñones es el mismo que la aspirina produce en nuestro cuerpo. No me cabe duda de que si, en lugar de Alexander Fleming (o su becario, según las malas lenguas), hubiera sido un médico chino de hace mil años el que hubiera observado cómo ese residuo turbio desaparecía alrededor de un hongo, la penicilina se reivindicaría hoy como medicina natural.

Con todo esto pretendo subrayar que ya existen herramientas de sobra para validar los supuestos efectos terapéuticos de los productos naturales. Y no me refiero a los estudios epidemiológicos, esas tramposas asociaciones estadísticas de las que ya he hablado aquí antes y con las cuales uno puede demostrar casi lo que le apetezca. Lo que quiero decir es que, si uno defiende los beneficios para la salud de determinados preparados naturales, hoy se dispone de suficientes instrumentos para justificar esos efectos con mecanismos bioquímicos verificables, y esta es la única manera de distinguir la ciencia de la charlatanería o el simple placebo; o la medicina real de eso que suele llamarse sanación o, en su versión más guay, wellness.

Por este motivo, es de agradecer cuando se encuentran ejemplos de esto último. En los últimos años, con la apertura de la ciencia china al ámbito académico global, van apareciendo estudios científicos de aquel país que escarban en los fundamentos bioquímicos de algunos remedios tradicionales. Por supuesto, no todos pasarán la criba: las famosas bayas de goji, por ejemplo, no han podido demostrar hasta ahora una eficacia contrastable, e incluso para muchos especialistas pasan por simple timo, como ya recogió en su blog mi compañero César-Javier Palacios. En el otro plato de la balanza, en 2013 un estudio publicado en Nature desveló el mecanismo de acción de una hierba llamada chang shan, utilizada para tratar la fiebre provocada por la malaria.

La madreselva 'Lonicera japonica', común en los jardines españoles. Imagen de Aftabbanoori / Wikipedia.

La madreselva ‘Lonicera japonica’, común en los jardines españoles. Imagen de Aftabbanoori / Wikipedia.

Ahora, un nuevo estudio viene a prestar apoyo bioquímico a la tradición china de emplear la madreselva (Lonicera japonica) para tratar la gripe. Un equipo de científicos de la Universidad de Nanjing ha descubierto que esta planta trepadora, de origen asiático pero muy frecuente en los jardines europeos, contiene un micro ARN llamado MIR2911 con capacidad para inhibir un amplio espectro de virus de la gripe A que incluye el H1N1 (la famosa gripe porcina de 2009-2010), H5N1 y H7N9 (gripes aviares).

Los micro ARN, también llamados miRNA, son pequeñas cadenas de ARN que reprimen la expresión de ciertos genes al unirse a los ARN mensajeros, aquellos que se utilizan como intermediarios para convertir la información genética en proteínas. Nuestros propios genes producen infinidad de miRNA que sirven para regular el funcionamiento de nuestras células, pero nuestro cuerpo también puede incorporar miRNA de origen externo que mantienen su capacidad operativa.

Los científicos chinos han descubierto que el MIR2911 aguanta el proceso de cocción de la madreselva y se detecta en el plasma y el tejido pulmonar de los ratones cuando se les da a beber la infusión. Los investigadores, dirigidos por Chen-Yu Zhang, han descubierto que el miRNA de la madreselva tiene dianas en dos genes del virus llamados PB2 y NS1, y que el MIR2911 es capaz de proteger a los ratones de la infección, excepto cuando se trata de una gripe mutante que lleva alteradas las secuencias de los dos genes. Aún más, los científicos demuestran que la protección puede lograrse tanto con la infusión de madreselva como con los MIR2911 sintetizados en el laboratorio.

En conjunto, el trabajo de los investigadores chinos resulta bastante sostenible, y viene avalado por su publicación en la revista Cell Research, del grupo Nature. Con una audacia poco usual en los estudios científicos, Chen-Yu Zhang y sus colaboradores escriben: “Desde que Fleming descubrió la penicilina hace casi un siglo, se han desarrollado antibióticos contra infecciones bacterianas que han salvado la vida a millones de personas. Por desgracia, hasta ahora no se ha identificado ningún producto natural eficaz contra las infecciones virales. Sugerimos que, como primer producto natural dirigido directamente contra los virus de gripe A, el MIR2911 es la penicilina virológica que sirve como nuevo agente terapéutico y preventivo no solo contra la gripe A, sino posiblemente contra otros tipos de virus”.

¿A qué otros tipos de virus se refieren? Pues ni más ni menos que al que ustedes tienen en mente. Aunque el estudio no da más pistas, una nota de prensa difundida por la Universidad de Nanjing afirma que los investigadores han comprobado posteriormente que “MIR2911 también actúa directamente sobre el virus del Ébola”. Como siempre, afirmaciones extraordinarias requieren pruebas extraordinarias, y aún deberemos esperar nuevos estudios antes de lanzarnos a exfoliar la madreselva del seto del jardín para llenar la cacerola. Y eso si es que la costumbre de beber estas infusiones no acaba rápidamente seleccionando cepas resistentes.