Ciencias mixtas Ciencias mixtas

Los secretos de las ciencias para
los que también son de letras

Entradas etiquetadas como ‘CRISPR’

Muchos científicos apoyan la edición genómica en bebés con fines terapéuticos

El hecho de que la comunidad científica haya condenado de forma casi unánime el experimento de He Jiankui –el investigador que dice haber utilizado la herramienta de edición genética CRISPR para modificar los genomas de al menos tres bebés (dos de ellos ya nacidos)–, como conté ayer, no implica que la misma comunidad científica condene de forma igualmente unánime cualquier experimento de obtención de bebés con sus genomas modificados por edición genética. Aunque así lo hayan interpretado esta semana muchos medios, que solo se han molestado en recoger las opiniones de científicos contrarios a la edición genómica de la línea germinal, esta interpretación sencillamente no se corresponde con la realidad.

Obviamente, sí hay quienes suscriben una causa general. Tanto en los medios generalistas como en las revistas científicas, ciertos investigadores han dejado su visión de que la modificación genética de la línea germinal humana (las células de la reproducción) es una línea roja que jamás debería cruzarse. Dejando aparte las dudas éticas (que son razonables, pero opinables) y los reparos morales (ideológicos y religiosos, que son personales y ahí deben quedarse), la objeción científica fundamental se resume en que las consecuencias de estos experimentos podrían tener “consecuencias impredecibles para las futuras generaciones”, como escribía un grupo de investigadores en 2015 en la revista Nature.

En breve, el argumento podría resumirse en que actualmente no es posible disponer de un análisis riguroso sobre los riesgos y los beneficios. Es decir, que incluso algunos defensores de la causa general basan su oposición no en lo que se conoce, sino en lo que aún no se conoce (y se irá conociendo cada vez más). Pero incluso los detractores admiten: “Si en algún momento surgiera un caso realmente convincente de beneficio terapéutico para la modificación de la línea germinal, invitamos a un debate abierto sobre el curso de acción más adecuado”.

Fecundación in vitro. Imagen de pixabay.

Fecundación in vitro. Imagen de pixabay.

Pero esta opinión no es ni mucho menos unánime. En el extremo opuesto se encuentran científicos como George Church, genetista de la Universidad de Harvard y del Instituto Tecnológico de Massachusetts, uno de los promotores del Proyecto Genoma Humano y una de las máximas autoridades mundiales en nuevas fronteras de la biología molecular, como la biología sintética.

En una entrevista publicada esta semana en la revista Science, se diría que Church casi ha tenido que morderse la lengua para mantener la templanza y no defender abiertamente el experimento de He. Aunque parece medir sus palabras, juzga la reacción general contra He como “bullying“, alegando que las acusaciones contra el investigador chino se resumen en que no cumplió correctamente con el papeleo. Y aunque reconoce que en un caso como este las consecuencias de este incumplimiento pueden ser especialmente graves y sonoras, compara el caso con el de Louise Brown, la primera niña nacida por fecundación in vitro, que en su día recibió el alias peyorativo de “bebé probeta” y también fue fuertemente reprobado por numerosos sectores, incluyendo muchos científicos.

Church recuerda que existe actualmente una moratoria autoimpuesta por los científicos sobre la edición de la línea germinal humana, pero también que “una moratoria no es una prohibición permanente para siempre”. Y aunque admite que quizá el riesgo nunca llegue a ser cero, subraya que tampoco lo es para otros muchos procedimientos médicos aplicados hoy de forma habitual, ni para otras decisiones científicas que suscitan debates éticos; como ejemplo, dice que él jamás hubiera puesto en el dominio público las secuencias genéticas de los virus de la viruela o de la gripe de 1918.

Sin embargo y respecto al riesgo, Church aclara también un aspecto que probablemente debería divulgarse más, y es que el experimento de He no ha sido tanto un salto al vacío como se ha querido presentar. “Tenemos que decir que hemos hecho cientos de estudios en animales y algunos estudios en embriones humanos”, señala. “Tenemos cerdos que tienen docenas de mutaciones CRISPR y una cepa de ratones que tiene 40 sitios CRISPR, y hay efectos off-target [cambios genéticos causados por CRISPR diferentes al pretendido] en estos animales, pero no tenemos pruebas de consecuencias negativas”. “Seamos cuantitativos antes de ser acusatorios; puden ser detectables pero sin efecto clínico”, concluye Church.

Entre los científicos, Church representa la postura más a contracorriente de lo que ha pretendido transmitirse esta semana en diversos medios. Pero Church no está solo en la defensa del uso de CRISPR como herramienta terapéutica para la eliminación de enfermedades genéticas en embriones; eso sí, avanzando con cautela y sin saltarse pasos imprescindibles como He ha hecho.

Al término de la segunda cumbre internacional sobre edición del genoma humano, celebrada esta semana en Hong Kong y en la que He presentó sus resultados (solo después de que se filtraran a la prensa, y aún sin una publicación formal), los miembros del comité organizador han emitido un comunicado criticando el experimento de He como “irresponsable” y señalando su “falta de adhesión a los estándares éticos”, su “falta de transparencia” o su “inadecuada indicación médica”. Pero al mismo tiempo añaden:

La comprensión científica y los requerimientos técnicos para la práctica clínica aún son demasiado inciertos, y los riesgos demasiado grandes para permitir ensayos clínicos de edición de la línea germinal en este momento. Sin embargo, el progreso en los últimos tres años y los debates en la presente cumbre sugieren que es hora de definir un camino riguroso y responsable hacia dichos ensayos.

Según los científicos firmantes, ese camino pasa por la “adhesión a estándares ampliamente aceptados para la investigación clínica”, la definición de “estándares sobre las evidencias preclínicas”, la “evaluación de competencia de los experimentadores”, “estándares obligatorios de conducta profesional” y “fuertes alianzas con pacientes y grupos de defensa de los pacientes”.

Entre estos últimos se han encontrado también algunos de los apoyos más entusiastas al desarrollo de CRISPR como herramienta terapéutica para prevenir enfermedades genéticas en los bebés. Comprensiblemente, muchos padres de niños con enfermedades genéticas letales o altamente incapacitantes ven en CRISPR el posible fin de una pesadilla; no para ellos, a quienes la solución ya les llegaría tarde, sino para otros futuros padres y madres de niños y niñas que hoy no esperarían verse jamás en esa situación, y entre los cuales sin duda se encontrarán muchos de quienes hoy califican la edición genómica de la línea germinal como una monstruosidad.

Los científicos condenan este experimento de edición genética de bebés. Pero…

El pasado lunes saltaba de forma bastante estrambótica la noticia de que un investigador chino llamado He Jiankui ha producido por primera vez bebés con su genoma modificado por edición genética; dos niñas, presentadas con los nombres ficticios de Nana y Lulu, que según He han nacido sanas, y a las que en su etapa embrionaria se les aplicó la herramienta de edición genómica CRISPR para hacerlas resistentes al virus del sida, del que su padre es portador. He ha revelado posteriormente que existe al menos otro bebé en camino.

He ha recibido innumerables calificativos, ninguno de ellos elogioso. Pero es necesario distinguir entre quienes han tachado su experimento de prematuro o irresponsable y quienes lo han tildado de monstruoso, o han desempolvado el tópico rancio de que los científicos “juegan a ser Dios” (como si quienes rigen a diario con mano divina sobre nosotros fueran los científicos, y no otros, o como si los endiosados en esta sociedad fueran los científicos, y no otros), o se han sumado a la lapidación pública del investigador adjetivándolo extemporáneamente como “fracasado buscador de gloria”. El comportamiento de He es reprobable por varias razones, pero es evidente que lo de fracasado no es cierto. Por mucho que tiente ahora culparle también del asesinato de Kennedy o del calentamiento global.

Un embrión. Imagen de Pixabay.

Un embrión. Imagen de Pixabay.

Hay muchos motivos por los que el experimento de He es denostable. En primer lugar, su secretismo y falta de transparencia son impropios de la ciencia y enormemente dañinos para la reputación de la ciencia. Su experimento salió a la luz el pasado domingo gracias a que la revista digital MIT Technology Review, por fuentes no reveladas, supo del registro del ensayo clínico de He. Reaccionando rápidamente a la publicación de la exclusiva, He comunicó oficialmente la noticia a la agencia AP y colgó una serie de vídeos en YouTube en los que explicaba y defendía sus experimentos.

Hasta el momento, He no ha publicado sus resultados en una revista científica, pero los datos facilitados no sugieren que todo sea un inmenso engaño. Sin embargo, cuando este miércoles tuvo la oportunidad de explicarse largo y tendido en la segunda cumbre internacional sobre edición del genoma humano, celebrada esta semana en Hong Kong (y donde se le abrió de urgencia un hueco de una hora en el programa para que pudiera hacerlo), He no se dignó a levantar todos los velos ni a despejar todas las dudas sobre sus procedimientos y motivos, o sobre las acusaciones de falsificación de firmas en los trámites legales.

