Entradas etiquetadas como ‘EM Drive’

EmDrive: publicado, pero aún sin explicación válida

Justo al día siguiente de mi anterior artículo sobre el EmDrive, lo que circulaba como un rumor fundado se hizo realidad: el estudio del equipo de NASA Eagleworks se ha publicado en la edición digital de la revista Journal of Propulsion and Power (JPP). Su versión en papel aparecerá en el número de diciembre.

Es necesario recordar que no es el primer estudio publicado que valida el funcionamiento del EmDrive; el equipo de Eagleworks ya había presentado resultados en un congreso hace dos años, pero estas comunicaciones no están sujetas al filtro de revisión por pares de las revistas. En cambio, sí lo estuvieron los estudios publicados respectivamente por el equipo chino dirigido por Yang Juan y por los alemanes Tajmar y Fiedler.

Uno de los sistemas EmDrive construidos por el equipo de Eagleworks. Imagen de White et al, JPP.

Uno de los sistemas EmDrive construidos por el equipo de Eagleworks. Imagen de White et al, JPP.

También conviene recalcar lo que ya he explicado antes: que los científicos de Eagleworks, dirigidos por Harold Sonny White, validen el funcionamiento del EmDrive, no implica que la NASA como institución respalde estos resultados, ni mucho menos la explicación que los autores aportan. Eagleworks es un poco a la NASA lo que el Equipo A al Pentágono. La agencia se ha mantenido siempre bien al margen de las proclamas de White, llegando incluso a prohibirle el contacto con los medios (nota periodística: por este motivo mi anterior artículo se titulaba “Científicos de la NASA…” y no “La NASA…”).

Además, insisto en que la publicación de los resultados con estas bendiciones oficiales significa lo que significa, y no más: que el estudio es formalmente correcto respecto a los resultados que se detallan, con las limitaciones que se especifican y las conclusiones directas que pueden derivarse de ellos.

Durante estos días se rumoreaba que el Instituto Estadounidense de Aeronáutica y Astronáutica, que edita la revista JPP, habría aceptado publicar el estudio solo a condición de que White y sus colaboradores aceptaran retirar su explicación del efecto EmDrive basada en una interpretación alternativa y minoritaria de la física cuántica que ni siquiera para sus propios defensores necesariamente justifica el funcionamiento del EmDrive.

Pero esto no tenía ningún sentido; todo científico sabe para qué sirve el apartado de discusión en un estudio. Sería absurdo aprobar los resultados de un trabajo, censurando al mismo tiempo las especulaciones que sus autores puedan verter en el espacio específicamente abierto para ello. Finalmente el estudio se ha publicado esencialmente completo respecto a la versión sin revisar filtrada antes en internet.

En resumen: ¿significa esto que el EmDrive funciona? Una pregunta aún sin respuesta definitiva, pero que sí puede descomponerse en otras más precisas:

¿El EmDrive produce una fuerza? Sí, al menos una fuerza aparente. Tres grupos de investigación distintos han publicado resultados mostrando que es así. Y eso sin contar los experimentos de los propios inventores del sistema, Roger Shawyer y Guido Fetta, que se han hecho públicos pero no se han publicado formalmente (nótese el matiz). Poner en duda los resultados de un equipo de investigadores cuestiona su honestidad o su competencia profesional; poner en duda los resultados de tres equipos independientes cuestiona la honestidad o la competencia profesional de quien los pone en duda.

¿Esa fuerza podría emplearse como propulsión? Tal vez, pero aún no puede confirmarse al cien por cien. En su estudio, White y sus colaboradores mencionan como principales objeciones un posible desplazamiento del centro de gravedad del cono o una expansión térmica, que es mayor en el vacío (donde se han hecho los experimentos del nuevo estudio) que en el aire, mientras que la señal del impulso es igual en ambos medios. Pero aunque han hecho todo lo posible por descartar estos efectos parásitos, el sistema tiene una limitación intrínseca por el mero hecho de estar atornillado al suelo por dos lugares. Los investigadores esperan diseñar un nuevo sistema con mayores grados de libertad para poder desechar definitivamente estas posibles interferencias. Sin embargo, si la señal fuera enteramente un falso positivo debido a alguno de estos efectos, sería chocante que los experimentos independientes con diferentes diseños no hubieran llegado ya a esta conclusión.

