Ciencias mixtas Ciencias mixtas

Los secretos de las ciencias para
los que también son de letras

Entradas etiquetadas como ‘inercia’

¿Cómo puede una mosca volar dentro de un coche o de un avión en movimiento?

Hace unos días, durante un viaje en coche, una mosca decidió unirse a nuestro periplo en un área de servicio de la provincia de Ciudad Real, para acabar viaje con nosotros en Málaga. Si un insecto supiera geografía y pudiera extrañarse, se habría extrañado de que una mosca manchega hubiera acabado, sin saber cómo ni por qué, en la costa andaluza. Pero hete aquí que, cuando el bicho revoloteaba ante mis narices mientras yo trataba de ignorarlo conduciendo a 120 kilómetros por hora, me acordé de Galileo.

¿Quién no se ha preguntado alguna vez cómo puede una mosca volar tranquilamente dentro de un coche o de un avión, cuando estos a su vez se están moviendo a toda velocidad? Podríamos pensar que la mosca debería quedar estampada contra la luna trasera del coche a poco que intentara emprender el vuelo. Y sin embargo, sabemos que no es así: la mosca vuela tan tranquilamente y sin aparente esfuerzo como lo haría sobre un filete en perfecto reposo sobre la encimera de la cocina.

Lo cual es sorprendente, teniendo en cuenta que una mosca volando pasillo adelante dentro de un avión está sumando sus 7 km/h a los 900 km/h del aparato, alcanzando una velocidad récord de 907 km/h para un observador en tierra, y sin despeinarse, si una mosca pudiera ser despeinada. Pero ¿cómo sabe el movimiento de la mosca que debe descontar el movimiento del avión?

Mosca doméstica. Imagen de Alexey Goral / Wikipedia.

Mosca doméstica. Imagen de Alexey Goral / Wikipedia.

Aquí es donde entra Galileo, quien ya se hizo esta pregunta hace casi 400 años, y logró responderla. En 1632 publicó Diálogos sobre los dos máximos sistemas del mundo, donde escribía:

Enciérrate con algún amigo en la bodega bajo la cubierta de algún barco grande, y lleva contigo algunas moscas, mariposas y otros pequeños animales voladores. Lleva un gran cuenco de agua con algún pez dentro; cuelga una botella que se vacíe gota a gota en una vasija ancha bajo ella. Mientras el barco está parado, observa cuidadosamente cómo los pequeños animales vuelan a la misma velocidad hacia todos los lados de la bodega. Los peces nadan indiferentemente en todas direcciones; las gotas caen en la vasija; y cuando lanzas algo a tu amigo, no necesitas hacerlo con más fuerza en una dirección que en otra, a iguales distancias; saltando con los pies juntos, recorres la misma distancia en todas direcciones. Una vez que hayas observado todo esto cuidadosamente (aunque sin duda cuando el barco está detenido todo debe ocurrir de esta manera), haz que el barco se mueva a la velocidad que quieras, mientras el movimiento sea uniforme y no fluctúe. No verás el más minimo cambio en todos los efectos antedichos, ni podrás saber por ninguno de ellos si el barco se mueve o está parado.

A continuación vuelve otra vez a describir los saltos, el vuelo de las moscas, el pez y demás, para añadir:

La causa de todas estas correspondencias de los efectos es el hecho de que el movimiento del barco es común a todas las cosas contenidas en él, y también al aire.

De este modo, Galileo estaba introduciendo algo que hoy nos resulta muy familiar: la inercia. Dos mil años antes de Galileo, Aristóteles se rascaba la cabeza pensando cómo era posible que una flecha o una lanza continuaran su camino en el aire sin una fuerza aparente que siguiera empujándolas. El rascado de cabeza prosiguió durante dos milenios hasta que Galileo fue el primero en explorar y explicar con acierto el efecto de la inercia; aún sin emplear esta palabra, pero definiendo un principio fundamental de la física básica: que las leyes del movimiento son las mismas en cualquier sistema de referencia inercial, y que por tanto no existe ningún sistema privilegiado sobre otro. Medio siglo más tarde, la relatividad galileana se transformaría en las leyes del movimiento de Newton, y otros dos siglos después, serviría como base para la relatividad especial de Einstein.

En resumen, gracias a Galileo sabemos que la mosca posada cuando el coche comienza a moverse experimenta la misma inercia que nosotros en nuestros asientos. Una vez que el coche ya avanza a toda velocidad, la mosca absorbe la inercia del coche y del aire que lleva dentro en su propio movimiento, por lo que puede volar libremente a su manera normal dentro del vehículo, por grande que sea su velocidad. Incluso si la mosca está volando en el momento en que el coche comienza a acelerar, apenas notará un pequeño desplazamiento hacia la parte trasera que podrá compensar rápidamente; el aire dentro del coche se comprime ligeramente hacia atrás cuando empieza a moverse, pero rápidamente adquiere también la inercia del movimiento de todo el sistema.

