Entradas etiquetadas como ‘Nobel de Física’

Los Nobel de Física y Química premian los chips prodigiosos

Si no fuera porque no es así como funciona, se diría que los comités de los Nobel de Física y Química de este 2016 se han puesto de acuerdo para premiar un mismo campo, las nanocosas del nanomundo. Dirán ustedes que gran parte del trabajo de la física, la química y la biología consiste precisamente en indagar en todo aquello que no podemos ver a simple vista, y no se equivocarán. Si fuera posible miniaturizarnos –esta semana volví a ver aquella divertida película de Dante y Spielberg, El chip prodigioso–, la naturaleza no tendría misterios para nosotros. No habría nada que investigar; bastaría con abrir los ojos y ver qué pasa.

Fotograma de la película 'El chip prodigioso' (1987). Imagen de Warner Bros.

Fotograma de la película ‘El chip prodigioso’ (1987). Imagen de Warner Bros.

Pero dentro de todo ello, hay un área transversal de la ciencia que se dedica específicamente a explorar cómo es el paisaje a esa escala diminuta, cómo son sus montañas, valles y costas, y a fabricar aparatos que puedan desenvolverse en ese entorno de lo diminuto del mismo modo que lo hace un rover en Marte. No es un minimundo ni micromundo, ya que el prefijo “micro” comprende los tamaños en el rango de la célula y sus partes. La unidad de medida allí es el nanómetro, la millonésima de milímetro, y desde ahí hacia abajo. En algún momento, los científicos comenzaron a referirse a ese mundo añadiéndole un “nano”: nanotecnología, nanoingeniería, nanociencias.

Nuestro mundo tiene sus formas, lo que llamamos el relieve topográfico. Esas formas pueden cambiar a lo largo del tiempo debido a fuerzas de la naturaleza, pero siguiendo ciertas reglas: cuando en una montaña se ha horadado una cueva, un derrumbamiento podrá hacerla desaparecer, pero la montaña no puede deshoradarse y volver a quedar como estaba. Y un río no puede correr sobre la cumbre de una montaña.

Hay una rama de las matemáticas que estudia las formas, o topos, y cómo pueden transformarse unas en otras a través de transiciones permitidas: por ejemplo, se puede deformar, pero no cortar y pegar. Una hoja de papel puede convertirse en una silla de montar, pero no en una bola. La topología se aplica a áreas de las matemáticas como el álgebra y la geometría, pero también a la física.

El funcionamiento de la materia está relacionado con su estructura. Por ejemplo, un metal conduce la electricidad porque permite el libre movimiento de los electrones. Algunos físicos exploran las fronteras de ese nanomundo, los límites exóticos de la materia donde aparecen propiedades inusuales; por ejemplo, los semiconductores o los superconductores. Como los paisajes, esa materia tiene sus formas y sus reglas, lugares inaccesibles por donde un río no puede discurrir, o un electrón no puede moverse. De la aplicación de la topología a estas formas exóticas de la materia y a sus cambios (como de sólido a líquido) pueden aprovecharse algunas de esas propiedades raras. La capacidad de manipular y controlar a voluntad la conductividad de un material es la base de toda la tecnología electrónica que utilizamos hoy.

El Nobel de Física 2016 ha premiado a los británicos (los tres trabajando en EEUU) David Thouless, Michael Kosterlitz y Duncan Haldane por haber sentado en los años 70 y 80 las bases de esa topología de la materia exótica y de sus transiciones de fase. Por cierto que el padre de Kosterlitz, Hans, bioquímico, se quedó a un paso del Nobel como uno de los descubridores de las endorfinas.

En ese nanopaisaje, a partir de los años 80 algunos investigadores empezaron a construir máquinas, sistemas formados por piezas que se mueven cuando se les aplica energía, del mismo modo que una batidora gira cuando se enchufa a la red eléctrica. Las piezas de estas máquinas son moléculas, diseñadas con una forma específica que les permite desempeñar la función deseada una vez que ocupan su lugar, tal como hacen los ingenieros industriales. La primera de estas piezas, obra del francés Jean-Pierre Sauvage en 1983, era una simple cadena de dos eslabones que permitía el movimiento libre.

La nanoingeniería de máquinas se inspira en la propia naturaleza. Unos años antes habían comenzado a descubrirse los primeros nanomotores (máquinas rotativas) naturales, comenzando por el flagelo que emplean algunas bacterias para propulsarse en el agua y que consiste en un mecanismo giratorio. En 1991, el escocés Fraser Stoddart logró construir un nanoanillo que podía girar y desplazarse alrededor de un eje. Ocho años después, el holandés Bernard Feringa construía el primer nanomotor, una especie de ventilador de una sola aspa.

