Entradas etiquetadas como ‘premios Nobel’

Los Nobel de ciencia: buena sopa, pero sopa fría

Dirán los asiduos a este blog que ya vengo otra vez con la misma matraca, que soy cansino, cargante, y tendrán razón. Pero me temo que deberé seguir repitiéndolo todos los años, todas las veces que haga falta. Una vez más hemos asistido a una semana de los Nobel en la que el premio de Literatura se ha llevado todo el bombo y los platillos, y por el contrario las tres categorías de ciencia se han pasado como un breve; en algún caso, lo juro, sin siquiera mencionar los nombres de los premiados, y sin el menor criterio ni comentario o análisis.

Por cierto y con respecto al Nobel de Literatura, y aunque este blog no vaya de eso, uno también tiene sus opiniones. Como marca la tradición, antes del anuncio Murakami fue tendencia, y por las bolas de cristal circulaban los nombres de Rushdie o Houellebecq. Se sigue pensando que el Nobel debe distinguir al mejor, «the best», como los Óscar. Pero aparte de que la mejoridad siempre sea opinable, lo cierto es que este no es el presunto espíritu de los Nobel.

Imagen de Wikipedia.

Imagen de Wikipedia.

Alfred Nobel dejó bien claro en su testamento que los premios deben concederse a quienes «en el año precedente hayan aportado el mayor beneficio a la humanidad», y en concreto el de Literatura a quien haya producido «el trabajo más sobresaliente en una dirección idealista». Esto último está abierto a tantas interpretaciones como se quiera, pero probablemente bastantes de ellas podrían coincidir en definirlo como lo contrario de Houellebecq. En todo caso y en último término, deja la puerta abierta a que la Academia se lo conceda a quien le dé la gana, como viene haciendo, que para eso es su premio.

Pero no pensemos por ello que en la concesión de los premios se respeta a rajatabla la última voluntad del inventor de la dinamita y la gelignita, porque nada más lejos. Los Nobel de ciencia nunca se otorgan por los trabajos del «año precedente», ni de la década precedente, a veces casi ni siquiera del medio siglo precedente. Los Nobel de ciencia siempre suenan a viejuno. Se conceden a descubrimientos o avances ya muy consolidados, y por ello ya antiguos.

Como defensa suele alegarse que los Nobel premian los hallazgos que han resistido la prueba del tiempo. Pero claro, esto es como darle un premio de cine en 2022 a Blade Runner, que en su día tuvo críticas divididas. Se supone que entre las cualidades de un jurado experto debería contarse la de anticipar qué va a resistir la prueba del tiempo. Porque para saber qué la ha resistido no hace falta ser experto en nada. Basta con mirar la Wikipedia.

Si se quiere distinguir cuáles son las tendencias científicas más calientes del momento, a donde hay que dirigir la mirada es a los Breakthrough Prizes, los de mayor dotación económica del mundo en su campo. Este año han premiado, entre otros, a Demis Hassabis y John Jumper, los máximos responsables de DeepMind de Google en la creación de AlphaFold, el sistema de Inteligencia Artificial que predice la estructura espacial de casi cualquier proteína. Este es sin duda el mayor hallazgo reciente en el campo de la biomedicina y uno de esos avances que cambiarán el rumbo de la ciencia para los próximos 50 años, no que lo hicieron hace 50 años. El año pasado los Breakthrough distinguieron a Katalin Karikó y Drew Weissman, principales responsables de las vacunas de ARN contra el virus de la COVID-19.

En justicia hay que decir que en España tenemos también dos premios internacionales con un ojo muy agudo para distinguir los avances científicos más relevantes del momento: los Fronteras del Conocimiento de la Fundación BBVA y los Princesa de Asturias. Este año los Princesa han premiado a Hassabis (entre otros), y el año pasado lo hicieron a Karikó, Weissman y otros por las vacunas. Los Fronteras también han premiado a los creadores de las vacunas. Mientras, los Nobel siguen sin darse por enterados de que hemos tenido una pandemia y que una nueva generación de vacunas ha salvado millones de vidas.

Algunas veces los Nobel parecen el reconocimiento a toda una carrera, como evidentemente lo es el premio de Literatura. En los de ciencia, este es el caso del concedido este año en Fisiología o Medicina a Svante Pääbo, la figura más destacada en el desarrollo del campo de los genomas antiguos. Con esta concesión el comité del Instituto Karolinska, encargado de esta categoría, también ha sacado los pies de su tiesto; que yo recuerde, es la primera vez que se premia a la paleoantropología, una ciencia que quedaba excluida de los Nobel porque no encaja en ninguna de las categorías. El hecho de que la de Pääbo sea una paleoantropología molecular ha servido para darle el pase al premio de Fisiología o Medicina. Su trabajo no tiene nada que ver con la segunda, pero puede aceptarse dentro de la primera, en cierto modo.

Sobre el premio de Física, los físicos dirán. Como no-físico, y en mi función de simple periodista de ciencia que ha escrito infinidad de artículos sobre física, y bastantes de ellos sobre entrelazamiento cuántico (un tema especialmente jugoso), el reconocimiento a Alain Aspect, John Clauser y Anton Zeilinger es bienvenido, sobre todo cuando los tres ya recibieron el Wolf de Física —considerado por algunos como el segundo más prestigioso después del Nobel— hace 12 años. Una vez más, el Nobel se convierte en premio escoba, poniéndose al día con los deberes atrasados.

Finalmente, el Nobel de Química ha sido para Carolyn Bertozzi, Morten Meldal y Barry Sharpless, tres investigadores que desarrollaron —a principios de este siglo— dos conceptos relacionados que facilitan las reacciones químicas de síntesis para la formación de nuevos compuestos más complejos a partir de otros más simples. La idea es tan genial como sencilla, aunque mucho más difícil es llevarla a la práctica. Consiste en encontrar el modo de ligar moléculas entre sí de forma rápida, directa, irreversible y en una sola reacción, como si fuesen piezas de un puzle que encajan entre sí de modo único. Esta llamada química click, desarrollada independientemente por Sharpless y Meldal, se aplicó a los sistemas biológicos con la llamada química bioortogonal acuñada por Bertozzi. Estos dos conceptos son de inmensa aplicación hoy. Por cierto que Sharpless ya recibió otro Nobel de Química en 2001, un doble reconocimiento que solo han logrado otros cuatro científicos.

En definitiva, y como ocurre siempre, todos los premiados merecen sin duda este reconocimiento. Todos los premiados lo merecían desde hace años. Y como siempre, también lo habrían merecido otros que han quedado fuera. En concreto, no entiendo la decisión de distinguir en exclusiva a Pääbo por los avances en genomas antiguos, cuando los premios permiten el reparto entre un máximo de tres investigadores y hay otros que claramente habrían merecido compartirlo (por cierto, también hay españoles muy destacados en este campo). Sí, es cierto que saldrían más de tres. Es otro problema de los Nobel, y es que siempre son más de tres, y casi siempre muchos más de tres; hoy la idea del supergenio científico rodeado de minions eficientes pero descerebrados solo existe en las películas de Gru.

Por qué el Nobel no ha premiado al español Francis Mojica

Hace dos años escribí aquí un artículo titulado «Por qué el Nobel para Mojica es mucho más complicado de lo que parece«. Breves antecedentes: el microbiólogo español Francis Mojica descubrió un mecanismo molecular en bacterias que posteriormente dos investigadoras, la estadounidense Jennifer Doudna y la francesa Emmanuelle Charpentier, convirtieron en la herramienta más útil que hoy existe para reescribir y modificar genes. Este sistema, hoy con distintas variedades pero llamado genéricamente CRISPR, es una plataforma tecnológica de uso común en infinidad de laboratorios. Y aunque sus potenciales aplicaciones en la curación de enfermedades aún no han despegado, su utilidad en investigación ha sido tan sobradamente demostrada que desde hace años se rifaba un Nobel. Ahora, por fin la rifa se ha resuelto. Premiando a Charpentier y Doudna, y dejando fuera a Mojica.

Francisco JM Mojica. Imagen de Roberto Ruiz / Universidad de Alicante.

Francisco JM Mojica. Imagen de Roberto Ruiz / Universidad de Alicante.

Pero aunque todos lamentemos enormemente esta oportunidad perdida para la promoción de la ciencia española, que no ve un Nobel desde 1906 (sí, después estuvo Severo Ochoa, pero era un investigador de nacionalidad estadounidense que había desarrollado todo su trabajo en EEUU), conviene volver sobre lo que ya conté en su día para contener los arrebatos de indignación y de calimerismo; sí, es cierto que a un científico que trabaja en la Universidad de Alicante le resulta infinitamente más difícil ser reconocido con un Nobel (o incluso, ya puestos, publicar en Nature o Science) que al mismo científico si trabaja en Harvard o en el MIT. Pero este caso, insisto, era complicado.

