Archivo de la categoría ‘Física’

Haga sus propios copos de nieve, e ilumine su árbol con peces eléctricos

Ya que el anticiclón no parece dispuesto a soltarnos y a falta de Navidades blancas, ¿qué tal aprovechar las vacaciones para fabricar sus propios copos de nieve en casa?

Copo de nieve fotografiado al microscopio. Imagen de Kenneth Libbrecht.

Copo de nieve fotografiado al microscopio. Imagen de Kenneth Libbrecht.

El físico de Caltech (EEUU) Kenneth G. Libbrecht es probablemente el mayor experto mundial en cristales de hielo: los crea, los estudia y los fotografía para comprender cómo se forman y en qué medida sus simétricas formas caprichosas dependen de factores como el grado de humedad, la presión o las variaciones sutiles de temperatura. Sus hermosas imágenes están libres de Photoshop; son fotomicrografías reales de copos sabiamente iluminados para que la luz se descomponga en los colores del arco iris.

Y por cierto, hasta tal punto las condiciones de crecimiento del cristal determinan su forma que Libbrecht ha desmontado el viejo mito según el cual no existen dos copos de nieve iguales: utilizando condiciones idénticas, el físico ha logrado crear cristales que son auténticos gemelos idénticos. Y no solo de dos en dos, sino hasta en grupos de varios.

En su web, Libbrecht detalla paso a paso una receta para crear copos de nieve en casa, que resumo aquí. Estos son los materiales necesarios:

Esquema del aparato para crear copos de nieve. Imagen de Kenneth Libbrecht.

Esquema del aparato para crear copos de nieve. Imagen de Kenneth Libbrecht.

  • Una botella pequeña de plástico (con tapón)
  • Tres vasos de poliestireno
  • Una esponja pequeña de 1 cm de grosor
  • Hilo de náilon
  • Aguja de coser
  • Cuatro alfileres
  • Un clip
  • Toallas de papel
  • Cinta adhesiva
  • Unos cinco kilos de hielo seco (puede comprarse por ejemplo aquí)

Primero, se corta el fondo de la botella de plástico a 1 cm de la base. En este fondo se encaja una esponja circular, que se fija clavando cuatro alfileres en los laterales. La esponja y el fondo de la botella se perforan en su centro con una aguja en la que se ha enhebrado el hilo de náilon. Este se fija al exterior de la base con cinta adhesiva, y en el otro extremo se ata el clip para que sirva de peso. La longitud total del hilo debe ser tal que, al volver a colocar el fondo a la botella y ponerla boca abajo, el clip quede dentro de la botella sin llegar al borde del cuello.

Todo este tinglado de la botella, una vez mojada la esponja con agua del grifo, se introduce en los vasos de poliestireno rellenos de hielo seco machacado, como muestra la figura, y se cubre con toallas de papel alrededor de la botella. Con los materiales que Libbrecht utiliza, el vaso que rodea la botella debe agujerearse por la base, pero el físico aclara que esta disposición es solo una sugerencia.

Copos de nieve creados en el experimento. Imagen de Kenneth Libbrecht.

Copos de nieve creados en el experimento. Imagen de Kenneth Libbrecht.

Lo importante es que en la botella se creen dos zonas, templada y húmeda arriba, fría y seca abajo. El agua de la esponja supersatura el aire de vapor, que difunde pasivamente hacia abajo (el aparato se llama cámara de difusión). Al encontrar la zona fría, comienza a cristalizar en torno a un sitio de nucleación, suministrado por las irregularidades del hilo, y a los pocos minutos comenzarán a aparecer los cristales como los de la foto.

Según explica Libbrecht, esto mismo sucede en la atmósfera cuando el aire cálido y húmedo encuentra aire frío. Según la temperatura de este sea mayor o menor de 0 ºC , se forma lluvia o nieve. Cada gota de lluvia o copo de nieve lleva en su interior alguna partícula de polvo que sirve para la nucleación.

Obtener fotografías como las de Libbrecht es algo mucho más complicado, ya que esto requiere un microscopio en frío. Pero los cristales de nieve que se forman pueden verse a simple vista o con una lupa.

Otra sugerencia para Navidad es controlar las luces del árbol mediante peces eléctricos, para quienes tengan acuario y sean además un poco frikis. La propuesta viene del Laboratorio de Peces Eléctricos dirigido por Jason Gallant en la Universidad Estatal de Michigan (EEUU).

Gallant aclara que los peces realmente no alimentan la iluminación del árbol, sino que controlan el parpadeo de las luces. Es decir, que el montaje es una manera navideña y original de comprobar cómo los peces eléctricos africanos Gymnarchus, según el científico fáciles de encontrar en las tiendas de acuarios, navegan y se comunican con impulsos eléctricos; cada vez que el pez emite un pulso, el árbol se ilumina.

Pez eléctrico africano Gymnarchus. Imagen de Wikipedia.

Pez eléctrico africano Gymnarchus. Imagen de Wikipedia.

Para poner en práctica la idea de Gallant se necesita algo de material electrónico, pero también ciertos conocimientos de informática para programar una plataforma Arduino. La lista de los componentes necesarios y el código para programar el sistema se detallan en el blog de Gallant. Feliz navidad y felices experimentos.

Cuidado con el radón, el monstruo que vive en el sótano

Como en los cuentos de Lovecraft, la amenaza llega desde el submundo. Si usted vive en la franja occidental de la Península que desciende desde Galicia hasta el Sistema Central, esto le interesa. Sepa que tal vez se encuentre en una zona de alta exposición al radón, un gas radiactivo que aparece en el ambiente durante la desintegración del uranio-238 atrapado en el suelo y en las rocas, y que está presente de forma natural en pequeñísima proporción en el aire que respiramos.

Con el radón sucede como con los virus: la percepción pública tiende a desplazarse fácilmente del cero al infinito sin término medio. La mayoría de la gente no conoce el problema de este gas, pero a veces ocurre que quienes se enteran de ello pasan de inmediato al extremo del pánico.

Lo cierto es que el radón es un problema de salud pública reconocido por la Organización Mundial de la Salud, que mantiene un proyecto internacional al respecto. Pero como recordaba el pasado 7 de noviembre (Día Europeo del Radón) el experto del Ilustre Colegio Oficial de Geólogos (ICOG) Luis S. Quindós Poncela, que dirige el Grupo Radón en la Cátedra de Física Médica de la Universidad de Cantabria, lo prioritario es presentar el problema a los poderes públicos y a los ciudadanos para facilitar la información primero, y la actuación después.

El problema con el radón no es que estemos potencialmente expuestos a una fuente de radiación externa, como cuando nos hacemos una radiografía, sino que estamos potencialmente expuestos a contaminación radiactiva: cuando respiramos, introducimos el radón en nuestros pulmones, y así llevamos la fuente de radiación con nosotros. Y si bien el propio gas se desintegra en unos propios días, al hacerlo origina otros compuestos también radiactivos que nos someten a una exposición más prolongada. Esta radiación sostenida puede provocar mutaciones en el ADN cuya consecuencia más fatal es el cáncer.

El radón se filtra al aire desde el suelo, por lo que el riesgo es mayor cuanto más permeable es el terreno bajo nuestros pies. Según Quindós Poncela, las arcillas contienen una concentración de uranio apreciable, pero «su elevada impermeabilidad hace que la cantidad de radón que alcanza la superficie sea muy pequeña». En cambio el granito es más poroso y suele formar paisajes muy rotos, como ocurre en la Sierra de Guadarrama, y es en este tipo de suelos donde «el radón se desplaza más fácilmente y puede alcanzar la superficie del suelo en mayor proporción», añade el experto.

Vías de entrada del radón en una casa. Imagen de la Universidad de Cantabria.

Vías de entrada del radón en una casa. Imagen de la Universidad de Cantabria.