Sauvage, Stoddart y Feringa han sido premiados con el Nobel de Química 2016. Desde entonces se han construido nuevas nanomáquinas, como nanoascensores o nanocarretillas. Algunas de ellas se inspiran en mecanismos previamente inventados por la naturaleza; por ejemplo, nuestros músculos funcionan gracias a una nanomáquina deslizante, un sistema similar al que también sirve para que nuestras células expulsen al exterior ciertas sustancias, como moléculas de defensa contra infecciones.

Nanocoche Nanobobcat, de la Universidad de Ohio. Imagen de OU.

Nanocoche Nanobobcat, de la Universidad de Ohio. Imagen de OU.

Se espera que en el futuro una de las principales aplicaciones de las nanomáquinas sea la medicina. Como en El chip prodigioso, pero con un Dennis Quaid molecular. También servirán para usos como construir nuevos sensores y sistemas de almacenamiento de energía. Por el momento, una de las ramas más sorprendentes de la nanoingeniería es la fabricación de nanocoches, máquinas capaces de desplazarse sobre una superficie utilizando una fuente de energía, por ejemplo la luz.

De hecho, este año se celebrará en Toulouse (Francia) la primera carrera mundial de nanocoches, como expliqué con detalle en un reportaje a finales del año pasado. Varios laboratorios del mundo han presentado sus prototipos de lo más variado, como una versión nanoscópica de Los autos locos. Estaba previsto que la carrera se celebrara el 14 y 15 de este mes, pero los organizadores han decidido posponerla para dejar algo más de tiempo a las nanoescuderías para que pongan a punto sus modelos, que deberán correr sobre una pista de oro en el vacío a -268 ºC.

Los neutrinos reciben un Nobel… y otro, y otro, y otro

Esta mañana hemos conocido el fallo de la Real Academia Sueca de las Ciencias sobre el Nobel de Física 2015, que ha galardonado al canadiense Arthur B. McDonald y al japonés Takaaki Kajita “por el descubrimiento de las oscilaciones de los neutrinos, que muestran que los neutrinos tienen masa”.

Imagen de Jonathunder / Wikipedia.

Imagen de Jonathunder / Wikipedia.

El de los neutrinos parece ser uno de los campos de la física que más resuena en los medios e interesa al público, y eso que algunos de los descubrimientos más esenciales sobre estas partículas aún están por venir.

Quien primero postuló su existencia fue Wolfgang Pauli, premiado con el Nobel; no por esta especulación teórica, sino por su famoso Principio de Exclusión. Hacia 1930 Pauli estudiaba la desintegración beta, un tipo de radiación emitida por ciertos isótopos favoritos de los bioquímicos como el carbono-14, el fósforo-32 o el tritio (hidrógeno-3). Mientras que la gorda radiación alfa, la del uranio o el plutonio, está compuesta por grandes núcleos atómicos que no atraviesan ni una hoja de papel, la radiación beta es más penetrante por sus partículas pequeñas, electrones o positrones, clásicamente llamados partículas beta.

A diferencia de la alfa, con la radiación beta ocurría algo extraño, y es que su espectro de energía es continuo, sin saltos; algo incongruente con el hecho de que un electrón tiene una energía discreta. Para explicar cómo se rellenaban esos huecos entre los saltos que deberían observarse, Pauli propuso la existencia de una partícula sin carga eléctrica y con masa muy pequeña. Inicialmente Pauli llamó a este factor “neutrón”, pero el nombre fue asignado simultáneamente a una partícula mucho más pesada del núcleo atómico. Se atribuye al físico italiano Edoardo Amaldi el haber acuñado el término “neutrino” casi como una italianización humorística de un neutrón más pequeño, y fue Enrico Fermi quien comenzó a popularizar este nombre.

La demostración de la existencia del neutrino tuvo que esperar 26 años, hasta 1956. Y la distinción del hallazgo con un premio Nobel aún debió esperar 39 años más, hasta 1995. Por entonces uno de sus dos autores, Clyde Cowan, ya había fallecido, por lo que el galardón fue para el otro, Frederick Reines. Sin embargo, otro Nobel para los neutrinos ya se había adelantado en 1988. Aquel año Leon Lederman, Melvin Schwartz y Jack Steinbergen recibieron el galardón por la demostración en 1962 de que existía más de un tipo de neutrino. Al neutrino electrónico o electrón neutrino descubierto por Cowan y Reines, los tres premiados en 1988 habían añadido un segundo “sabor”, el muón neutrino o neutrino muónico, que en el campo teórico antes de su demostración había recibido el también humorístico nombre de “neutretto“. El tercer sabor, el tauónico, no llegaría hasta 2000.

