Entradas etiquetadas como ‘Nobel’

Los Nobel de ciencia: buena sopa, pero sopa fría

Dirán los asiduos a este blog que ya vengo otra vez con la misma matraca, que soy cansino, cargante, y tendrán razón. Pero me temo que deberé seguir repitiéndolo todos los años, todas las veces que haga falta. Una vez más hemos asistido a una semana de los Nobel en la que el premio de Literatura se ha llevado todo el bombo y los platillos, y por el contrario las tres categorías de ciencia se han pasado como un breve; en algún caso, lo juro, sin siquiera mencionar los nombres de los premiados, y sin el menor criterio ni comentario o análisis.

Por cierto y con respecto al Nobel de Literatura, y aunque este blog no vaya de eso, uno también tiene sus opiniones. Como marca la tradición, antes del anuncio Murakami fue tendencia, y por las bolas de cristal circulaban los nombres de Rushdie o Houellebecq. Se sigue pensando que el Nobel debe distinguir al mejor, «the best», como los Óscar. Pero aparte de que la mejoridad siempre sea opinable, lo cierto es que este no es el presunto espíritu de los Nobel.

Imagen de Wikipedia.

Imagen de Wikipedia.

Alfred Nobel dejó bien claro en su testamento que los premios deben concederse a quienes «en el año precedente hayan aportado el mayor beneficio a la humanidad», y en concreto el de Literatura a quien haya producido «el trabajo más sobresaliente en una dirección idealista». Esto último está abierto a tantas interpretaciones como se quiera, pero probablemente bastantes de ellas podrían coincidir en definirlo como lo contrario de Houellebecq. En todo caso y en último término, deja la puerta abierta a que la Academia se lo conceda a quien le dé la gana, como viene haciendo, que para eso es su premio.

Pero no pensemos por ello que en la concesión de los premios se respeta a rajatabla la última voluntad del inventor de la dinamita y la gelignita, porque nada más lejos. Los Nobel de ciencia nunca se otorgan por los trabajos del «año precedente», ni de la década precedente, a veces casi ni siquiera del medio siglo precedente. Los Nobel de ciencia siempre suenan a viejuno. Se conceden a descubrimientos o avances ya muy consolidados, y por ello ya antiguos.

Como defensa suele alegarse que los Nobel premian los hallazgos que han resistido la prueba del tiempo. Pero claro, esto es como darle un premio de cine en 2022 a Blade Runner, que en su día tuvo críticas divididas. Se supone que entre las cualidades de un jurado experto debería contarse la de anticipar qué va a resistir la prueba del tiempo. Porque para saber qué la ha resistido no hace falta ser experto en nada. Basta con mirar la Wikipedia.

Si se quiere distinguir cuáles son las tendencias científicas más calientes del momento, a donde hay que dirigir la mirada es a los Breakthrough Prizes, los de mayor dotación económica del mundo en su campo. Este año han premiado, entre otros, a Demis Hassabis y John Jumper, los máximos responsables de DeepMind de Google en la creación de AlphaFold, el sistema de Inteligencia Artificial que predice la estructura espacial de casi cualquier proteína. Este es sin duda el mayor hallazgo reciente en el campo de la biomedicina y uno de esos avances que cambiarán el rumbo de la ciencia para los próximos 50 años, no que lo hicieron hace 50 años. El año pasado los Breakthrough distinguieron a Katalin Karikó y Drew Weissman, principales responsables de las vacunas de ARN contra el virus de la COVID-19.

En justicia hay que decir que en España tenemos también dos premios internacionales con un ojo muy agudo para distinguir los avances científicos más relevantes del momento: los Fronteras del Conocimiento de la Fundación BBVA y los Princesa de Asturias. Este año los Princesa han premiado a Hassabis (entre otros), y el año pasado lo hicieron a Karikó, Weissman y otros por las vacunas. Los Fronteras también han premiado a los creadores de las vacunas. Mientras, los Nobel siguen sin darse por enterados de que hemos tenido una pandemia y que una nueva generación de vacunas ha salvado millones de vidas.

Algunas veces los Nobel parecen el reconocimiento a toda una carrera, como evidentemente lo es el premio de Literatura. En los de ciencia, este es el caso del concedido este año en Fisiología o Medicina a Svante Pääbo, la figura más destacada en el desarrollo del campo de los genomas antiguos. Con esta concesión el comité del Instituto Karolinska, encargado de esta categoría, también ha sacado los pies de su tiesto; que yo recuerde, es la primera vez que se premia a la paleoantropología, una ciencia que quedaba excluida de los Nobel porque no encaja en ninguna de las categorías. El hecho de que la de Pääbo sea una paleoantropología molecular ha servido para darle el pase al premio de Fisiología o Medicina. Su trabajo no tiene nada que ver con la segunda, pero puede aceptarse dentro de la primera, en cierto modo.

Sobre el premio de Física, los físicos dirán. Como no-físico, y en mi función de simple periodista de ciencia que ha escrito infinidad de artículos sobre física, y bastantes de ellos sobre entrelazamiento cuántico (un tema especialmente jugoso), el reconocimiento a Alain Aspect, John Clauser y Anton Zeilinger es bienvenido, sobre todo cuando los tres ya recibieron el Wolf de Física —considerado por algunos como el segundo más prestigioso después del Nobel— hace 12 años. Una vez más, el Nobel se convierte en premio escoba, poniéndose al día con los deberes atrasados.

Finalmente, el Nobel de Química ha sido para Carolyn Bertozzi, Morten Meldal y Barry Sharpless, tres investigadores que desarrollaron —a principios de este siglo— dos conceptos relacionados que facilitan las reacciones químicas de síntesis para la formación de nuevos compuestos más complejos a partir de otros más simples. La idea es tan genial como sencilla, aunque mucho más difícil es llevarla a la práctica. Consiste en encontrar el modo de ligar moléculas entre sí de forma rápida, directa, irreversible y en una sola reacción, como si fuesen piezas de un puzle que encajan entre sí de modo único. Esta llamada química click, desarrollada independientemente por Sharpless y Meldal, se aplicó a los sistemas biológicos con la llamada química bioortogonal acuñada por Bertozzi. Estos dos conceptos son de inmensa aplicación hoy. Por cierto que Sharpless ya recibió otro Nobel de Química en 2001, un doble reconocimiento que solo han logrado otros cuatro científicos.

En definitiva, y como ocurre siempre, todos los premiados merecen sin duda este reconocimiento. Todos los premiados lo merecían desde hace años. Y como siempre, también lo habrían merecido otros que han quedado fuera. En concreto, no entiendo la decisión de distinguir en exclusiva a Pääbo por los avances en genomas antiguos, cuando los premios permiten el reparto entre un máximo de tres investigadores y hay otros que claramente habrían merecido compartirlo (por cierto, también hay españoles muy destacados en este campo). Sí, es cierto que saldrían más de tres. Es otro problema de los Nobel, y es que siempre son más de tres, y casi siempre muchos más de tres; hoy la idea del supergenio científico rodeado de minions eficientes pero descerebrados solo existe en las películas de Gru.

Por qué el Nobel no ha premiado al español Francis Mojica

Hace dos años escribí aquí un artículo titulado «Por qué el Nobel para Mojica es mucho más complicado de lo que parece«. Breves antecedentes: el microbiólogo español Francis Mojica descubrió un mecanismo molecular en bacterias que posteriormente dos investigadoras, la estadounidense Jennifer Doudna y la francesa Emmanuelle Charpentier, convirtieron en la herramienta más útil que hoy existe para reescribir y modificar genes. Este sistema, hoy con distintas variedades pero llamado genéricamente CRISPR, es una plataforma tecnológica de uso común en infinidad de laboratorios. Y aunque sus potenciales aplicaciones en la curación de enfermedades aún no han despegado, su utilidad en investigación ha sido tan sobradamente demostrada que desde hace años se rifaba un Nobel. Ahora, por fin la rifa se ha resuelto. Premiando a Charpentier y Doudna, y dejando fuera a Mojica.

Francisco JM Mojica. Imagen de Roberto Ruiz / Universidad de Alicante.

Francisco JM Mojica. Imagen de Roberto Ruiz / Universidad de Alicante.

Pero aunque todos lamentemos enormemente esta oportunidad perdida para la promoción de la ciencia española, que no ve un Nobel desde 1906 (sí, después estuvo Severo Ochoa, pero era un investigador de nacionalidad estadounidense que había desarrollado todo su trabajo en EEUU), conviene volver sobre lo que ya conté en su día para contener los arrebatos de indignación y de calimerismo; sí, es cierto que a un científico que trabaja en la Universidad de Alicante le resulta infinitamente más difícil ser reconocido con un Nobel (o incluso, ya puestos, publicar en Nature o Science) que al mismo científico si trabaja en Harvard o en el MIT. Pero este caso, insisto, era complicado.