Claro que también merece mencionarse la sobreactuación de las autoridades chinas –“extremadamente abominable”, dijo ayer el viceministro de Ciencia– y de la comunidad científica de aquel país; lo cierto es que el registro del ensayo clínico, que especifica “aprobado por comité ético: sí” con fecha de marzo de 2017 (posibles falsificaciones aparte), no deja ni la menor sombra de duda sobre cuál era el objetivo del estudio, “obtener niños sanos para evitar el VIH”, ni su resultado esperado, “embarazo y garantizar uno o más nacimientos vivos”. Es una idea extendida que la regulación legal de la investigación en China se aplica según como se mire, y respecto a transparencia, sobra el comentario.

Otro motivo de crítica ha sido el objetivo elegido por He: la eliminación del gen de CCR5, una proteína que actúa como correceptor del VIH durante la infección. Es decir, no ha corregido una mutación genética dañina, sino que ha modificado genomas teóricamente sanos para evitar un peligro, el contagio del VIH, al que las niñas no estaban sometidas; solo su padre es portador del virus, y en estos casos el riesgo de transmisión es insignificante, más aún en una fecundación in vitro con un lavado previo del esperma. Y al hacerlo, ha privado a las niñas (a una de ellas, por completo; al parecer la otra conserva una de las dos copias intactas del gen) de un componente fisiológico del organismo cuyas funciones aún no se conocen del todo, y por tanto, cuya carencia puede tener efectos adversos aún no descritos. Es más, ni siquiera ha garantizado la protección de las niñas contra el VIH, ya que ciertas cepas utilizan otro correceptor distinto, CXCR4.

Frente a esto, podría argumentarse que tanto CCR5 como la mutación concreta introducida eran dianas técnicamente más asequibles que las necesarias para la curación de una talasemia o una anemia falciforme, que son algunos de los objetivos actualmente contemplados por otros grupos de investigación. Pero esto no deja de convertir a las niñas en meros sujetos de una prueba de concepto experimental, ya que difícilmente van a obtener ningún beneficio de su modificación genética. Ni ellas, ni tampoco la población general: es evidente que, incluso si el procedimiento funcionara a la perfección sin ninguna contrapartida, no aporta nada de cara al progreso hacia la erradicación del VIH.

Pero por encima de todo, lo más reprobado del experimento de He ha sido su carácter prematuro. Cuando aún no terminan de arrancar los ensayos clínicos de CRISPR para corregir genes dañinos en células somáticas adultas, las que forman parte de nuestro cuerpo pero no crean descendencia, He se ha saltado todos los pasos imprescindibles previos para lanzarse al vacío con la gestación de embriones modificados, sin que la seguridad del procedimiento haya sido suficientemente acreditada.

Pero…

Aquí es donde comienzan los matices. En primer lugar, conviene subrayar que los embriones de He no son los primeros editados genéticamente. Ya se hizo por primera vez en 2015, también en China, y se ha repetido después al menos en otros siete estudios en China, EEUU y Reino Unido; se continúa haciendo y se continuará haciendo. En todos estos casos se han utilizado embriones no viables (defectuosos), o bien embriones viables que no iban a destinarse a implantación para obtener una gestación.

Actualmente son varios los países que autorizan o al menos no prohíben expresamente la edición genómica de embriones humanos. Y aunque el uso de estos embriones con fines reproductivos aún no se contempla legalmente en ningún país, es necesario aclarar una confusión: según han publicado todos los medios, la comunidad científica en bloque ha repudiado el experimento de He, lo cual es cierto.

Pero muchos de esos medios, tertulianos y comentaristas han concluido que, ergo, la comunidad científica en bloque repudia la edición genómica en embriones humanos con fines reproductivos; o dicho más llanamente, la creación de bebés con genomas modificados. Lo cual está muy lejos de ser cierto. Como veremos mañana.

Por qué el Nobel para Mojica es mucho más complicado de lo que parece

Un año más, los Nobel de ciencia se han saldado dejándonos sin premio para Francisco Martínez Mojica, el microbiólogo de la Universidad de Alicante descubridor de los fundamentos que han originado el sistema CRISPR. Para quien aún no lo sepa, resumo brevísimamente que CRISPR es una herramienta molecular de corta-pega de ADN en la que están depositadas las mayores esperanzas para la curación de enfermedades genéticas en las próximas décadas, y que por ello suele presentarse como la gran revolución genética del siglo XXI. O al menos, de este primer tramo.

Como ya expliqué ayer, CRISPR aún no se ha bregado en el campo clínico como para merecer un Nobel de Medicina, pero en cambio sí ha demostrado su enorme potencia en los laboratorios como para merecer un Nobel de Química. Conviene aclarar que estos premios los otorgan comités diferentes de instituciones distintas: el de Fisiología o Medicina depende del Instituto Karolinska, mientras que el de Química es competencia de la Real Academia Sueca de Ciencias (no de la “Academia Sueca”, como suele decirse, ya que esta solo concede el premio de Literatura).

Francisco JM Mojica. Imagen de Roberto Ruiz / Universidad de Alicante.

Francisco JM Mojica. Imagen de Roberto Ruiz / Universidad de Alicante.

Por el momento, deberemos seguir a la espera otro año más. Pero el hecho de que el hallazgo y desarrollo de CRISPR aún no haya sido distinguido con el más lustroso de los premios científicos (aunque no el mejor dotado económicamente) no es una mala noticia; cada año suenan estas seis letras en las apuestas, y hoy lo más natural es confiar en que más tarde o más temprano acabarán saliendo en la papeleta ganadora. La verdadera mala noticia sería que, cuando a CRISPR le salga el billete dorado en la chocolatina, no sea a Mojica a quien le toque.

Ayer dejé caer en el último párrafo que la decisión sobre a quiénes premiar por el hallazgo y desarrollo de CRISPR no es precisamente inmediata. Y esto requiere una explicación. Los Premios Nobel tienen pocas reglas, pero se siguen a rajatabla. Una de ellas dice que cada premio solo pueden compartirlo un máximo de tres científicos o científicas (todavía ellas son minoría), y ayer mencioné que en el caso de CRISPR hay al menos cuatro nombres en liza. Pero en realidad son más de cuatro. Y por anacrónica que resulte hoy en día la idea de que haya tres lobos solitarios trabajando en sus laboratorios del sótano y a quienes se les ocurra lo que no se le ha ocurrido a nadie más en todo el planeta, no está previsto que las normas de los Nobel vayan a cambiar.

Pero entremos en la cuestión de los nombres. Entre todos ellos hay dos que parecen indiscutibles, y ambos son de mujer. La estadounidense Jennifer Doudna y la francesa Emmanuelle Charpentier fueron las primeras en publicar la descripción de CRISPR como herramienta genética, desarrollada y adaptada a partir del descubrimiento del sistema original que en las bacterias actúa como mecanismo de inmunidad contra los virus.

Jennifer Doudna. Imagen de Jussi Puikkonen / KNAW / Wikipedia.

Jennifer Doudna. Imagen de Jussi Puikkonen / KNAW / Wikipedia.

 

Emmanuelle Charpentier. Imagen de Carries mum / Wikipedia.

Emmanuelle Charpentier. Imagen de Carries mum / Wikipedia.

En el tercer nombre es donde surgen las dudas. Mojica, quien primero publicó el hallazgo del sistema original en las bacterias (y le puso la denominación por la que ahora se conoce), es uno de los firmes candidatos. Pero por desgracia, no es el único: hay hasta tres científicos más que podrían optar a rellenar esa terna.

Comencemos por Mojica, el descubridor original del sistema. En realidad hubo otros grupos que casi de forma simultánea llegaron a conclusiones similares; pero dado que él fue el primero en publicarlas, retendría ese derecho a la primicia del descubrimiento. Las cosas comienzan a complicarse cuando avanzamos en la historia de CRISPR.

Después de Mojica, fue el argentino Luciano Marraffini, por entonces en la Universidad Northwestern de Illinois (EEUU), quien primero demostró cómo funciona CRISPR cortando ADN, una función que sería esencial para que Charpentier y Doudna convirtieran una curiosidad de la naturaleza en una herramienta utilizable.

A su vez, Marraffini colaboró con el chino Feng Zhang, del Instituto Broad de Harvard y el MIT (Instituto Tecnológico de Massachussetts), quien demostró por primera vez la utilidad de CRISPR en células no bacterianas, las de los organismos superiores y, en concreto, de los mamíferos.

Luciano Marraffini. Imagen de Sinc.

Luciano Marraffini. Imagen de Sinc.

 

Feng Zhang. Imagen de National Science Foundation.

Feng Zhang. Imagen de National Science Foundation.