Dado que el radón surge desde lo profundo, las zonas de mayor riesgo en las viviendas son los sótanos y plantas bajas. Suele decirse que a partir del segundo piso ya no existe riesgo, pero no siempre es así: Quindós Poncela advierte de que el suelo no es la única fuente del gas. Los materiales de construcción, si se han extraído de una zona con presencia de uranio, también pueden desprender radón. Además el gas se disuelve en el agua, lo que añade otro factor de riesgo en viviendas que reciban el suministro de un pozo.

Curiosamente, la eficiencia energética de las viviendas actuales es un factor que juega en contra de la seguridad contra el radón. Según Quindós Poncela, la construcción de casas cada vez más herméticas no favorece la eliminación del gas: «Mientras que una vivienda antigua renueva el aire de su interior unas tres veces por hora, una moderna necesita dos horas para llevar a cabo dicha renovación. Este hecho favorece la presencia y acumulación de radón en el interior de las casas», dice.

En los años 90 se emprendió una campaña de medición de radón en viviendas en toda España, gracias a la cual hoy tenemos el mapa de riesgo publicado por el Consejo de Seguridad Nuclear y que pego a continuación. Pero para Quindós Poncela, las 9.000 mediciones tomadas todavía son insuficientes. Y no solo hace falta una mayor vigilancia: el ICOG reclama a las autoridades «que se apliquen cuanto antes medidas constructivas frente al radón (diseño de cimentaciones, ventilación pasiva, análisis de materiales de construcción, etc.), incluyéndolas en el Código Técnico de la Edificación, y mejorando además la definición de las zonas de riesgo en nuestro país».

Mapa de riesgo del radón en España. Imagen del Consejo de Seguridad Nuclear.

Mapa de riesgo del radón en España. Imagen del Consejo de Seguridad Nuclear.

En cuanto a las zonas de riesgo, un caso particular estudiado por el Grupo Radón de Quindós Poncela es el de Torrelodones, el pueblo de la sierra madrileña donde vivo, y donde el granito aflora del suelo en cada recodo del paisaje.

Las medidas tomadas en Torrelodones muestran una amplia variación de los niveles de radón, pero en casi todos los casos se mantienen bastante por debajo de los 200 becquerelios por metro cúbico (Bq/m³). En este rango, los expertos recomiendan simplemente «incrementar la ventilación natural de la vivienda para conseguir concentraciones tan bajas como sea posible».

Solo en una ubicación la medida llega a los 266 Bq/m³, y es en la zona de Colonia Varela; si lo conocen, a la espalda del centro comercial Espacio Torrelodones. Pero incluso en este lugar no hay motivo para la alarma: por debajo de 400 Bq/m³ no se considera necesario aplicar medidas de remedio, sino solo aumentar la ventilación, especialmente en sótanos y plantas a ras de suelo.

Es de esperar que la insistencia de los expertos y la divulgación del problema del radón facilite una mayor vigilancia y una ampliación de las mediciones. Pero si viven en una zona propensa a este riesgo y quieren quedarse más tranquilos, ustedes mismos pueden medir el nivel de radón en su casa: la web del Grupo Radón ofrece un kit, con dos detectores y sus instrucciones, por 80 euros más IVA y gastos de envío.

EmDrive: publicado, pero aún sin explicación válida

Justo al día siguiente de mi anterior artículo sobre el EmDrive, lo que circulaba como un rumor fundado se hizo realidad: el estudio del equipo de NASA Eagleworks se ha publicado en la edición digital de la revista Journal of Propulsion and Power (JPP). Su versión en papel aparecerá en el número de diciembre.

Es necesario recordar que no es el primer estudio publicado que valida el funcionamiento del EmDrive; el equipo de Eagleworks ya había presentado resultados en un congreso hace dos años, pero estas comunicaciones no están sujetas al filtro de revisión por pares de las revistas. En cambio, sí lo estuvieron los estudios publicados respectivamente por el equipo chino dirigido por Yang Juan y por los alemanes Tajmar y Fiedler.

Uno de los sistemas EmDrive construidos por el equipo de Eagleworks. Imagen de White et al, JPP.

Uno de los sistemas EmDrive construidos por el equipo de Eagleworks. Imagen de White et al, JPP.

También conviene recalcar lo que ya he explicado antes: que los científicos de Eagleworks, dirigidos por Harold Sonny White, validen el funcionamiento del EmDrive, no implica que la NASA como institución respalde estos resultados, ni mucho menos la explicación que los autores aportan. Eagleworks es un poco a la NASA lo que el Equipo A al Pentágono. La agencia se ha mantenido siempre bien al margen de las proclamas de White, llegando incluso a prohibirle el contacto con los medios (nota periodística: por este motivo mi anterior artículo se titulaba «Científicos de la NASA…» y no «La NASA…»).

Además, insisto en que la publicación de los resultados con estas bendiciones oficiales significa lo que significa, y no más: que el estudio es formalmente correcto respecto a los resultados que se detallan, con las limitaciones que se especifican y las conclusiones directas que pueden derivarse de ellos.

Durante estos días se rumoreaba que el Instituto Estadounidense de Aeronáutica y Astronáutica, que edita la revista JPP, habría aceptado publicar el estudio solo a condición de que White y sus colaboradores aceptaran retirar su explicación del efecto EmDrive basada en una interpretación alternativa y minoritaria de la física cuántica que ni siquiera para sus propios defensores necesariamente justifica el funcionamiento del EmDrive.

Pero esto no tenía ningún sentido; todo científico sabe para qué sirve el apartado de discusión en un estudio. Sería absurdo aprobar los resultados de un trabajo, censurando al mismo tiempo las especulaciones que sus autores puedan verter en el espacio específicamente abierto para ello. Finalmente el estudio se ha publicado esencialmente completo respecto a la versión sin revisar filtrada antes en internet.

En resumen: ¿significa esto que el EmDrive funciona? Una pregunta aún sin respuesta definitiva, pero que sí puede descomponerse en otras más precisas:

¿El EmDrive produce una fuerza? Sí, al menos una fuerza aparente. Tres grupos de investigación distintos han publicado resultados mostrando que es así. Y eso sin contar los experimentos de los propios inventores del sistema, Roger Shawyer y Guido Fetta, que se han hecho públicos pero no se han publicado formalmente (nótese el matiz). Poner en duda los resultados de un equipo de investigadores cuestiona su honestidad o su competencia profesional; poner en duda los resultados de tres equipos independientes cuestiona la honestidad o la competencia profesional de quien los pone en duda.

¿Esa fuerza podría emplearse como propulsión? Tal vez, pero aún no puede confirmarse al cien por cien. En su estudio, White y sus colaboradores mencionan como principales objeciones un posible desplazamiento del centro de gravedad del cono o una expansión térmica, que es mayor en el vacío (donde se han hecho los experimentos del nuevo estudio) que en el aire, mientras que la señal del impulso es igual en ambos medios. Pero aunque han hecho todo lo posible por descartar estos efectos parásitos, el sistema tiene una limitación intrínseca por el mero hecho de estar atornillado al suelo por dos lugares. Los investigadores esperan diseñar un nuevo sistema con mayores grados de libertad para poder desechar definitivamente estas posibles interferencias. Sin embargo, si la señal fuera enteramente un falso positivo debido a alguno de estos efectos, sería chocante que los experimentos independientes con diferentes diseños no hubieran llegado ya a esta conclusión.

¿Expulsa propelente el EmDrive? No, al menos un propelente formado por materia. Sé que suena a perogrullada; pero como menciono más abajo, una hipótesis pretende explicar el funcionamiento del EmDrive mediante la expulsión de fotones a través del extremo cerrado del cono. Pero los fotones no tienen masa, por lo que no son materia. Al menos, no tienen masa en reposo, claro que un fotón nunca está en reposo…

¿Consume combustible el EmDrive? No. La fuente nuclear que alimentaría el generador de microondas es un consumible, pero no un combustible. Incluso es posible que en ciertos casos el magnetrón pudiera alimentarse solo con energía solar. A comienzos de este año, la sonda Juno de la NASA batió el récord del aparato más alejado del Sol alimentado por paneles solares, rompiendo la marca anterior de 792 millones de kilómetros establecida por la europea Rosetta. Deberán ser los ingenieros quienes valoren en qué casos la energía fotovoltaica sería suficiente para alimentar un generador de microondas; que yo sepa, White solo ha hablado de emplear energía nuclear.