La razón de esta complicación es que son muchos los nombres implicados en haber hecho de CRISPR lo que es hoy. Mojica descubrió el sistema original y lo nombró, y creo que no puede haber discusión sobre su primicia absoluta en este sentido. Pero después el francés Gilles Vergnaud ahondó en la explicación sobre su significado, el argentino Luciano Marraffini demostró por primera vez su funcionamiento, Charpentier y Doudna lo convirtieron en una herramienta utilizable, y el chino-estadounidense Feng Zhang lo adaptó para su uso en células eucariotas (no bacterianas). Y aún hay otros nombres cuya intervención ha sido esencial para el desarrollo de CRISPR, sumando en total hasta más de una docena.

Pero las normas de los Nobel establecen que cada premio solo puede repartirse entre un máximo de tres investigadores, porque los reconocimientos científicos más prestigiosos del mundo continúan en pleno siglo XXI anclados en la idea anacrónica del «¡eureka!» y del científico solitario y excéntrico, recluido en su laboratorio con la sola compañía de algún asistente que le friegue los cacharros, preferiblemente si es jorobado y algo friki como el Igor de El jovencito Frankenstein.

Así pues, y aunque el premio para CRISPR se cantaba desde hace años, existían serias dudas sobre quiénes serían los tres elegidos, y es de suponer que largos debates habrán precedido a la concesión del Nobel de Química 2020 para Charpentier y Doudna. Por supuesto que las dos investigadoras merecían el premio como primeras candidatas. El problema era añadir un tercer nombre dejando fuera al resto.

Personalmente, mi apuesta estaba entre Mojica y Zhang. La contribución del segundo fue fundamental para el desarrollo del sistema, pero el trabajo de Mojica fue la semilla de la cual surgió todo lo demás. Y premiar un hallazgo sin reconocer a su descubridor original no solo es injusto, sino que además es una decisión contraria al espíritu que los Nobel dicen defender y al criterio que normalmente aplican, aunque históricamente han sido muchas las injusticias que se han cometido.

Un caso que viene a la mente es el de Fleming, Chain y Florey. Los dos últimos fueron quienes aislaron la penicilina, la produjeron y la convirtieron en un producto utilizable y accesible para toda la humanidad. Pero el Nobel de 1945 no olvidó a Fleming, el descubridor original de la actividad de la sustancia pero que no fue capaz de aislarla, sacarle partido ni usarla de forma efectiva, y que llegó a abandonar esta línea de trabajo. Es más, el Nobel para los tres científicos en este caso dejó fuera a otros colaboradores de Florey y Chain (la mayoría mujeres, por cierto) cuya participación fue esencial, y que tal vez habrían merecido el premio más que Fleming. En este sentido, la contribución y la visión de Mojica al hallazgo de CRISPR ha sido enormemente más decisiva que la de Fleming al descubrimiento de la penicilina que popularmente se le atribuye.

Parece posible que en el caso que nos ocupa el jurado haya decidido no cometer un agravio contra alguien en particular, aunque para ello hubiera que agraviar a varios en general. Por mi parte, guardaba una esperanza que difícilmente va a materializarse. Los premios de Química y Medicina (que incluye Fisiología) los fallan instituciones distintas, respectivamente la Real Academia de Ciencias y el Instituto Karolinska, y cada una actúa bajo su propio criterio. Estas dos categorías solapan en muchos casos; en Medicina no solo se han premiado avances médicos, sino también muchos descubrimientos de ciencia básica.

Un claro ejemplo es la estructura del ADN que le valió el premio a Watson, Crick y Wilkins (no fue de Química, sino de Medicina), pero hay otros ejemplos, como el Nobel de 1958 a Joshua Lederberg por descubrir un mecanismo de intercambio de material genético en bacterias, o el de 1978 a Arber, Nathans y Smith por el hallazgo de las enzimas de restricción, un mecanismo de las bacterias que después se convirtió en una herramienta fundamental para la investigación (un caso muy análogo al de CRISPR).

Así, habría sido posible que CRISPR hubiera podido motivar dos Nobel en las dos categorías respectivas de Química y Medicina, uno para los pioneros que descubrieron un sistema de defensa nuevo y revolucionario en bacterias (eso es originalmente CRISPR), quizá para Mojica, Vergnaud y Marraffini, y otro para los que a partir de él desarrollaron el sistema, Charpentier, Doudna y Zhang.

Claro que esto hubiera seguido dejando fuera al lituano Virginijus Siksnys, que llegó a los mismos resultados que Charpentier y Doudna, aunque tardó un poco más en publicarlos. Y es que, en el fondo, el problema continúa siendo el mismo: en la era de la ciencia internacional, colaborativa y multidisciplinar, el formato de los Nobel ha quedado claramente obsoleto.

Y sobre si Mojica habría completado la terna si en lugar de trabajar en Alicante lo hubiese hecho en Oxford, en el Cambridge de este lado del Atlántico o en el Cambridge del otro lado del Atlántico, podríamos discutir. Pero ya serviría de poco.

Los Nobel vuelven a premiar ciencia de los 90

En este mundo en que todo avanza tan deprisa, incluida la ciencia, hay algo que no: los premios científicos más importantes del mundo.

Por supuesto, no hay nada que objetar al hecho de que los Nobel se concedan del modo y manera que a quienes los conceden y los pagan les venga en su kungliga gana (creo que así es como se dice «real» en sueco). Solo faltaría. Pero sí al hecho de que digan hacerlo basándose en lo que Alfred Nobel dejó dicho en su testamento, en el que instituyó los premios, ya que no es exactamente así: el padre de la dinamita y la gelignita quiso que sus distinciones se otorgaran a los hallazgos científicos más importantes del año precedente.

Es cierto que Nobel, aunque químico, era de espíritu más inventor que científico, y que la mentalidad del inventor atisba a un horizonte mucho más corto que la del científico. Pero entre premiar la ciencia del año precedente y premiar la ciencia del siglo precedente continúa abriéndose un abismo que podría visitarse con mayor frecuencia, como sí hacen otros premios, véanse los Breakthrough.

Imagen de Wikipedia.

Imagen de Wikipedia.

Tomemos como ejemplo el Premio Nobel de Química 2019, anunciado hoy y concedido a John B. Goodenough (por supuesto, en serio), a M. Stanley Whittingham y a Akira Yoshino por el desarrollo de las baterías de ion litio. Es evidente que el trabajo de estos investigadores (y de otros más que, como siempre, se quedan sin premio, ya que en el Nobel solo caben tres) merece todos los premios que a uno se le puedan ocurrir. Sin él ni siquiera podría estar escribiendo estas líneas, ya que las baterías de litio iónico son el forraje de nuestros dispositivos electrónicos. Y ahora, hasta de los coches eléctricos.

Pero ya lo eran también hace diez años, hace veinte y casi treinta. La batería de iones de litio fue investigada en los 70, desarrollada en los 80 y comercializada en los 90. Y aunque los expertos dicen que a estas pilas aún les queda recorrido, ya que por el momento aún no existe nada mejor a escala industrial, también dicen que va siendo hora de inventar algo mejor, con más autonomía y de carga más rápida. Algunos discuten si las baterías de iones de litio ya son tecnología obsoleta. Incluso el propio Goodenough ha creado en los últimos años una nueva batería de estado sólido que asegura supera a la de ion litio en prestaciones. Quizá hoy le ha sorprendido recibir un premio que le llega a los 97 años de edad, por trabajos que hizo hace cuatro décadas.

Un caso similar es el del Nobel de Fisiología o Medicina, que este año ha sido para William G. Kaelin Jr., Peter J. Ratcliffe y Gregg L. Semenza. De forma independiente, los trabajos de los tres consiguieron desentrañar los mecanismos biológicos por los que el organismo detecta los niveles de oxígeno y reacciona a ellos: células especializadas en el riñón son capaces de sentir la carencia de oxígeno y promover la síntesis de la hormona eritropoyetina, que estimula la fabricación de eritrocitos (los glóbulos rojos de la sangre). Esto es lo que ocurre, por ejemplo, en las personas que viven a grandes altitudes, donde el oxígeno es más escaso. Los trabajos de los tres investigadores, sobre todo los de Kaelin, descubrieron además cómo ciertos tumores son capaces de hackear este mecanismo para promover la creación de vasos sanguíneos que aporten nutrientes al tumor.

Como suele ocurrir en biomedicina, las aplicaciones de esta ciencia básica llegan a un plazo mucho más largo, si es que llegan. Sobre el cáncer, es una incógnita. Actualmente los fármacos que interfieren en este proceso se ensayan contra enfermedades como las anemias. En resumen, se trata también de ciencia de los 90, que al borde de la tercera década del siglo XXI aún no ha demostrado su posible utilidad clínica (esto último va por el hecho de que suele esgrimirse el argumento de las aplicaciones sobradamente demostradas, como en el caso de las baterías de litio, para justificar por qué los descubridores del sistema de edición genómica CRISPR, entre los cuales está el español Francis Mojica, aún no han recibido un Nobel).