El problema es que en ciencia no existe una autoridad que decida quién debe ser considerado el autor oficial de un descubrimiento, y por tanto los comités que conceden los Premios Nobel son muy libres de elegir los ingredientes que más les gusten de esta ensalada de nombres y apartar los demás. Pero ¿según qué criterio?

Un aspecto interesante es que CRISPR es un descubrimiento transformado en tecnología; y, a diferencia de lo que sucede en ciencia, en tecnología sí existe una autoridad que decide quién es su inventor: los organismos de patentes. Doudna y Charpentier poseen las patentes originales del sistema CRISPR, pero las dos investigadoras mantienen una agria disputa con Zhang por la patente de su aplicación en células de mamíferos, que finalmente ha tenido que resolverse en los tribunales.

Según han explicado los expertos en propiedad industrial, la manzana de la discordia es el significado del término “no obvio” aplicado a este caso concreto. La Oficina de Patentes y Marcas de EEUU solo concede una patente de aplicación cuando esta se considera no obvia, por lo que se admite como nueva invención. Cuando Zhang comprobó la utilidad de CRISPR en células de mamíferos (que publicó solo unas semanas antes que sus competidoras), solicitó una patente alegando que esta aplicación no era obvia, y el organismo de patentes aceptó su argumento. Pero poco después la Universidad de California, en representación de Doudna, impugnó la patente de Zhang aduciendo que se trataba de una aplicación obvia. El asunto ha coleado hasta que finalmente el pasado 10 de septiembre un tribunal federal de EEUU ha dictaminado en favor de Zhang.

Así pues, ¿sería capaz el comité Nobel de premiar a Doudna, Charpentier y Mojica, dejando fuera a quien es el poseedor en EEUU (aunque no en Europa) de la patente de aplicación de CRISPR en células humanas?

Pero la cosa aún puede complicarse más. Y es que, si se detienen a contar los nombres mencionados, notarán que todavía falta uno más para llegar a los seis que completan la primera línea de los candidatos al reconocimiento de CRISPR. Se trata del bioquímico lituano Virginijus Šikšnys, de la Universidad de Vilnius, que en 2012 y de forma independiente llegó a los mismos resultados que Doudna y Charpentier, aunque su estudio fue rechazado y terminó publicándose más tarde que el de las dos investigadoras.

Según las reglas habituales, Šikšnys perdió la primicia del descubrimiento. Pero se da la circunstancia de que presentó una solicitud de patente, que fue aprobada, semanas antes de que lo hiciera la Universidad de California, por lo que el lituano podría tumbar la patente de las dos científicas si se lo propusiera.

Virginijus Šikšnys. Imagen de NTNU / Flickr / CC.

Virginijus Šikšnys. Imagen de NTNU / Flickr / CC.

Todo lo cual sitúa a los jurados de los Nobel en un laberinto de difícil salida. Otros premios sin restricción en el número de galardonados han optado por diferentes soluciones: el Breakthrough (el mejor dotado económicamente en biomedicina) distinguió únicamente a Doudna y Charpentier, lo mismo que hizo con sonrojante ridículo nuestro Princesa de Asturias. Por su parte, el premio noruego Kavli reconoció a Doudna, Charpentier y Šikšnys. El más salomónico ha sido el Albany Medical Center Prize, el cuarto mejor dotado del mundo en biomedicina, que solo dejó fuera a Šikšnys, premiando a los otros cinco investigadores.

Pero además de este rompecabezas sin solución aparente, hay otro motivo que quizá podría detraer a los comités Nobel de conceder un premio al hallazgo y desarrollo de CRISPR en un futuro próximo, y es precisamente el vergonzoso espectáculo ofrecido por Doudna, Charpentier y Zhang con sus dentelladas por la carnaza de las patentes. Según se cuenta, ni siquiera las dos investigadoras son ya las grandes amigas que fueron. Los tres crearon sus respectivas empresas para explotar sus tecnologías. Y aunque es incuestionable que el inventor de un método para curar tiene el mismo derecho a vivir de sus hallazgos que quien inventa la rosca para clavar sombrillas, es posible que los jurados de los Nobel no se sientan ahora muy inclinados a premiar a quienes han protagonizado un ejemplo tan poco edificante para la ciencia.

Claro que, aunque no sirva de mucho, desde aquí lanzo una propuesta: ¿qué tal Mojica, Šikšnys y Marraffini?

Por qué Mojica no gana el Nobel de Medicina (pero debería ganar el de Química)

Los fallos de los Premios Nobel son tan imprevisibles como pueden serlo estas cosas. Ni siquiera los profesionales de estas apuestas (no, que yo sepa William Hill y 888 no lo cubren) atinan más de lo que fallan, y si aciertan es gracias a los premios cantados, como los de Física a los descubridores del bosón de Higgs o las ondas gravitacionales. En el fondo, se trata de la decisión de un comité que solo se atiene a sus propios criterios, siempre que encajen en las muy escuetas reglas definidas por Alfred Nobel en su testamento hace más de un siglo.

Pero en general, a lo largo de la trayectoria de los premios el Nobel de Medicina se ha concedido a investigadores que han aportado una contribución esencial de repercusiones probadas en la salud humana, o bien a aquellos que han descubierto mecanismos cruciales del funcionamiento de la biología con clara aplicación a nuestra especie; este segundo enfoque es el que suele omitirse cuando se cita el Premio Nobel de Medicina, olvidando que en realidad es de Fisiología o Medicina.

Francisco Martínez Mojica, en su laboratorio de la Universidad de Alicante. Imagen de Roberto Ruiz / Universidad de Alicante.

Francisco Martínez Mojica, en su laboratorio de la Universidad de Alicante. Imagen de Roberto Ruiz / Universidad de Alicante.

El sistema CRISPR, cuyas bases fundamentales sentó el investigador alicantino (ilicitano, para más señas) Francisco Martínez Mojica, es la herramienta de edición genética –o más llanamente, corrección de genes– más potente, sencilla y precisa jamás inventada. Dado que la terapia génica se configura como uno de los tratamientos estrella de este siglo para cualquier enfermedad que tenga algo que ver con los genes, se vaticina que en las próximas décadas CRISPR podría convertirse en un recurso clínico tan imprescindible como hoy lo son los antibióticos.

Pero ese momento aún no ha llegado. Aunque CRISPR se ha empleado ya para corregir genes humanos en sistemas experimentales (aunque con resultados a veces controvertidos), los ensayos clínicos para llevar a la práctica el poder de este tipex genético aún se resisten; y en cambio, actualmente existen numerosos ensayos con pacientes que están logrando buenos resultados con terapia génica empleando sistemas de la generación anterior.

Así, por el momento no hay una justificación clara para que Mojica y/u otros investigadores implicados en el desarrollo de CRISPR, como la estadounidense Jennifer Doudna y la francesa Emmanuelle Charpentier, reciban un premio en una categoría en la que el sistema todavía no ha demostrado su eficacia. Y dado que CRISPR es una caja de herramientas moleculares creadas a partir de mecanismos de las bacterias, tampoco representa una contribución al conocimiento de la fisiología humana.

En cambio, otro caso diferente es el del Nobel de Química. Esta es una categoría paraguas en la cual entra cualquier cosa relacionada con la química, una ciencia inmensamente amplia. En el campo concreto de la bioquímica, la química de la vida, el ámbito del premio de Química puede solapar con el de Fisiología o Medicina, pero en este caso no prima el criterio de la relevancia del descubrimiento para la salud humana.

Y desde luego, así como CRISPR aún tendrá que batirse en la arena clínica contra otros sistemas más veteranos, en cambio hoy es insustituible en el área de la investigación básica. Miles de científicos en todo el mundo han abandonado otras herramientas más antiguas, salvo casos específicos, para comenzar a utilizar CRISPR en sus experimentos de biología molecular. Basta una simple búsqueda en las bases de datos de publicaciones científicas para comprobar que ya son cerca de 11.000 los estudios en los que de un modo u otro está implicado este sistema. Lo cual es sencillamente impresionante para algo que a comienzos de esta década ni siquiera existía.

La contribución que CRISPR ya ha aportado a infinidad de proyectos de investigación sí justifica un Premio Nobel de Química. Otra cosa es que el comité encargado de la concesión sea capaz de solventar cómo seleccionar a tres ganadores –el límite impuesto por las reglas del premio– cuando son como mínimo cuatro (a Mojica, Doudna y Charpentier se suma el chino-estadounidense Feng Zhang) quienes merecerían el reconocimiento.

El premio Princesa de Asturias se obstina en olvidar a Francis Mojica

En 2015 el jurado del premio Princesa de Asturias de Investigación Científica y Técnica resolvió galardonar a la estadounidense Jennifer Doudna y a la francesa Emmanuelle Charpentier “por los avances científicos que han conducido al desarrollo de una tecnología que permite modificar genes, con gran precisión y sencillez en todo tipo de células, posibilitando cambios que suponen una verdadera edición del genoma”, decía el fallo.