¿Viola el EmDrive las leyes de la física? No. Nada puede violar las leyes fundamentales de la naturaleza. Pero si funciona, significa que la teoría está incompleta, y habrá que encontrar una nueva manera de explicar la realidad. Como conté recientemente a propósito de la materia oscura, no es la primera vez que esto ocurre en la historia de la ciencia, ni será la última.

Entonces, ¿cómo se explica la aparente violación de la conservación de la cantidad de movimiento (p)? Repaso brevemente, a riesgo de dejar alguna fuera, las cinco principales hipótesis que se han aportado para explicar el funcionamiento del EmDrive:

1. Presión de radiación

Shawyer, el inventor del sistema, afirma que el EmDrive genera propulsión por el empuje de los fotones de la radiación de microondas sobre el extremo cerrado del cono, por el mismo principio en el que se basan los veleros espaciales; no las velas solares, que se impulsan por el viento solar (partículas cargadas), sino las fotónicas. Pero la inmensa mayoría de los físicos rechazan esta explicación, porque es como empujar un coche desde dentro. O como me recordaba con mucho acierto un/a usuario/a en Twitter, como el barón de Münchhausen, que escapó de una ciénaga tirando de su propia coleta. En este caso habría una clara violación de la conservación de p. Shawyer sostiene que no es así; de hecho, hace tiempo me aseguró en un email que «el EmDrive claramente obedece las leyes de Newton, tanto teórica como experimentalmente, según muestran los resultados de las pruebas dinámicas; así que no viola la conservación de la cantidad de movimiento». Pero hasta donde sé, no ha explicado cómo.

2. Fotones como propelente

El pasado junio, un equipo de investigadores finlandeses publicó un estudio (revisado por pares) que atribuye la propulsión del EmDrive a la expulsión de fotones que actúan como propelente. Según la peculiar visión de Patrick Grahn y sus colaboradores, sí existe un combustible, las microondas, y un propelente, los fotones. Grahn afirma que el emparejamiento de las partículas en fases opuestas produce una interferencia destructiva que cancela su radiación electromagnética, pero los fotones no se destruyen, sino que escapan del extremo cerrado del cono siendo indetectables como ondas y actuando como propelente. Los fotones tienen una cantidad de movimiento debida solo a su energía, pero la hipótesis de Grahn requiere asumir que de esta p se deriva una masa teórica en movimiento, que vendría aportada por el generador de microondas y que escaparía del cono hacia el exterior, moviendo el propulsor por una simple acción-reacción. Todo lo cual resulta inaceptable para la gran mayoría de los físicos.

3. Radiación Unruh

Esta es una primera hipótesis que se basa en la energía del vacío, en el marco de la física relativista. Ya la expliqué con detalle anteriormente. Como en el caso anterior, la teoría requiere adjudicar una masa relativística a los fotones. Pero aunque el efecto en el que se fundamenta no se ha descartado, y de hecho podría contemplarse como una forma particular de la radiación de Hawking que desprenden los agujeros negros, tampoco se ha corroborado de forma convincente. Hasta ahora, la idea propuesta por el físico Mike McCulloch no ha calado en la comunidad científica. Mi impresión puramente personal (como un no-físico y al margen de la discusión sobre el efecto Unruh) es que justificar el funcionamiento del EmDrive por el efecto Unruh es un poco como matar moscas a cañonazos, cuando además ni siquiera está claro que los cañonazos existan.

4. Empuje desde el vacío cuántico

White explica el funcionamiento de su sistema también por energía del vacío, pero en el contexto cuántico. La hipótesis se basa en el vacío cuántico, el estado más bajo de energía de un sistema cuántico (digamos, una visión energética de lo que se entendería como vacío normal). Esta energía no es cero, lo que puede explicarse por la acción de las oscilaciones de partículas virtuales. Este mecanismo se ha utilizado para explicar el efecto Casimir de la teoría cuántica de campos, según el cual existe una fuerza medible –de atracción o repulsión según la configuración del sistema– entre dos placas conductoras separadas por una pequeña distancia en el vacío. El problema con la explicación de White es que nadie se la cree: para la mayoría de los físicos, es imposible extraer energía aprovechable como propulsión a partir del vacío cuántico; no se puede extraer p de él, ya que no es un marco de referencia fijo desde el que empujar, así que estamos otra vez en el caso del barón de Münchhausen y su coleta.

Sin embargo, White justifica su hipótesis basándola en una teoría alternativa de la física cuántica. Todo lo que han oído mencionar sobre el extraño comportamiento de las partículas, como la paradoja del gato de Schrödinger o el experimento de la doble ranura, se basa en la llamada interpretación de Copenhague, la que prima hoy en física. Según esta teoría, las partículas no tienen una posición fija, sino que se comportan como nubes de probabilidad (por ejemplo, a lo largo de dos caminos alternativos y mutuamente excluyentes) hasta que un observador las mide, rompiendo la onda y bloqueando las partículas en una posición. Esta interpretación probabilística de la cuántica no gustaba nada a Einstein; como mencioné hace unos días, en una ocasión le preguntó a su biógrafo Abraham Pais si creía que la luna solo existía cuando alguien la miraba.

En los años 20 del siglo pasado, Louis de Broglie propuso una interpretación alternativa, la teoría de la onda piloto, que David Bohm completó en lo que hoy se conoce como mecánica de De Broglie-Bohm. La teoría es realista; es decir, afirma que las partículas sí tienen una posición concreta en todo momento, con independencia de la presencia de un observador y guiada por su onda acompañante (onda piloto). Si no conocemos estas trayectorias, decía Bohm, no se debe a que no existan, sino a la existencia de variables ocultas que se nos escapan.

La teoría implica que la mecánica cuántica no es local; las partículas pueden estar físicamente alejadas entre sí, lo mismo que los objetos grandes sujetos al comportamiento de la física clásica. En los años 60, John Bell se acogió a la teoría de la onda piloto para explicar el entrelazamiento cuántico, la capacidad de dos partículas separadas de estar sincronizadas en sus propiedades. Aunque la teoría de De Broglie-Bohm continúa sin ser aceptada mayoritariamente, en los últimos años se han publicado varios experimentos que la respaldan. Y por ejemplo, el entrelazamiento cuántico en condiciones no locales ya ha sido suficientemente validado, como he contado aquí en ocasiones anteriores.

En concreto, White se apoya en la posibilidad de que las partículas reales del vacío cuántico puedan intercambiar cantidad de movimiento para defender que esta puede cosecharse y transmitirse: «sería posible aplicar/extraer trabajo en/de el vacío, y por tanto sería posible empujar desde el vacío cuántico preservando las leyes de la conservación de la energía y de la cantidad de movimiento», escribe. Pero si la hipótesis de White fuera aceptada, que por el momento no lo es, esto supondría cambiar radicalmente de modelo de física cuántica; algo que hasta ahora no han conseguido validaciones más sólidas de la teoría de la onda piloto.

5. Efecto Mach

Una teoría desarrollada por el físico James Woodward en los años 90 propone que la energía interna de un cuerpo varía al acelerar; es decir, que no todo se traduce en energía cinética, sino que el objeto en movimiento almacena energía potencial absorbida de su entorno mediante la interacción con el campo gravitatorio que se opone a su movimiento (la inercia). Este enriquecimiento energético, sugiere Woodward, se traslada a cambios en la masa del cuerpo, y puede ordeñarse en forma de cantidad de movimiento que el objeto le ha robado previamente al universo, conservándose todo lo que tiene que conservarse.

La hipótesis es esencialmente compatible con la relatividad general; de hecho, la idea (más filosófica que física) del origen de la inercia como una influencia del resto del universo sobre un sistema local fue una inspiración para Einstein, que profesaba un gran respeto hacia su autor, el austríaco Ernst Mach. Sin embargo, el efecto Mach derivado por Woodward aún no ha sido validado de forma concluyente. Woodward afirma que su teoría podría aprovecharse para construir propulsores sin partes móviles ni propelente, y que es la explicación que mejor encaja con la física actual para explicar la señal del EmDrive.