Los neutrinos quedaron así caracterizados como partículas sin carga que prácticamente no interactúan con las demás y que por lo tanto atraviesan cualquier materia, incluidos nosotros, sin sufrir alteración. Lo cual implica también que son muy difíciles de detectar. Según el Modelo Estándar de la física de partículas, los neutrinos no debían tener masa. Pero algo comenzó a levantar la sospecha de que no era así.

Buscando un tema interesante al que dedicarse, Raymond Davis Jr. construyó algunos de los primeros rudimentarios detectores de neutrinos con el fin de pescar esta esquiva partícula. En los años 60, Davis situó un tanque lleno de tetracloroetileno, el líquido de las tintorerías, en el fondo de una mina de Dakota. Con este experimento el físico logró por primera vez detectar neutrinos solares, algo que le valdría el Nobel en 2002 junto con el japonés Masatoshi Koshiba, el primero que detectó neutrinos cósmicos procedentes de una supernova desde el detector japonés Kamiokande; tercer Nobel para los neutrinos.

Sin embargo, el experimento de Davis dejó un problema pendiente: el número de neutrinos detectados era mucho menor del previsto según los modelos solares, algo que después corroboraron otros detectores. La incógnita quedaría pendiente de resolución durante décadas; pero entretanto, el italiano Bruno Pontecorvo elaboró una teoría que finalmente llegaría a explicar el misterio de los neutrinos desaparecidos.

El Observatorio de Neutrinos Sudbury, en Canadá. Imagen de Minfang Yeh, Ph.D.

El Observatorio de Neutrinos Sudbury, en Canadá. Imagen de Minfang Yeh, Ph.D.

Pontecorvo propuso que los neutrinos podían mutar, oscilar entre distintos sabores durante su viaje por el espacio. Esto explicaría que escaparan a los detectores capaces de pescar solo neutrinos electrónicos, pero al mismo tiempo requería que los neutrinos tuvieran masa, distinta para cada uno de los sabores; algo que no estaba contemplado en el Modelo Estándar. La oscilación de los neutrinos comenzó a ganar peso entre los físicos, pero no fue demostrada hasta finales de los 90 y comienzos de este siglo gracias a dos experimentos, el Sudbury en Canadá, liderado por Arthur B. McDonald, y el SuperKamiokande en Japón, dirigido por Takaaki Kajita. En particular, el primero era capaz de detectar todos los tipos de neutrinos. Con ello llegó la demostración de que los neutrinos poseen masa, aunque aún no se sabe cuánto. El hallazgo les ha valido hoy a ambos el Nobel, el cuarto para los neutrinos.

Hasta aquí, la información. Ahora, la opinión. Dejando aparte la aparente afición de la Real Academia Sueca de las Ciencias por premiar todo lo que sepa a neutrino, hay una clásica objeción al formato de los Nobel que se pone de manifiesto en este caso: el modelo del científico solitario y autosuficiente hace décadas que pasó a mejor vida. Con la finalización del Proyecto Genoma Humano a comienzos del presente siglo, muchas voces autorizadas se alzaron reclamando un Nobel para este logro. El problema era: ¿para quién?

Los premios suecos sostienen una fórmula de distinción individual que resulta obsoleta en la compleja ciencia actual, colaborativa y multidisciplinar. Al igual que el Genoma Humano, el Sudbury y el SuperKamiokande son experimentos complejos en los que probablemente han participado cientos de científicos. Recordemos la demostración del bosón de Higgs en el LHC; el Nobel fue para Higgs y Englert, sus teóricos; no habría habido manera de encajar al equipo del LHC en el formato de los premios. Si un equipo de científicos demostrara la evaporación de un microagujero negro creado experimentalmente, Stephen Hawking podría por fin recibir su Nobel. La teoría aún puede ser individual; la experimentación nunca lo es.

E incluso en este supuesto, pueden cometerse injusticias: tal vez Pontecorvo no haya podido recibir el Nobel como teórico de la oscilación de los neutrinos por la sencilla razón de que falleció en 1993. Pero en 2002 hubo un nombre fundamental que se quedó fuera de los premios: John Bahcall, colaborador de Davis y autor del sostén teórico en el que se basó el diseño experimental que llevó a la detección de los neutrinos solares.

Por no recordar los casos en los que un coautor esencial de un trabajo también ha sido excluido; un ejemplo es Rosalind Franklin, la investigadora que produjo los cristales sobre los que se estudió la estructura del ADN. Es cierto que Franklin ya había fallecido de cáncer cuando sus colegas Watson, Crick y Wilkins recibieron el premio; pero cuando hace unos años la Academia Sueca publicó sus archivos, se descubrió que Franklin nunca llegó a estar nominada.