Lo que las dos investigadoras habían desarrollado es el sistema CRISPR-Cas9, una herramienta de corrección de ADN que ha facilitado y acelerado inmensamente la edición genómica, que ya emplean innumerables laboratorios de todo el mundo para la investigación en biología molecular y que pronto comenzará a ensayarse para remediar enfermedades genéticas en humanos. Tal es el potencial de CRISPR que ya tiene un título casi oficial en cualquier artículo científico-periodístico al respecto: la revolución genética del siglo XXI.

Sin embargo, en general las herramientas de biología molecular no se crean, sino que se desarrollan y se adaptan a partir de sistemas presentes en la naturaleza, sobre todo en los microbios. También es el caso de CRISPR, fruto de la modificación de un sistema de defensa antiviral presente en bacterias y arqueas. Pero en su concesión del premio, el jurado dejó fuera al investigador que primero descubrió, describió y nombró este sistema, y dedujo su función. Es decir, a quien entregó en bandeja a la biotecnología el tesoro natural del que se derivaría la revolución genética del siglo XXI. Por si no fuera suficiente agravio, se añade además que el científico en cuestión comparte nacionalidad con la institución que concede los premios: Francisco Juan Martínez Mojica, de la Universidad de Alicante.

El investigador Francis Mojica. Imagen de Roberto Ruiz / Universidad de Alicante, utilizada con permiso.

El investigador Francis Mojica. Imagen de Roberto Ruiz / Universidad de Alicante, utilizada con permiso.

¿Por qué el jurado del Princesa no premió también a Francis Mojica? En realidad, no lo sé. Pero aquí va mi terrible sospecha, que no deja de ser una hipótesis, aunque a continuación explico mis motivos:

Porque no le conocían. Porque jamás habían oído hablar de él.

La trayectoria de CRISPR ha sido meteórica. Era en agosto de 2012 cuando Charpentier y Doudna, que habían entablado amistad en un congreso apenas el año anterior, publicaban lo que en ciencia suele llamarse el “seminal paper“, o el estudio que influye de manera determinante sobre desarrollos posteriores (y que no debería traducirse como “estudio seminal”, ya que el DRAE no recoge este significado).

Aquel trabajo publicado en Science venía a representar la acuñación de CRISPR como herramienta biotecnológica, aunque aún debería pasar por desarrollos posteriores para convertirse en el sistema que hoy conocemos. Pero solo tres años después Doudna y Charpentier ya estaban en la cresta de la ola: en 2015 recibían el Breakthrough Prize in Life Sciences, el premio de biomedicina mejor dotado económicamente en todo el mundo. Unos meses después, al rebufo de esta importantísima distinción, llegaba el fallo del Princesa de Asturias que en su día muchos aplaudimos, como conté aquí.

¿Y qué ocurría con Francis Mojica? Lo que ocurría era que por entonces aún era un perfecto desconocido para la mayoría (y me incluyo), dado que su contribución había permanecido casi oculta. En su seminal paper, Doudna y Charpentier no citaban los estudios en los que el alicantino había descrito el sistema CRISPR, limitándose a enterrar uno de sus estudios posteriores entre las numerosas referencias incluidas en la bibliografía. Cuando en 2014 Doudna y Charpentier, ya ascendidas al estrellato, publicaban en Science una revisión sobre “la nueva frontera de la ingeniería genómica con CRISPR-Cas9”, sí incluían entre sus muchas referencias los trabajos fundamentales de Mojica publicados en 2000 y 2005, pero en el texto se limitaban a mencionar que “unos pocos laboratorios de microbiología y bioinformática a mediados de los 2000 comenzaron a investigar los CRISPR, que habían sido descritos en 1987 por investigadores japoneses…”.

Lo cual no solo era vago, sino incluso erróneo: lo descubierto en 1987 por los japoneses no era ni mucho menos CRISPR, ni en el fondo (se trataba solo de la observación anecdótica de unas ciertas secuencias en el genoma de una bacteria) ni en la forma (el término CRISPR lo inventaría Mojica muchos años más tarde). Y si bien es cierto que el laboratorio de Mojica no era el único investigando aquellas secuencias ni fue el único que dio con el descubrimiento clave, sí fue el primero en publicarlo, y también en ciencia the winner takes it all.

Bien lo saben las propias Charpentier y Doudna, ya que el lituano Virginijus Siksnys, que desarrolló el sistema CRISPR en paralelo a ellas pero perdió la carrera de la publicación, no ha disfrutado ni mucho menos del mismo reconocimiento. Hoy la ciencia en general ya no es el descubrimiento de un lobo solitario, sino un esfuerzo colectivo y distribuido. Pero dado que los premios se empeñan en continuar destacando individualidades, si hay que atribuir a un nombre la primicia en la publicación del descubrimiento de CRISPR, ese es sin duda Mojica.

El rumbo de esta historia viró bruscamente para Mojica en enero de 2016. Entonces se publicaba un extenso artículo titulado “The Heroes of CRISPR” (los héroes de CRISPR), que por primera vez indagaba en la historia y el desarrollo de esta tecnología para poner en claro quiénes eran los protagonistas de este gran avance de la biología molecular. Y el veredicto era claro: una gran parte del artículo estaba dedicada a Francis Mojica; la historia de CRISPR comenzaba con él y con su hallazgo del sistema en los microbios de las salinas de Santa Pola.

Resultaba además que aquel artículo no era el trabajo de un periodista para un medio general, sino que se publicó en la revista Cell, la primera del mundo en biología, y su autor era Eric Steven Lander, profesor del Instituto Tecnológico de Massachusetts (MIT), director y fundador del Instituto Broad del MIT y la Universidad de Harvard, asesor científico del expresidente Barack Obama… Uno de los biólogos más prestigiosos del mundo se había calzado la visera y los manguitos del periodista para investigar la historia de CRISPR y señalar con su divino dedo para decir a toda la comunidad científica: hey, ahí está, es a ese a quien se lo debéis. Y ese era el microbiólogo alicantino Francis Mojica.

De la noche a la mañana, todo cambió para Mojica. A partir de entonces no solo su trabajo comenzó a ser reconocido como merecía, sino que su propia figura salió de entre las sombras para convertirse en el objetivo de todos los flashes. Su rápida aparición repentina en la Wikipedia es solo un detalle anecdótico, pero revelador. Por fin llegaron los premios merecidos, en su país, como el Rey Jaime I de Investigación Básica en 2016 y el Fundación BBVA Fronteras del Conocimiento en 2017, pero también en el ámbito internacional, como el Albany Medical Center Prize, el cuarto mejor dotado del mundo en biomedicina en todo el mundo y el segundo en EEUU, por detrás del Breakthrough.

Y mientras, los responsables del Princesa de Asturias continúan silbando y mirando hacia otro lado, desperdiciando ya tres oportunidades sucesivas para enmendar su crasa equivocación. Sería discutible si puede comprenderse o no que en 2015 se ignorara a Mojica. Es cierto que para el científico ha existido una era pre-Lander y otra post-Lander, aunque si algo se esperaría del jurado de un premio como el Princesa, aparte de las estancias en hoteles de lujo y las grandes cenas, es que hicieran lo que hizo Lander, indagar en la historia de un hallazgo para esclarecer a quién se le debe su reconocimiento.

Por desgracia, a menudo el fallo del Princesa de Asturias de Investigación deja la incómoda sensación de que el jurado premia a golpe de titular periodístico. El último ejemplo lo tenemos este mismo mes: el ganador en la edición de este año es el biólogo sueco Svante Pääbo “por haber desarrollado métodos precisos para el estudio del ADN antiguo que han permitido la recuperación y el análisis del genoma de especies desaparecidas hace cientos de miles de años”.

El mérito de Pääbo es indudable, y su trabajo admirable e inmensamente valioso. Pero tanto como el de otros: al premiarle en solitario, el jurado no ha distinguido a quien –como dice el fallo– “ha abierto un nuevo campo de investigación, la paleogenómica”, sino al más mediático de entre los científicos responsables de esta aportación. Dado que el Princesa, a diferencia del Nobel, no establece un número máximo de premiados, una distinción en paleogenómica debería haber incluido otros nombres con tantos merecimientos como Pääbo, aunque con menos entrevistas en la prensa y menos fotos sosteniendo cráneos; como mínimo, Eske Willerslev y David Reich.

Bueno, quizá también Beth Shapiro, Johannes Krause… Lo cierto es que cada vez es más difícil e injusto destacar solo un nombre entre muchos, por ese carácter colaborativo y global de la ciencia actual. Pero dado que los premios se empeñan en el personalismo, hay algo incuestionable, y es que el premio Princesa de Asturias tiene una deuda pendiente con uno de los científicos españoles actuales más sobresalientes. Y no quieran las carambolas cósmicas que Mojica salga en la lista de los Nobel este próximo octubre (pero sí, ojalá lo quieran). Porque si fuera así, a ver con qué se limpia ese borrón.