La razón de esta complicación es que son muchos los nombres implicados en haber hecho de CRISPR lo que es hoy. Mojica descubrió el sistema original y lo nombró, y creo que no puede haber discusión sobre su primicia absoluta en este sentido. Pero después el francés Gilles Vergnaud ahondó en la explicación sobre su significado, el argentino Luciano Marraffini demostró por primera vez su funcionamiento, Charpentier y Doudna lo convirtieron en una herramienta utilizable, y el chino-estadounidense Feng Zhang lo adaptó para su uso en células eucariotas (no bacterianas). Y aún hay otros nombres cuya intervención ha sido esencial para el desarrollo de CRISPR, sumando en total hasta más de una docena.

Pero las normas de los Nobel establecen que cada premio solo puede repartirse entre un máximo de tres investigadores, porque los reconocimientos científicos más prestigiosos del mundo continúan en pleno siglo XXI anclados en la idea anacrónica del «¡eureka!» y del científico solitario y excéntrico, recluido en su laboratorio con la sola compañía de algún asistente que le friegue los cacharros, preferiblemente si es jorobado y algo friki como el Igor de El jovencito Frankenstein.

Así pues, y aunque el premio para CRISPR se cantaba desde hace años, existían serias dudas sobre quiénes serían los tres elegidos, y es de suponer que largos debates habrán precedido a la concesión del Nobel de Química 2020 para Charpentier y Doudna. Por supuesto que las dos investigadoras merecían el premio como primeras candidatas. El problema era añadir un tercer nombre dejando fuera al resto.

Personalmente, mi apuesta estaba entre Mojica y Zhang. La contribución del segundo fue fundamental para el desarrollo del sistema, pero el trabajo de Mojica fue la semilla de la cual surgió todo lo demás. Y premiar un hallazgo sin reconocer a su descubridor original no solo es injusto, sino que además es una decisión contraria al espíritu que los Nobel dicen defender y al criterio que normalmente aplican, aunque históricamente han sido muchas las injusticias que se han cometido.

Un caso que viene a la mente es el de Fleming, Chain y Florey. Los dos últimos fueron quienes aislaron la penicilina, la produjeron y la convirtieron en un producto utilizable y accesible para toda la humanidad. Pero el Nobel de 1945 no olvidó a Fleming, el descubridor original de la actividad de la sustancia pero que no fue capaz de aislarla, sacarle partido ni usarla de forma efectiva, y que llegó a abandonar esta línea de trabajo. Es más, el Nobel para los tres científicos en este caso dejó fuera a otros colaboradores de Florey y Chain (la mayoría mujeres, por cierto) cuya participación fue esencial, y que tal vez habrían merecido el premio más que Fleming. En este sentido, la contribución y la visión de Mojica al hallazgo de CRISPR ha sido enormemente más decisiva que la de Fleming al descubrimiento de la penicilina que popularmente se le atribuye.

Parece posible que en el caso que nos ocupa el jurado haya decidido no cometer un agravio contra alguien en particular, aunque para ello hubiera que agraviar a varios en general. Por mi parte, guardaba una esperanza que difícilmente va a materializarse. Los premios de Química y Medicina (que incluye Fisiología) los fallan instituciones distintas, respectivamente la Real Academia de Ciencias y el Instituto Karolinska, y cada una actúa bajo su propio criterio. Estas dos categorías solapan en muchos casos; en Medicina no solo se han premiado avances médicos, sino también muchos descubrimientos de ciencia básica.

Un claro ejemplo es la estructura del ADN que le valió el premio a Watson, Crick y Wilkins (no fue de Química, sino de Medicina), pero hay otros ejemplos, como el Nobel de 1958 a Joshua Lederberg por descubrir un mecanismo de intercambio de material genético en bacterias, o el de 1978 a Arber, Nathans y Smith por el hallazgo de las enzimas de restricción, un mecanismo de las bacterias que después se convirtió en una herramienta fundamental para la investigación (un caso muy análogo al de CRISPR).

Así, habría sido posible que CRISPR hubiera podido motivar dos Nobel en las dos categorías respectivas de Química y Medicina, uno para los pioneros que descubrieron un sistema de defensa nuevo y revolucionario en bacterias (eso es originalmente CRISPR), quizá para Mojica, Vergnaud y Marraffini, y otro para los que a partir de él desarrollaron el sistema, Charpentier, Doudna y Zhang.

Claro que esto hubiera seguido dejando fuera al lituano Virginijus Siksnys, que llegó a los mismos resultados que Charpentier y Doudna, aunque tardó un poco más en publicarlos. Y es que, en el fondo, el problema continúa siendo el mismo: en la era de la ciencia internacional, colaborativa y multidisciplinar, el formato de los Nobel ha quedado claramente obsoleto.

Y sobre si Mojica habría completado la terna si en lugar de trabajar en Alicante lo hubiese hecho en Oxford, en el Cambridge de este lado del Atlántico o en el Cambridge del otro lado del Atlántico, podríamos discutir. Pero ya serviría de poco.

Esto es lo que hizo Margarita Salas, y este es el reconocimiento que nunca se le dio

Esta semana conocíamos la triste noticia del fallecimiento de Margarita Salas, bioquímica y bióloga molecular, probablemente la científica más importante en toda la historia de España, al menos hasta los comienzos de este siglo; existen ahora otros numerosos ejemplos brillantes de investigadoras con carreras ya distinguidas por grandes logros y aún con mucho recorrido por delante.

Comprensiblemente, en estos días los medios se han centrado de forma preferente, a veces casi exclusiva, en la cuestión de género: cómo Salas sufrió discriminación en épocas anteriores por su condición de mujer y cómo su trayectoria ha servido de escaparate para visibilizar el trabajo de las mujeres científicas y de modelo para presentar a las niñas en esa difícil etapa de la elección de carrera.

Nunca está de más recordar esto. Es necesario promocionar el trabajo de las mujeres investigadoras y seguir insistiendo en fomentar la vocación por la ciencia entre las niñas. Y sin duda también en la ciencia quedan sexismo y barreras por demoler.

Margarita Salas en 2011, recibiendo el doctorado honoris causa por la UNED. Imagen de honoris023 / Wikipedia.

Margarita Salas en 2011, recibiendo el doctorado honoris causa por la UNED. Imagen de honoris023 / Wikipedia.

Pero dejarlo aquí sería hacer un demérito al perfil de Salas o reducir su figura a la de una pancarta, a la de alguien que solo destacó por lo que dijo (lo cual sería admisible en quienes solo se dedican a decir). No es así: Margarita Salas no era una activista, sino una científica. Destacó por lo que hizo, no por lo que dijo. Y tanto su trabajo como su legado se abrieron paso simplemente por su importancia y su calidad, no por el hecho de que en algún momento haya resultado oportuno ondear una bandera concreta.

Dicho de otro modo, la importancia de su trabajo y de su legado es independiente del hecho de que fuera mujer u hombre. E incluso considerando que el éxito de su carrera haya tenido un mérito mayor por el hecho de haber sido mujer en una época de ciencia dominada por hombres, en la ciencia no cuenta el mérito; solo los resultados, que se acaban abriendo paso.

Anteriormente he contado aquí la historia de Jocelyn Bell Burnell, la astrofísica primero ignorada por el Nobel y después ampliamente reconocida. Algunos trataron de convertirla en una bandera; ella no se dejó, porque eran sus resultados lo único que podía colocarla en el lugar que merecía. Esto es ciencia, no política. Y para quienes piensan que la política debería introducirse en la ciencia, este es un claro argumento en contra.

En cuanto al legado de Margarita Salas, ha sido omnipresente para todos los que nos hemos dedicado a la biología molecular. Un servidor lleva ya décadas sin coger una pipeta, pero en aquellos tiempos era habitual encontrarse continuamente con Margarita Salas a través de sus exbecarios (trabajé con alguno de ellos) y los exbecarios de sus exbecarios. Formó a varias generaciones de científicos y científicas, que salían preparados para dirigir muchos de los mejores grupos del país. Ser exbecario de Margarita era casi el mejor argumento que podía presentarse en un currículum. Ella era como un hub de la biología molecular española. Y a pesar de ello nunca cayó en el divismo; era afable, cordial, sencilla.

En cuanto a su trabajo, los medios ya han resaltado la enorme rentabilidad de sus patentes. Pero esto tampoco le hace justicia. Para comprender lo que hizo y su importancia, hay que contar que en 1993 un norteamericano loco (muy loco) llamado Kary Mullis ganó el premio Nobel por inventar una técnica llamada Reacción en Cadena de la Polimerasa, o PCR.

En cierto modo, la PCR es algo parecido a un microscopio: amplifica algo que no podemos apreciar directamente por su pequeño tamaño. El microscopio nos ofrece una imagen magnificada de algo minúsculo, mientras que la PCR produce muchas copias de ese algo para que podamos detectarlo, estudiarlo y trabajar con ello. Lo que amplifica la PCR es el ADN presente en una muestra. Para hacer copias de un ADN es necesario disponer de una enzima fotocopiadora llamada ADN polimerasa. Existen muchas de estas, cada especie tiene la suya propia, y la clave del método de Mullis fue encontrar una que hacía exactamente lo que se necesitaba. Gracias a la PCR hoy existe la genómica; por ejemplo, pudo secuenciarse el genoma humano.