Y una vez más, también de ciencia de los 90 va este año el Nobel de Física. En esta edición se ha hecho un curioso arreglo que, si de algo da la impresión, es de que en el comité había opiniones discrepantes. Aunque es frecuente que el premio se reparta en dos mitades, y que una de ellas a su vez se subdivida entre dos investigadores (respetando la regla del máximo de tres), lo más habitual en estos casos es que se trate de investigaciones relacionadas entre sí. Este no es el caso: lo que liga las investigaciones de los tres investigadores premiados es, dijo el comité, “el universo”. Dado que el universo es todo lo existente, no es precisar demasiado.

La primera de las mitades ha ido para James Peebles, cuyo nombre suena más, al menos para quienes no somos físicos, como uno de los científicos que elaboraron la teoría sobre la radiación cósmica de fondo, una radiación fósil (desde nuestra perspectiva temporal) del Big Bang que luego las sondas espaciales WMAP de la NASA y Planck de la ESA se encargaron de estudiar.

Lo curioso es que, para describir en conjunto las aportaciones de Peebles sobre la materia oscura, la energía oscura y otros campos, el comité Nobel le ha premiado “por sus descubrimientos teóricos en cosmología física”. Lo cual nos recuerda algo: ¿no habíamos quedado en que el Nobel no se otorga a descubrimientos teóricos, y que, por ejemplo, por ello a Einstein se le concedió por el efecto fotoeléctrico y no por la relatividad? ¿Y que por ello a Stephen Hawking nunca se le dio? ¿No habíamos quedado en que debía tratarse de descubrimientos sobradamente demostrados? ¿Y la materia oscura?

Así, el premio para Peebles queda en realidad más bien como uno de esos Nobel que se conceden como el Óscar a toda una carrera. En cambio, más concreta es la otra mitad, repartida entre Michel Mayor y Didier Queloz por… no, nada de cosmología, sino por el descubrimiento del primer exoplaneta en torno a una estrella similar al Sol. No fue el primer exoplaneta, pero el método de velocidad radial puesto en práctica por Mayor y Queloz es uno de los que después han permitido hallar muchos más planetas extrasolares. En concreto, el premio llega más de 4.000 exoplanetas después, por un trabajo publicado en… 1995. Y por cierto, Mayor y Queloz ya recibieron el Premio Fronteras del Conocimiento de la Fundación BBVA en 2012, hace siete años.

Con lo fácil que lo habría tenido el comité Nobel este año premiando a los responsables de la primera foto de un agujero negro, como han hecho los premios Breakthrough Claro que fueron 347 los investigadores premiados por los Breakthrough. En el caso del Nobel, 344 de ellos se habrían quedado con las ganas.

Los premios Breakthrough, más del siglo XXI que los Nobel

La fundación Breakthrough Prize, que concede los premios de ciencia con la dotación económica más alta del mundo, ha anunciado sus ganadores de la edición de este año, que recibirán sus galardones el domingo 4 de noviembre en una ceremonia presentada por el actor Pierce Brosnan. El acto se retransmitirá en directo por internet desde el centro de investigación Ames de la NASA, en Silicon Valley (EEUU).

En total se repartirán siete premios, cada uno dotado con 3 millones de dólares: cuatro en ciencias de la vida, dos en física fundamental y uno en matemáticas. De los dos premios de física, uno es un galardón extraordinario (que ya aplaudí aquí) para Jocelyn Bell Burnell, la astrónoma que descubrió el primer púlsar en 1968 y que fue ignorada por el Nobel.

Los ganadores de los premios Breakthrough en 2016. Imagen de Breakthrough Prize.

Los ganadores de los premios Breakthrough en 2016. Imagen de Breakthrough Prize.

Este es el resumen de los ganadores y lo que han hecho para merecer esto. En ciencias de la vida, el estadounidense C. Frank Bennett y el uruguayo radicado en EEUU Adrian R. Krainer compartirán uno de los premios por la obtención del Nusinersen/Spinraza, una terapia de nueva generación contra la atrofia muscular espinal, una rara enfermedad neurodegenerativa que sin embargo es hoy la principal causa genética de muerte infantil.

El tratamiento consiste en el uso de pequeñas moléculas de ADN llamadas oligonucleótidos antisentido que consiguen dirigir correctamente la expresión de los genes. El medicamento fue aprobado en 2016 en EEUU y al año siguiente en la UE, y por el momento ha conseguido que la atrofia muscular espinal ya no sea una sentencia de muerte segura para los niños afectados. Por otra parte, el éxito de este fármaco ha impulsado la aplicación de la terapia con oligos antisentido a otras muchas enfermedades.

Los otros tres premios en esta categoría irán para la austro-estadounidense Angelika Amon por sus estudios de los mecanismos celulares patológicos de los errores en el número de cromosomas (como ocurre por ejemplo en el síndrome de Down o en el 80% de los cánceres); para la china-estadounidense Xiaowei Zhuang por desarrollar una técnica de microscopía óptica de ultra-alta resolución llamada STORM que permite observar estructuras celulares 10.000 veces más pequeñas que el grosor de un pelo humano; y para el también chino-estadounidense Zhijian James Chen por descubrir un mecanismo sorprendente que activa el sistema inmunitario gracias a una enzima que detecta la presencia de ADN en el interior celular pero fuera del núcleo, lo cual ocurre en las células dañadas o infectadas por virus. Este mecanismo podría aprovecharse para combatir enfermedades como el cáncer, pero también ayudará a comprender mejor las enfermedades autoinmunes como el lupus o la esclerosis múltiple.

El premio de física lo comparten los estadounidenses Charles Kane y Eugene Mele por abrir el camino hacia un nuevo tipo de materiales llamados aislantes topológicos, que tienen la peculiaridad de conducir la corriente eléctrica en su superficie al mismo tiempo que son aislantes en el interior. Estos materiales ofrecerán un nuevo sistema controlado para investigar el comportamiento de las partículas subatómicas, pero además su extraña simetría representa un modelo para aplicar restricciones topológicas similares a otros tipos de fenómenos físicos, como la luz o el sonido. Más allá de su interés teórico, los expertos predicen grandes aplicaciones de estos futuros materiales en los sistemas electrónicos, incluyendo la computación cuántica.

Finalmente, el premio de matemáticas ha recaído en el francés Vincent Lafforgue por varias contribuciones en geometría algebraica con múltiples posibilidades de aplicación, desde la computación, la criptografía y la ciberseguridad a la mecánica cuántica o el diseño de nuevos materiales para crear energías limpias. Pero como si fuera el Gordo de Navidad, sigue el reparto de la lluvia de millones: Breakthrough apoya también los logros de los jóvenes investigadores concediendo otros seis premios adicionales de 600.000 dólares repartidos entre las categorías de física y matemáticas.

Hasta aquí, la información. Pero un aspecto interesante de los premios Breakthrough es que en solo siete ediciones han conseguido situarse como un nuevo referente destacado entre los galardones de ciencia (desde luego, con una resonancia científica internacional infinitamente mayor que nuestros Princesa de Asturias). Evidentemente, cuando alguien pone más de 22 millones de dólares encima de la mesa, pocos más argumentos se necesitan; aunque un Nobel seguirá siendo un Nobel, y probablemente más de un galardonado con el Breakthrough estaría dispuesto a renunciar a los más de dos millones de dólares de diferencia por hacerse con la medalla sueca.

Pero tratándose en todo caso de premios personalistas, un modelo que se corresponde poco o nada con la realidad actual de la ciencia colaborativa, los Breakthrough reúnen algunas cualidades que los sitúan en un contexto más de este siglo que los Nobel. Para empezar, premian ciencia de vanguardia, mientras que en general los Nobel continúan premiando ciencia del siglo XX. Cuando se presentan los ganadores de los Nobel en los medios a veces se transmite la impresión de que las investigaciones galardonadas son actuales; pueden serlo sus aplicaciones, pero los hallazgos suelen ser antiguos, en muchos casos de hace décadas.

La razón de esto es que en cierto modo los Nobel se han convertido en víctimas de su propio prestigio; se han hecho tan grandes que los jurados suelen aplicar criterios muy conservadores, demorando la distinción de logros o hallazgos hasta que el paso del tiempo los ha consolidado. En la práctica, y dado que un investigador que logra un avance importante suele dedicar el resto de su vida a él, los premios de ciencia se parecen al de Literatura: no se conceden a una obra concreta, sino a toda una carrera.

Imagen de Wikipedia.

Imagen de Wikipedia.