Ciencia semanal: comer sin gluten puede ser perjudicial para los no celíacos

Una ronda de las noticias científicas más destacadas de la semana.

Gluten-free, solo para celíacos

Hace tan poco tiempo que aún podemos recordarlo, a los celíacos y otros afectados por trastornos metabólicos les costaba encontrar alimentos adaptados a sus necesidades, o al menos encontrarlos a precios asequibles. Por suerte esto fue cambiando, con la intervención destacada de algunos distribuidores. Hoy muchas tiendas y restaurantes ofrecen opciones para celíacos y detallan la idoneidad de sus productos para otros perfiles de trastornos y alergias.

Imagen de @joefoodie / Flickr / CC.

Imagen de @joefoodie / Flickr / CC.

Pero entonces comenzó a producirse un extraño fenómeno, cuando personas perfectamente sanas empezaron a adoptar la costumbre de evitar el gluten en su dieta en la errónea creencia de que es más sano. Y como no podía ser de otra manera, ciertas marcas aprovechan el tirón para fomentar tramposamente esta idea de forma más o menos velada. Mientras, los nutricionistas científicos se tiran de los pelos tratando de desmontar este mito absurdo y sin fundamento.

Estudios anteriores ya han mostrado que el consumo de alimentos libres de gluten no aporta absolutamente ningún beneficio a los no celíacos. Pero ahora estamos avanzando un paso más con la simple aplicación a este caso de un principio general evidente, y es que la restricción de nutrientes en la dieta cuando no hay necesidad de ello solo puede conducir a una dieta deficitaria.

Un estudio con más de 100.000 pacientes a lo largo de 26 años, elaborado en las facultades de medicina de Columbia y Harvard (EEUU) y publicado esta semana en la revista British Medical Journal, confirma que el consumo de gluten en las personas sin celiaquía no aumenta el riesgo de enfermedad coronaria (como sí hace en los celíacos), pero aporta algo más: la reducción del gluten en la dieta disminuye el consumo de grano entero (integral), que se asocia a beneficios en la salud cardiovascular, por lo que la dieta sin gluten puede aumentar el riesgo coronario en los no celíacos.

Los autores son conscientes de las limitaciones de todo estudio epidemiológico, aunque el suyo es muy amplio y excepcionalmente prolongado en el tiempo. Pero como conclusión, advierten: “no debe fomentarse la promoción de dietas libres de gluten entre personas sin enfermedad celíaca”.

Cassini, en el meollo de Saturno

Continuamos siguiendo la odisea de la sonda Cassini de la NASA en sus últimos meses de vida, mientras orbita entre Saturno y sus anillos antes de la zambullida que la llevará a su fin el próximo septiembre. La NASA ha publicado esta semana un vídeo elaborado con las imágenes de la atmósfera de Saturno tomadas por la sonda durante una hora de su recorrido alrededor del planeta gigante. Los científicos de la misión se han encontrado con la sorpresa de que la brecha entre Saturno y sus anillos está prácticamente limpia de polvo, al contrario de lo que esperaban.

Ataque al centro de mando del cáncer

Lo que han conseguido estos investigadores de la Universidad de Pittsburgh (EEUU) no es una de esas noticias que acaparan titulares, pero es un hito sobresaliente en la aplicación de una nueva tecnología de edición genómica (corrección de genes por un método de corta-pega) llamada CRISPR-Cas9, de la que se esperan grandes beneficios en las próximas décadas.

Los autores del estudio, publicado en Nature Biotechnology, han logrado por primera vez emplear esta herramienta para neutralizar un tipo de genes del cáncer llamados genes de fusión. Estos se forman cuando dos genes previamente separados se unen por un error genético, dando como resultado un gen de fusión que promueve el crecimiento canceroso de la célula. Los investigadores trasplantaron a ratones células cancerosas humanas que contienen un gen de fusión llamado MAN2A1-FER, responsable de cánceres de próstata, hígado, pulmón y ovarios. Luego introdujeron en los ratones un virus modificado artificialmente que contiene CRISPR, específicamente diseñado para cortar el gen de fusión y reemplazarlo por otro que induce la muerte de la célula.

El resultado fue que todos los ratones sobrevivieron durante el período total del estudio, sin metástasis y con una reducción considerable de sus tumores, mientras que todos los animales de control, a los que se les suministró un virus parecido pero ineficaz contra su gen de fusión, sucumbieron al cáncer.

Una ventaja adicional es que la técnica puede ir adaptándose a la aparición de nuevas mutaciones en las células cancerosas. Según el director del estudio, Jian-Hua Luo, es un ataque al “centro de mando” del cáncer. Y aunque aún queda un largo camino por delante hasta que el método sea clínicamente utilizable, sin duda es una brillante promesa en la lucha contra esta enfermedad.

Decir tacos nos hace más fuertes

Uno de esos estudios que no van a cambiar el curso de la historia, pero que tal vez confirma lo que algunos ya sospechaban; y que sobre todo dará un argumento científico a quienes sientan la necesidad de vomitar tacos, insultos e improperios durante un gran esfuerzo físico (desde deportistas a madres pariendo sin epidural), pero que tal vez se cohíban por aquello de guardar las formas: háganlo sin miedo. Si alguien se lo reprocha, cítenles los resultados presentados por el doctor Richard Stephens, de la Universidad de Keele (Reino Unido), en la Conferencia Anual de la Sociedad Británica de Psicología: gritar palabras malsonantes nos hace más fuertes.

Los investigadores compararon el rendimiento de un grupo de deportistas en pruebas de esfuerzo, sin y con tacos, descubriendo que en el segundo caso las marcas mejoraban. Curiosamente, y aunque la hipótesis de los autores era que este efecto se produciría a través del sistema nervioso simpático, como ocurre con la mayor tolerancia al dolor en estos casos, no encontraron signos que confirmaran esta asociación. “Así que aún no conocemos por qué decir tacos tiene estos efectos en la fuerza y la tolerancia al dolor”, dice Stephens. “Todavía tenemos que comprender el poder de las palabrotas”.

¿Y si el cuerpo de una persona pudiera matar el cáncer de otra?

Veámoslo así: el cáncer es una parte de nuestro cuerpo que decide dejar de serlo. No solo porque su evolución conlleva la destrucción operativa del organismo, sino también porque sus células pueden llegar a ser notablemente diferentes de las que las originaron, como expliqué hace unos días a propósito del caso de Henrietta Lacks y las células HeLa.

Distintas, pero no lo suficiente como para que la policía del cuerpo las detecte y las detenga. Aún tienen un DNI válido en vigor, los marcadores de histocompatibilidad que las identifican como de los nuestros. Sin embargo, pueden ser reconocibles a través de otros rasgos secundarios, marcadores propios de los tumores que no existen en las células sanas. Es decir, antígenos tumorales que puedan ser delatados como extraños y que actúen para el sistema inmunitario como la pista de Terminator, para buscarlas, encontrarlas, marcarlas y exterminarlas.

Como ya adelanté hace unos días, la idea de intentar tratar el cáncer como si fuera una infección no es nueva. Es plausible, puede ser muy productiva y podría iluminar el futuro de la lucha contra estas enfermedades. El pasado abril el cofundador de Napster y expresidente de Facebook, Sean Parker, anunció la puesta en marcha del Instituto Parker para la Inmunoterapia del Cáncer , dotado con 250 millones de dólares a través de su fundación.

Por el momento, el Instituto Parker ya ha conseguido luz verde para iniciar un ensayo clínico que será el primero en humanos utilizando la tecnología de edición genómica CRISPR, de la que ya he hablado aquí varias veces. CRISPR es un sistema que sirve para eso llamado popularmente ingeniería genética, que tantos beneficios está reportando a la humanidad.

Una célula T humana. Imagen de Wikipedia.

Una célula T humana. Imagen de Wikipedia.

CRISPR permite manipular los genes de una célula en cultivo (y algún día lo hará incluso dentro del propio organismo) con una limpieza y precisión inigualables hasta ahora. El ensayo clínico del Instituto Parker, con la participación de seis universidades y centros oncológicos de primer nivel, consistirá en extraer células T del paciente (un tipo de linfocitos, células del sistema inmunitario), modificarlas en cultivo mediante CRISPR para convertirlas en Terminators de tumores, y volver a inyectarlas en el cuerpo del enfermo.

Este enfoque es hasta ahora el más popular en la investigación inmunooncológica, pero no el único. Y desde luego no el más práctico ni barato, ya que requiere un tratamiento exclusivo para las células de cada paciente en cultivo que equivale casi a un proyecto de investigación por enfermo. Pero sus resultados pueden ser espectaculares: el pasado febrero, el investigador Stan Riddell, del Fred Hutchinson Cancer Center (EEUU), presentó en un simposio los datos de un ensayo en el que se ha conseguido la remisión del cáncer en entre un 50% y un 94% de los pacientes con distintos tipos de leucemias o linfomas.