En 1989, pocos años después de que Mullis inventara la PCR (1983), Margarita Salas y sus colaboradores descubrieron una nueva ADN polimerasa en el fago Φ29. Un fago es el diminutivo de un virus bacteriófago, llamado así porque infecta a las bacterias, no a otras especies como nosotros. Los fagos son seres (si vivos o no, es una eterna polémica en biología) muy simples y es sencillo trabajar con ellos en el laboratorio. Y en cuanto a esto, Φ, es la letra griega Phi («fi«).

La ADN polimerasa del Φ29 resultó tener unas propiedades muy interesantes. Con el tiempo llegó a utilizarse para desarrollar una técnica alternativa a la PCR llamada Multiple Displacement Amplification (MDA), o Amplificación por Desplazamiento Múltiple. La MDA hace básicamente lo mismo que la PCR, pero tiene ciertas ventajas frente a algún inconveniente.

Entre las primeras, produce cadenas de ADN más largas con menos errores, por lo que es especialmente apropiada para muestras muy escasas –como el ADN de una sola célula– donde interesa amplificar fragmentos largos sin errores –por ejemplo, genes humanos donde puede haber una mutación de una sola letra del ADN–. Entre los segundos, cuando en una muestra hay dos versiones del mismo ADN ligeramente diferentes –por ejemplo, las dos copias de un gen que hemos recibido de papá y mamá–, la polimerasa del Φ29 tiene una molesta tendencia a amplificar una de ellas y olvidarse de la otra.

En los últimos años, la MDA se ha convertido en una verdadera alternativa a la PCR, utilizándose extensamente para amplificar y leer genomas completos, incluso de una sola célula. Entre sus usos destacan la detección de mutaciones causantes de enfermedades genéticas o las pruebas forenses de ADN; lo que hace el CSI. Pero no olvidemos que frente a estos usos más populares, las técnicas de amplificación de ADN son lo que hoy sostiene toda la investigación en genética y biología molecular en todo el mundo; siempre que oigan o lean sobre un nuevo avance biomédico, casi seguro que se ha podido llegar a él gracias al uso intensivo de las técnicas de amplificación de ADN.

Así pues, ¿habría merecido un Nobel el trabajo de Margarita Salas? Bueno, en su momento la PCR ofreció la posibilidad de hacer fácilmente cosas que hasta entonces no podían hacerse o era demasiado laborioso, y a eso fue Mullis quien llegó primero. Una segunda técnica alternativa no suele llevarse un Nobel. También debe tenerse en cuenta que el desarrollo de la MDA fue un trabajo de varios grupos a lo largo del tiempo, aunque también hubo otros implicados en la invención de la PCR que, como siempre ocurre con los Nobel, se quedaron sin premio. Pero mientras que la PCR es una técnica ya veterana, la MDA está en crecimiento, y se han destacado sus aplicaciones en campos relativamente nuevos como la biología sintética. Como mínimo, lo que sí puede decirse es que su trabajo está a la altura de un Nobel.

De lo que no puede caber la menor duda es de que, por muchos galardones y reconocimientos que haya recibido en vida, Margarita Salas era sobrada acreedora de un premio que nunca se le concedió: el Príncipe/Princesa de Asturias.

En estos premios irregulares, el fallo del jurado a veces es un fallo garrafal; por ejemplo, cuando se otorgó a las creadoras del sistema de edición genómica CRISPR olvidando a quien descubrió aquello que lo hizo posible, el español Francis Mojica. En otros casos los fallos parecen venir motivados por criterios no estrictamente científicos (dejando aparte el de la nacionalidad, que se supone). E incluso teniendo en cuenta que en dicho jurado se ha sentado alguna persona que le debe mucho a Margarita Salas, la más importante científica del siglo XX en España nos ha dejado sin haber recibido el máximo galardón que se concede a la ciencia en este país. Los premios no se hacen grandes por quien los concede, sino por los premiados.

Los Nobel vuelven a premiar ciencia de los 90

En este mundo en que todo avanza tan deprisa, incluida la ciencia, hay algo que no: los premios científicos más importantes del mundo.

Por supuesto, no hay nada que objetar al hecho de que los Nobel se concedan del modo y manera que a quienes los conceden y los pagan les venga en su kungliga gana (creo que así es como se dice «real» en sueco). Solo faltaría. Pero sí al hecho de que digan hacerlo basándose en lo que Alfred Nobel dejó dicho en su testamento, en el que instituyó los premios, ya que no es exactamente así: el padre de la dinamita y la gelignita quiso que sus distinciones se otorgaran a los hallazgos científicos más importantes del año precedente.

Es cierto que Nobel, aunque químico, era de espíritu más inventor que científico, y que la mentalidad del inventor atisba a un horizonte mucho más corto que la del científico. Pero entre premiar la ciencia del año precedente y premiar la ciencia del siglo precedente continúa abriéndose un abismo que podría visitarse con mayor frecuencia, como sí hacen otros premios, véanse los Breakthrough.

Imagen de Wikipedia.

Imagen de Wikipedia.

Tomemos como ejemplo el Premio Nobel de Química 2019, anunciado hoy y concedido a John B. Goodenough (por supuesto, en serio), a M. Stanley Whittingham y a Akira Yoshino por el desarrollo de las baterías de ion litio. Es evidente que el trabajo de estos investigadores (y de otros más que, como siempre, se quedan sin premio, ya que en el Nobel solo caben tres) merece todos los premios que a uno se le puedan ocurrir. Sin él ni siquiera podría estar escribiendo estas líneas, ya que las baterías de litio iónico son el forraje de nuestros dispositivos electrónicos. Y ahora, hasta de los coches eléctricos.

Pero ya lo eran también hace diez años, hace veinte y casi treinta. La batería de iones de litio fue investigada en los 70, desarrollada en los 80 y comercializada en los 90. Y aunque los expertos dicen que a estas pilas aún les queda recorrido, ya que por el momento aún no existe nada mejor a escala industrial, también dicen que va siendo hora de inventar algo mejor, con más autonomía y de carga más rápida. Algunos discuten si las baterías de iones de litio ya son tecnología obsoleta. Incluso el propio Goodenough ha creado en los últimos años una nueva batería de estado sólido que asegura supera a la de ion litio en prestaciones. Quizá hoy le ha sorprendido recibir un premio que le llega a los 97 años de edad, por trabajos que hizo hace cuatro décadas.

Un caso similar es el del Nobel de Fisiología o Medicina, que este año ha sido para William G. Kaelin Jr., Peter J. Ratcliffe y Gregg L. Semenza. De forma independiente, los trabajos de los tres consiguieron desentrañar los mecanismos biológicos por los que el organismo detecta los niveles de oxígeno y reacciona a ellos: células especializadas en el riñón son capaces de sentir la carencia de oxígeno y promover la síntesis de la hormona eritropoyetina, que estimula la fabricación de eritrocitos (los glóbulos rojos de la sangre). Esto es lo que ocurre, por ejemplo, en las personas que viven a grandes altitudes, donde el oxígeno es más escaso. Los trabajos de los tres investigadores, sobre todo los de Kaelin, descubrieron además cómo ciertos tumores son capaces de hackear este mecanismo para promover la creación de vasos sanguíneos que aporten nutrientes al tumor.

Como suele ocurrir en biomedicina, las aplicaciones de esta ciencia básica llegan a un plazo mucho más largo, si es que llegan. Sobre el cáncer, es una incógnita. Actualmente los fármacos que interfieren en este proceso se ensayan contra enfermedades como las anemias. En resumen, se trata también de ciencia de los 90, que al borde de la tercera década del siglo XXI aún no ha demostrado su posible utilidad clínica (esto último va por el hecho de que suele esgrimirse el argumento de las aplicaciones sobradamente demostradas, como en el caso de las baterías de litio, para justificar por qué los descubridores del sistema de edición genómica CRISPR, entre los cuales está el español Francis Mojica, aún no han recibido un Nobel).

Y una vez más, también de ciencia de los 90 va este año el Nobel de Física. En esta edición se ha hecho un curioso arreglo que, si de algo da la impresión, es de que en el comité había opiniones discrepantes. Aunque es frecuente que el premio se reparta en dos mitades, y que una de ellas a su vez se subdivida entre dos investigadores (respetando la regla del máximo de tres), lo más habitual en estos casos es que se trate de investigaciones relacionadas entre sí. Este no es el caso: lo que liga las investigaciones de los tres investigadores premiados es, dijo el comité, “el universo”. Dado que el universo es todo lo existente, no es precisar demasiado.

La primera de las mitades ha ido para James Peebles, cuyo nombre suena más, al menos para quienes no somos físicos, como uno de los científicos que elaboraron la teoría sobre la radiación cósmica de fondo, una radiación fósil (desde nuestra perspectiva temporal) del Big Bang que luego las sondas espaciales WMAP de la NASA y Planck de la ESA se encargaron de estudiar.