Plutón tiene un océano granizado bajo el suelo

Antiguamente se hablaba de los Siete Mares para decir que alguien había recorrido todo el mundo a lo largo y a lo ancho. Pero naturalmente, todos los océanos de la Tierra son uno solo. Hoy podríamos volver a hablar de los Siete Mares, pero serían estos: Tierra, Ceres, Europa, Calixto, Ganímedes, Titán, Encélado, Rea, Dione, Mimas, Titania, Oberón, Tritón, Plutón, Eris, Sedna… Y posiblemente, más.

Definitivamente, salen más de siete, y es que el agua líquida parece ser mucho más abundante en el Sistema Solar de lo que jamás se había sospechado. En todos esos satélites, asteroides o planetas enanos con gran cantidad de hielo se sospecha también con mayor o menor fundamento que existen océanos líquidos bajo sus costras heladas.

Y llamarlos océanos no es ni mucho menos una exageración: quienes se han dejado convencer por ese tópico de que la Tierra es un planeta acuático, no se pierdan este gráfico publicado por Business Insider que pone las cosas como son: comparativamente, la Tierra es solo una roca mojada, como una naranja con la cáscara húmeda. Europa, satélite de Júpiter, tiene el doble de agua (líquida + hielo) que nuestro planeta. Pero es que Ganímedes, también luna de Júpiter, tiene nada menos que 39 veces más agua que la Tierra, en un mundo cuyo diámetro es más o menos un 50% mayor que el de nuestra Luna.

Representación de un corte de Plutón. La capa de azul claro es la corteza helada, y la de azul oscuro es el océano interior. Imagen de Pam Engebretson / UCSC.

Representación de un corte de Plutón. La capa de azul claro es la corteza helada, y la de azul oscuro es el océano interior. Imagen de Pam Engebretson / UCSC.

Les prometí una noticia fresca, más bien glacial, de nuestro Sistema Solar, y aquí está: nos llega desde Plutón. Aunque los científicos ya sospechaban la existencia de un océano bajo su superficie, la revista Nature publica hoy nuevas pruebas a favor de ello en dos estudios (uno y dos) que analizan los datos tomados el pasado año por la sonda New Horizons y los combinan con modelos matemáticos para llegar a una conclusión: el famoso corazón, la región más distintiva de la fisonomía plutoniana, esconde muy probablemente un océano de agua con algún anticongelante, posiblemente amoníaco, que le daría una textura viscosa, algo parecido a un granizado.

Para llegar a esta conclusión, los investigadores han modelado la dinámica del planeta para explicar la curiosa observación de que el corazón, llamado región de Tombaugh, se sitúa siempre en posición exactamente opuesta a la luna Caronte. Plutón y el mayor de sus satélites están en mutuo acomplamiento de marea, lo que significa que ambos se muestran siempre la misma cara el uno al otro. En el caso de la Tierra, la Luna está en la misma situación respecto a la Tierra (y por eso vemos siempre la misma cara), pero no al contrario.

Los investigadores concluyen que existe una anomalía de masa en la región de Tombaugh que produjo esta situación. El impacto de un objeto espacial produjo una depresión de 1.000 kilómetros de anchura llamada Sputnik Planitia, que causó un abombamiento del océano bajo la superficie. Posteriormente la llanura se llenó de nitrógeno congelado, y la combinación de estos efectos provocó que Plutón se alineara con Caronte de modo que la Sputnik Planitia queda exactamente en línea con el satélite, pero en la cara opuesta a él.

Y surge la pregunta: ¿habrá vida en el océano de Plutón? ¿De Europa? ¿De Ganímedes? Hoy no tenemos otra respuesta salvo que no es descartable. En la Tierra tenemos microorganismos que crecen allí donde el agua alcanza nuestras temperaturas más bajas. En Plutón los límites son diferentes, y por supuesto que las temperaturas del océano plutoniano serían inimaginables para nuestros microbios más amantes del frío. Pero algunos organismos han desarrollado evolutivamente sus propios anticongelantes naturales para mantener el agua de sus células en estado líquido. Y donde hay agua líquida, hay siempre una esperanza de vida.

 

Científicos de la NASA confirman que el «propulsor imposible» EmDrive funciona

Si esto fuera cierto, lo cambiaría todo. Ya, ya. Pensarán que esta frase se manosea demasiado para vender expectativas infladas sobre casi cualquier cosa, desde los cereales con chocolate hasta la última oferta de tarifas para móviles. Pero créanme: les aseguro que, si esto finalmente llega a confirmarse sin ningún género de dudas, la física y la ingeniería aeroespacial van a tener que replantearse algunos de sus fundamentos básicos, que se remontan hasta el día en que Einstein le preguntó a su biógrafo si creía que la luna solo existía cuando la mirábamos.

Desde hace unos años se viene hablando del llamado EmDrive o propulsor de cavidad resonante de radiofrecuencia. Se trata de un tipo de motor (o más bien, no-motor) que permitiría emprender largos viajes por el espacio a velocidades hoy inimaginables, sin emplear ni una sola pieza mecánica móvil que pueda desgastarse o romperse, sin consumir combustible de ninguna clase y sin expulsar ningún tipo de propelente. En resumen, el sueño más salvaje de la ciencia ficción.

El EmDrive. Imagen de SPR.

El EmDrive. Imagen de SPR.

El EmDrive fue ideado por el ingeniero británico Roger Shawyer, que a principios de este siglo creó una empresa destinada a desarrollarlo. Pocos años después, el ingeniero estadounidense Guido Fetta creó independientemente un concepto similar llamado Cannae Drive. En esencia, el EmDrive consiste en algo tan simple como un cono metálico truncado en cuyo interior se hacen rebotar microondas, un tipo de ondas de radio; o sea, luz (no visible). Supuestamente, es lo que les ocurre a estas ondas cuando rebotan en el interior del cono lo que produce la propulsión.

Solo hay un pequeño gran inconveniente; y es que, de acuerdo a la física actual, es imposible que funcione. Un cohete se mueve gracias a la tercera ley del movimiento de Newton, el principio de acción y reacción: quema un combustible, expulsa un propelente en una dirección y esto lo impulsa en sentido contrario. Esta ley fundamental de la física debe respetarse en todos los casos: cuando un velero avanza, lo hace como reacción a la fuerza que impacta sobre sus velas. En los barcos es el viento atmosférico, mientras que las naves espaciales pueden aprovechar el viento solar de partículas cargadas o el empuje de los fotones por la llamada presión lumínica.

Pero está claro que no podemos mover un barco empujando las velas desde la cubierta, igual que no podemos empujar un coche desde dentro sin un punto de apoyo exterior. Esta imposibilidad se describe por la recreación de la ley de Newton en el principio de conservación de la cantidad de movimiento, cuyo fundamento básico puede resumirse de la forma más simple en que, para que algo se mueva, otra cosa tiene que cederle ese movimiento. Y no parece que la luz rebotando dentro de un cono pueda mover a nada más que el aburrimiento. En resumen, la idea del EmDrive es parece una aberración inviable.

Pero si de ninguna manera esto puede funcionar, ¿qué sentido tiene seguir discutiendo? El problema es que el propulsor imposible parece empeñarse una y otra vez en negar la teoría. No solo Shawyer y Fetta insisten en que su motor produce una propulsión, pequeña pero real; los mismos resultados se han obtenido en China y en Alemania. Pero sin duda, lo que más revuelo ha causado es la confirmación de estos resultados en un laboratorio bastante oscuro del Centro Espacial Johnson de la NASA llamado Eagleworks, tan marginal que ni siquiera (que yo sepa) tiene apenas sitio en el dominio web de la agencia, sino solo una página en Facebook.