¿Expulsa propelente el EmDrive? No, al menos un propelente formado por materia. Sé que suena a perogrullada; pero como menciono más abajo, una hipótesis pretende explicar el funcionamiento del EmDrive mediante la expulsión de fotones a través del extremo cerrado del cono. Pero los fotones no tienen masa, por lo que no son materia. Al menos, no tienen masa en reposo, claro que un fotón nunca está en reposo…

¿Consume combustible el EmDrive? No. La fuente nuclear que alimentaría el generador de microondas es un consumible, pero no un combustible. Incluso es posible que en ciertos casos el magnetrón pudiera alimentarse solo con energía solar. A comienzos de este año, la sonda Juno de la NASA batió el récord del aparato más alejado del Sol alimentado por paneles solares, rompiendo la marca anterior de 792 millones de kilómetros establecida por la europea Rosetta. Deberán ser los ingenieros quienes valoren en qué casos la energía fotovoltaica sería suficiente para alimentar un generador de microondas; que yo sepa, White solo ha hablado de emplear energía nuclear.

¿Viola el EmDrive las leyes de la física? No. Nada puede violar las leyes fundamentales de la naturaleza. Pero si funciona, significa que la teoría está incompleta, y habrá que encontrar una nueva manera de explicar la realidad. Como conté recientemente a propósito de la materia oscura, no es la primera vez que esto ocurre en la historia de la ciencia, ni será la última.

Entonces, ¿cómo se explica la aparente violación de la conservación de la cantidad de movimiento (p)? Repaso brevemente, a riesgo de dejar alguna fuera, las cinco principales hipótesis que se han aportado para explicar el funcionamiento del EmDrive:

1. Presión de radiación

Shawyer, el inventor del sistema, afirma que el EmDrive genera propulsión por el empuje de los fotones de la radiación de microondas sobre el extremo cerrado del cono, por el mismo principio en el que se basan los veleros espaciales; no las velas solares, que se impulsan por el viento solar (partículas cargadas), sino las fotónicas. Pero la inmensa mayoría de los físicos rechazan esta explicación, porque es como empujar un coche desde dentro. O como me recordaba con mucho acierto un/a usuario/a en Twitter, como el barón de Münchhausen, que escapó de una ciénaga tirando de su propia coleta. En este caso habría una clara violación de la conservación de p. Shawyer sostiene que no es así; de hecho, hace tiempo me aseguró en un email que “el EmDrive claramente obedece las leyes de Newton, tanto teórica como experimentalmente, según muestran los resultados de las pruebas dinámicas; así que no viola la conservación de la cantidad de movimiento”. Pero hasta donde sé, no ha explicado cómo.

2. Fotones como propelente

El pasado junio, un equipo de investigadores finlandeses publicó un estudio (revisado por pares) que atribuye la propulsión del EmDrive a la expulsión de fotones que actúan como propelente. Según la peculiar visión de Patrick Grahn y sus colaboradores, sí existe un combustible, las microondas, y un propelente, los fotones. Grahn afirma que el emparejamiento de las partículas en fases opuestas produce una interferencia destructiva que cancela su radiación electromagnética, pero los fotones no se destruyen, sino que escapan del extremo cerrado del cono siendo indetectables como ondas y actuando como propelente. Los fotones tienen una cantidad de movimiento debida solo a su energía, pero la hipótesis de Grahn requiere asumir que de esta p se deriva una masa teórica en movimiento, que vendría aportada por el generador de microondas y que escaparía del cono hacia el exterior, moviendo el propulsor por una simple acción-reacción. Todo lo cual resulta inaceptable para la gran mayoría de los físicos.