Lo curioso es que, para describir en conjunto las aportaciones de Peebles sobre la materia oscura, la energía oscura y otros campos, el comité Nobel le ha premiado “por sus descubrimientos teóricos en cosmología física”. Lo cual nos recuerda algo: ¿no habíamos quedado en que el Nobel no se otorga a descubrimientos teóricos, y que, por ejemplo, por ello a Einstein se le concedió por el efecto fotoeléctrico y no por la relatividad? ¿Y que por ello a Stephen Hawking nunca se le dio? ¿No habíamos quedado en que debía tratarse de descubrimientos sobradamente demostrados? ¿Y la materia oscura?

Así, el premio para Peebles queda en realidad más bien como uno de esos Nobel que se conceden como el Óscar a toda una carrera. En cambio, más concreta es la otra mitad, repartida entre Michel Mayor y Didier Queloz por… no, nada de cosmología, sino por el descubrimiento del primer exoplaneta en torno a una estrella similar al Sol. No fue el primer exoplaneta, pero el método de velocidad radial puesto en práctica por Mayor y Queloz es uno de los que después han permitido hallar muchos más planetas extrasolares. En concreto, el premio llega más de 4.000 exoplanetas después, por un trabajo publicado en… 1995. Y por cierto, Mayor y Queloz ya recibieron el Premio Fronteras del Conocimiento de la Fundación BBVA en 2012, hace siete años.

Con lo fácil que lo habría tenido el comité Nobel este año premiando a los responsables de la primera foto de un agujero negro, como han hecho los premios Breakthrough Claro que fueron 347 los investigadores premiados por los Breakthrough. En el caso del Nobel, 344 de ellos se habrían quedado con las ganas.

Los premios Breakthrough, más del siglo XXI que los Nobel

La fundación Breakthrough Prize, que concede los premios de ciencia con la dotación económica más alta del mundo, ha anunciado sus ganadores de la edición de este año, que recibirán sus galardones el domingo 4 de noviembre en una ceremonia presentada por el actor Pierce Brosnan. El acto se retransmitirá en directo por internet desde el centro de investigación Ames de la NASA, en Silicon Valley (EEUU).

En total se repartirán siete premios, cada uno dotado con 3 millones de dólares: cuatro en ciencias de la vida, dos en física fundamental y uno en matemáticas. De los dos premios de física, uno es un galardón extraordinario (que ya aplaudí aquí) para Jocelyn Bell Burnell, la astrónoma que descubrió el primer púlsar en 1968 y que fue ignorada por el Nobel.

Los ganadores de los premios Breakthrough en 2016. Imagen de Breakthrough Prize.

Los ganadores de los premios Breakthrough en 2016. Imagen de Breakthrough Prize.

Este es el resumen de los ganadores y lo que han hecho para merecer esto. En ciencias de la vida, el estadounidense C. Frank Bennett y el uruguayo radicado en EEUU Adrian R. Krainer compartirán uno de los premios por la obtención del Nusinersen/Spinraza, una terapia de nueva generación contra la atrofia muscular espinal, una rara enfermedad neurodegenerativa que sin embargo es hoy la principal causa genética de muerte infantil.

El tratamiento consiste en el uso de pequeñas moléculas de ADN llamadas oligonucleótidos antisentido que consiguen dirigir correctamente la expresión de los genes. El medicamento fue aprobado en 2016 en EEUU y al año siguiente en la UE, y por el momento ha conseguido que la atrofia muscular espinal ya no sea una sentencia de muerte segura para los niños afectados. Por otra parte, el éxito de este fármaco ha impulsado la aplicación de la terapia con oligos antisentido a otras muchas enfermedades.

Los otros tres premios en esta categoría irán para la austro-estadounidense Angelika Amon por sus estudios de los mecanismos celulares patológicos de los errores en el número de cromosomas (como ocurre por ejemplo en el síndrome de Down o en el 80% de los cánceres); para la china-estadounidense Xiaowei Zhuang por desarrollar una técnica de microscopía óptica de ultra-alta resolución llamada STORM que permite observar estructuras celulares 10.000 veces más pequeñas que el grosor de un pelo humano; y para el también chino-estadounidense Zhijian James Chen por descubrir un mecanismo sorprendente que activa el sistema inmunitario gracias a una enzima que detecta la presencia de ADN en el interior celular pero fuera del núcleo, lo cual ocurre en las células dañadas o infectadas por virus. Este mecanismo podría aprovecharse para combatir enfermedades como el cáncer, pero también ayudará a comprender mejor las enfermedades autoinmunes como el lupus o la esclerosis múltiple.

El premio de física lo comparten los estadounidenses Charles Kane y Eugene Mele por abrir el camino hacia un nuevo tipo de materiales llamados aislantes topológicos, que tienen la peculiaridad de conducir la corriente eléctrica en su superficie al mismo tiempo que son aislantes en el interior. Estos materiales ofrecerán un nuevo sistema controlado para investigar el comportamiento de las partículas subatómicas, pero además su extraña simetría representa un modelo para aplicar restricciones topológicas similares a otros tipos de fenómenos físicos, como la luz o el sonido. Más allá de su interés teórico, los expertos predicen grandes aplicaciones de estos futuros materiales en los sistemas electrónicos, incluyendo la computación cuántica.

Finalmente, el premio de matemáticas ha recaído en el francés Vincent Lafforgue por varias contribuciones en geometría algebraica con múltiples posibilidades de aplicación, desde la computación, la criptografía y la ciberseguridad a la mecánica cuántica o el diseño de nuevos materiales para crear energías limpias. Pero como si fuera el Gordo de Navidad, sigue el reparto de la lluvia de millones: Breakthrough apoya también los logros de los jóvenes investigadores concediendo otros seis premios adicionales de 600.000 dólares repartidos entre las categorías de física y matemáticas.

Hasta aquí, la información. Pero un aspecto interesante de los premios Breakthrough es que en solo siete ediciones han conseguido situarse como un nuevo referente destacado entre los galardones de ciencia (desde luego, con una resonancia científica internacional infinitamente mayor que nuestros Princesa de Asturias). Evidentemente, cuando alguien pone más de 22 millones de dólares encima de la mesa, pocos más argumentos se necesitan; aunque un Nobel seguirá siendo un Nobel, y probablemente más de un galardonado con el Breakthrough estaría dispuesto a renunciar a los más de dos millones de dólares de diferencia por hacerse con la medalla sueca.

Pero tratándose en todo caso de premios personalistas, un modelo que se corresponde poco o nada con la realidad actual de la ciencia colaborativa, los Breakthrough reúnen algunas cualidades que los sitúan en un contexto más de este siglo que los Nobel. Para empezar, premian ciencia de vanguardia, mientras que en general los Nobel continúan premiando ciencia del siglo XX. Cuando se presentan los ganadores de los Nobel en los medios a veces se transmite la impresión de que las investigaciones galardonadas son actuales; pueden serlo sus aplicaciones, pero los hallazgos suelen ser antiguos, en muchos casos de hace décadas.

La razón de esto es que en cierto modo los Nobel se han convertido en víctimas de su propio prestigio; se han hecho tan grandes que los jurados suelen aplicar criterios muy conservadores, demorando la distinción de logros o hallazgos hasta que el paso del tiempo los ha consolidado. En la práctica, y dado que un investigador que logra un avance importante suele dedicar el resto de su vida a él, los premios de ciencia se parecen al de Literatura: no se conceden a una obra concreta, sino a toda una carrera.

Imagen de Wikipedia.

Imagen de Wikipedia.

Un ejemplo lo tenemos comparando el premio Breakthrough a Bennett y Krainer con el Nobel de Medicina de este año, concedido a James P. Allison y Tasuku Honjo por el descubrimiento de la inmunoterapia contra el cáncer. En ambos casos los tratamientos derivados de los hallazgos están de plena actualidad y aún tienen un enorme potencial de desarrollo futuro. Es más, ambos enfoques terapéuticos pueden convivir perfectamente durante las próximas décadas. Pero desde el punto de vista científico, que es de lo que se trata, la inmunoterapia es el pasado (también lo es la aspirina, un pasado mucho más antiguo, y aún sigue funcionando). En cambio, la terapia antisentido es una nueva frontera.

Todo lo cual, además y curiosamente, hace caer a los Premios Nobel en una contradicción. La organización suele escudarse en un seguimiento estricto de sus normas para justificar que solo se premie a un máximo de tres científicos en cada categoría, o que no se concedan premios póstumos. Pero en realidad estas restricciones no figuraban en el testamento en el que Alfred Nobel instituyó los premios, sino que fueron incorporadas después. Y en cambio, lo que sí figura en el testamento es que los premios deben concederse por avances logrados durante el año precedente. Lo que, obviamente, nunca se respeta.