Un ejemplo lo tenemos comparando el premio Breakthrough a Bennett y Krainer con el Nobel de Medicina de este año, concedido a James P. Allison y Tasuku Honjo por el descubrimiento de la inmunoterapia contra el cáncer. En ambos casos los tratamientos derivados de los hallazgos están de plena actualidad y aún tienen un enorme potencial de desarrollo futuro. Es más, ambos enfoques terapéuticos pueden convivir perfectamente durante las próximas décadas. Pero desde el punto de vista científico, que es de lo que se trata, la inmunoterapia es el pasado (también lo es la aspirina, un pasado mucho más antiguo, y aún sigue funcionando). En cambio, la terapia antisentido es una nueva frontera.

Todo lo cual, además y curiosamente, hace caer a los Premios Nobel en una contradicción. La organización suele escudarse en un seguimiento estricto de sus normas para justificar que solo se premie a un máximo de tres científicos en cada categoría, o que no se concedan premios póstumos. Pero en realidad estas restricciones no figuraban en el testamento en el que Alfred Nobel instituyó los premios, sino que fueron incorporadas después. Y en cambio, lo que sí figura en el testamento es que los premios deben concederse por avances logrados durante el año precedente. Lo que, obviamente, nunca se respeta.

Hasta tal punto los Nobel, sin perder nunca ni un ápice de su prestigio, sí son cada vez más cuestionados, que incluso existe una web dedicada a promover una reforma en estos premios para adecuarlos a la realidad de la ciencia actual y corregir sus errores. Su promotor es el astrofísico Brian Keating, buen conocedor de la organización como uno de los encargados de nominar a los candidatos. Keating ha llegado incluso a sugerir que los Nobel de ciencia se tomen un año de vacaciones para replantear su enfoque.

En cuanto a los Breakthrough, su carácter diferente y más actual se entiende repasando los nombres que están detrás de esta fundación: entre otros, Sergey Brin (Google), Mark Zuckerberg (Facebook), Anne Wojcicki (23andMe, líder en genómica personal) y Yuri Milner (magnate tecnológico). Como personajes del mundo de la tecnología, se comprende que estén más interesados en la ciencia puntera; incluso cuando se trata de ciencia básica, es previsible que los hallazgos merecedores de los premios vayan a ser también merecedores de jugosas inversiones en Silicon Valley, por lo que los Breakthrough pueden mover la cinta transportadora que mueve el dinero desde la empresa a la investigación para volver a la empresa y volver a la investigación.

Al fin y al cabo, de esto se trata: los premios promocionan la ciencia bajo la excusa de promocionar a los científicos. En palabras de Keating, «el propósito de Alfred Nobel no era engordar la cartera de los científicos. En su lugar, quería atraer la atención a sus trabajos beneficiosos e incentivar nuevas invenciones». Lo cual, para ser una idea de 1895, era una idea muy moderna.

Tres millones de dólares para Jocelyn Bell, la astrofísica ignorada por el Nobel

Hace un par de años y medio conté aquí la curiosa historia del descubrimiento del primer púlsar (estrella de neutrones giratoria) y de cómo aquel hallazgo, publicado en 1968, llegó a ilustrar la icónica portada de uno de los discos más míticos de la historia musical reciente, Unknown Pleasures de Joy Division (1979).

Jocelyn Bell en 1967. Imagen de Roger W Haworth / Wikipedia.

Jocelyn Bell en 1967. Imagen de Roger W Haworth / Wikipedia.

En el devenir de aquel episodio científico, que abrió una nueva era para la astronomía, hubo una clara figura perdedora: la norirlandesa Jocelyn Bell (después Bell Burnell por matrimonio), la autora material del hallazgo. Bell recibió en su día una gran atención por parte de los medios británicos… consistente en preguntarle si tenía muchos novios o si era más alta que la princesa Margarita.

Unos años después, en 1974, el descubrimiento fue distinguido con el Premio Nobel de Física… para el supervisor de Bell, Antony Hewish. No solo se trata de que Hewish no había sido el artífice directo del descubrimiento; es que incluso el hallazgo fue posible gracias a que Bell y otros cuatro colaboradores habían pasado dos años construyendo el artefacto necesario para ello. Y no piensen en alta tecnología: allí cada becario recibía un kit de herramientas para clavar palos en una parcela de 18.000 metros cuadrados y tender 190 kilómetros de cable entre ellos. Así eran aquellos primitivos radiotelescopios.

En su día y desde entonces, la omisión de Bell en la concesión de aquel premio ha perdurado popularmente como un caso flagrante de machismo en el mundo de la ciencia. Pero ya aclaré que en realidad se trata de algo más complejo: Bell era la becaria, y con independencia de que fuera hombre o mujer, los comités de los Nobel casi nunca premian a los becarios por considerarlos meramente las manos del cerebro de su amo.

Lo cual, evidentemente, casi nunca es cierto. Pero el Premio Nobel es una institución privada y por lo tanto tiene todo el derecho a regirse por las normas que le parezca, por equivocadas que sean (ya he comentado aquí mil veces que hoy en día premiar a una sola persona por un hallazgo es un descomunal anacronismo) Y aunque las quejas por este criterio sean frecuentes, a muchos de quienes protestan por ello, en concreto a los becarios, habría que plantearles esta pregunta: ¿cuántos estarían dispuestos a que en el futuro sean sus becarios quienes se lleven el mérito? Todos los sistemas jerárquicos se perpetúan porque los de abajo acaban llegando arriba.

Por su parte, Bell atajaba las críticas hacia el fallo del premio con una humildad y una elegancia dignas de aplauso:

Es el supervisor quien tiene la responsabilidad final del éxito o el fracaso del proyecto. Oímos de casos en los que un supervisor culpa a su estudiante de un fracaso, pero sabemos que la culpa es sobre todo del supervisor. Me parece simplemente justo que él deba también beneficiarse de los éxitos. Pienso que los premios Nobel quedarían degradados si se concedieran a estudiantes de investigación, excepto en casos muy excepcionales, y no creo que este sea uno de ellos.

Existen estos casos excepcionales que mencionaba Bell. Uno reciente que me viene ahora a la memoria es el del Nobel de Medicina de 2009, que premió a Elizabeth Blackburn y a su becaria Carol Greider por el descubrimiento de la telomerasa, la enzima clave del envejecimiento celular. Blackburn relacionó el acortamiento de los telómeros (los extremos de los cromosomas) con la edad de la célula, pero la identificación de la telomerasa fue obra exclusiva de Greider, algo que el comité Nobel no pudo ignorar.

Pero en realidad, el papel de Greider en este hallazgo fue muy similar al de Bell en el suyo. Algo que nunca sabremos es si Bell habría recibido el premio junto a Hewish si su nombre de Jocelyn hubiera designado a un chico (curiosamente, este nombre en Francia es masculino, algo similar a la diferencia de uso de Andrea, que es femenino aquí y masculino en Italia).

Jocelyn Bell Burnell en 2015. Imagen de Silicon Republic / Wikipedia.

Jocelyn Bell Burnell en 2015. Imagen de Silicon Republic / Wikipedia.

En definitiva, y ya se debiera la omisión a su condición de mujer o de becaria, o a ambas, lo cierto es que el agravio del Nobel aún pedía una reparación, a pesar de que desde entonces Bell ha sido distinguida con altos honores y nombramientos, incluyendo la Orden del –ya inexistente– Imperio Británico.

La merecida reparación le ha llegado ahora a Bell en una forma de menor prestigio científico que el Nobel, pero que muchos de los nobeles cambiarían con gusto: los tres millones de dólares que otorga el Premio Especial Breakthrough en Física Fundamental. En comparación, la dotación del Nobel en cada categoría es de algo menos de un millón a repartir entre los premiados, que en ciencia suelen ser tres.

Los Premios Breakthrough fueron creados en 2012 por un grupo de magnates que incluye al físico y tecnólogo ruso-israelí Yuri Milner, al cofundador de Facebook Mark Zuckerberg y su mujer, Priscilla Chan, al cofundador de Google Sergey Brin, a la cofundadora de la empresa genómica 23andMe y exmujer de Brin, Anne Wojcicki, y al chino Jack Ma, cofundador del gigante de internet Alibaba. Es decir, un ramillete de empresarios con bolsillos sin fondo que decidieron dedicar parte de su fortuna a la promoción de la ciencia y la investigación tecnológica.

Los premios tienen su edición regular anual, a la que se añade la concesión esporádica de galardones especiales a figuras de excepcional relevancia, como es el caso de Bell. El premio recibido ahora por la astrónoma se ha concedido anteriormente a Stephen Hawking y a los principales responsables del descubrimiento del bosón de Higgs o de las ondas gravitacionales.

Así pues, enhorabuena a la premiada, que lo tenía bien merecido. Que lo disfrute con salud. Y ya que hemos mencionado el Unknown Pleasures, me sirve como excusa para dejarles con esta rara y antigua joya.

Los Nobel, uno fresco, otro rancio, y siempre dejan a alguien fuera

Como cada año por estas fechas, no puede faltar en este blog un comentario sobre lo que nos ha traído la edición de turno de los premios Nobel. Y aunque cumplo con esta autoimpuesta obligación, debo confesarles que lo hago con la boca un poco pastosa. No por desmerecer a los ganadores, siempre científicos de altísimos logros, sino por otros motivos que año tras año suelo traer aquí y que conciernen a los propios premios.