El problema con la inmunoterapia del cáncer es precisamente este; la idea es buena y tiene que funcionar, pero el camino técnico es complicado. Hace falta más ciencia para cargar el peso de la dificultad en el concepto y no en la técnica. Y esto es precisamente lo que pretende conseguir otro enfoque diferente, publicado el mes pasado en la revista Nature.

En lugar de superequipar a las células Terminators, el equipo de investigadores alemanes, con la Universidad Johannes Gutenberg de Mainz al frente, tratará de alertar a sus informadoras, las células presentadoras de antígenos (APC, en inglés). Las APC (que incluyen los macrófagos y las células dendríticas) tienen como misión engullir a los invasores y despiezarlos para presentar sus partes (antígenos) a las células T, de modo que estas sepan qué deben buscar.

Los antígenos son proteínas, y las proteínas se fabrican desde el ADN de la célula, utilizando una copia desechable del ADN llamada ARN mensajero. Lo que hacen los científicos de Mainz es identificar los antígenos tumorales de un cáncer, obtener su ARN e inyectarlo en el propio paciente con una formulación específica para que las APC lo engullan, produzcan el antígeno y lo presenten a las células T con el mandato de buscar y eliminar.

Desde el punto de vista inmunológico, funciona como una vacuna, y el procedimiento es mucho más sencillo que el anterior, ya que no requiere cultivar las células del paciente. Además, tiene otra ventaja: contar con la respuesta inmunitaria propia del organismo es mucho más seguro que manipular las células T. En el ensayo presentado por Riddell en febrero se manifestaron algunos efectos secundarios graves, y dos pacientes murieron; este es el riesgo de desequilibrar un sistema de fino equilibrio como el inmunitario, por lo que el método de las células T debería quedar reservado como terapia de último recurso. Por el contrario, la vacuna de Mainz apenas llegó a provocar poco más que algo de fiebre, como cualquier otra vacuna.

Por el momento los investigadores lo han probado con éxito en ratones, pero también lo han ensayado en tres pacientes de melanoma, comprobando que es seguro y que dispara la respuesta esperada. Si todo va bien, el año que viene podrían lanzar un ensayo clínico en toda regla.

Reservo para el final un tercer enfoque diferente, el que da título a este artículo. Si, como sabemos, una persona tiende a rechazar los órganos de otra por ese sistema de histocompatibilidad, ¿no podría utilizarse esta propiedad para que el organismo de alguien combatiera el cáncer de otro?

Suena a ciencia ficción, pero es básicamente el trabajo que están llevando a cabo investigadores del Instituto del Cáncer de Holanda y la Universidad de Oslo (Noruega), y del que informaron el pasado mayo en la revista Science. A grandes rasgos, lo que hacen los científicos es identificar antígenos de las células tumorales de un paciente, utilizarlos para disparar in vitro una respuesta en las células T de un donante sano, y luego extraer de estas células activadas los componentes que después introducen en las células T del propio enfermo, con el fin de estimular su reacción inmunitaria contra su cáncer.

Con esta técnica, que los investigadores equiparan a un outsourcing de la inmunidad contra el cáncer, se han conseguido resultados muy prometedores con tres pacientes del Hospital de la Universidad de Oslo en un ensayo piloto. La idea es enormemente brillante, pero el proceso aún es complejo. La inmunoterapia del cáncer es una vía abierta con inmensas posibilidades de futuro, como demuestran los tres ejemplos recientes que he contado aquí. Pero los obstáculos a superar aún deben allanarse en función de un progreso tecnológico que solo puede avanzar a golpe de millones.

¿Tendremos en octubre un Nobel español de ciencia?

Quédense con este nombre: Francisco Juan Martínez Mójica, un investigador de la Universidad de Alicante que desde el pasado 14 de enero viene recibiendo una atención inusitada por parte de los medios. Inusitada porque la línea de investigación de Mójica nace de un campo de enorme interés científico –la genética de los microbios extremófilos–, pero que difícilmente traspasa las fronteras más allá de lugares como este blog, en un país donde la ciencia apenas capta la atención del gran público salvo cuando se trata de grandes titulares sobre, pongamos, el cáncer.

Las salinas de Santa Pola, donde comenzó la historia de CRISPR. Imagen de Wikipedia.

Las salinas de Santa Pola, donde comenzó la historia de CRISPR. Imagen de Wikipedia.

Pero tan inusitada como merecida, porque esa línea de investigación llevaría a Mójica a convertirse en la estrella de la revolución del siglo XXI en ingeniería genética, que lleva el nombre de CRISPR. O mejor dicho, esa línea y otra cosa; porque desgraciadamente para un científico alicantino trabajando en la Universidad de Alicante, por brillante que sea, se requiere un empujoncito más. Y como ahora contaré, por fortuna Mójica ha recibido ese empujoncito más que se revelará clave si finalmente el investigador se convierte en el primer Nobel español de ciencia desde Ramón y Cajal (siempre debo añadir esta coletilla: Severo Ochoa llevaba 23 años fuera de España y tres como ciudadano estadounidense cuando ganó el Nobel).

Mójica comenzó su tesis doctoral investigando por qué una arquea (microbios que no son bacterias, aunque lo parezcan) de las salinas de Santa Pola se veía afectada de distinta manera por las enzimas de restricción (herramientas utilizadas para cortar el ADN por lugares deseados) en función de la concentración de sal en el medio de cultivo. A primera vista esta línea de trabajo parecería algo muy alejado de convertirse en la próxima revolución genética; sin embargo, las principales herramientas moleculares empleadas en los laboratorios han nacido del estudio de las bacterias y sus virus, como es el caso de las propias enzimas de restricción.

Al estudiar el genoma de esta arquea, llamada Haloferax mediterranei, Mójica descubrió que llevaba una curiosa marca, compuesta por secuencias repetidas y separadas por otros fragmentos dispares; un patrón que implicaba probablemente una función determinada, aunque desconocida. El investigador descubrió estas mismas estructuras en otras arqueas, y supo también que un grupo de la Universidad de Osaka, en Japón, ya había descrito en 1987 unas estructuras similares en otro microbio biológicamente más relevante, la bacteria Escherichia coli. Mójica y sus colaboradores publicaron estas secuencias en 1995 y llamaron a los fragmentos repetidos TREPs, por secuencias Palindrómicas (que se leen igual al derecho y al revés) Extragénicas (fuera de los genes) Repetidas en Tándem (varias veces).

Aún se desconocía cuál era la función de estos pedazos de genoma bacteriano o arqueano. Mójica y sus colaboradores sugerían en su estudio que podían controlar la distribución de las copias del genoma en las células hijas cuando la bacteria o la arquea se dividen, una hipótesis que resultaría equivocada.

Por entonces Mójica había terminado su tesis doctoral y se marchó al extranjero para completar un corto postdoctorado en Oxford, antes de regresar a la Universidad de Alicante. Ante la posibilidad de que las secuencias descubiertas participaran en la división de copias del genoma, por aquellos años Mójica se dedicó a estudiar la influencia de las TREPs en la topología del ADN, es decir, su forma.

De vuelta en Alicante, comenzó a examinar y comparar los genomas de otros microbios. En 2000, Mójica y sus colaboradores describían la identificación de estas secuencias en una veintena de especies. En aquel estudio proponían un nuevo nombre: Repeticiones Cortas Regularmente Espaciadas, o SRSRs. Aún sin pistas claras sobre su función: “Surge la pregunta sobre si las SRSRs tienen una función común en procariotas [bacterias y arqueas], o si su presencia es un resto de secuencias antiguas y su papel se diversificó a lo largo de la evolución”, escribían.

Por entonces estas secuencias ya captaban la atención de los microbiólogos. Otros investigadores descubrían secuencias SRSRs en diferentes especies y localizaban además genes funcionales próximos a ellas, a los que se les suponía una función relacionada con estas estructuras. En 2002, un equipo de la Universidad de Utrecht (Países Bajos) publicaba un estudio que rebautizaba las SRSRs como Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas, o CRISPR, además de identificar estos Genes Asociados a CRISPR, o genes cas.

En el estudio, y esto es importante, Ruud Jansen y sus colaboradores escribían: “Cada miembro de esta familia de repeticiones ha sido designado de forma diferente por los autores originales, llevando a una nomenclatura confusa. Para reconocer la reunión de esta clase de repeticiones como una familia y evitar nomenclatura confusa, Mójica y colaboradores y nuestro grupo hemos acordado utilizar en este estudio y en futuras publicaciones el acrónimo CRISPR”. Según trascendió después, fue el propio Mójica quien sugirió la nueva designación, pero esta apareció por primera vez en un estudio firmado por un equipo holandés.