Hasta tal punto los Nobel, sin perder nunca ni un ápice de su prestigio, sí son cada vez más cuestionados, que incluso existe una web dedicada a promover una reforma en estos premios para adecuarlos a la realidad de la ciencia actual y corregir sus errores. Su promotor es el astrofísico Brian Keating, buen conocedor de la organización como uno de los encargados de nominar a los candidatos. Keating ha llegado incluso a sugerir que los Nobel de ciencia se tomen un año de vacaciones para replantear su enfoque.

En cuanto a los Breakthrough, su carácter diferente y más actual se entiende repasando los nombres que están detrás de esta fundación: entre otros, Sergey Brin (Google), Mark Zuckerberg (Facebook), Anne Wojcicki (23andMe, líder en genómica personal) y Yuri Milner (magnate tecnológico). Como personajes del mundo de la tecnología, se comprende que estén más interesados en la ciencia puntera; incluso cuando se trata de ciencia básica, es previsible que los hallazgos merecedores de los premios vayan a ser también merecedores de jugosas inversiones en Silicon Valley, por lo que los Breakthrough pueden mover la cinta transportadora que mueve el dinero desde la empresa a la investigación para volver a la empresa y volver a la investigación.

Al fin y al cabo, de esto se trata: los premios promocionan la ciencia bajo la excusa de promocionar a los científicos. En palabras de Keating, «el propósito de Alfred Nobel no era engordar la cartera de los científicos. En su lugar, quería atraer la atención a sus trabajos beneficiosos e incentivar nuevas invenciones». Lo cual, para ser una idea de 1895, era una idea muy moderna.

Por qué el Nobel para Mojica es mucho más complicado de lo que parece

Un año más, los Nobel de ciencia se han saldado dejándonos sin premio para Francisco Martínez Mojica, el microbiólogo de la Universidad de Alicante descubridor de los fundamentos que han originado el sistema CRISPR. Para quien aún no lo sepa, resumo brevísimamente que CRISPR es una herramienta molecular de corta-pega de ADN en la que están depositadas las mayores esperanzas para la curación de enfermedades genéticas en las próximas décadas, y que por ello suele presentarse como la gran revolución genética del siglo XXI. O al menos, de este primer tramo.

Como ya expliqué ayer, CRISPR aún no se ha bregado en el campo clínico como para merecer un Nobel de Medicina, pero en cambio sí ha demostrado su enorme potencia en los laboratorios como para merecer un Nobel de Química. Conviene aclarar que estos premios los otorgan comités diferentes de instituciones distintas: el de Fisiología o Medicina depende del Instituto Karolinska, mientras que el de Química es competencia de la Real Academia Sueca de Ciencias (no de la «Academia Sueca», como suele decirse, ya que esta solo concede el premio de Literatura).

Francisco JM Mojica. Imagen de Roberto Ruiz / Universidad de Alicante.

Francisco JM Mojica. Imagen de Roberto Ruiz / Universidad de Alicante.

Por el momento, deberemos seguir a la espera otro año más. Pero el hecho de que el hallazgo y desarrollo de CRISPR aún no haya sido distinguido con el más lustroso de los premios científicos (aunque no el mejor dotado económicamente) no es una mala noticia; cada año suenan estas seis letras en las apuestas, y hoy lo más natural es confiar en que más tarde o más temprano acabarán saliendo en la papeleta ganadora. La verdadera mala noticia sería que, cuando a CRISPR le salga el billete dorado en la chocolatina, no sea a Mojica a quien le toque.

Ayer dejé caer en el último párrafo que la decisión sobre a quiénes premiar por el hallazgo y desarrollo de CRISPR no es precisamente inmediata. Y esto requiere una explicación. Los Premios Nobel tienen pocas reglas, pero se siguen a rajatabla. Una de ellas dice que cada premio solo pueden compartirlo un máximo de tres científicos o científicas (todavía ellas son minoría), y ayer mencioné que en el caso de CRISPR hay al menos cuatro nombres en liza. Pero en realidad son más de cuatro. Y por anacrónica que resulte hoy en día la idea de que haya tres lobos solitarios trabajando en sus laboratorios del sótano y a quienes se les ocurra lo que no se le ha ocurrido a nadie más en todo el planeta, no está previsto que las normas de los Nobel vayan a cambiar.

Pero entremos en la cuestión de los nombres. Entre todos ellos hay dos que parecen indiscutibles, y ambos son de mujer. La estadounidense Jennifer Doudna y la francesa Emmanuelle Charpentier fueron las primeras en publicar la descripción de CRISPR como herramienta genética, desarrollada y adaptada a partir del descubrimiento del sistema original que en las bacterias actúa como mecanismo de inmunidad contra los virus.

Jennifer Doudna. Imagen de Jussi Puikkonen / KNAW / Wikipedia.

Jennifer Doudna. Imagen de Jussi Puikkonen / KNAW / Wikipedia.

 

Emmanuelle Charpentier. Imagen de Carries mum / Wikipedia.

Emmanuelle Charpentier. Imagen de Carries mum / Wikipedia.

En el tercer nombre es donde surgen las dudas. Mojica, quien primero publicó el hallazgo del sistema original en las bacterias (y le puso la denominación por la que ahora se conoce), es uno de los firmes candidatos. Pero por desgracia, no es el único: hay hasta tres científicos más que podrían optar a rellenar esa terna.

Comencemos por Mojica, el descubridor original del sistema. En realidad hubo otros grupos que casi de forma simultánea llegaron a conclusiones similares; pero dado que él fue el primero en publicarlas, retendría ese derecho a la primicia del descubrimiento. Las cosas comienzan a complicarse cuando avanzamos en la historia de CRISPR.

Después de Mojica, fue el argentino Luciano Marraffini, por entonces en la Universidad Northwestern de Illinois (EEUU), quien primero demostró cómo funciona CRISPR cortando ADN, una función que sería esencial para que Charpentier y Doudna convirtieran una curiosidad de la naturaleza en una herramienta utilizable.

A su vez, Marraffini colaboró con el chino Feng Zhang, del Instituto Broad de Harvard y el MIT (Instituto Tecnológico de Massachussetts), quien demostró por primera vez la utilidad de CRISPR en células no bacterianas, las de los organismos superiores y, en concreto, de los mamíferos.

Luciano Marraffini. Imagen de Sinc.

Luciano Marraffini. Imagen de Sinc.

 

Feng Zhang. Imagen de National Science Foundation.

Feng Zhang. Imagen de National Science Foundation.

El problema es que en ciencia no existe una autoridad que decida quién debe ser considerado el autor oficial de un descubrimiento, y por tanto los comités que conceden los Premios Nobel son muy libres de elegir los ingredientes que más les gusten de esta ensalada de nombres y apartar los demás. Pero ¿según qué criterio?

Un aspecto interesante es que CRISPR es un descubrimiento transformado en tecnología; y, a diferencia de lo que sucede en ciencia, en tecnología sí existe una autoridad que decide quién es su inventor: los organismos de patentes. Doudna y Charpentier poseen las patentes originales del sistema CRISPR, pero las dos investigadoras mantienen una agria disputa con Zhang por la patente de su aplicación en células de mamíferos, que finalmente ha tenido que resolverse en los tribunales.

Según han explicado los expertos en propiedad industrial, la manzana de la discordia es el significado del término «no obvio» aplicado a este caso concreto. La Oficina de Patentes y Marcas de EEUU solo concede una patente de aplicación cuando esta se considera no obvia, por lo que se admite como nueva invención. Cuando Zhang comprobó la utilidad de CRISPR en células de mamíferos (que publicó solo unas semanas antes que sus competidoras), solicitó una patente alegando que esta aplicación no era obvia, y el organismo de patentes aceptó su argumento. Pero poco después la Universidad de California, en representación de Doudna, impugnó la patente de Zhang aduciendo que se trataba de una aplicación obvia. El asunto ha coleado hasta que finalmente el pasado 10 de septiembre un tribunal federal de EEUU ha dictaminado en favor de Zhang.

Así pues, ¿sería capaz el comité Nobel de premiar a Doudna, Charpentier y Mojica, dejando fuera a quien es el poseedor en EEUU (aunque no en Europa) de la patente de aplicación de CRISPR en células humanas?

Pero la cosa aún puede complicarse más. Y es que, si se detienen a contar los nombres mencionados, notarán que todavía falta uno más para llegar a los seis que completan la primera línea de los candidatos al reconocimiento de CRISPR. Se trata del bioquímico lituano Virginijus Šikšnys, de la Universidad de Vilnius, que en 2012 y de forma independiente llegó a los mismos resultados que Doudna y Charpentier, aunque su estudio fue rechazado y terminó publicándose más tarde que el de las dos investigadoras.

Según las reglas habituales, Šikšnys perdió la primicia del descubrimiento. Pero se da la circunstancia de que presentó una solicitud de patente, que fue aprobada, semanas antes de que lo hiciera la Universidad de California, por lo que el lituano podría tumbar la patente de las dos científicas si se lo propusiera.