Imagen de Wikipedia.

Imagen de Wikipedia.

En primer lugar, están los merecimientos no premiados de los que siempre se quedan por debajo de la línea de corte. Ya lo he dicho aquí, y no descubro nada nuevo: ya no hay Ramones y Cajales encerrados a solas en su laboratorio. Vivimos en la época de la ciencia colaborativa y a veces incluso multitudinaria, donde algunos estudios vienen firmados por miles de autores. No exagero: hace un par de años, un estudio de estimación de la masa del bosón de Higgs batió todos los récords conocidos al venir firmado por una lista de 5.154 autores. Nueve páginas de estudio, 24 páginas de nombres.

En el caso que nos ocupa, el Nobel de Física 2017 anunciado esta semana ha premiado la detección de ondas gravitacionales, un hito histórico que se anunció y publicó por primera vez en febrero de 2016, que confirmó la predicción planteada por Einstein hace un siglo y que según los físicos abre una nueva era de la astronomía, ya que enciende una nueva luz, que en este caso no es luz, para observar el universo.

Pero aunque sin duda el hallazgo merece los máximos honores que puedan concederse en el mundo de la ciencia, el problema es que los Nobel fueron instituidos por un tipo que murió hace 121 años, cuando la ciencia era cosa de matrimonios Curies investigando en un cobertizo. Y las normas de los Nobel dicen que como máximo se puede premiar a tres científicos para cada categoría.

Los agraciados en este caso han sido Rainer Weiss, Barry Barish y Kip Thorne, los tres estadounidenses, el primero nacido en Alemania. Weiss se queda con la mitad del premio, mientras que Barish y Thorne se reparten el otro 50%.

No cabe duda de que los tres lo merecen. Weiss fue quien inventó el detector que ha servido para pescar por primera vez las arrugas en el tejido del espacio-tiempo, producidas por un evento cataclísmico como la fusión de dos agujeros negros. Thorne ha sido la cabeza más visible en el desarrollo de la teoría de las ondas gravitacionales, además de ser un divulgador mediático y popular: creó el modelo de agujero negro que aparecía en la película Interstellar. Por su parte, Barish ha sido el principal artífice de LIGO, el detector que primero observó las ondas gravitacionales y que se construyó según el modelo de Weiss apoyado en la teoría de Thorne.

Pero más de mil científicos firmaron el estudio que describió la primicia de las ondas gravitacionales. Sus diversos grados de contribución no quedan reflejados en la lista de autores, ya que en casos así no se sigue la convención clásica de situar al principal autor directo del trabajo en primer lugar y al investigador senior en el último; aquí la lista es alfabética, sin un responsable identificado. El primero de la lista era un tal Abbott, cuyo único mérito para que aquel estudio histórico ahora se cite como «Abbott et al.» fue su ventaja alfabética. De hecho, había tres Abbotts en la lista de autores.

¿Se hace justicia premiando solo a tres? Tengo para mí que los físicos especializados en la materia, sobre todo quienes hayan participado de forma más directa o indirecta en este campo de estudio, tal vez tengan la sensación de que queda alguna cuenta no saldada.

Como mínimo, habrá quienes achaquen al jurado que haya olvidado la importantísima contribución de Virgo, el socio europeo del experimento LIGO. Ambos nacieron de forma independiente en los años 80, LIGO en EEUU y Virgo en Italia como producto de una iniciativa italo-francesa. Con el paso de los años, LIGO y Virgo comenzaron a trabajar en una colaboración que estaba ya muy bien trabada antes de que el detector estadounidense lograra la primera detección de las ondas gravitacionales. La cuarta detección de ondas de este tipo, anunciada hace solo unos días, se ha producido en paralelo en LIGO y en Virgo. ¿Es justo dejar a los artífices del proyecto europeo sin el reconocimiento del Nobel?

Por supuesto, son las normas de los premios. Pero miren esto: el testamento de Nobel no mencionaba en absoluto a tres premiados por cada categoría, sino que se refería simplemente a «la persona que…». Por lo tanto, si se trata de ceñirse estrictamente a la última voluntad del fundador de los premios, estos no deberían repartirse.

Pero la limitada representatividad de la lista de premiados no es el único defecto de los Nobel. Otro que también he comentado aquí en años anteriores es la tendencia a premiar trabajos tan antiguos que ni sus autores ya se lo esperaban, si es que siguen vivos. Y en esto tampoco se respetan las instrucciones de Alfred Nobel, ya que él especificó que los premios deberían concederse a quien «durante el año precedente haya conferido el mayor beneficio a la humanidad».

Si al menos este año en Física se ha premiado ciencia fresca y puntera, no ocurre lo mismo con la categoría de Fisiología o Medicina. Los tres galardonados, Jeffrey Hall, Michael Rosbash y Michael Young, todos estadounidenses, lograron sus avances fundamentales sobre los mecanismos moleculares del reloj biológico (los ritmos circadianos) allá por los años 80.

De hecho, hay un dato muy ilustrativo. A diferencia del caso de las ondas gravitacionales, en el campo de los ritmos circadianos sí hay dos nombres que muy claramente deberían encabezar una lista de candidatos a recibir los honores: Seymour Benzer y su estudiante Ron Konopka, los genetistas estadounidenses que primero descubrieron las mutaciones en los genes circadianos con las cuales pudo escribirse la ciencia moderna de la cronobiología. Pero Benzer falleció en 2007, y Konopka en 2015. Y no hay Nobel póstumo. El premio en este caso se ha concedido a una segunda generación de investigadores porque se ha concedido tan a destiempo que los de la primera murieron sin el debido reconocimiento.

En este caso, los Nobel pecan una vez más de conservadurismo, de no apostar por avances más recientes cuyo impacto está hoy de plena actualidad en las páginas de las revistas científicas. Por ejemplo, CRISPR, el sistema de corrección de genes que abre la medicina del futuro y en el que nuestro país tiene un firme candidato al premio, el alicantino Francisco Martínez Mojica. Pero dado que este avance también puede optar al Nobel de Química, que se anuncia hoy miércoles dentro de un rato, de momento sigamos conteniendo la respiración.

¿Y para cuándo el Nobel de Física a Brian May?

El mundo está hoy dividido entre quienes aplauden la concesión del Nobel de Literatura a Bob Dylan, y quienes reclaman un Grammy para Francisco Correa o un Oscar para Rodrigo Rato. Pero, en realidad, nadie dijo que este premio estuviera reservado a lo que comúnmente entendemos como un escritor profesional.

Conviene recordar las palabras literales de Alfred Nobel en su testamento sobre la concesión del premio «a la persona que haya producido en el campo de la literatura la obra más sobresaliente en una dirección ideal». Según leí en alguna parte hace tiempo, hubo discusiones en la Academia Sueca, la encargada del fallo anual, sobre qué quiso decir exactamente Nobel cuando escribió «en una dirección ideal». Algunos lo interpretaban como un sinónimo de «perfecto», mientras que otros defendían un significado equivalente a «idealista».

Pero está claro que esta segunda interpretación no ha dirigido la concesión del premio en muchos casos, empezando por mi admirado Hemingway. Tal vez sí ha primado en la decisión de premiar a Dylan, pero hay también precedentes de premios Nobel de Literatura que no han ido a parar a manos de escritores convencionales. Me viene a la cabeza el caso de Winston Churchill (1953), que escribió libros, y muchos, pero a quien se le concedió el premio por sus discursos políticos.

Pero a lo nuestro, que en este espacio es la ciencia. Se me ha ocurrido que esta es una buena ocasión para recordar en este y próximos días a otros músicos consumados cuyos nombres salen en los papeles científicos (he dicho «músicos consumados»; no incluyo en la lista al físico de partículas del LHC, divulgador televisivo y reconocido guapo Brian Cox, que en los años 90 fue teclista de un grupo poppy bastante hortera).

Abundan por ahí las listas que citan los nombres, pero que no suelen explicar en concreto en qué consiste el trabajo científico de dichos músicos. No se preocupen: yo se lo cuento. Aunque, si les soy sincero, ya les adelanto que realmente ninguno de ellos va para premio Nobel, al menos de momento.

Comenzamos hoy con ningún otro que

Brian May

Arriba, Brian May. Abajo, Isaac Newton. Imágenes de Wikipedia.

Arriba, Brian May. Abajo, Isaac Newton. Imágenes de Wikipedia.

Sí, todos sabemos que el exguitarrista de Queen es astrofísico, y que su presencia es uno de los mayores reclamos del festival científico Starmus que hasta ahora ha venido celebrándose en Tenerife. Pero ¿qué ha aportado May a la astrofísica? Quiero decir, además de estar convirtiéndose en un clon de Isaac Newton…

En 1970, May tomaba dos decisiones importantes: comenzaba su doctorado en Astrofísica y cofundaba un grupo llamado Queen. Cuatro años después, el éxito meteórico de la banda le apartaba (casi) definitivamente de otros tipos de meteoros y del objeto de su tesis, la luz zodiacal.