En realidad, y si lo pensamos bien, nada de esto debería resultarnos sorprendente si tenemos en cuenta que la velocidad de la mosca, del coche e incluso del avión son, en el fondo, ridículas. Cuando Galileo expuso su argumento, lo hizo con un propósito más trascendente que explicar el vuelo de una mosca en la bodega de un barco: aportaba pruebas a favor del sistema heliocéntrico de Copérnico y en contra del sistema geocéntrico de Ptolomeo. Cuando Copérnico propuso que la Tierra y el resto de los planetas giraban en torno al sol, muchos vinieron a decir: tonterías; si la Tierra se moviera, tendríamos que estar continuamente agarrándonos a algo para no resultar arrastrados. Está claro que nosotros estamos en reposo, y que es el resto del universo el que se mueve.

Galileo explicando sus teorías astronómicas en la Universidad de Padua, por Félix Parra. Imagen de Wikipedia.

Galileo explicando sus teorías astronómicas en la Universidad de Padua, por Félix Parra. Imagen de Wikipedia.

Pero con su magnífico argumento del barco, Galileo demostraba que el reposo en el interior de la bodega, o para el caso, en la superficie de la Tierra, es solo una ilusión; y que es perfectamente posible que todo se esté moviendo a gran velocidad sin que nos demos cuenta, siempre que en este movimiento uniforme participe todo lo que existe a nuestro alrededor, un sistema del que somos parte.

Y vaya si nos movemos a gran velocidad: solo con la rotación de la Tierra, cualquier punto en el Ecuador se está moviendo en todo momento a unos 1.600 km/h, una velocidad que disminuye al aumentar la latitud hasta los polos, donde es cero. Y por cierto, este es el motivo de que los cohetes se lancen preferentemente desde lugares lo más cercanos al Ecuador que sea posible: al despegar desde puntos con mayor velocidad de rotación, las naves ya llevan un impulso extra que las ayuda a alcanzar la velocidad de escape de la atmósfera terrestre.

Pero la de rotación es también una velocidad insignificante si la comparamos con la de traslación de la Tierra alrededor del Sol: unos 108.000 km/h. Y esta a su vez es una minucia en comparación con la velocidad del Sistema Solar alrededor del centro de la galaxia: 792.000 km/h. Y esto sin contar el movimiento de la galaxia respecto a otras, la expansión del universo… En resumen, el reposo simplemente no existe. Porque para empezar, habría que definir: ¿reposo respecto a qué?

El argumento de Galileo era tan sólido que la Inquisición, a la que lógicamente no le placía en absoluto quitar a la Tierra del centro del universo, no pudo oponer otra respuesta más inteligente que… condenar a Galileo a reclusión domiciliaria de por vida. Esto acabó con el hombre; pero por supuesto, no con la verdad de su ciencia.

Sin la inercia, probablemente nuestra vida sería mucho más complicada. Aunque pensándolo bien, quizá tendría sus ventajas: podríamos desplazarnos de un lugar a otro del planeta simplemente dando saltitos y dejando que la Tierra corriera bajo nuestros pies. Viajaríamos gratis. Como la mosca.

¿Y si la materia oscura fuera un cuento?

Durante más de 2.000 años, mentes brillantes de la talla de Aristóteles, Galeno, Hipócrates, Demócrito, Paracelso, Alberto Magno, Tomás de Aquino, Spencer, Erasmus Darwin o Lamarck creyeron en la herencia de caracteres adquiridos. Es decir, que un día una jirafa comenzó a estirar el cuello para alcanzar las copas de los árboles, y que cada generación sucesiva lo estiraba un poquito más, hasta llegar al larguísimo cuello que hoy tienen.

Representación teórica de la materia oscura (anillo azul) en el grupo de galaxias CL 0024+17. Imagen de NASA/ESA vía Wikipedia.

Representación teórica de la materia oscura (anillo azul) en el grupo de galaxias CL 0024+17. Imagen de NASA/ESA vía Wikipedia.

Suponiendo que esto sucedía así, había que explicar el mecanismo capaz de informar al espermatozoide y al óvulo de que el cuello se había alargado, para que la siguiente generación pudiera heredar ese estiramiento. Y Charles Darwin dio con él: las gémulas, unas partículas diminutas producidas por las distintas células del organismo que confluían en los órganos reproductores para que las semillas sexuales llevaran toda la información actualizada del cuerpo con el fin de transmitirla a los hijos. En conjunto, la teoría se conocía como pangénesis, ya que todo el organismo (“pan” en griego, como en panamericano) participaba en la herencia.

Pero no crean nada de lo anterior: naturalmente, todo esto era pura fantasía. Darwin inventó una entidad exótica, la gémula, para explicar un fenómeno. Pero es que en realidad este fenómeno no se producía tal como todas esas mentes brillantes habían creído durante un par de milenios. En general, la herencia de caracteres adquiridos durante la vida de un individuo no existe (aclaración: en realidad sí existe y se llama epigenética, pero esa es otra historia que no viene al caso en este ejemplo).