Todo físico que aspire a seguir siendo considerado como tal negará hasta la tortura que el EmDrive pueda hacer otra cosa que decorar un salón. Y por ello, cuando hace un par de años los científicos de Eagleworks se plantaron en un congreso afirmando que el propulsor funciona, la reacción de la comunidad no fue precisamente el aplauso. Incluso la NASA tuvo que desmarcarse de los resultados de Eagleworks, adhiriéndose a la fe pura y prohibiendo a los responsables del laboratorio todo contacto con los medios.

Pero como he explicado alguna vez aquí, los congresos son foros donde a menudo se presentan resultados en caliente, aún sin suficiente contrastación y sin validación por parte del resto de la comunidad científica. Solo cuando un estudio es formalmente revisado por otros expertos y publicado en una revista científica puede asumirse que sus conclusiones son válidas.

Hace unos días se ha filtrado (probablemente por parte de los propios responsables de Eagleworks) un estudio que pone a limpio los resultados de los investigadores de la NASA con el EmDrive. Y descartadas posibles objeciones, como la intervención de fuerzas parásitas o la interferencia del aire, los científicos de Eagleworks se ratifican en su conclusión: «el sistema funciona de forma consistente», escriben.

Según el estudio, el EmDrive produce una fuerza de 1,2 milinewtons (mN) por kilovatio (kW). A primera vista podría no parecer una propulsión impresionante. Por ejemplo el llamado propulsor Hall, un motor de plasma que actualmente se investiga como alternativa prometedora a los actuales cohetes, genera 60 mN/kW, unas 50 veces más fuerza que el EmDrive. Pero la diferencia estriba en que este propulsor consume grandes cantidades de combustible. Y en cuanto a las opciones actuales de propulsión sin propelente, como las velas solares, solo alcanzan algo más de 6 micronewtons por kW; es decir, unas 200 veces menos que el EmDrive.

Pero sobre todo, hay que tener en cuenta que el impulso generado por el EmDrive debería ser, pura y simplemente, cero. Cualquier fuerza por encima de cero, por mínima que sea, podría ir sumando aceleración a una nave espacial hasta lograr velocidades increíbles; se ha calculado que la propulsión suministrada por el EmDrive, si realmente existe, podría poner una nave en Marte en 70 días, o llegar al sistema estelar Alfa Centauri en solo 92 años.

¿Y ahora, qué? Por supuesto que la discusión sobre el EmDrive no va a acabar aquí. Fetta ha anunciado que lanzará al espacio un Cannae Drive en un satélite para estudiar su comportamiento en condiciones reales. En cuanto al estudio de Eagleworks, aún debe pasar los filtros de publicación, aunque es de esperar que no sean un obstáculo; al fin y al cabo, anteriormente otros grupos ya han publicado formalmente resultados positivos con el EmDrive.

De hecho, antes de que el estudio se filtrara en internet ya circulaban rumores sugiriendo que el proceso de revisión se ha completado y que por tanto el trabajo se publicará próximamente, tal vez en la revista Journal of Propulsion and Power. Si los rumores son ciertos, ¿cómo reaccionará la NASA ante un estudio publicado en su nombre que sostiene una (aparente) violación flagrante de las (actuales) leyes de la física?

Claro que, si finalmente el EmDrive funciona, habrá que encontrar la manera de explicarlo sin que exista tal violación. Ya conté aquí una interesante hipótesis que sin embargo no ha sido favorecida por otros físicos. Pero los científicos de Eagleworks apuntan a una explicación incluso más audaz, que justifica lo que les decía al comienzo: el EmDrive amenaza con sacudir los cimientos fundamentales en los que se asienta la física cuántica actual. Mañana se lo contaré.

O mejor, pasado mañana; antes de eso les traeré aquí una noticia fresca, o más bien glacial, que nos descubrirá una nueva maravilla de nuestro Sistema Solar. No pierdan esta sintonía.

Una nueva teoría de la gravedad prescinde de la materia oscura

Como sabe cualquiera que haya abierto una lavadora después del centrifugado, el giro tiende a expulsar las cosas hacia fuera. En la lavadora, son las paredes del tambor las que impiden que la ropa salga volando. Pero las galaxias, que también centrifugan, no tienen tambor; ¿qué es lo que evita que las estrellas salgan volando en todas direcciones?

Lo que mantiene una galaxia unida es la gravedad, que tiende a juntar las masas unas a otras. Es lo mismo que nos mantiene pegados al suelo. El problema es que, cuando los físicos calculan la masa de una galaxia, las cuentas no salen: la gravedad es demasiado baja como para compensar la inercia que tiende a dispersarla. Como conté ayer, la solución por la que se ha optado es suponer que la masa es realmente mucho mayor de lo que se ve, pero el resto es invisible: materia oscura. A más masa, más gravedad, y así todo cuadra.

Representación hipotética de la distribución de materia oscura (nube azul) en la Vía Láctea. Imagen de ESO/L. Calçada vía Wikipedia.

Representación hipotética de la distribución de materia oscura (nube azul) en la Vía Láctea. Imagen de ESO/L. Calçada vía Wikipedia.

Pero algunos físicos piensan que tal vez no sea necesario inventar un tipo de materia de la que hasta ahora no ha podido obtenerse ninguna prueba; que quizá la inercia sea menor de lo que sospechamos, o la gravedad sea mayor. Ayer conté un ejemplo de lo primero, una hipótesis que reduce el valor de la inercia. Otras propuestas se basan en un aumento del valor de la gravedad, asegurando que al menos en ciertos casos no se comporta como sospechamos.

La propuesta más conocida en esta línea fue desarrollada por el israelí Mordehai Milgrom en 1983, y se conoce como Dinámica Newtoniana Modificada, o MOND. En breve, lo que Milgrom propone es que el valor familiar proporcionado por Newton para la gravedad no funciona en escalas extremas, cuando la aceleración es enormemente baja o la distancia al centro de la galaxia es muy grande, como ocurre en las estrellas de la periferia. En estos casos la gravedad sería mayor de lo normal, compensando la inercia que tiende a dispersar la galaxia.

Un resultado similar –una gravedad mayor– se deriva de una nueva teoría propuesta ahora por el holandés Erik Verlinde, de la Universidad de Ámsterdam. Aunque en este caso, el punto de partida es completamente distinto. Verlinde comenzó su carrera bajo la dirección de Gerard ’t Hooft, conocido sobre todo (además de por su Nobel en 1999) como el creador del llamado Principio Holográfico.

El Principio Holográfico es una audaz propuesta según la cual el universo es la proyección de un holograma contenido en una esfera que lo rodea. La idea del holograma es la misma que conocemos de las tarjetas de crédito: una superficie de dos dimensiones que contiene información sobre un objeto tridimensional. Dado que el holograma tiene una dimensión menos que el objeto al que representa, en el caso del universo se trataría de un espacio tridimensional en un área bidimensional; o si añadimos el tiempo, un universo 4D en un espacio 3D, siendo el tiempo una de estas dimensiones.

El Principio Holográfico es una aplicación cosmológica de la Teoría de Cuerdas, un modelo emergente de la física que trata de conciliar la cuántica con la relativística, hasta ahora dos mundos separados. En cuántica no existe la gravedad, el concepto fundamental de la relatividad. En la Teoría de Cuerdas, la materia no está formada por esas bolitas con las que asociamos la imagen de las partículas subatómicas, sino por hilos de una sola dimensión que vibran de diferentes maneras para originar las diferentes clases de partículas. Una de esas partículas originadas por una de las muchas vibraciones posibles es el gravitón, la responsable de la gravedad, por lo que la Teoría de Cuerdas ofrece un modelo de gravedad cuántica que trata de desbrozar el camino hacia eso que habitualmente se conoce como Teoría del Todo.

El Principio Holográfico interesa a muchos físicos porque permite correlacionar dos teorías en principio muy distintas que se diferencian en una dimensión, lo que permite abordar problemas muy complejos en un marco mucho más sencillo. En el caso que nos ocupa, la ventaja es que la gravedad aparece en el universo como consecuencia de la información contenida en ese holograma.