Se trata de una débil franja de luz que puede observarse sólo en los cielos nocturnos prístinos, y que está causada por la dispersión del resplandor solar por el polvo que flota en el espacio. Se llama zodiacal porque se aprecia mejor en el plano de la órbita terrestre, donde se sitúan las constelaciones del Zodiaco. La luz zodiacal es la principal fuente de iluminación del cielo en las noches sin luna.

Y aunque esto del polvo zodiacal les pueda sonar más a amor libre y Flower Power, lo cierto es que en 1972 May publicó su primer estudio como becario nada menos que en la mismísima revista Nature. Dos años después le seguía otro estudio en la también muy prestigiosa Monthly Notices of the Royal Astronomical Society. En estos trabajos, May y sus colaboradores analizaban el movimiento del polvo zodiacal estudiando el espectro de la luz que nos hace llegar. Pero aquel mismo año, May daba la patada a la astrofísica para volcarse en la música.

Hasta 2006. Ya alcanzado ese momento de su vida en el que podía comprarse una isla y hundir el bote, May reanudó su tesis doctoral, que leyó en 2007: A Survey of Radial Velocities in the Zodiacal Dust Cloud, o Un estudio de las velocidades radiales en la nube de polvo zodiacal. Desde entonces ha publicado al menos otros dos estudios. Uno de ellos, como autor secundario en 2009, era una propuesta sobre el empleo de misiones espaciales para recoger polvo zodiacal del espacio como objeto de estudio.

El más reciente, en 2013, estudiaba la luz zodiacal para determinar las contribuciones relativas de cometas, asteroides y polvo interestelar a esa nube. Que, por si les interesa, son respectivamente del 70%, 22% y 7,5%. O en otras palabras, que la gran mayoría de ese polvo disperso en el Sistema Solar procede de cometas.

Puede que el área de estudio de Brian May no suene de lo más excitante. Pero sus estudios abordan un campo poco investigado que tiene importancia para comprender cómo funciona nuestro Sistema Solar. El hecho de que no haya muchos investigadores trabajando en el movimiento de la nube zodiacal le permitió recoger sus observaciones de los años 70 más de tres decenios después, y publicar una tesis que aún tiene vigencia. Y por cierto, para astrofísicos en ciernes y fanáticos de Queen, la tesis está editada en formato de libro y a la venta.

Los Nobel de Física y Química premian los chips prodigiosos

Si no fuera porque no es así como funciona, se diría que los comités de los Nobel de Física y Química de este 2016 se han puesto de acuerdo para premiar un mismo campo, las nanocosas del nanomundo. Dirán ustedes que gran parte del trabajo de la física, la química y la biología consiste precisamente en indagar en todo aquello que no podemos ver a simple vista, y no se equivocarán. Si fuera posible miniaturizarnos –esta semana volví a ver aquella divertida película de Dante y Spielberg, El chip prodigioso–, la naturaleza no tendría misterios para nosotros. No habría nada que investigar; bastaría con abrir los ojos y ver qué pasa.

Fotograma de la película 'El chip prodigioso' (1987). Imagen de Warner Bros.

Fotograma de la película ‘El chip prodigioso’ (1987). Imagen de Warner Bros.

Pero dentro de todo ello, hay un área transversal de la ciencia que se dedica específicamente a explorar cómo es el paisaje a esa escala diminuta, cómo son sus montañas, valles y costas, y a fabricar aparatos que puedan desenvolverse en ese entorno de lo diminuto del mismo modo que lo hace un rover en Marte. No es un minimundo ni micromundo, ya que el prefijo «micro» comprende los tamaños en el rango de la célula y sus partes. La unidad de medida allí es el nanómetro, la millonésima de milímetro, y desde ahí hacia abajo. En algún momento, los científicos comenzaron a referirse a ese mundo añadiéndole un «nano»: nanotecnología, nanoingeniería, nanociencias.

Nuestro mundo tiene sus formas, lo que llamamos el relieve topográfico. Esas formas pueden cambiar a lo largo del tiempo debido a fuerzas de la naturaleza, pero siguiendo ciertas reglas: cuando en una montaña se ha horadado una cueva, un derrumbamiento podrá hacerla desaparecer, pero la montaña no puede deshoradarse y volver a quedar como estaba. Y un río no puede correr sobre la cumbre de una montaña.

Hay una rama de las matemáticas que estudia las formas, o topos, y cómo pueden transformarse unas en otras a través de transiciones permitidas: por ejemplo, se puede deformar, pero no cortar y pegar. Una hoja de papel puede convertirse en una silla de montar, pero no en una bola. La topología se aplica a áreas de las matemáticas como el álgebra y la geometría, pero también a la física.

El funcionamiento de la materia está relacionado con su estructura. Por ejemplo, un metal conduce la electricidad porque permite el libre movimiento de los electrones. Algunos físicos exploran las fronteras de ese nanomundo, los límites exóticos de la materia donde aparecen propiedades inusuales; por ejemplo, los semiconductores o los superconductores. Como los paisajes, esa materia tiene sus formas y sus reglas, lugares inaccesibles por donde un río no puede discurrir, o un electrón no puede moverse. De la aplicación de la topología a estas formas exóticas de la materia y a sus cambios (como de sólido a líquido) pueden aprovecharse algunas de esas propiedades raras. La capacidad de manipular y controlar a voluntad la conductividad de un material es la base de toda la tecnología electrónica que utilizamos hoy.

El Nobel de Física 2016 ha premiado a los británicos (los tres trabajando en EEUU) David Thouless, Michael Kosterlitz y Duncan Haldane por haber sentado en los años 70 y 80 las bases de esa topología de la materia exótica y de sus transiciones de fase. Por cierto que el padre de Kosterlitz, Hans, bioquímico, se quedó a un paso del Nobel como uno de los descubridores de las endorfinas.

En ese nanopaisaje, a partir de los años 80 algunos investigadores empezaron a construir máquinas, sistemas formados por piezas que se mueven cuando se les aplica energía, del mismo modo que una batidora gira cuando se enchufa a la red eléctrica. Las piezas de estas máquinas son moléculas, diseñadas con una forma específica que les permite desempeñar la función deseada una vez que ocupan su lugar, tal como hacen los ingenieros industriales. La primera de estas piezas, obra del francés Jean-Pierre Sauvage en 1983, era una simple cadena de dos eslabones que permitía el movimiento libre.

La nanoingeniería de máquinas se inspira en la propia naturaleza. Unos años antes habían comenzado a descubrirse los primeros nanomotores (máquinas rotativas) naturales, comenzando por el flagelo que emplean algunas bacterias para propulsarse en el agua y que consiste en un mecanismo giratorio. En 1991, el escocés Fraser Stoddart logró construir un nanoanillo que podía girar y desplazarse alrededor de un eje. Ocho años después, el holandés Bernard Feringa construía el primer nanomotor, una especie de ventilador de una sola aspa.

Sauvage, Stoddart y Feringa han sido premiados con el Nobel de Química 2016. Desde entonces se han construido nuevas nanomáquinas, como nanoascensores o nanocarretillas. Algunas de ellas se inspiran en mecanismos previamente inventados por la naturaleza; por ejemplo, nuestros músculos funcionan gracias a una nanomáquina deslizante, un sistema similar al que también sirve para que nuestras células expulsen al exterior ciertas sustancias, como moléculas de defensa contra infecciones.

Nanocoche Nanobobcat, de la Universidad de Ohio. Imagen de OU.

Nanocoche Nanobobcat, de la Universidad de Ohio. Imagen de OU.

Se espera que en el futuro una de las principales aplicaciones de las nanomáquinas sea la medicina. Como en El chip prodigioso, pero con un Dennis Quaid molecular. También servirán para usos como construir nuevos sensores y sistemas de almacenamiento de energía. Por el momento, una de las ramas más sorprendentes de la nanoingeniería es la fabricación de nanocoches, máquinas capaces de desplazarse sobre una superficie utilizando una fuente de energía, por ejemplo la luz.

De hecho, este año se celebrará en Toulouse (Francia) la primera carrera mundial de nanocoches, como expliqué con detalle en un reportaje a finales del año pasado. Varios laboratorios del mundo han presentado sus prototipos de lo más variado, como una versión nanoscópica de Los autos locos. Estaba previsto que la carrera se celebrara el 14 y 15 de este mes, pero los organizadores han decidido posponerla para dejar algo más de tiempo a las nanoescuderías para que pongan a punto sus modelos, que deberán correr sobre una pista de oro en el vacío a -268 ºC.