Fue a continuación cuando llegó el gran salto cualitativo. En 2003 Mójica decidió cambiar el foco: en lugar de investigar las secuencias repetidas, las que habían permitido identificar las CRISPR, se preguntó qué demonios pintaban allí los fragmentos que las separaban, y que eran diferentes de unos microbios a otros. Y al estudiar un espaciador de una bacteria E. coli, descubrió que era idéntico a un trozo del genoma de un virus que infecta a esta bacteria, llamado fago P1. Pero con una peculiaridad: la E. coli que llevaba aquel separador era inmune al fago P1.

Este fue el eureka. Y este es el verdadero mérito que hace a Mójica merecedor del Nobel: al estudiar otros varios miles de espaciadores, descubrió que en todos los casos se trataba de secuencias pertenecientes a virus bacteriófagos (que atacan a las bacterias) o a moléculas de ADN que saltan de unas bacterias a otras (llamadas plásmidos). Y que en todos los casos, las bacterias con aquellos espaciadores eran inmunes a los respectivos virus o plásmidos. Mójica había encontrado la función de los separadores y, por tanto, de las CRISPR: un sistema inmunitario adaptativo propio de las bacterias y arqueas.

La idea era genial. Y además, era cierta. Pero al principio nadie quería creerlo: el estudio de Mójica fue rechazado por la revista Nature sin siquiera revisarlo, y después por la revista PNAS, y luego por Molecular Microbiology, y por Nucleic Acid Research. Por fin en 2005 el estudio fue publicado por Journal of Molecular Evolution, pero no sin un largo proceso de revisión que duró todo un año.

Imagino lo que están preguntándose, y la respuesta es sí: para un grupo de cuatro científicos de la Universidad de Alicante, sin contar con las firmas de otros investigadores de instituciones más rimbombantes, es muy difícil publicar en Nature, aunque hayan descubierto la rueda. En ciencia también hay clases, y hay prejuicios.

Lo que sucedió luego ya no compete a este artículo: andando el tiempo, el sistema CRISPR sería aplicado por las investigadoras Emmanuelle Charpentier y Jennifer Doudna para crear un sistema de edición genómica (o corta-pega de fragmentos de ADN) preciso y precioso con el que ahora se plantean futuros logros como la curación de enfermedades genéticas, entre otras muchas aplicaciones de la que es, para todos sin excepción, la revolución genómica del siglo XXI. Charpentier y Doudna ganaron el premio Princesa de Asturias de Investigación 2015; pero sobre todo, recibieron los tres millones de dólares del Breakthrough Prize de Ciencias de la Vida.

¿Y Mójica?, se preguntarán. Pues bien: Mójica ha pasado como un completo desconocido hasta el pasado 14 de enero. Ese día, Eric S. Lander publicaba un artículo en la revista Cell titulado The Heroes of CRISPR (Los héroes de CRISPR). Lander escribía: “En los últimos meses, he buscado comprender la historia de CRISPR que se remonta a 20 años atrás, incluyendo la historia de las ideas y de las personas”. Y también escribía que en 2003 Mójica era “el claro líder en el naciente campo de CRISPR”. Y también: “El antes oscuro sistema microbiano, descubierto 20 años antes en unas salinas en España, era ahora el foco de números especiales en revistas científicas, titulares en el New York Times, start-ups biotecnológicas, y cumbres internacionales sobre ética. CRISPR había llegado”.

¿Qué importancia tiene esto? La respuesta es: toda. Este es el empujoncito al que me refería más arriba. Sepan que Cell es la revista de biología más importante del mundo. Sepan que Eric Lander es profesor del Instituto Tecnológico de Massachusetts (MIT), fundador del Instituto Broad del MIT y Harvard, codirector del Proyecto Genoma Humano y copresidente del Consejo Asesor de Ciencia y Tecnología del presidente Barack Obama. En resumen, Eric Lander es algo muy parecido a lo que solemos llamar Dios.

Y la palabra de Dios ha obrado su milagro. Traigo aquí una curiosa comparación por cortesía de la máquina del tiempo de internet, Wayback Machine. El 13 de diciembre de 2015, la entrada en la Wikipedia sobre CRISPR contaba la historia de esta tecnología haciendo una breve referencia al trabajo de Mójica, pero sin mencionar para nada su nombre. Un mes después, el 14 de enero, esta misma entrada ya incluía el nombre de Mójica, destacando además que fue él quien propuso el nombre de CRISPR. Desde la publicación del artículo de Lander, el nombre de Mójica ya aparece ampliamente ligado al descubrimiento de CRISPR, y los medios españoles se han volcado en destacar su figura y su contribución.

En resumen: ¿Habrá un premio Nobel para CRISPR? Sin duda; tal vez no este año, pero más tarde o más temprano. ¿Será Mójica uno de los premiados? Es difícil apostar. Lander ha conseguido que el nombre de Mójica pueda cotizar en el mercado de los Nobel, pero aquí solo he contado una parte de la historia: lo cierto es que hay otros investigadores con una relevante implicación en el camino de CRISPR.

El premio Nobel se concede como máximo a tres investigadores; Charpentier y Doudna parecen seguras, pero el tercer nombre podría estar en disputa. Al menos otro científico, el francés Gilles Vergnaud, llegó a la misma conclusión que Mójica sobre la inmunidad de las bacterias al mismo tiempo y de forma independiente, aunque su estudio se publicó un mes más tarde, y ya con el nombre de CRISPR acuñado por el alicantino. Otro candidato sería Feng Zhang, del MIT, quien optimizó el sistema como herramienta genómica y lo aplicó por primera vez a células humanas.

Mójica parece un candidato más adecuado que Vergnaud al ser quien primero identificó las CRISPR como una marca común en un gran número de especies microbianas e intuyó para ellas un significado biológico que resultó correcto; de hecho, el nombre del francés ha sido omitido en la página de la historia de CRISPR en la web del Instituto Broad. En cambio, la rivalidad de Zhang es más dura, ya que el sistema CRISPR no sería hoy lo que es sin su contribución. Tal vez el próximo octubre tengamos la solución. Y quizá, Lander mediante, un Nobel español.

Se abre (un poco) la edición genómica de embriones humanos

Quien se pasee por este blog de vez en cuando ya habrá detectado mi entusiasmo por CRISPR, esa nueva herramienta de edición genómica (o sea, que corta-pega genes) que muchos, y me incluyo, hemos calificado de revolucionaria. Pero para evitar malentendidos, creo que debo aclarar qué tipo de revolución es la que CRISPR está facilitando.

Un espermatozoide fecundando un óvulo. Imagen de Wikipedia.

Un espermatozoide fecundando un óvulo. Imagen de Wikipedia.

Resumiendo, no es una revolución conceptual, sino metodológica. Es decir, que lo que CRISPR ofrece no es tanto poder hacer cosas nuevas, sino hacer cosas mucho mejor que antes. Las herramientas de edición genómica existen desde hace décadas, aunque ninguna alcanzaba la precisión, la eficacia y la facilidad de uso de CRISPR. Pero dado que ya comenzarán a surgir las voces acusando a los científicos de jugar a ser dioses y otras excentricidades por el estilo, debo aclarar que CRISPR no supone la invención del automóvil, sino cambiar el motor de vapor por el de combustión interna. Lo cual, eso sí, implica que la edición genómica va a tomar la autopista.

Los investigadores ya están planeando estrategias para curar células enfermas introduciendo CRISPR en el organismo como un minisubmarino terapéutico. Por el momento, la primera diana ideal para estas técnicas es un tejido líquido que circula y se distribuye por todo el cuerpo, la sangre. Otras herramientas de edición genómica más veteranas se han empleado ya para curar células enfermas fuera del cuerpo y luego devolverlas al paciente, y este año debería arrancar el primer ensayo clínico in vivo para tratar una forma de hemofilia. El uso de CRISPR para estos fines aún deberá esperar, pero tal vez solo un año más.

La aplicación más potente de CRISPR será también la más discutida: curar embriones humanos. La técnica tiene el potencial de abrir la vía de curación de enfermedades congénitas atroces y hasta ahora inaccesibles a cualquier terapia. Pero existe el riesgo de provocar mayor daño que el que se pretende evitar. El primer ensayo de prueba de CRISPR en embriones humanos no viables, realizado en China el pasado año, fue una considerable chapuza, y disparó la alarma sobre la necesidad de iniciar un debate ético que arrancó con una conferencia internacional celebrada en Washington el pasado diciembre. La conclusión fue que nadie está dispuesto a dar un solo paso en la dirección de modificar embriones destinados a la reproducción antes de tener la absoluta seguridad de que se pisa suelo firme, y no hielo fino.