Virginijus Šikšnys. Imagen de NTNU / Flickr / CC.

Virginijus Šikšnys. Imagen de NTNU / Flickr / CC.

Todo lo cual sitúa a los jurados de los Nobel en un laberinto de difícil salida. Otros premios sin restricción en el número de galardonados han optado por diferentes soluciones: el Breakthrough (el mejor dotado económicamente en biomedicina) distinguió únicamente a Doudna y Charpentier, lo mismo que hizo con sonrojante ridículo nuestro Princesa de Asturias. Por su parte, el premio noruego Kavli reconoció a Doudna, Charpentier y Šikšnys. El más salomónico ha sido el Albany Medical Center Prize, el cuarto mejor dotado del mundo en biomedicina, que solo dejó fuera a Šikšnys, premiando a los otros cinco investigadores.

Pero además de este rompecabezas sin solución aparente, hay otro motivo que quizá podría detraer a los comités Nobel de conceder un premio al hallazgo y desarrollo de CRISPR en un futuro próximo, y es precisamente el vergonzoso espectáculo ofrecido por Doudna, Charpentier y Zhang con sus dentelladas por la carnaza de las patentes. Según se cuenta, ni siquiera las dos investigadoras son ya las grandes amigas que fueron. Los tres crearon sus respectivas empresas para explotar sus tecnologías. Y aunque es incuestionable que el inventor de un método para curar tiene el mismo derecho a vivir de sus hallazgos que quien inventa la rosca para clavar sombrillas, es posible que los jurados de los Nobel no se sientan ahora muy inclinados a premiar a quienes han protagonizado un ejemplo tan poco edificante para la ciencia.

Claro que, aunque no sirva de mucho, desde aquí lanzo una propuesta: ¿qué tal Mojica, Šikšnys y Marraffini?

Por qué Mojica no gana el Nobel de Medicina (pero debería ganar el de Química)

Los fallos de los Premios Nobel son tan imprevisibles como pueden serlo estas cosas. Ni siquiera los profesionales de estas apuestas (no, que yo sepa William Hill y 888 no lo cubren) atinan más de lo que fallan, y si aciertan es gracias a los premios cantados, como los de Física a los descubridores del bosón de Higgs o las ondas gravitacionales. En el fondo, se trata de la decisión de un comité que solo se atiene a sus propios criterios, siempre que encajen en las muy escuetas reglas definidas por Alfred Nobel en su testamento hace más de un siglo.

Pero en general, a lo largo de la trayectoria de los premios el Nobel de Medicina se ha concedido a investigadores que han aportado una contribución esencial de repercusiones probadas en la salud humana, o bien a aquellos que han descubierto mecanismos cruciales del funcionamiento de la biología con clara aplicación a nuestra especie; este segundo enfoque es el que suele omitirse cuando se cita el Premio Nobel de Medicina, olvidando que en realidad es de Fisiología o Medicina.

Francisco Martínez Mojica, en su laboratorio de la Universidad de Alicante. Imagen de Roberto Ruiz / Universidad de Alicante.

Francisco Martínez Mojica, en su laboratorio de la Universidad de Alicante. Imagen de Roberto Ruiz / Universidad de Alicante.

El sistema CRISPR, cuyas bases fundamentales sentó el investigador alicantino (ilicitano, para más señas) Francisco Martínez Mojica, es la herramienta de edición genética –o más llanamente, corrección de genes– más potente, sencilla y precisa jamás inventada. Dado que la terapia génica se configura como uno de los tratamientos estrella de este siglo para cualquier enfermedad que tenga algo que ver con los genes, se vaticina que en las próximas décadas CRISPR podría convertirse en un recurso clínico tan imprescindible como hoy lo son los antibióticos.

Pero ese momento aún no ha llegado. Aunque CRISPR se ha empleado ya para corregir genes humanos en sistemas experimentales (aunque con resultados a veces controvertidos), los ensayos clínicos para llevar a la práctica el poder de este tipex genético aún se resisten; y en cambio, actualmente existen numerosos ensayos con pacientes que están logrando buenos resultados con terapia génica empleando sistemas de la generación anterior.

Así, por el momento no hay una justificación clara para que Mojica y/u otros investigadores implicados en el desarrollo de CRISPR, como la estadounidense Jennifer Doudna y la francesa Emmanuelle Charpentier, reciban un premio en una categoría en la que el sistema todavía no ha demostrado su eficacia. Y dado que CRISPR es una caja de herramientas moleculares creadas a partir de mecanismos de las bacterias, tampoco representa una contribución al conocimiento de la fisiología humana.

En cambio, otro caso diferente es el del Nobel de Química. Esta es una categoría paraguas en la cual entra cualquier cosa relacionada con la química, una ciencia inmensamente amplia. En el campo concreto de la bioquímica, la química de la vida, el ámbito del premio de Química puede solapar con el de Fisiología o Medicina, pero en este caso no prima el criterio de la relevancia del descubrimiento para la salud humana.

Y desde luego, así como CRISPR aún tendrá que batirse en la arena clínica contra otros sistemas más veteranos, en cambio hoy es insustituible en el área de la investigación básica. Miles de científicos en todo el mundo han abandonado otras herramientas más antiguas, salvo casos específicos, para comenzar a utilizar CRISPR en sus experimentos de biología molecular. Basta una simple búsqueda en las bases de datos de publicaciones científicas para comprobar que ya son cerca de 11.000 los estudios en los que de un modo u otro está implicado este sistema. Lo cual es sencillamente impresionante para algo que a comienzos de esta década ni siquiera existía.

La contribución que CRISPR ya ha aportado a infinidad de proyectos de investigación sí justifica un Premio Nobel de Química. Otra cosa es que el comité encargado de la concesión sea capaz de solventar cómo seleccionar a tres ganadores –el límite impuesto por las reglas del premio– cuando son como mínimo cuatro (a Mojica, Doudna y Charpentier se suma el chino-estadounidense Feng Zhang) quienes merecerían el reconocimiento.

Tres millones de dólares para Jocelyn Bell, la astrofísica ignorada por el Nobel

Hace un par de años y medio conté aquí la curiosa historia del descubrimiento del primer púlsar (estrella de neutrones giratoria) y de cómo aquel hallazgo, publicado en 1968, llegó a ilustrar la icónica portada de uno de los discos más míticos de la historia musical reciente, Unknown Pleasures de Joy Division (1979).

Jocelyn Bell en 1967. Imagen de Roger W Haworth / Wikipedia.

Jocelyn Bell en 1967. Imagen de Roger W Haworth / Wikipedia.

En el devenir de aquel episodio científico, que abrió una nueva era para la astronomía, hubo una clara figura perdedora: la norirlandesa Jocelyn Bell (después Bell Burnell por matrimonio), la autora material del hallazgo. Bell recibió en su día una gran atención por parte de los medios británicos… consistente en preguntarle si tenía muchos novios o si era más alta que la princesa Margarita.

Unos años después, en 1974, el descubrimiento fue distinguido con el Premio Nobel de Física… para el supervisor de Bell, Antony Hewish. No solo se trata de que Hewish no había sido el artífice directo del descubrimiento; es que incluso el hallazgo fue posible gracias a que Bell y otros cuatro colaboradores habían pasado dos años construyendo el artefacto necesario para ello. Y no piensen en alta tecnología: allí cada becario recibía un kit de herramientas para clavar palos en una parcela de 18.000 metros cuadrados y tender 190 kilómetros de cable entre ellos. Así eran aquellos primitivos radiotelescopios.

En su día y desde entonces, la omisión de Bell en la concesión de aquel premio ha perdurado popularmente como un caso flagrante de machismo en el mundo de la ciencia. Pero ya aclaré que en realidad se trata de algo más complejo: Bell era la becaria, y con independencia de que fuera hombre o mujer, los comités de los Nobel casi nunca premian a los becarios por considerarlos meramente las manos del cerebro de su amo.

Lo cual, evidentemente, casi nunca es cierto. Pero el Premio Nobel es una institución privada y por lo tanto tiene todo el derecho a regirse por las normas que le parezca, por equivocadas que sean (ya he comentado aquí mil veces que hoy en día premiar a una sola persona por un hallazgo es un descomunal anacronismo) Y aunque las quejas por este criterio sean frecuentes, a muchos de quienes protestan por ello, en concreto a los becarios, habría que plantearles esta pregunta: ¿cuántos estarían dispuestos a que en el futuro sean sus becarios quienes se lleven el mérito? Todos los sistemas jerárquicos se perpetúan porque los de abajo acaban llegando arriba.

Por su parte, Bell atajaba las críticas hacia el fallo del premio con una humildad y una elegancia dignas de aplauso:

Es el supervisor quien tiene la responsabilidad final del éxito o el fracaso del proyecto. Oímos de casos en los que un supervisor culpa a su estudiante de un fracaso, pero sabemos que la culpa es sobre todo del supervisor. Me parece simplemente justo que él deba también beneficiarse de los éxitos. Pienso que los premios Nobel quedarían degradados si se concedieran a estudiantes de investigación, excepto en casos muy excepcionales, y no creo que este sea uno de ellos.