Sin embargo, lo que propone Verlinde es una enmienda al modelo de su maestro: que en realidad el holograma es incompleto. Imaginemos uno de esos cuadros holográficos que se venden en los bazares, y supongamos que una parte de la imagen, por ejemplo la mano de un personaje, no estuviera representada en el holograma, sino que sobresaliera del cuadro como un objeto tridimensional real. Según Verlinde, al menos una parte de la gravedad no está codificada en el holograma, sino que surge intrínsecamente como una propiedad del tejido del espacio-tiempo, del mismo modo que la temperatura aparece como consecuencia del movimiento de las partículas.

En 2010 Verlinde publicó su teoría de la Gravedad Emergente, como se ha dado en llamar. Ahora, en un nuevo estudio la aplica a los movimientos de las estrellas en las galaxias, llegando a un sorprendente resultado: esa gravedad emergente explica la fuerza habitualmente atribuida a la presencia de la materia oscura. Es decir, que la desviación de la gravedad einsteniana en el caso de las grandes escalas se compensa cuando se introduce esa porción extra de gravedad oscura. No hace falta materia extra que no se ve, sino una fuerza extra que no se había calculado.

Tal vez piensen que sustituir la materia oscura por una gravedad oscura es como elegir muerte en lugar de susto. Pero lo cierto es que se trata de encontrar el origen de un balance de fuerzas que evidentemente existe. Ante el continuado fracaso en los intentos de detección de materia oscura, algunos físicos han llegado a sugerir que esta materia se encuentra escondida en otra dimensión, siendo la gravedad la única de las fuerzas fundamentales cuyos efectos son transversales a todas las dimensiones. Y esto no solo explicaría por qué la gravedad de la que tenemos constancia es tan débil (solo tendríamos constancia de una parte de ella), sino que encajaría con el universo de 11 dimensiones propuesto por una variante unificadora de la Teoría de Cuerdas llamada Teoría M. Pero la hipótesis de Verlinde prescinde por completo de la materia oscura, y es probable que algunos defensores de la Teoría de Cuerdas respirarían aliviados con esta solución.

Aún habrá que esperar para comprobar cómo la teoría de Verlinde es recibida por la comunidad física, y qué posibles objeciones plantearán los expertos. Pero como dije ayer, están surgiendo nuevas visiones alternativas que tal vez, solo tal vez, algún día podrían hacernos recordar con una sonrisa los tiempos en que teníamos inmensos, carísimos y complejos detectores buscando un tipo de materia tan invisible como –tal vez, y solo tal vez– inexistente.

¿Y si la materia oscura fuera un cuento?

Durante más de 2.000 años, mentes brillantes de la talla de Aristóteles, Galeno, Hipócrates, Demócrito, Paracelso, Alberto Magno, Tomás de Aquino, Spencer, Erasmus Darwin o Lamarck creyeron en la herencia de caracteres adquiridos. Es decir, que un día una jirafa comenzó a estirar el cuello para alcanzar las copas de los árboles, y que cada generación sucesiva lo estiraba un poquito más, hasta llegar al larguísimo cuello que hoy tienen.

Representación teórica de la materia oscura (anillo azul) en el grupo de galaxias CL 0024+17. Imagen de NASA/ESA vía Wikipedia.

Representación teórica de la materia oscura (anillo azul) en el grupo de galaxias CL 0024+17. Imagen de NASA/ESA vía Wikipedia.

Suponiendo que esto sucedía así, había que explicar el mecanismo capaz de informar al espermatozoide y al óvulo de que el cuello se había alargado, para que la siguiente generación pudiera heredar ese estiramiento. Y Charles Darwin dio con él: las gémulas, unas partículas diminutas producidas por las distintas células del organismo que confluían en los órganos reproductores para que las semillas sexuales llevaran toda la información actualizada del cuerpo con el fin de transmitirla a los hijos. En conjunto, la teoría se conocía como pangénesis, ya que todo el organismo («pan» en griego, como en panamericano) participaba en la herencia.

Pero no crean nada de lo anterior: naturalmente, todo esto era pura fantasía. Darwin inventó una entidad exótica, la gémula, para explicar un fenómeno. Pero es que en realidad este fenómeno no se producía tal como todas esas mentes brillantes habían creído durante un par de milenios. En general, la herencia de caracteres adquiridos durante la vida de un individuo no existe (aclaración: en realidad sí existe y se llama epigenética, pero esa es otra historia que no viene al caso en este ejemplo).

La gémula de Darwin no ha sido la única entidad ficticia inventada históricamente para explicar procesos que se entendían mal: el éter luminífero, el flogisto, las miasmas, la fuerza vital, el planeta Vulcano, los cuatro humores corporales…

Como Darwin, Einstein tampoco se libró de la invención de entidades tapa-grietas. Cuando el físico alemán supo que su modelo de la relatividad general daba lugar a un universo que acabaría gurruñándose sobre sí mismo como quien estruja el envoltorio de un polvorón (ya hay que empezar a ponerse en modo navideño), tuvo que meter en sus ecuaciones un término para evitarlo, dado que, como todo el mundo sabía, el universo era estático.

Así nació la constante cosmológica, designada por la letra griega lambda mayúscula (Λ) y que introducía una especie de anti-gravedad para evitar el estrujamiento cósmico y casar las ecuaciones con una realidad que se resistía a colaborar con la teoría.

Resultó que, poco después, el belga Georges Lemaître y el estadounidense Edwin Hubble mostraban que en realidad el universo no era estacionario, sino que se expandía, por lo que la constante cosmológica sobraba. O dicho con más finura, que Λ = 0. Pero irónicamente, en el último par de décadas esto ha cambiado al descubrirse que el universo se expande con aceleración, lo que ha obligado (otra vez) a inventar algo llamado energía oscura y distinto de cero que, curioso, ya tenía un asiento reservado en las ecuaciones de Einstein: la constante cosmológica. Claro que no puede decirse que esto fuera genialidad del alemán, sino más bien un golpe de suerte.

Pero si el universo se expande y las galaxias giran, ¿por qué no se deshilachan como el algodón de azúcar? Debe de haber algo que las recoja y las mantenga unidas, como el palo del algodón. En este caso, el palo sería una masa extra que aumentaría la gravedad encargada de cohesionar la galaxia para que no se deshaga. Y dado que no se ve ningún palo, está claro que se trata de un palo completamente invisible. Ya tenemos la entidad exótica; ahora hay que buscarle un nombre adecuado: ¿qué tal La Fuerza? No, que de estas ya hay demasiadas. ¿Qué tal materia oscura?

Hoy la mayoría de los físicos creen en la existencia de la materia oscura, porque les ofrece la mejor opción disponible para explicar cómo una fuerza tan débil como la gravedad es capaz de mantener las galaxias de una pieza. La mayoría. Pero no todos. Algunos piensan que la materia oscura es otro de esos tapa-grietas como las gémulas, el éter o el flogisto, nacidos de nuestra deficiente comprensión de la naturaleza; en este caso, de la gravedad.

Por ejemplo, algunos físicos piensan que la constante que define la gravedad no es tal constante, sino que aumenta en los bordes de las galaxias donde la aceleración es muy baja. Imaginemos que removemos un plato de sopa desde el centro: aquí los fideos se mueven más deprisa, y más lentamente en la parte del borde del plato. Según esta hipótesis, la periferia de la galaxia que se mueve más despacio estaría sometida a una mayor gravedad, lo que mantendría la cohesión, como hace el borde del plato. Otra posibilidad es que la masa de los cuerpos en movimiento disminuya cuando la aceleración es muy baja, lo que produciría el mismo efecto final, pero en este caso sin modificar la gravedad, sino la inercia.

El físico Mike McCulloch, de la Universidad de Plymouth, ha propuesto un modelo en esta línea que utiliza algo llamado efecto Unruh, del que ya hablé aquí a propósito del EmDrive, ese propulsor que no puede funcionar porque según la física común viola las leyes naturales, pero que a pesar de todo parece empeñarse en funcionar en varios experimentos independientes.