3. Radiación Unruh

Esta es una primera hipótesis que se basa en la energía del vacío, en el marco de la física relativista. Ya la expliqué con detalle anteriormente. Como en el caso anterior, la teoría requiere adjudicar una masa relativística a los fotones. Pero aunque el efecto en el que se fundamenta no se ha descartado, y de hecho podría contemplarse como una forma particular de la radiación de Hawking que desprenden los agujeros negros, tampoco se ha corroborado de forma convincente. Hasta ahora, la idea propuesta por el físico Mike McCulloch no ha calado en la comunidad científica. Mi impresión puramente personal (como un no-físico y al margen de la discusión sobre el efecto Unruh) es que justificar el funcionamiento del EmDrive por el efecto Unruh es un poco como matar moscas a cañonazos, cuando además ni siquiera está claro que los cañonazos existan.

4. Empuje desde el vacío cuántico

White explica el funcionamiento de su sistema también por energía del vacío, pero en el contexto cuántico. La hipótesis se basa en el vacío cuántico, el estado más bajo de energía de un sistema cuántico (digamos, una visión energética de lo que se entendería como vacío normal). Esta energía no es cero, lo que puede explicarse por la acción de las oscilaciones de partículas virtuales. Este mecanismo se ha utilizado para explicar el efecto Casimir de la teoría cuántica de campos, según el cual existe una fuerza medible –de atracción o repulsión según la configuración del sistema– entre dos placas conductoras separadas por una pequeña distancia en el vacío. El problema con la explicación de White es que nadie se la cree: para la mayoría de los físicos, es imposible extraer energía aprovechable como propulsión a partir del vacío cuántico; no se puede extraer p de él, ya que no es un marco de referencia fijo desde el que empujar, así que estamos otra vez en el caso del barón de Münchhausen y su coleta.

Sin embargo, White justifica su hipótesis basándola en una teoría alternativa de la física cuántica. Todo lo que han oído mencionar sobre el extraño comportamiento de las partículas, como la paradoja del gato de Schrödinger o el experimento de la doble ranura, se basa en la llamada interpretación de Copenhague, la que prima hoy en física. Según esta teoría, las partículas no tienen una posición fija, sino que se comportan como nubes de probabilidad (por ejemplo, a lo largo de dos caminos alternativos y mutuamente excluyentes) hasta que un observador las mide, rompiendo la onda y bloqueando las partículas en una posición. Esta interpretación probabilística de la cuántica no gustaba nada a Einstein; como mencioné hace unos días, en una ocasión le preguntó a su biógrafo Abraham Pais si creía que la luna solo existía cuando alguien la miraba.

En los años 20 del siglo pasado, Louis de Broglie propuso una interpretación alternativa, la teoría de la onda piloto, que David Bohm completó en lo que hoy se conoce como mecánica de De Broglie-Bohm. La teoría es realista; es decir, afirma que las partículas sí tienen una posición concreta en todo momento, con independencia de la presencia de un observador y guiada por su onda acompañante (onda piloto). Si no conocemos estas trayectorias, decía Bohm, no se debe a que no existan, sino a la existencia de variables ocultas que se nos escapan.

La teoría implica que la mecánica cuántica no es local; las partículas pueden estar físicamente alejadas entre sí, lo mismo que los objetos grandes sujetos al comportamiento de la física clásica. En los años 60, John Bell se acogió a la teoría de la onda piloto para explicar el entrelazamiento cuántico, la capacidad de dos partículas separadas de estar sincronizadas en sus propiedades. Aunque la teoría de De Broglie-Bohm continúa sin ser aceptada mayoritariamente, en los últimos años se han publicado varios experimentos que la respaldan. Y por ejemplo, el entrelazamiento cuántico en condiciones no locales ya ha sido suficientemente validado, como he contado aquí en ocasiones anteriores.

En concreto, White se apoya en la posibilidad de que las partículas reales del vacío cuántico puedan intercambiar cantidad de movimiento para defender que esta puede cosecharse y transmitirse: “sería posible aplicar/extraer trabajo en/de el vacío, y por tanto sería posible empujar desde el vacío cuántico preservando las leyes de la conservación de la energía y de la cantidad de movimiento”, escribe. Pero si la hipótesis de White fuera aceptada, que por el momento no lo es, esto supondría cambiar radicalmente de modelo de física cuántica; algo que hasta ahora no han conseguido validaciones más sólidas de la teoría de la onda piloto.