Lo cual no implica que no se vaya a avanzar mientras tanto en la investigación del uso de CRISPR en embriones humanos no destinados a la reproducción. Reino Unido acaba de dar ese primer paso. El organismo que regula allí la investigación y los tratamientos de fertilidad, Human Fertilisation and Embryology Authority, ha dado el visto bueno a la primera solicitud para modificar embriones humanos empleando CRISPR con fines de investigación.

A diferencia del experimento chino, en este caso se emplearán embriones viables sobrantes de procedimientos de fertilización in vitro, voluntariamente donados por las parejas para fines de investigación. Tanto la legislación británica como la española contemplan este supuesto; en nuestro caso está regulado por la Ley 14/2006 sobre técnicas de reproducción humana asistida., y permite el uso de embriones durante los primeros 14 días de desarrollo, el mismo tiempo máximo que la ley permite mantener embriones en crecimiento fuera del útero materno.

La investigadora que solicitó este permiso, el primero concedido en el mundo, es Kathy Niakan, bióloga del desarrollo del Instituto Francis Crick. Niakan investiga el papel de los genes maestros que regulan las primeras etapas en el crecimiento de los embriones humanos, desde que somos una sola célula procedente de la fusión del óvulo y el espermatozoide hasta que nos convertimos en una bola de 256 células donde algunas comienzan ya a programarse para fines distintos. Es en esta etapa, unos cinco días después de la fecundación, cuando se produce la implantación de este llamado blastocisto en el útero.

Niakan investiga los genes que dirigen este proceso; algunos de ellos funcionan del mismo modo en otros animales y pueden ser estudiados en ratones, pero no es así para todos los casos, y es aquí cuando las células embrionarias humanas no pueden ser reemplazadas por ningún otro modelo. En primer lugar, la investigadora planea inutilizar el gen OCT4, también llamado POU5F1, un gen maestro del desarrollo que marca la diferencia entre el llamado estado de pluripotencialidad de una célula, cuando esta aún puede originar cualquiera de los tejidos del cuerpo, o el momento en que ya está bioquímicamente determinada a formar una parte concreta del organismo. El equipo de Niakan investigará el papel de este y posiblemente otros genes, en función de los embriones disponibles, durante los primeros siete días del desarrollo.

Es importante destacar que el trabajo de Niakan es investigación básica. Para curar, mucho antes hay que conocer, y el proyecto de la bióloga no está dirigido a explorar el tratamiento de ninguna enfermedad, sino a entender cómo operan los procesos de la célula durante el desarrollo temprano en la situación normal de un embrión sano. Lo otro ya llegará; por decir algo, el director del Instituto Crick y Nobel en 2011 Paul Nurse ha declarado que los estudios de Niakan “aumentarán nuestra comprensión de las tasas de éxito de la fertilización in vitro”. Pero es necesario tener presente que aún hay un largo camino por recorrer hasta llegar al día en que nadie dudará en aplaudir la decisión de haber empezado a recorrerlo.

Esto es (algo de) lo que nos traerá la biología en 2016

CRISPR, CRISPR y CRISPR. A quien este acrónimo (pronúnciese “crisper”) aún le suene a galimatías (lo de menos es el significado de las siglas: en inglés, Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas), le aclaro que se trata de la nueva generación de herramientas moleculares que hoy está impulsando una revolución en la ingeniería genética.

Representación de la estructura del ADN. Imagen de Wikipedia.

Representación de la estructura del ADN. Imagen de Wikipedia.

En la temporada anterior (2015) nos quedamos en que el sistema CRISPR, nacido en 2012, había comenzado el desarrollo exponencial de sus utilidades y aplicaciones. Un equipo de investigadores chinos se atrevió a dar el paso de utilizarlo con embriones humanos (no viables), con resultados bastante defectuosos, lo que motivó una reunión internacional destinada a reflexionar sobre los límites éticos de la nueva tecnología.

De aquella reunión salió un ni sí, ni no: aplacemos el uso de CRISPR en embriones humanos destinados a la reproducción hasta que estemos seguros de que no se va a estropear más de lo que se arregla. Pero sobre todo, reunámonos de nuevo el año que viene para ver si ya lo tenemos un poco más claro. El foro de discusión permanente sugerido en la declaración final de la reunión del pasado diciembre debería emitir hacia finales de este 2016 un nuevo informe que establezca directrices más claras y concretas.

La tecnología de CRISPR continuará progresando este año: la última mejora, publicada el día de Reyes en Nature, aumenta la fidelidad de la edición genómica hasta hacer los errores casi indetectables. Los ensayos en ratones ya han alcanzado logros como reparar el defecto genético que provoca la distrofia muscular de Duchenne, un regalo que nos llegó el último día de 2015.

Pero CRISPR llega además en un momento en el que las terapias génicas por edición genómica están en pleno florecimiento. Otra tecnología más clásica que emplea enzimas llamadas nucleasas de dedos de cinc se está utilizando ya en ensayos clínicos. En 2014, la compañía californiana Sangamo BioSciences publicó los primeros resultados clínicos de un tratamiento de edición genómica en células ex vivo (fuera del cuerpo), destinado a tratar la infección por VIH. A finales del pasado año, la francesa Cellectis presentó resultados muy esperanzadores del tratamiento de una niña de un año enferma de leucemia mediante edición genómica ex vivo.

Sangamo lanzará este año el primer ensayo de edición genómica in vivo –inyectando directamente el sistema en el organismo– para corregir el defecto genético de la hemofilia B, y ha anunciado además estudios clínicos para tratar la anemia falciforme y la beta-talasemia en colaboración con la también estadounidense Biogen. Otras compañías están ya planeando el uso clínico de CRISPR, aunque de momento deberemos conformarnos con ensayos en animales hasta que se definan las directrices de seguridad para esta nueva herramienta.

Sin salir de la mezcla de genes, otros experimentos pioneros podrían comenzar a despegar en este 2016. En el Instituto Salk de California el albaceteño Juan Carlos Izpisúa Belmonte, una de las principales figuras del mundo en biología del desarrollo, espera la aprobación de las autoridades estadounidenses para crear quimeras inyectando células humanas en embriones animales, una vía innovadora hacia la obtención de órganos para trasplantes. Además, este año podría reanudarse en EEUU la financiación para una controvertida área de investigación que busca aumentar la agresividad de ciertos virus para facilitar su estudio y diseñar nuevos tratamientos. Los fondos fueron retirados en octubre de 2015 por el peligro que podrían representar estos supervirus.

Otra palabra candente en la biología actual es “microbioma”. Los estudios sobre las poblaciones microbianas que viven dentro de nosotros nos están revelando aspectos de nuestra salud y enfermedad que no se explican solo desde nuestra fisiología humana, sino que requieren introducir en la ecuación a nuestros microscópicos pasajeros. La importancia de esta vida invisible impulsó en 2010 la creación del Earth Microbiome Project (EMP), una alianza internacional de 600 científicos que nació con el titánico objetivo de secuenciar los genomas microbianos de 200.000 muestras tomadas de los rincones más diversos de la Tierra, desde el teclado de un ordenador a la saliva de un dragón de Komodo. El EMP publicará este año sus primeros resultados, que dispararán nuestro conocimiento de la vida dominante en nuestro planeta.

Por otra parte, 2016 será el año en que comience a derribarse uno de los mitos dietéticos más conocidos, persistentes, rentables y… falsos. Ya conté aquí que la ciencia ha demostrado no demostrar la creencia popular de que el colesterol de la dieta influye en los niveles de esta grasa en la sangre. Las nuevas recomendaciones dietéticas oficiales en EEUU, publicadas esta misma semana, han absuelto por fin a este eterno supervillano de la alimentación. El texto final de las recomendaciones destaca que “no hay pruebas adecuadas para un límite cuantitativo del colesterol de la dieta”, elimina el límite de 300 miligramos al día presente en la edición anterior y da luz verde al consumo de los siempre denostados huevos y otros alimentos ricos en colesterol. Falta saber cómo repercutirán estas directrices de EEUU en el resto del mundo y, sobre todo, en el boyante y tramposo negocio de la lucha contra el colesterol.

Las sorpresas en las nuevas recomendaciones no acaban ahí: las directrices apoyan el consumo de entre tres y cinco tazas de café al día como parte de una dieta saludable. Y adiós a aquel presuntamente sabio consejo que nos inculcaban hasta en Barrio Sésamo: el desayuno ya no es la comida más importante del día. Las nuevas recomendaciones se rinden a la evidencia de que este estribillo era también una simple especulación sin base científica; no hay ninguna prueba real de que la falta de desayuno perjudique la salud, por lo que se ha eliminado esta directriz.

Por último, a lo largo de este año recién estrenado deberemos también mantener un ojo pendiente de varios ensayos clínicos que pondrán a prueba vacunas contra el ébola (de las que ya hablé) o el VIH, además de un puñado de posibles fármacos contra distintos síntomas del alzhéimer. No pierdan esta sintonía.