McCulloch propone un modelo modificado de la inercia, ese ímpetu misterioso que nos empuja hacia delante tras un frenazo. Para el físico, la inercia es el resultado de una extraña interacción entre una radiación producida por los cuerpos en aceleración y el tamaño del universo; cuando la aceleración disminuye, la onda de esa radiación aumenta tanto que no cabe en el universo y entonces debe saltar a un tamaño menor, lo que modifica su frecuencia, su energía y por tanto la masa del cuerpo en movimiento, ya que todas ellas están vinculadas (lo expliqué con más detalle aquí).

Cuando McCulloch aplica su hipótesis a la ley de la gravedad de Newton para el caso de los bordes de las galaxias, obtiene valores que se parecen mucho a los reales sin necesidad de introducir un factor de corrección como la materia oscura; simplemente asumiendo que el efecto Unruh modifica las masas y por tanto las aceleraciones de los objetos situados a mayor distancia del centro de la galaxia, lo que reduce su inercia y evita la dispersión. El problema es que esto requiere la existencia de esa radiación debida al efecto Unruh, algo que no ha sido demostrado y de lo que muchos dudan. Pero que de momento tampoco puede descartarse.

Mañana contaré otra nueva hipótesis que explica la acción de la gravedad en las galaxias sin necesidad de fantasmas invisibles. Y aunque de momento parece probable que la física mayoritaria seguirá aceptando la materia oscura, tal vez podríamos estar avanzando un paso más hacia la demolición de otro tótem científico imaginario.

¿Y para cuándo el Nobel de Física a Brian May?

El mundo está hoy dividido entre quienes aplauden la concesión del Nobel de Literatura a Bob Dylan, y quienes reclaman un Grammy para Francisco Correa o un Oscar para Rodrigo Rato. Pero, en realidad, nadie dijo que este premio estuviera reservado a lo que comúnmente entendemos como un escritor profesional.

Conviene recordar las palabras literales de Alfred Nobel en su testamento sobre la concesión del premio «a la persona que haya producido en el campo de la literatura la obra más sobresaliente en una dirección ideal». Según leí en alguna parte hace tiempo, hubo discusiones en la Academia Sueca, la encargada del fallo anual, sobre qué quiso decir exactamente Nobel cuando escribió «en una dirección ideal». Algunos lo interpretaban como un sinónimo de «perfecto», mientras que otros defendían un significado equivalente a «idealista».

Pero está claro que esta segunda interpretación no ha dirigido la concesión del premio en muchos casos, empezando por mi admirado Hemingway. Tal vez sí ha primado en la decisión de premiar a Dylan, pero hay también precedentes de premios Nobel de Literatura que no han ido a parar a manos de escritores convencionales. Me viene a la cabeza el caso de Winston Churchill (1953), que escribió libros, y muchos, pero a quien se le concedió el premio por sus discursos políticos.

Pero a lo nuestro, que en este espacio es la ciencia. Se me ha ocurrido que esta es una buena ocasión para recordar en este y próximos días a otros músicos consumados cuyos nombres salen en los papeles científicos (he dicho «músicos consumados»; no incluyo en la lista al físico de partículas del LHC, divulgador televisivo y reconocido guapo Brian Cox, que en los años 90 fue teclista de un grupo poppy bastante hortera).

Abundan por ahí las listas que citan los nombres, pero que no suelen explicar en concreto en qué consiste el trabajo científico de dichos músicos. No se preocupen: yo se lo cuento. Aunque, si les soy sincero, ya les adelanto que realmente ninguno de ellos va para premio Nobel, al menos de momento.

Comenzamos hoy con ningún otro que

Brian May

Arriba, Brian May. Abajo, Isaac Newton. Imágenes de Wikipedia.

Arriba, Brian May. Abajo, Isaac Newton. Imágenes de Wikipedia.

Sí, todos sabemos que el exguitarrista de Queen es astrofísico, y que su presencia es uno de los mayores reclamos del festival científico Starmus que hasta ahora ha venido celebrándose en Tenerife. Pero ¿qué ha aportado May a la astrofísica? Quiero decir, además de estar convirtiéndose en un clon de Isaac Newton…

En 1970, May tomaba dos decisiones importantes: comenzaba su doctorado en Astrofísica y cofundaba un grupo llamado Queen. Cuatro años después, el éxito meteórico de la banda le apartaba (casi) definitivamente de otros tipos de meteoros y del objeto de su tesis, la luz zodiacal.

Se trata de una débil franja de luz que puede observarse sólo en los cielos nocturnos prístinos, y que está causada por la dispersión del resplandor solar por el polvo que flota en el espacio. Se llama zodiacal porque se aprecia mejor en el plano de la órbita terrestre, donde se sitúan las constelaciones del Zodiaco. La luz zodiacal es la principal fuente de iluminación del cielo en las noches sin luna.

Y aunque esto del polvo zodiacal les pueda sonar más a amor libre y Flower Power, lo cierto es que en 1972 May publicó su primer estudio como becario nada menos que en la mismísima revista Nature. Dos años después le seguía otro estudio en la también muy prestigiosa Monthly Notices of the Royal Astronomical Society. En estos trabajos, May y sus colaboradores analizaban el movimiento del polvo zodiacal estudiando el espectro de la luz que nos hace llegar. Pero aquel mismo año, May daba la patada a la astrofísica para volcarse en la música.

Hasta 2006. Ya alcanzado ese momento de su vida en el que podía comprarse una isla y hundir el bote, May reanudó su tesis doctoral, que leyó en 2007: A Survey of Radial Velocities in the Zodiacal Dust Cloud, o Un estudio de las velocidades radiales en la nube de polvo zodiacal. Desde entonces ha publicado al menos otros dos estudios. Uno de ellos, como autor secundario en 2009, era una propuesta sobre el empleo de misiones espaciales para recoger polvo zodiacal del espacio como objeto de estudio.

El más reciente, en 2013, estudiaba la luz zodiacal para determinar las contribuciones relativas de cometas, asteroides y polvo interestelar a esa nube. Que, por si les interesa, son respectivamente del 70%, 22% y 7,5%. O en otras palabras, que la gran mayoría de ese polvo disperso en el Sistema Solar procede de cometas.

Puede que el área de estudio de Brian May no suene de lo más excitante. Pero sus estudios abordan un campo poco investigado que tiene importancia para comprender cómo funciona nuestro Sistema Solar. El hecho de que no haya muchos investigadores trabajando en el movimiento de la nube zodiacal le permitió recoger sus observaciones de los años 70 más de tres decenios después, y publicar una tesis que aún tiene vigencia. Y por cierto, para astrofísicos en ciernes y fanáticos de Queen, la tesis está editada en formato de libro y a la venta.

Los Nobel de Física y Química premian los chips prodigiosos

Si no fuera porque no es así como funciona, se diría que los comités de los Nobel de Física y Química de este 2016 se han puesto de acuerdo para premiar un mismo campo, las nanocosas del nanomundo. Dirán ustedes que gran parte del trabajo de la física, la química y la biología consiste precisamente en indagar en todo aquello que no podemos ver a simple vista, y no se equivocarán. Si fuera posible miniaturizarnos –esta semana volví a ver aquella divertida película de Dante y Spielberg, El chip prodigioso–, la naturaleza no tendría misterios para nosotros. No habría nada que investigar; bastaría con abrir los ojos y ver qué pasa.

Fotograma de la película 'El chip prodigioso' (1987). Imagen de Warner Bros.

Fotograma de la película ‘El chip prodigioso’ (1987). Imagen de Warner Bros.

Pero dentro de todo ello, hay un área transversal de la ciencia que se dedica específicamente a explorar cómo es el paisaje a esa escala diminuta, cómo son sus montañas, valles y costas, y a fabricar aparatos que puedan desenvolverse en ese entorno de lo diminuto del mismo modo que lo hace un rover en Marte. No es un minimundo ni micromundo, ya que el prefijo «micro» comprende los tamaños en el rango de la célula y sus partes. La unidad de medida allí es el nanómetro, la millonésima de milímetro, y desde ahí hacia abajo. En algún momento, los científicos comenzaron a referirse a ese mundo añadiéndole un «nano»: nanotecnología, nanoingeniería, nanociencias.