5. Efecto Mach

Una teoría desarrollada por el físico James Woodward en los años 90 propone que la energía interna de un cuerpo varía al acelerar; es decir, que no todo se traduce en energía cinética, sino que el objeto en movimiento almacena energía potencial absorbida de su entorno mediante la interacción con el campo gravitatorio que se opone a su movimiento (la inercia). Este enriquecimiento energético, sugiere Woodward, se traslada a cambios en la masa del cuerpo, y puede ordeñarse en forma de cantidad de movimiento que el objeto le ha robado previamente al universo, conservándose todo lo que tiene que conservarse.

La hipótesis es esencialmente compatible con la relatividad general; de hecho, la idea (más filosófica que física) del origen de la inercia como una influencia del resto del universo sobre un sistema local fue una inspiración para Einstein, que profesaba un gran respeto hacia su autor, el austríaco Ernst Mach. Sin embargo, el efecto Mach derivado por Woodward aún no ha sido validado de forma concluyente. Woodward afirma que su teoría podría aprovecharse para construir propulsores sin partes móviles ni propelente, y que es la explicación que mejor encaja con la física actual para explicar la señal del EmDrive.

Científicos de la NASA confirman que el “propulsor imposible” EmDrive funciona

Si esto fuera cierto, lo cambiaría todo. Ya, ya. Pensarán que esta frase se manosea demasiado para vender expectativas infladas sobre casi cualquier cosa, desde los cereales con chocolate hasta la última oferta de tarifas para móviles. Pero créanme: les aseguro que, si esto finalmente llega a confirmarse sin ningún género de dudas, la física y la ingeniería aeroespacial van a tener que replantearse algunos de sus fundamentos básicos, que se remontan hasta el día en que Einstein le preguntó a su biógrafo si creía que la luna solo existía cuando la mirábamos.

Desde hace unos años se viene hablando del llamado EmDrive o propulsor de cavidad resonante de radiofrecuencia. Se trata de un tipo de motor (o más bien, no-motor) que permitiría emprender largos viajes por el espacio a velocidades hoy inimaginables, sin emplear ni una sola pieza mecánica móvil que pueda desgastarse o romperse, sin consumir combustible de ninguna clase y sin expulsar ningún tipo de propelente. En resumen, el sueño más salvaje de la ciencia ficción.

El EmDrive. Imagen de SPR.

El EmDrive. Imagen de SPR.

El EmDrive fue ideado por el ingeniero británico Roger Shawyer, que a principios de este siglo creó una empresa destinada a desarrollarlo. Pocos años después, el ingeniero estadounidense Guido Fetta creó independientemente un concepto similar llamado Cannae Drive. En esencia, el EmDrive consiste en algo tan simple como un cono metálico truncado en cuyo interior se hacen rebotar microondas, un tipo de ondas de radio; o sea, luz (no visible). Supuestamente, es lo que les ocurre a estas ondas cuando rebotan en el interior del cono lo que produce la propulsión.

Solo hay un pequeño gran inconveniente; y es que, de acuerdo a la física actual, es imposible que funcione. Un cohete se mueve gracias a la tercera ley del movimiento de Newton, el principio de acción y reacción: quema un combustible, expulsa un propelente en una dirección y esto lo impulsa en sentido contrario. Esta ley fundamental de la física debe respetarse en todos los casos: cuando un velero avanza, lo hace como reacción a la fuerza que impacta sobre sus velas. En los barcos es el viento atmosférico, mientras que las naves espaciales pueden aprovechar el viento solar de partículas cargadas o el empuje de los fotones por la llamada presión lumínica.

Pero está claro que no podemos mover un barco empujando las velas desde la cubierta, igual que no podemos empujar un coche desde dentro sin un punto de apoyo exterior. Esta imposibilidad se describe por la recreación de la ley de Newton en el principio de conservación de la cantidad de movimiento, cuyo fundamento básico puede resumirse de la forma más simple en que, para que algo se mueva, otra cosa tiene que cederle ese movimiento. Y no parece que la luz rebotando dentro de un cono pueda mover a nada más que el aburrimiento. En resumen, la idea del EmDrive es parece una aberración inviable.