El Nobel salda viejas deudas con acreedores que aún no han muerto

Cuando se concedieron por primera vez los premios Nobel, allá por 1901, si la memoria no me falla (que no, que yo aún no estaba en este mundo por entonces), la ciencia solía ser el empeño de unos cuantos tipos huidizos, recluidos en sus fortines de extraños aparatos; o de gentlemen ociosos con más curiosidad que necesidad de ganarse la vida. Si se celebraba una conferencia y acudían veinte, allí estaban todos los que en el mundo sabían algo sobre el asunto a tratar. Y las revistas científicas de cada disciplina se contaban con los dedos.

En el caso más general, hoy una novela continúa siendo obra de una sola persona. Pero una investigación científica suele ser la suma de decenas, cientos o incluso miles de aportaciones de colaboradores de todo el mundo. Nadie sabe cuántas revistas científicas se editan actualmente en el mundo; una revisión de 2010 estimaba la cifra en torno a 24.000. El número de estudios publicados cada año supera de largo el millón, y la producción científica mundial se duplica cada nueve años. Para un científico joven que comienza a labrarse su carrera, encontrar una línea de investigación que no esté ya cubierta por decenas de potentes grupos es como levantar el pie y encontrar un diamante bajo el zapato.

Conclusión: el formato de los premios Nobel de ciencia es hoy un anacronismo.

La primera consecuencia de este esquema obsoleto es que deja muchos cadáveres en el camino, científicos brillantes incuestionablemente corresponsables del hallazgo reconocido pero que se quedan compuestos y sin premio, porque el Nobel es como máximo un ménage à trois, nunca una orgía.

Ya he comentado algún caso aquí, como el de Jocelyn Bell Burnell, codescubridora del primer púlsar, o el de John Bahcall, autor de la teoría que llevó a la detección de los neutrinos solares. Rosalind Franklin, codescubridora de la estructura del ADN, ya había muerto cuando sus colegas Crick, Watson y Wilkins recibieron el premio. Pero la publicación del archivo histórico de los premios reveló hace unos años la vergonzosa realidad de que nunca llegó a estar nominada.

Yoshinori Ohsumi, Nobel de Medicina o Fisiología 2016. Imagen de Wikipedia.

Yoshinori Ohsumi, Nobel de Medicina o Fisiología 2016. Imagen de Wikipedia.

Con el anuncio esta mañana de la concesión del Nobel de Medicina o Fisiología 2016 al japonés Yoshinori Ohsumi, tal vez un ginecólogo en Texas haya sentido una pequeña punzada en el estómago. La autofagia, el sistema de reciclaje de piezas celulares cuyos mecanismos y genes fueron descubiertos mayoritariamente gracias al trabajo dirigido por Ohsumi (y no sobra ni una palabra en esta subordinada), se basa en el descubrimiento previo de unos orgánulos celulares llamados lisosomas por el belga Christian de Duve, quien acuñó el término “autofagia”. Por su descubrimiento, De Duve, ya fallecido, recibió el Nobel en 1974.

Pero De Duve tenía un becario, un joven médico estadounidense llamado Russell L. Deter, que firmó junto con su jefe los primeros estudios sobre autofagia publicados en los años 60. En una entrevista publicada en 2008 en la revista Autophagy, Deter se pronunciaba con el mayor respeto y admiración hacia su antiguo supervisor; pero con toda humildad, dejaba claro que De Duve estaba a cosas más elevadas, y que la línea de investigación de la autofagia era su línea. Incluso, y según contaba él mismo, De Duve le sugirió que publicara su primer estudio sobre la autofagia exclusivamente con su nombre; lo que él, lógicamente, rechazó.

Russell L. Deter. Imagen de Baylor College of Medicine.

Russell L. Deter. Imagen de Baylor College of Medicine.

Cuando Deter dejó el laboratorio de De Duve para regresar a EEUU, se llevó su línea consigo. Pero según contaba, en 1973 tuvo que dejar el estudio de la autofagia por falta de financiación, ya que por entonces aquello no interesaba a nadie. Al año siguiente, De Duve recibía el Nobel. Deter regresaba a su profesión médica, que hoy continúa ejerciendo como ginecólogo y obstetra especializado en ecografías en la Facultad de Medicina Baylor de Houston. Sin Nobel.

Por otra parte, muchos esperábamos que el nombre de Francis Mojica, microbiólogo de la Universidad de Alicante descubridor del sistema CRISPR, del que después otros han desarrollado la herramienta fundamental de modificación genómica de comienzos del siglo XXI, sonara esta mañana en el anuncio del Nobel de Medicina o Fisiología 2016. Como ya expliqué aquí, y aunque Mojica ha sido nominado y desde luego reúne merecimientos sobrados para llevarse el premio, el día en que los Nobel reconozcan el hallazgo y desarrollo de CRISPR (que llegará tarde o temprano, no lo duden) habrá una dura competencia.

Las principales artífices del sistema, la estadounidense Jennifer Doudna y la francesa Emmanuelle Charpentier, son premio seguro. Pero el tercero podría estar en disputa entre Mojica y otros dos investigadores, el francés Gilles Vergnaud y el estadounidense Feng Zhang. El primero descubrió básicamente lo mismo que Mojica al mismo tiempo, aunque lo publicó más tarde. El segundo aplicó CRISPR como herramienta para células humanas, pero no lo descubrió. Y sin embargo, ambos cuentan con una ventaja: Vergnaud es francés y Zhang trabaja en el MIT. Mojica es de Elche y trabaja en Alicante. Y por desgracia, en ciencia esto cuenta.

Francis Mojica. Imagen de Universidad de Alicante.

Francis Mojica. Imagen de Universidad de Alicante.

Pero ¿cuándo decidirá el comité Nobel premiar el hallazgo de CRISPR? Como ya he explicado aquí, y debido a ese intenso aumento del ritmo de producción científica, se diría que los Nobel acumulan un crónico atraso de deberes que no hace sino aumentar, y que por ello intentan saldar viejas deudas (como conté aquí y aquí) premiando hallazgos de hace décadas antes de que sus responsables abandonen este mundo. En el caso de Ohsumi, sus principales aportaciones datan de los años 90.

Confieso que yo habría dado ya la autofagia por bien premiada, con el Nobel de 1974 a De Duve y el que en 2013 distinguió los hallazgos sobre el tráfico vesicular en la célula. El resto de pioneros en este campo, como Keith Porter y Alex Novikoff, murieron sin premio. Pero quisiera saber qué ha sentido Deter esta mañana. Y en lo que respecta a Mojica… Hey, todavía nos queda el premio de Química este miércoles. Y como dicen por ahí, it ain’t over till the fat lady sings.

¿Tendremos en octubre un Nobel español de ciencia?

Quédense con este nombre: Francisco Juan Martínez Mójica, un investigador de la Universidad de Alicante que desde el pasado 14 de enero viene recibiendo una atención inusitada por parte de los medios. Inusitada porque la línea de investigación de Mójica nace de un campo de enorme interés científico –la genética de los microbios extremófilos–, pero que difícilmente traspasa las fronteras más allá de lugares como este blog, en un país donde la ciencia apenas capta la atención del gran público salvo cuando se trata de grandes titulares sobre, pongamos, el cáncer.

Las salinas de Santa Pola, donde comenzó la historia de CRISPR. Imagen de Wikipedia.

Las salinas de Santa Pola, donde comenzó la historia de CRISPR. Imagen de Wikipedia.

Pero tan inusitada como merecida, porque esa línea de investigación llevaría a Mójica a convertirse en la estrella de la revolución del siglo XXI en ingeniería genética, que lleva el nombre de CRISPR. O mejor dicho, esa línea y otra cosa; porque desgraciadamente para un científico alicantino trabajando en la Universidad de Alicante, por brillante que sea, se requiere un empujoncito más. Y como ahora contaré, por fortuna Mójica ha recibido ese empujoncito más que se revelará clave si finalmente el investigador se convierte en el primer Nobel español de ciencia desde Ramón y Cajal (siempre debo añadir esta coletilla: Severo Ochoa llevaba 23 años fuera de España y tres como ciudadano estadounidense cuando ganó el Nobel).

Mójica comenzó su tesis doctoral investigando por qué una arquea (microbios que no son bacterias, aunque lo parezcan) de las salinas de Santa Pola se veía afectada de distinta manera por las enzimas de restricción (herramientas utilizadas para cortar el ADN por lugares deseados) en función de la concentración de sal en el medio de cultivo. A primera vista esta línea de trabajo parecería algo muy alejado de convertirse en la próxima revolución genética; sin embargo, las principales herramientas moleculares empleadas en los laboratorios han nacido del estudio de las bacterias y sus virus, como es el caso de las propias enzimas de restricción.