Nuestro mundo tiene sus formas, lo que llamamos el relieve topográfico. Esas formas pueden cambiar a lo largo del tiempo debido a fuerzas de la naturaleza, pero siguiendo ciertas reglas: cuando en una montaña se ha horadado una cueva, un derrumbamiento podrá hacerla desaparecer, pero la montaña no puede deshoradarse y volver a quedar como estaba. Y un río no puede correr sobre la cumbre de una montaña.

Hay una rama de las matemáticas que estudia las formas, o topos, y cómo pueden transformarse unas en otras a través de transiciones permitidas: por ejemplo, se puede deformar, pero no cortar y pegar. Una hoja de papel puede convertirse en una silla de montar, pero no en una bola. La topología se aplica a áreas de las matemáticas como el álgebra y la geometría, pero también a la física.

El funcionamiento de la materia está relacionado con su estructura. Por ejemplo, un metal conduce la electricidad porque permite el libre movimiento de los electrones. Algunos físicos exploran las fronteras de ese nanomundo, los límites exóticos de la materia donde aparecen propiedades inusuales; por ejemplo, los semiconductores o los superconductores. Como los paisajes, esa materia tiene sus formas y sus reglas, lugares inaccesibles por donde un río no puede discurrir, o un electrón no puede moverse. De la aplicación de la topología a estas formas exóticas de la materia y a sus cambios (como de sólido a líquido) pueden aprovecharse algunas de esas propiedades raras. La capacidad de manipular y controlar a voluntad la conductividad de un material es la base de toda la tecnología electrónica que utilizamos hoy.

El Nobel de Física 2016 ha premiado a los británicos (los tres trabajando en EEUU) David Thouless, Michael Kosterlitz y Duncan Haldane por haber sentado en los años 70 y 80 las bases de esa topología de la materia exótica y de sus transiciones de fase. Por cierto que el padre de Kosterlitz, Hans, bioquímico, se quedó a un paso del Nobel como uno de los descubridores de las endorfinas.

En ese nanopaisaje, a partir de los años 80 algunos investigadores empezaron a construir máquinas, sistemas formados por piezas que se mueven cuando se les aplica energía, del mismo modo que una batidora gira cuando se enchufa a la red eléctrica. Las piezas de estas máquinas son moléculas, diseñadas con una forma específica que les permite desempeñar la función deseada una vez que ocupan su lugar, tal como hacen los ingenieros industriales. La primera de estas piezas, obra del francés Jean-Pierre Sauvage en 1983, era una simple cadena de dos eslabones que permitía el movimiento libre.

La nanoingeniería de máquinas se inspira en la propia naturaleza. Unos años antes habían comenzado a descubrirse los primeros nanomotores (máquinas rotativas) naturales, comenzando por el flagelo que emplean algunas bacterias para propulsarse en el agua y que consiste en un mecanismo giratorio. En 1991, el escocés Fraser Stoddart logró construir un nanoanillo que podía girar y desplazarse alrededor de un eje. Ocho años después, el holandés Bernard Feringa construía el primer nanomotor, una especie de ventilador de una sola aspa.

Sauvage, Stoddart y Feringa han sido premiados con el Nobel de Química 2016. Desde entonces se han construido nuevas nanomáquinas, como nanoascensores o nanocarretillas. Algunas de ellas se inspiran en mecanismos previamente inventados por la naturaleza; por ejemplo, nuestros músculos funcionan gracias a una nanomáquina deslizante, un sistema similar al que también sirve para que nuestras células expulsen al exterior ciertas sustancias, como moléculas de defensa contra infecciones.

Nanocoche Nanobobcat, de la Universidad de Ohio. Imagen de OU.

Nanocoche Nanobobcat, de la Universidad de Ohio. Imagen de OU.

Se espera que en el futuro una de las principales aplicaciones de las nanomáquinas sea la medicina. Como en El chip prodigioso, pero con un Dennis Quaid molecular. También servirán para usos como construir nuevos sensores y sistemas de almacenamiento de energía. Por el momento, una de las ramas más sorprendentes de la nanoingeniería es la fabricación de nanocoches, máquinas capaces de desplazarse sobre una superficie utilizando una fuente de energía, por ejemplo la luz.

De hecho, este año se celebrará en Toulouse (Francia) la primera carrera mundial de nanocoches, como expliqué con detalle en un reportaje a finales del año pasado. Varios laboratorios del mundo han presentado sus prototipos de lo más variado, como una versión nanoscópica de Los autos locos. Estaba previsto que la carrera se celebrara el 14 y 15 de este mes, pero los organizadores han decidido posponerla para dejar algo más de tiempo a las nanoescuderías para que pongan a punto sus modelos, que deberán correr sobre una pista de oro en el vacío a -268 ºC.

Pasen y vean lo grande que es el universo

En su famoso cuento Micromegas, una de las obras precursoras de la ciencia ficción, Voltaire relata cómo dos seres alienígenas de proporciones titánicas arriban a la Tierra, que creen desprovista de vida. De su cuidadosa observación llegan a distinguir unos diminutos animálculos, un grupo de filósofos humanos, pero solo alcanzan a conocer la condición inteligente de aquellos minúsculos seres cuando uno de los extraterrestres fabrica una trompetilla con los recortes de sus uñas. Aquel aparato les permite escuchar las conversaciones de los indígenas terrestres y comprender que, aunque limitados, son mucho más de lo que aparentan.

Ilustración de 'Micromegas', de Voltaire, por Charles Monnet.

Ilustración de ‘Micromegas’, de Voltaire, por Charles Monnet.

Naturalmente, no faltan interpretaciones de la fábula de Voltaire, pero la mía es esta: el rasgo distintivo de la evolución de una especie inteligente es su capacidad de conocer la realidad más allá de su experiencia directa.

Habitualmente se señala el pensamiento abstracto como esta frontera. Pero en realidad, el pensamiento abstracto no es conocimiento, sino filosofía. La prótesis que nos permite aplicar la capacidad de abstracción para pasar del concepto al conocimiento real es la ciencia (y con ella, la tecnología). En el relato, los humanos filosofan, pero los alienígenas, más avanzados, saben. Son capaces de trascender a su entendimiento inmediato a través de la ciencia, representada por la construcción de la trompetilla.

Los humanos, aunque todavía primitivos y apenas estrenando la razón, hemos logrado conocer objetos físicos que no podemos ver, tocar, comer ni tropezarnos con ellos, como los agujeros negros o los átomos. Ignoro si tratar de imaginarlos (como visualizarlos) pertenece más al terreno de la ciencia o al de la fantasía. Pero lo esencial no es esto, sino el hecho de que la filosofía haya guiado los conceptos elaborados por nuestro pensamiento hacia el uso de la ciencia para conocer los objetos que representan. Antes de la ciencia, el átomo solo era una idea filosófica. Con la ciencia, es una realidad que podemos comprender, calcular y manejar, aunque escape por completo a nuestra experiencia sensorial.

En el caso de los alienígenas de Voltaire, era un problema de escala. Cuando veo un letrero que dice «A Coruña 563» (paso por él todos los días), la escala se me escapa. ¿Cuántos horizontes debo saltar para llegar hasta allí? A Coruña está fuera de mi experiencia directa. Para mi experiencia sensorial, A Coruña podría estar a un año luz.

Por suerte, cuento con la ciencia. Puedo estimar lo que tardaré en llegar hasta allí en coche, y puedo verlo fácilmente representado en un mapa en comparación con otras distancias.

El año pasado por estas fechas les traje aquí un sobrecogedor cortometraje que permitía apreciar la inmensa escala del Sistema Solar. Hoy les traigo un par de vídeos que nos facilitan la apreciación de tamaños y distancias inimaginablemente mayores que los 563 kilómetros desde mi casa hasta A Coruña. El primero de ellos es visualmente más rico, pero el segundo viaja desde lo ínfimo hasta lo casi infinito. Que los disfruten.