Pero si de ninguna manera esto puede funcionar, ¿qué sentido tiene seguir discutiendo? El problema es que el propulsor imposible parece empeñarse una y otra vez en negar la teoría. No solo Shawyer y Fetta insisten en que su motor produce una propulsión, pequeña pero real; los mismos resultados se han obtenido en China y en Alemania. Pero sin duda, lo que más revuelo ha causado es la confirmación de estos resultados en un laboratorio bastante oscuro del Centro Espacial Johnson de la NASA llamado Eagleworks, tan marginal que ni siquiera (que yo sepa) tiene apenas sitio en el dominio web de la agencia, sino solo una página en Facebook.

Todo físico que aspire a seguir siendo considerado como tal negará hasta la tortura que el EmDrive pueda hacer otra cosa que decorar un salón. Y por ello, cuando hace un par de años los científicos de Eagleworks se plantaron en un congreso afirmando que el propulsor funciona, la reacción de la comunidad no fue precisamente el aplauso. Incluso la NASA tuvo que desmarcarse de los resultados de Eagleworks, adhiriéndose a la fe pura y prohibiendo a los responsables del laboratorio todo contacto con los medios.

Pero como he explicado alguna vez aquí, los congresos son foros donde a menudo se presentan resultados en caliente, aún sin suficiente contrastación y sin validación por parte del resto de la comunidad científica. Solo cuando un estudio es formalmente revisado por otros expertos y publicado en una revista científica puede asumirse que sus conclusiones son válidas.

Hace unos días se ha filtrado (probablemente por parte de los propios responsables de Eagleworks) un estudio que pone a limpio los resultados de los investigadores de la NASA con el EmDrive. Y descartadas posibles objeciones, como la intervención de fuerzas parásitas o la interferencia del aire, los científicos de Eagleworks se ratifican en su conclusión: “el sistema funciona de forma consistente”, escriben.

Según el estudio, el EmDrive produce una fuerza de 1,2 milinewtons (mN) por kilovatio (kW). A primera vista podría no parecer una propulsión impresionante. Por ejemplo el llamado propulsor Hall, un motor de plasma que actualmente se investiga como alternativa prometedora a los actuales cohetes, genera 60 mN/kW, unas 50 veces más fuerza que el EmDrive. Pero la diferencia estriba en que este propulsor consume grandes cantidades de combustible. Y en cuanto a las opciones actuales de propulsión sin propelente, como las velas solares, solo alcanzan algo más de 6 micronewtons por kW; es decir, unas 200 veces menos que el EmDrive.

Pero sobre todo, hay que tener en cuenta que el impulso generado por el EmDrive debería ser, pura y simplemente, cero. Cualquier fuerza por encima de cero, por mínima que sea, podría ir sumando aceleración a una nave espacial hasta lograr velocidades increíbles; se ha calculado que la propulsión suministrada por el EmDrive, si realmente existe, podría poner una nave en Marte en 70 días, o llegar al sistema estelar Alfa Centauri en solo 92 años.

¿Y ahora, qué? Por supuesto que la discusión sobre el EmDrive no va a acabar aquí. Fetta ha anunciado que lanzará al espacio un Cannae Drive en un satélite para estudiar su comportamiento en condiciones reales. En cuanto al estudio de Eagleworks, aún debe pasar los filtros de publicación, aunque es de esperar que no sean un obstáculo; al fin y al cabo, anteriormente otros grupos ya han publicado formalmente resultados positivos con el EmDrive.

De hecho, antes de que el estudio se filtrara en internet ya circulaban rumores sugiriendo que el proceso de revisión se ha completado y que por tanto el trabajo se publicará próximamente, tal vez en la revista Journal of Propulsion and Power. Si los rumores son ciertos, ¿cómo reaccionará la NASA ante un estudio publicado en su nombre que sostiene una (aparente) violación flagrante de las (actuales) leyes de la física?