Existen estos casos excepcionales que mencionaba Bell. Uno reciente que me viene ahora a la memoria es el del Nobel de Medicina de 2009, que premió a Elizabeth Blackburn y a su becaria Carol Greider por el descubrimiento de la telomerasa, la enzima clave del envejecimiento celular. Blackburn relacionó el acortamiento de los telómeros (los extremos de los cromosomas) con la edad de la célula, pero la identificación de la telomerasa fue obra exclusiva de Greider, algo que el comité Nobel no pudo ignorar.

Pero en realidad, el papel de Greider en este hallazgo fue muy similar al de Bell en el suyo. Algo que nunca sabremos es si Bell habría recibido el premio junto a Hewish si su nombre de Jocelyn hubiera designado a un chico (curiosamente, este nombre en Francia es masculino, algo similar a la diferencia de uso de Andrea, que es femenino aquí y masculino en Italia).

Jocelyn Bell Burnell en 2015. Imagen de Silicon Republic / Wikipedia.

Jocelyn Bell Burnell en 2015. Imagen de Silicon Republic / Wikipedia.

En definitiva, y ya se debiera la omisión a su condición de mujer o de becaria, o a ambas, lo cierto es que el agravio del Nobel aún pedía una reparación, a pesar de que desde entonces Bell ha sido distinguida con altos honores y nombramientos, incluyendo la Orden del –ya inexistente– Imperio Británico.

La merecida reparación le ha llegado ahora a Bell en una forma de menor prestigio científico que el Nobel, pero que muchos de los nobeles cambiarían con gusto: los tres millones de dólares que otorga el Premio Especial Breakthrough en Física Fundamental. En comparación, la dotación del Nobel en cada categoría es de algo menos de un millón a repartir entre los premiados, que en ciencia suelen ser tres.

Los Premios Breakthrough fueron creados en 2012 por un grupo de magnates que incluye al físico y tecnólogo ruso-israelí Yuri Milner, al cofundador de Facebook Mark Zuckerberg y su mujer, Priscilla Chan, al cofundador de Google Sergey Brin, a la cofundadora de la empresa genómica 23andMe y exmujer de Brin, Anne Wojcicki, y al chino Jack Ma, cofundador del gigante de internet Alibaba. Es decir, un ramillete de empresarios con bolsillos sin fondo que decidieron dedicar parte de su fortuna a la promoción de la ciencia y la investigación tecnológica.

Los premios tienen su edición regular anual, a la que se añade la concesión esporádica de galardones especiales a figuras de excepcional relevancia, como es el caso de Bell. El premio recibido ahora por la astrónoma se ha concedido anteriormente a Stephen Hawking y a los principales responsables del descubrimiento del bosón de Higgs o de las ondas gravitacionales.

Así pues, enhorabuena a la premiada, que lo tenía bien merecido. Que lo disfrute con salud. Y ya que hemos mencionado el Unknown Pleasures, me sirve como excusa para dejarles con esta rara y antigua joya.

El Nobel de Química que murió en España

Los nombres de Santiago Ramón y Cajal y Severo Ochoa son hoy de sobra conocidos incluso para el ciudadano medio sin conocimientos de ciencia. Pero esto, más que un motivo para celebrar, es una razón para el sonrojo: son las dos únicas personas nacidas en España que han alcanzado el reconocimiento de un Nobel de ciencia.

El número de españoles ganadores de un Nobel de Literatura más que duplica esta cifra (cinco, para ser exactos). El historiador del CSIC Ricardo Campos, en un estudio sobre la eugenesia del franquismo (que conté en detalle aquí), escribía que el psiquiatra franquista Juan José López Ibor definía al hombre español como “estoico, sobrio, buscador de gloria militar y literaria, despectivo hacia la ciencia y la técnica e impasible frente la muerte”. Y así hemos llegado a donde estamos.

Para un estadounidense o un británico, aprenderse la lista de sus científicos laureados con el Nobel sería casi misión imposible. Y ni siquiera la diferencia entre su potencia científica y la nuestra es suficiente justificación: como conté aquí en una ocasión, España es el undécimo país en número de publicaciones científicas (de hecho, cuando lo conté éramos los décimos, pero la reciente edad oscura para la ciencia española nos ha hecho perder un puesto que será muy complicado volver a recuperar), pero se queda en un vergonzoso vigésimo séptimo lugar en número de premios Nobel de ciencia, a la altura de Luxemburgo o Lituania.

Wendell Meredith Stanley en 1946, el año en que ganó el Nobel de Química. Imagen de Wikipedia.

Wendell Meredith Stanley en 1946, el año en que ganó el Nobel de Química. Imagen de Wikipedia.

Todo lo anterior me ha venido al hilo del recuerdo de un episodio poco conocido, y es que si este país solo ha alumbrado dos Nobel de ciencia, en cambio ha matado a uno más. Es un decir, claro; en realidad fue su corazón lo que mató a Wendell Meredith Stanley el 15 de junio de 1971, unas horas después de pronunciar una conferencia en la Universidad de Salamanca. Al día siguiente, 16 de junio, el diario ABC (que daba la noticia a toda página bajo el epígrafe “vida cultural”) contaba que Stanley, profesor de la Universidad de Berkeley y Nobel de Química en 1946, había fallecido de madrugada a la edad de 67 años por un infarto de miocardio en su alojamiento, el Colegio Fonseca.

Stanley había viajado a Barcelona con motivo de un congreso científico en compañía de Severo Ochoa, con quien mantenía amistad, y había sido invitado a Salamanca por el bioquímico Julio Rodríguez Villanueva, quien antes de la conferencia de Stanley advirtió de que “las preguntas que formularan al premio Nobel se le hicieran despacio, a causa de que había sufrido varios ataques al corazón”, contaba ABC. La preocupación de Villanueva no pudo ser más premonitoria.

Pero ¿quién era Wendell Meredith Stanley? Resulta curioso que para un país como EEUU un Nobel de ciencia sea algo tan de andar por casa que algunos de ellos sean casi unos completos desconocidos. Fuera de los círculos de la microbiología y la biología molecular (y tal vez dentro), el nombre de Stanley solo invita a encoger los hombros, e incluso su página en la Wikipedia inglesa no le dedica más de cuatro o cinco párrafos.

Casi oculto, Wendell Stanley asoma la cabeza al fondo de esta foto tomada en la Casa Blanca en 1961, durante un encuentro con científicos del presidente John F. Kennedy. Imagen de White House / Wikipedia.

Casi oculto, Wendell Stanley asoma la cabeza al fondo de esta foto tomada en la Casa Blanca en 1961, durante un encuentro con científicos del presidente John F. Kennedy. Imagen de White House / Wikipedia.

Y sin embargo, podríamos decir que Wendell Stanley fue nada menos que el descubridor de los virus. Para los iniciados en el tema esta afirmación puede ser discutible, pero démosle la vuelta: si hubiera que nombrar a un solo científico/a como descubridor de los virus, ¿quién merecería este título más que Wendell Stanley?

En la segunda mitad del siglo XIX el francés Louis Pasteur y el alemán Robert Koch sentaron la teoría microbiana de la enfermedad, según la cual las infecciones estaban provocadas por los microbios. Pasteur, Koch y otros científicos comenzaron a identificar las bacterias responsables de numerosas enfermedades, y las infecciones dejaron de ser un misterio a medida que iban cayendo una tras otra bajo el microscopio de los investigadores.

Pero una se les resistía: la rabia. Nadie era capaz de aislar bajo las lentes una bacteria a la que culpar de la rabia. Lo mismo ocurría con ciertas enfermedades de las plantas, en las cuales los investigadores buscaban causas bacterianas al hilo de los trabajos de Pasteur y Koch, pero sin éxito. Uno de estos científicos era el químico alemán Adolf Mayer, que en 1886 describió una plaga a la que denominó mosaico del tabaco, que arruinaba las hojas de esta planta entonces tan apreciada. Mayer extraía savia de una planta afectada y la inoculaba en un ejemplar sano, observando que la enfermedad se transmitía. Pero cuando estudiaba la savia al microscopio, no encontraba nada.

Mayer y otros investigadores, como el ruso Dmitri Ivanovsky, descubrieron que el misterioso causante del mosaico del tabaco era algo capaz de atravesar no solo un papel de filtro, sino también unos filtros de porcelana inventados por el francés Charles Chamberland y que servían para limpiar un líquido de bacterias. ¿Qué era lo que causaba aquella infección del tabaco?

La teoría de la época suponía que se trataba de una toxina o de una bacteria diminuta, hasta que en 1898 el holandés Martinus Beijerinck se atrevió a aventurar que aquella enfermedad del tabaco estaba causada por otro tipo de agente infeccioso que no era una bacteria, al que llamó “virus”, “veneno” en latín, un término que ya se había empleado siglos antes en referencia a agentes contagiosos desconocidos. Beijerinck acertó al sugerir que el virus era algo más o menos vivo (no como una toxina), ya que solo afectaba a las células que se dividían. Pero se equivocó al proponer que era de naturaleza líquida.