Al estudiar el genoma de esta arquea, llamada Haloferax mediterranei, Mójica descubrió que llevaba una curiosa marca, compuesta por secuencias repetidas y separadas por otros fragmentos dispares; un patrón que implicaba probablemente una función determinada, aunque desconocida. El investigador descubrió estas mismas estructuras en otras arqueas, y supo también que un grupo de la Universidad de Osaka, en Japón, ya había descrito en 1987 unas estructuras similares en otro microbio biológicamente más relevante, la bacteria Escherichia coli. Mójica y sus colaboradores publicaron estas secuencias en 1995 y llamaron a los fragmentos repetidos TREPs, por secuencias Palindrómicas (que se leen igual al derecho y al revés) Extragénicas (fuera de los genes) Repetidas en Tándem (varias veces).

Aún se desconocía cuál era la función de estos pedazos de genoma bacteriano o arqueano. Mójica y sus colaboradores sugerían en su estudio que podían controlar la distribución de las copias del genoma en las células hijas cuando la bacteria o la arquea se dividen, una hipótesis que resultaría equivocada.

Por entonces Mójica había terminado su tesis doctoral y se marchó al extranjero para completar un corto postdoctorado en Oxford, antes de regresar a la Universidad de Alicante. Ante la posibilidad de que las secuencias descubiertas participaran en la división de copias del genoma, por aquellos años Mójica se dedicó a estudiar la influencia de las TREPs en la topología del ADN, es decir, su forma.

De vuelta en Alicante, comenzó a examinar y comparar los genomas de otros microbios. En 2000, Mójica y sus colaboradores describían la identificación de estas secuencias en una veintena de especies. En aquel estudio proponían un nuevo nombre: Repeticiones Cortas Regularmente Espaciadas, o SRSRs. Aún sin pistas claras sobre su función: «Surge la pregunta sobre si las SRSRs tienen una función común en procariotas [bacterias y arqueas], o si su presencia es un resto de secuencias antiguas y su papel se diversificó a lo largo de la evolución», escribían.

Por entonces estas secuencias ya captaban la atención de los microbiólogos. Otros investigadores descubrían secuencias SRSRs en diferentes especies y localizaban además genes funcionales próximos a ellas, a los que se les suponía una función relacionada con estas estructuras. En 2002, un equipo de la Universidad de Utrecht (Países Bajos) publicaba un estudio que rebautizaba las SRSRs como Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas, o CRISPR, además de identificar estos Genes Asociados a CRISPR, o genes cas.

En el estudio, y esto es importante, Ruud Jansen y sus colaboradores escribían: «Cada miembro de esta familia de repeticiones ha sido designado de forma diferente por los autores originales, llevando a una nomenclatura confusa. Para reconocer la reunión de esta clase de repeticiones como una familia y evitar nomenclatura confusa, Mójica y colaboradores y nuestro grupo hemos acordado utilizar en este estudio y en futuras publicaciones el acrónimo CRISPR». Según trascendió después, fue el propio Mójica quien sugirió la nueva designación, pero esta apareció por primera vez en un estudio firmado por un equipo holandés.

Fue a continuación cuando llegó el gran salto cualitativo. En 2003 Mójica decidió cambiar el foco: en lugar de investigar las secuencias repetidas, las que habían permitido identificar las CRISPR, se preguntó qué demonios pintaban allí los fragmentos que las separaban, y que eran diferentes de unos microbios a otros. Y al estudiar un espaciador de una bacteria E. coli, descubrió que era idéntico a un trozo del genoma de un virus que infecta a esta bacteria, llamado fago P1. Pero con una peculiaridad: la E. coli que llevaba aquel separador era inmune al fago P1.

Este fue el eureka. Y este es el verdadero mérito que hace a Mójica merecedor del Nobel: al estudiar otros varios miles de espaciadores, descubrió que en todos los casos se trataba de secuencias pertenecientes a virus bacteriófagos (que atacan a las bacterias) o a moléculas de ADN que saltan de unas bacterias a otras (llamadas plásmidos). Y que en todos los casos, las bacterias con aquellos espaciadores eran inmunes a los respectivos virus o plásmidos. Mójica había encontrado la función de los separadores y, por tanto, de las CRISPR: un sistema inmunitario adaptativo propio de las bacterias y arqueas.

La idea era genial. Y además, era cierta. Pero al principio nadie quería creerlo: el estudio de Mójica fue rechazado por la revista Nature sin siquiera revisarlo, y después por la revista PNAS, y luego por Molecular Microbiology, y por Nucleic Acid Research. Por fin en 2005 el estudio fue publicado por Journal of Molecular Evolution, pero no sin un largo proceso de revisión que duró todo un año.

Imagino lo que están preguntándose, y la respuesta es sí: para un grupo de cuatro científicos de la Universidad de Alicante, sin contar con las firmas de otros investigadores de instituciones más rimbombantes, es muy difícil publicar en Nature, aunque hayan descubierto la rueda. En ciencia también hay clases, y hay prejuicios.

Lo que sucedió luego ya no compete a este artículo: andando el tiempo, el sistema CRISPR sería aplicado por las investigadoras Emmanuelle Charpentier y Jennifer Doudna para crear un sistema de edición genómica (o corta-pega de fragmentos de ADN) preciso y precioso con el que ahora se plantean futuros logros como la curación de enfermedades genéticas, entre otras muchas aplicaciones de la que es, para todos sin excepción, la revolución genómica del siglo XXI. Charpentier y Doudna ganaron el premio Princesa de Asturias de Investigación 2015; pero sobre todo, recibieron los tres millones de dólares del Breakthrough Prize de Ciencias de la Vida.

¿Y Mójica?, se preguntarán. Pues bien: Mójica ha pasado como un completo desconocido hasta el pasado 14 de enero. Ese día, Eric S. Lander publicaba un artículo en la revista Cell titulado The Heroes of CRISPR (Los héroes de CRISPR). Lander escribía: «En los últimos meses, he buscado comprender la historia de CRISPR que se remonta a 20 años atrás, incluyendo la historia de las ideas y de las personas». Y también escribía que en 2003 Mójica era «el claro líder en el naciente campo de CRISPR». Y también: «El antes oscuro sistema microbiano, descubierto 20 años antes en unas salinas en España, era ahora el foco de números especiales en revistas científicas, titulares en el New York Times, start-ups biotecnológicas, y cumbres internacionales sobre ética. CRISPR había llegado».

¿Qué importancia tiene esto? La respuesta es: toda. Este es el empujoncito al que me refería más arriba. Sepan que Cell es la revista de biología más importante del mundo. Sepan que Eric Lander es profesor del Instituto Tecnológico de Massachusetts (MIT), fundador del Instituto Broad del MIT y Harvard, codirector del Proyecto Genoma Humano y copresidente del Consejo Asesor de Ciencia y Tecnología del presidente Barack Obama. En resumen, Eric Lander es algo muy parecido a lo que solemos llamar Dios.

Y la palabra de Dios ha obrado su milagro. Traigo aquí una curiosa comparación por cortesía de la máquina del tiempo de internet, Wayback Machine. El 13 de diciembre de 2015, la entrada en la Wikipedia sobre CRISPR contaba la historia de esta tecnología haciendo una breve referencia al trabajo de Mójica, pero sin mencionar para nada su nombre. Un mes después, el 14 de enero, esta misma entrada ya incluía el nombre de Mójica, destacando además que fue él quien propuso el nombre de CRISPR. Desde la publicación del artículo de Lander, el nombre de Mójica ya aparece ampliamente ligado al descubrimiento de CRISPR, y los medios españoles se han volcado en destacar su figura y su contribución.

En resumen: ¿Habrá un premio Nobel para CRISPR? Sin duda; tal vez no este año, pero más tarde o más temprano. ¿Será Mójica uno de los premiados? Es difícil apostar. Lander ha conseguido que el nombre de Mójica pueda cotizar en el mercado de los Nobel, pero aquí solo he contado una parte de la historia: lo cierto es que hay otros investigadores con una relevante implicación en el camino de CRISPR.

El premio Nobel se concede como máximo a tres investigadores; Charpentier y Doudna parecen seguras, pero el tercer nombre podría estar en disputa. Al menos otro científico, el francés Gilles Vergnaud, llegó a la misma conclusión que Mójica sobre la inmunidad de las bacterias al mismo tiempo y de forma independiente, aunque su estudio se publicó un mes más tarde, y ya con el nombre de CRISPR acuñado por el alicantino. Otro candidato sería Feng Zhang, del MIT, quien optimizó el sistema como herramienta genómica y lo aplicó por primera vez a células humanas.

Mójica parece un candidato más adecuado que Vergnaud al ser quien primero identificó las CRISPR como una marca común en un gran número de especies microbianas e intuyó para ellas un significado biológico que resultó correcto; de hecho, el nombre del francés ha sido omitido en la página de la historia de CRISPR en la web del Instituto Broad. En cambio, la rivalidad de Zhang es más dura, ya que el sistema CRISPR no sería hoy lo que es sin su contribución. Tal vez el próximo octubre tengamos la solución. Y quizá, Lander mediante, un Nobel español.