Claro que, si finalmente el EmDrive funciona, habrá que encontrar la manera de explicarlo sin que exista tal violación. Ya conté aquí una interesante hipótesis que sin embargo no ha sido favorecida por otros físicos. Pero los científicos de Eagleworks apuntan a una explicación incluso más audaz, que justifica lo que les decía al comienzo: el EmDrive amenaza con sacudir los cimientos fundamentales en los que se asienta la física cuántica actual. Mañana se lo contaré.

O mejor, pasado mañana; antes de eso les traeré aquí una noticia fresca, o más bien glacial, que nos descubrirá una nueva maravilla de nuestro Sistema Solar. No pierdan esta sintonía.

Una hipótesis hace posible el propulsor imposible EmDrive

Prueben a saltar una valla apoyando el pie en sus propias manos. O a empujar un coche desde dentro. Imposible a la par que absurdo, ¿no?

Dadme un punto de apoyo y moveré el mundo, decía Pappus de Alejandría que dijo Arquímedes a propósito de la palanca. Ese punto de apoyo sirve como interacción del sistema con su exterior. En la palanca es el fulcro, pero si levantamos un peso sin más ayuda, el punto de apoyo son nuestros pies en el suelo.

Muchos siglos después de Arquímedes, Newton dio un sentido físico a lo que el matemático siciliano solucionó como un problema de geometría. En su tercera ley del movimiento, popularmente conocida como ley de acción y reacción, Newton vino a decir que a toda fuerza (acción) se opone otra igual y contraria (reacción).

Cuando levantamos un peso, la fuerza que ejercemos sobre el suelo aumenta. El suelo nos devuelve una fuerza también mayor y nos permite vencer esa resistencia del peso. Pero si tratamos de auparnos sobre nuestra propia mano o empujar el coche desde dentro, no recibimos ese empujón del suelo –nuestro punto de apoyo– que nos permita cambiar el movimiento del objeto que tratamos de mover –nosotros mismos o el coche–.

En términos físicos, esto se expresa con una magnitud llamada cantidad de movimiento, o p (y que se calcula como masa por velocidad, m⋅v). Cuando levantamos un peso, su cantidad de movimiento, que inicialmente es cero, aumenta hasta un valor relacionado con su velocidad. La imposibilidad de empujar el coche desde dentro se explica porque en la interacción entre dos objetos, la p total permanece constante. Y dado que en este caso no hay interacción con el exterior (ese punto de apoyo), por mucho que nos esforcemos no lograremos cambiar p, y por tanto el coche no se moverá ni un milímetro.

Cuando levantamos el peso, el suelo nos detiene. Pero si se trata de dos objetos en movimiento libre, como dos bolas de billar que chocan, el resultado de la colisión es que la suma de sus p después de chocar es la misma que antes. Es un principio universal de la física, la conservación de la cantidad de movimiento. ¿Saben de aquellos juguetes de escritorio que fueron tan populares en los años 70, con varias bolitas suspendidas en fila de manera que, al hacer chocar una contra las demás, la del otro extremo responde moviéndose? Péndulo de Newton; demostración de la conservación de la cantidad de movimiento.

En la física de Newton, la masa de un objeto es una constante que determina la relación entre la fuerza que aplicamos a un objeto y la velocidad que adquiere. Por eso se llama masa inercial; la inercia es lo que hace que una masa, como una bola de billar empujada, continúe moviéndose mientras no haya otra fuerza que la detenga: una mano en su camino o el simple rozamiento con la mesa.

La conservación de p explica también cómo funcionan los reactores. Un avión a reacción se mueve porque expulsa un propelente en sentido contrario a su avance, como cuando soltamos un globo inflado sin anudar. En este caso, la velocidad de la nave y la velocidad a la que se expulsa el propelente están relacionadas a través de las masas de ambos. Y también en este caso, la p total no varía.

A comienzos de este siglo, un ingeniero británico llamado Roger Shawyer comenzó a desarrollar un propulsor conocido como EmDrive, o propulsor de cavidad resonante de radiofrecuencia. Es tan simple como un cono truncado de metal en cuyo interior se hacen rebotar microondas, y esto genera un impulso hacia el extremo más estrecho del cono.