A partir de los experimentos de Beijerinck, los microbiólogos comenzaron a llamar “virus” a todo agente infeccioso invisible al microscopio y que atravesaba los filtros. El primero en detectarse en animales fue el de la fiebre aftosa, y después llegaron los humanos, el de la fiebre amarilla, la rabia, la viruela y la poliomielitis. Pero aunque ya era de conocimiento común que todas estas enfermedades eran víricas, en realidad aún no se tenía la menor idea sobre qué y cómo eran estos virus. Aún se seguía admitiendo generalmente que no eran partículas, sino misteriosos líquidos infecciosos, una especie de veneno vivo.

Aquí es donde entra nuestro Stanley. En la década de los 30 apareció el microscopio electrónico, una herramienta que permitía hacer visible lo invisible al microscopio óptico tradicional. Y con el potencial que ofrecía esta nueva tecnología, en 1935 Stanley se propuso destripar de una vez por todas la naturaleza del virus del mosaico del tabaco, emprendiendo uno de esos trabajos penosos que alguien tenía que hacer en algún momento: despachurró una tonelada de hojas de tabaco, extrajo su jugo, lo purificó, y de todo ello finalmente obtuvo una exigua cucharadita de polvo blanco. Pero allí estaba el virus del mosaico del tabaco, una especie de minúsculo ser con forma alargada que seguía siendo infectivo incluso cuando estaba cristalizado; es decir, lo que llamaríamos más o menos muerto.

El virus del mosaico del tabaco al microscopio electrónico. Imagen de Wikipedia.

El virus del mosaico del tabaco al microscopio electrónico. Imagen de Wikipedia.

En realidad fueron otros investigadores los que después obtuvieron las primeras imágenes de microscopía electrónica del virus del mosaico del tabaco, y Stanley se equivocó en algunas de sus hipótesis, como cuando propuso que el virus solo estaba compuesto por proteínas. Pero no solo su virus fue realmente el primer virus que ya era algo más que un nombre, sino que aquella extraña capacidad de infectar incluso cuando estaba cristalizado descubrió para la ciencia el rasgo fundamental de los virus, y es que no son exactamente seres vivos, o al menos no como los demás. Pero esta ya es otra historia.

Los Nobel, uno fresco, otro rancio, y siempre dejan a alguien fuera

Como cada año por estas fechas, no puede faltar en este blog un comentario sobre lo que nos ha traído la edición de turno de los premios Nobel. Y aunque cumplo con esta autoimpuesta obligación, debo confesarles que lo hago con la boca un poco pastosa. No por desmerecer a los ganadores, siempre científicos de altísimos logros, sino por otros motivos que año tras año suelo traer aquí y que conciernen a los propios premios.

Imagen de Wikipedia.

Imagen de Wikipedia.

En primer lugar, están los merecimientos no premiados de los que siempre se quedan por debajo de la línea de corte. Ya lo he dicho aquí, y no descubro nada nuevo: ya no hay Ramones y Cajales encerrados a solas en su laboratorio. Vivimos en la época de la ciencia colaborativa y a veces incluso multitudinaria, donde algunos estudios vienen firmados por miles de autores. No exagero: hace un par de años, un estudio de estimación de la masa del bosón de Higgs batió todos los récords conocidos al venir firmado por una lista de 5.154 autores. Nueve páginas de estudio, 24 páginas de nombres.

En el caso que nos ocupa, el Nobel de Física 2017 anunciado esta semana ha premiado la detección de ondas gravitacionales, un hito histórico que se anunció y publicó por primera vez en febrero de 2016, que confirmó la predicción planteada por Einstein hace un siglo y que según los físicos abre una nueva era de la astronomía, ya que enciende una nueva luz, que en este caso no es luz, para observar el universo.

Pero aunque sin duda el hallazgo merece los máximos honores que puedan concederse en el mundo de la ciencia, el problema es que los Nobel fueron instituidos por un tipo que murió hace 121 años, cuando la ciencia era cosa de matrimonios Curies investigando en un cobertizo. Y las normas de los Nobel dicen que como máximo se puede premiar a tres científicos para cada categoría.

Los agraciados en este caso han sido Rainer Weiss, Barry Barish y Kip Thorne, los tres estadounidenses, el primero nacido en Alemania. Weiss se queda con la mitad del premio, mientras que Barish y Thorne se reparten el otro 50%.

No cabe duda de que los tres lo merecen. Weiss fue quien inventó el detector que ha servido para pescar por primera vez las arrugas en el tejido del espacio-tiempo, producidas por un evento cataclísmico como la fusión de dos agujeros negros. Thorne ha sido la cabeza más visible en el desarrollo de la teoría de las ondas gravitacionales, además de ser un divulgador mediático y popular: creó el modelo de agujero negro que aparecía en la película Interstellar. Por su parte, Barish ha sido el principal artífice de LIGO, el detector que primero observó las ondas gravitacionales y que se construyó según el modelo de Weiss apoyado en la teoría de Thorne.

Pero más de mil científicos firmaron el estudio que describió la primicia de las ondas gravitacionales. Sus diversos grados de contribución no quedan reflejados en la lista de autores, ya que en casos así no se sigue la convención clásica de situar al principal autor directo del trabajo en primer lugar y al investigador senior en el último; aquí la lista es alfabética, sin un responsable identificado. El primero de la lista era un tal Abbott, cuyo único mérito para que aquel estudio histórico ahora se cite como «Abbott et al.» fue su ventaja alfabética. De hecho, había tres Abbotts en la lista de autores.

¿Se hace justicia premiando solo a tres? Tengo para mí que los físicos especializados en la materia, sobre todo quienes hayan participado de forma más directa o indirecta en este campo de estudio, tal vez tengan la sensación de que queda alguna cuenta no saldada.

Como mínimo, habrá quienes achaquen al jurado que haya olvidado la importantísima contribución de Virgo, el socio europeo del experimento LIGO. Ambos nacieron de forma independiente en los años 80, LIGO en EEUU y Virgo en Italia como producto de una iniciativa italo-francesa. Con el paso de los años, LIGO y Virgo comenzaron a trabajar en una colaboración que estaba ya muy bien trabada antes de que el detector estadounidense lograra la primera detección de las ondas gravitacionales. La cuarta detección de ondas de este tipo, anunciada hace solo unos días, se ha producido en paralelo en LIGO y en Virgo. ¿Es justo dejar a los artífices del proyecto europeo sin el reconocimiento del Nobel?

Por supuesto, son las normas de los premios. Pero miren esto: el testamento de Nobel no mencionaba en absoluto a tres premiados por cada categoría, sino que se refería simplemente a «la persona que…». Por lo tanto, si se trata de ceñirse estrictamente a la última voluntad del fundador de los premios, estos no deberían repartirse.

Pero la limitada representatividad de la lista de premiados no es el único defecto de los Nobel. Otro que también he comentado aquí en años anteriores es la tendencia a premiar trabajos tan antiguos que ni sus autores ya se lo esperaban, si es que siguen vivos. Y en esto tampoco se respetan las instrucciones de Alfred Nobel, ya que él especificó que los premios deberían concederse a quien «durante el año precedente haya conferido el mayor beneficio a la humanidad».

Si al menos este año en Física se ha premiado ciencia fresca y puntera, no ocurre lo mismo con la categoría de Fisiología o Medicina. Los tres galardonados, Jeffrey Hall, Michael Rosbash y Michael Young, todos estadounidenses, lograron sus avances fundamentales sobre los mecanismos moleculares del reloj biológico (los ritmos circadianos) allá por los años 80.

De hecho, hay un dato muy ilustrativo. A diferencia del caso de las ondas gravitacionales, en el campo de los ritmos circadianos sí hay dos nombres que muy claramente deberían encabezar una lista de candidatos a recibir los honores: Seymour Benzer y su estudiante Ron Konopka, los genetistas estadounidenses que primero descubrieron las mutaciones en los genes circadianos con las cuales pudo escribirse la ciencia moderna de la cronobiología. Pero Benzer falleció en 2007, y Konopka en 2015. Y no hay Nobel póstumo. El premio en este caso se ha concedido a una segunda generación de investigadores porque se ha concedido tan a destiempo que los de la primera murieron sin el debido reconocimiento.

En este caso, los Nobel pecan una vez más de conservadurismo, de no apostar por avances más recientes cuyo impacto está hoy de plena actualidad en las páginas de las revistas científicas. Por ejemplo, CRISPR, el sistema de corrección de genes que abre la medicina del futuro y en el que nuestro país tiene un firme candidato al premio, el alicantino Francisco Martínez Mojica. Pero dado que este avance también puede optar al Nobel de Química, que se anuncia hoy miércoles dentro de un rato, de momento sigamos conteniendo la respiración.