La gémula de Darwin no ha sido la única entidad ficticia inventada históricamente para explicar procesos que se entendían mal: el éter luminífero, el flogisto, las miasmas, la fuerza vital, el planeta Vulcano, los cuatro humores corporales…

Como Darwin, Einstein tampoco se libró de la invención de entidades tapa-grietas. Cuando el físico alemán supo que su modelo de la relatividad general daba lugar a un universo que acabaría gurruñándose sobre sí mismo como quien estruja el envoltorio de un polvorón (ya hay que empezar a ponerse en modo navideño), tuvo que meter en sus ecuaciones un término para evitarlo, dado que, como todo el mundo sabía, el universo era estático.

Así nació la constante cosmológica, designada por la letra griega lambda mayúscula (Λ) y que introducía una especie de anti-gravedad para evitar el estrujamiento cósmico y casar las ecuaciones con una realidad que se resistía a colaborar con la teoría.

Resultó que, poco después, el belga Georges Lemaître y el estadounidense Edwin Hubble mostraban que en realidad el universo no era estacionario, sino que se expandía, por lo que la constante cosmológica sobraba. O dicho con más finura, que Λ = 0. Pero irónicamente, en el último par de décadas esto ha cambiado al descubrirse que el universo se expande con aceleración, lo que ha obligado (otra vez) a inventar algo llamado energía oscura y distinto de cero que, curioso, ya tenía un asiento reservado en las ecuaciones de Einstein: la constante cosmológica. Claro que no puede decirse que esto fuera genialidad del alemán, sino más bien un golpe de suerte.

Pero si el universo se expande y las galaxias giran, ¿por qué no se deshilachan como el algodón de azúcar? Debe de haber algo que las recoja y las mantenga unidas, como el palo del algodón. En este caso, el palo sería una masa extra que aumentaría la gravedad encargada de cohesionar la galaxia para que no se deshaga. Y dado que no se ve ningún palo, está claro que se trata de un palo completamente invisible. Ya tenemos la entidad exótica; ahora hay que buscarle un nombre adecuado: ¿qué tal La Fuerza? No, que de estas ya hay demasiadas. ¿Qué tal materia oscura?

Hoy la mayoría de los físicos creen en la existencia de la materia oscura, porque les ofrece la mejor opción disponible para explicar cómo una fuerza tan débil como la gravedad es capaz de mantener las galaxias de una pieza. La mayoría. Pero no todos. Algunos piensan que la materia oscura es otro de esos tapa-grietas como las gémulas, el éter o el flogisto, nacidos de nuestra deficiente comprensión de la naturaleza; en este caso, de la gravedad.

Por ejemplo, algunos físicos piensan que la constante que define la gravedad no es tal constante, sino que aumenta en los bordes de las galaxias donde la aceleración es muy baja. Imaginemos que removemos un plato de sopa desde el centro: aquí los fideos se mueven más deprisa, y más lentamente en la parte del borde del plato. Según esta hipótesis, la periferia de la galaxia que se mueve más despacio estaría sometida a una mayor gravedad, lo que mantendría la cohesión, como hace el borde del plato. Otra posibilidad es que la masa de los cuerpos en movimiento disminuya cuando la aceleración es muy baja, lo que produciría el mismo efecto final, pero en este caso sin modificar la gravedad, sino la inercia.

El físico Mike McCulloch, de la Universidad de Plymouth, ha propuesto un modelo en esta línea que utiliza algo llamado efecto Unruh, del que ya hablé aquí a propósito del EmDrive, ese propulsor que no puede funcionar porque según la física común viola las leyes naturales, pero que a pesar de todo parece empeñarse en funcionar en varios experimentos independientes.

McCulloch propone un modelo modificado de la inercia, ese ímpetu misterioso que nos empuja hacia delante tras un frenazo. Para el físico, la inercia es el resultado de una extraña interacción entre una radiación producida por los cuerpos en aceleración y el tamaño del universo; cuando la aceleración disminuye, la onda de esa radiación aumenta tanto que no cabe en el universo y entonces debe saltar a un tamaño menor, lo que modifica su frecuencia, su energía y por tanto la masa del cuerpo en movimiento, ya que todas ellas están vinculadas (lo expliqué con más detalle aquí).

Cuando McCulloch aplica su hipótesis a la ley de la gravedad de Newton para el caso de los bordes de las galaxias, obtiene valores que se parecen mucho a los reales sin necesidad de introducir un factor de corrección como la materia oscura; simplemente asumiendo que el efecto Unruh modifica las masas y por tanto las aceleraciones de los objetos situados a mayor distancia del centro de la galaxia, lo que reduce su inercia y evita la dispersión. El problema es que esto requiere la existencia de esa radiación debida al efecto Unruh, algo que no ha sido demostrado y de lo que muchos dudan. Pero que de momento tampoco puede descartarse.

Mañana contaré otra nueva hipótesis que explica la acción de la gravedad en las galaxias sin necesidad de fantasmas invisibles. Y aunque de momento parece probable que la física mayoritaria seguirá aceptando la materia oscura, tal vez podríamos estar avanzando un paso más hacia la demolición de otro tótem científico imaginario.