Todo ello sin combustible, sin propelente, sin partes mecánicas móviles, sin nada más que un generador de microondas. Un propulsor inagotable que podría acelerar una nave indefinidamente en un viaje a través de la galaxia por toda la eternidad… Suena bien, ¿no?

El EmDrive. Imagen de SPR.

El EmDrive. Imagen de SPR.

Pero claro, hay una pega. Y es que, por todo lo explicado arriba, se entiende que es completamente imposible que esto funcione: la p del propulsor aumentaría sin que ninguna otra cosa se la ceda, lo que violaría la ley de la  conservación. No hay expulsión de propelente ni ninguna otra fuerza ejercida hacia el exterior del cono. No hay acción y reacción. En resumen, es empujar el coche desde dentro. Con el agravante de que además no hay masas implicadas: las microondas no son otra cosa que luz. Así que es aún más absurdo: ni siquiera es intentar mover el coche desde dentro empujando el volante, sino más bien tratar de hacerlo empujando el volante con el rayo de una linterna. Y la luz no tiene masa.

¿O sí? Escoja usted dos físicos y recibirá dos respuestas diferentes. Para muchos físicos, los fotones (las partículas que forman la luz) simplemente no tienen masa, y punto. Pero otros no están tan de acuerdo: para ellos, el fotón no tiene masa en reposo, pero sí masa inercial. Lo que normalmente entendemos como masa es la masa en reposo. Y dado que un fotón nunca está en reposo, porque siempre se mueve a la velocidad de la luz, lo miremos desde donde lo miremos, no tiene masa en reposo.

Pero aplicando la ecuación de Einstein, E = m⋅c², que relaciona la masa con la energía a través del cuadrado de la velocidad de la luz, al menos algunos físicos le dirán que el fotón tiene una masa inercial teórica, o masa relativística. El fotón tiene una cantidad de movimiento p, que se puede calcular: E = m·c² = m·c·c. Masa por velocidad es p, luego E = p·c. Así que la cantidad de movimiento de un fotón, p, viene dada por su energía E: p = E/c. A su vez, la energía de un fotón se calcula a través de la frecuencia de la onda que lo acompaña, la cual varía inversamente con la longitud de la onda: a mayor frecuencia, menor longitud de onda, y viceversa.

Así, la p de un fotón depende solo de su energía; porque imaginemos lo que ocurre si no es así y suponemos que el fotón tiene masa: si realmente pudiéramos calcular su p como el producto de su masa por su velocidad, obtendríamos que esta no es constante (c), sino que variaría en función de su energía y por tanto de su frecuencia. Es decir, que la luz no viajaría a la velocidad de la luz, sino a una velocidad diferente según su frecuencia (o longitud de onda). Lo cual no parece muy ortodoxo.

Y pese a todo lo anterior, lo imposible ocurre: en los últimos años se ha demostrado que en el EmDrive se produce un pequeño efecto de propulsión. Pequeño, pero no cero, como debería ser. Y esto se ha mostrado no solo una vez, sino seis, en otros tantos experimentos de grupos independientes; uno de ellos trabajando para la NASA, aunque esta agencia no se sienta muy orgulloso de ello. Se ha descartado que sea un efecto del movimiento inducido en el aire, porque funciona también en el vacío. Contra todo pronóstico y contra lo que hoy la física da por sentado, aparentemente el EMDrive funciona. Pero ¿cómo?

Desde hace unos años, un físico de la Universidad de Plymouth llamado Mike McCulloch indaga en un nuevo modelo cosmológico basado en la masa inercial de las partículas. McCulloch tira de un fenómeno teórico compatible con la física relativista y que el canadiense William George Unruh predijo por primera vez en 1976. El llamado efecto Unruh propone que un objeto sometido a aceleración calienta el universo, y que esta temperatura depende de esa aceleración. El efecto es muy pequeño; es decir, que incluso con grandes aceleraciones el aumento de temperatura es minúsculo. Curiosamente, la fórmula a la que Unruh llegó para calcular esta temperatura es la misma que, de forma independiente, Stephen Hawking desarrolló para la radiación emitida por los agujeros negros y que eventualmente llevaría a su evaporación.

Algo que Unruh propuso, pero con lo que muchos físicos no están de acuerdo, es que el efecto Unruh produce una radiación; o sea ondas, con su frecuencia y su longitud. Según la relación de la fórmula de Unruh, con grandes aceleraciones los tamaños de estas ondas son manejables. Pero con aceleraciones muy pequeñas, que corresponden a temperaturas infinitamente minúsculas, lo que sucede es que las ondas comienzan a crecer a tamaños gigantescos, hasta que literalmente no caben en el universo. Y cuando esto ocurre, algo extraño sucede; siempre, claro, si la teoría es correcta: la longitud de la onda salta hasta un valor aceptable. Pero como hemos visto, si cambia el tamaño de la onda, también lo hace la energía, y por tanto la p de la partícula. Lo cual, como ya sabemos, está prohibido.

¿Qué pasa entonces? Para compensar esta diferencia y que p se mantenga constante, como debe ser, lo que ocurre es que cambia la masa inercial de la partícula, y con ello su movimiento. Por este motivo McCulloch afirma que la inercia, un fenómeno que evidentemente existe, pero que aún tiene una justificación física oscura, es consecuencia del efecto Unruh, y que se presenta en valores discretos correspondientes a esos saltos de las ondas. En otras palabras, que la inercia está cuantizada.

McCulloch ha aplicado esta teoría para explicar ciertas anomalías observadas en el movimiento de las sondas espaciales cuando pasan cerca de la Tierra. Es más, a través del efecto Unruh, McCulloch ha llegado a explicar por qué la rotación de las galaxias no las dispersa, algo que suele atribuirse a la presencia de materia oscura que las mantiene unidas. Según la hipótesis de McCulloch, el efecto Unruh explica la expansión cósmica y la cohesión de las galaxias sin necesidad de introducir materia oscura ni energía oscura, dos conceptos teóricos generalmente aceptados, pero no demostrados.

Ahora, McCulloch ha aplicado su teoría al EmDrive, y llega a la conclusión de que el efecto Unruh explica por qué funciona sin violar la conservación de la cantidad de movimiento. En este caso, dice el físico, el universo en el que se mueven las ondas es el cono. Cuando las microondas rebotan a lo largo del EmDrive hacia el extremo ancho, el salto de las ondas más grandes aumenta la masa inercial del fotón y su velocidad, lo que provoca un impulso en sentido contrario para ralentizar el fotón y conservar la cantidad de movimiento. Cuando el fotón se mueve hacia la boca estrecha, se reducen su masa inercial y su velocidad, lo que requiere también introducir una fuerza hacia ese extremo para aumentar la velocidad del fotón y que p permanezca constante. Y de este modo, el propulsor se mueve siempre hacia el extremo más fino, como demuestran los experimentos.

Claro que la explicación de McCulloch aún no convence. La pega fundamental es que la inercia cuantizada de McCulloch es como meter un elefante en el salón: no hay ninguna necesidad de hacerlo, pero una vez que se hace es necesario arreglar todos los destrozos. Al introducir la inercia cuantizada se producen descalabros que hay que arreglar mediante un mecanismo misterioso que no sería necesario proponer de no haber introducido la inercia cuantizada. Como es lógico, muchos físicos se resisten a creer que el fotón tenga una masa inercial cambiante y que un cono de metal sea capaz de hacer variar la velocidad de la luz en su interior.

Y pese a todo, lo más sorprendente es que McCulloch ha calculado las fuerzas que exprimentaría el EmDrive de acuerdo a su teoría, y los resultados se parecen sospechosamente a los valores reales medidos en los experimentos. Lo cual es motivo suficiente para, al menos, conceder a su hipótesis el beneficio de la duda. Algo que pronto podría resolverse: McCulloch ha elaborado también otras predicciones; por ejemplo, cómo habría que cambiar las dimensiones del cono para invertir la fuerza y que el propulsor se moviera hacia la boca ancha. Es de suponer que alguien ya estará poniendo en marcha experimentos como este, lo que tal vez en unos meses podría zanjar de una vez por todas si el EmDrive hace posible lo imposible.