Entradas etiquetadas como ‘agujeros negros’

Mañana, ¿la primera foto de un agujero negro?

Mañana miércoles llegará por fin una de las noticias más esperadas en el mundo de la ciencia en los últimos años. Y no es una frase hecha: a un servidor le toca cada mes de enero escribir una previsión para algún medio sobre lo que nos deparará la investigación científica en el año que empieza, y desde 2017 ha figurado en esos pronósticos una noticia que finalmente se nos escapó durante los dos años pasados, y que por fin verá la luz mañana: la primera foto de un agujero negro.

Los agujeros negros, esos objetos de densidad tan inmensa que se tragan cuanto cae bajo su influjo gravitatorio, son uno de los fenómenos cósmicos más populares, a pesar de que hasta ahora jamás han sido vistos directamente; en realidad, nadie sabe con certeza qué aspecto tendrían si pudiéramos contemplarlos desde una distancia segura.

Simulación de un agujero negro creada por Jean-Pierre Luminet en 1979.

Simulación de un agujero negro creada por Jean-Pierre Luminet en 1979.

Las razones por las que nadie ha podido contemplar hasta ahora un agujero negro son de lo más trivial: están muy lejos y son, ejem, negros. Respecto a lo primero, el más cercano que se conoce es Sagitario A*, el agujero negro supermasivo que ocupa el centro de la galaxia, a unos 26.000 años luz de la Tierra. Pese a su masa equivalente a cuatro millones de soles, desde nuestra segura lejanía solo ocupa en el cielo el espacio de un punto diminuto.

En cuanto a lo segundo, vemos los objetos gracias a la luz que reflejan, pero los agujeros negros se la tragan. Sin embargo y aunque no podamos observarlos directamente porque no ofrecen ninguna imagen, sí es posible vislumbrar sus efectos. Por ejemplo, su enorme masa actúa como lente gravitatoria; es decir, deforma la luz de los objetos que se encuentran detrás desde nuestro punto de vista. Así, si pudiéramos acercarnos lo suficiente como para entrar en su órbita, contemplaríamos algo parecido a esta simulación construida en 2016 por el astrofísico francés Alain Riazuelo (y que, por cierto, recuerda a un salvapantallas de las antiguas versiones de Windows):

Pero esta fantasmagórica deformación de los objetos alrededor de una nada en movimiento no es lo único que puede observarse de un agujero negro. Su enorme masa convierte a estos objetos en sumideros cósmicos; y tal como el agua gira en espiral alrededor de un drenaje, un agujero negro puede formar a su alrededor un disco de acreción, compuesto por gases y polvo girando a velocidades cercanas a la de la luz. El calentamiento debido a la fricción de los materiales genera un plasma luminoso, que justo en la frontera del horizonte de sucesos –la distancia del agujero negro a la cual la radiación y la materia ya no pueden escapar– dibuja un anillo de luz donde los fotones describen círculos antes de ser tragados por el sumidero.

Durante décadas, los astrofísicos han formulado predicciones sobre el aspecto de esta “sombra”, donde la luz del horizonte de sucesos desaparece. La relatividad general de Einstein predice una forma circular, mientras que otras hipótesis han propuesto que podría tener una imagen más achatada.

En 1979, el matemático francés Jean-Pierre Luminet utilizó por primera vez un modelo computacional para simular el aspecto de un agujero negro con disco de acreción (el modelo de Riazuelo simula un agujero negro desnudo). Con los medios rudimentarios de la época, tuvo que dibujar a mano uno a uno todos los puntos que la computadora le iba indicando. Lo hizo sobre papel fotográfico de negativo, para que al positivarlo después se vieran como brillantes los puntos que él había dibujado, correspondientes a la luminosidad del disco de acreción. El resultado fue la imagen mostrada más arriba.

La imagen de Luminet muestra el disco de acreción visto desde una ligera altura con respecto a su plano. Para comprender lo que estamos viendo debemos entender que las extrañas propiedades del agujero negro nos ofrecen una imagen diferente a la real; el disco es simplemente un disco luminoso, tal cual. Pero mientras que en una imagen de Saturno los anillos desaparecen detrás del planeta, esto no ocurre en el agujero negro: debido a que actúa como lente gravitatoria, la deformación de la luz hace que veamos la parte posterior del disco por encima, como si se desbordara sobre él.

Por otra parte, el efecto Doppler –el mismo que hace cambiar la sirena de una ambulancia cuando pasa junto a nosotros– hace que se vea más luminosa la parte del disco que se acerca hacia nosotros, y más oscura la que se aleja; por eso lo vemos más brillante a un lado y más apagado al otro. Por último, hay que tener en cuenta que la imagen de Luminet muestra el espectro electromagnético completo, y no solo lo que observaríamos como luz visible.

Décadas más tarde, el físico Kip Thorne se basó en esta imagen de Luminet para crear su propia simulación, que sirvió como base para crear el agujero negro de la película de Christopher Nolan Interstellar. Sin embargo, los responsables de la producción optaron por una versión simplificada y estéticamente más llamativa, con una simetría que desprecia el efecto Doppler (la imagen estaría tomada desde el plano del disco de acreción):

Agujero negro retratado en la película 'Interstellar'. Imagen de Paramount Pictures.

Agujero negro retratado en la película ‘Interstellar’. Imagen de Paramount Pictures.

Como respuesta a esta licencia artística de la película, Thorne y sus colaboradores publicaron una versión más realista:

Simulación de un agujero negro creada por Kip Thorne y sus colaboradores. Imagen de James et al / Classical and Quantum Gravity.

Simulación de un agujero negro creada por Kip Thorne y sus colaboradores. Imagen de James et al / Classical and Quantum Gravity.

En 2007, tres radiotelescopios se unieron para resolver la estructura de Sagitario A*. Con el paso de los años, otros observatorios radioastronómicos se han sumado, creándose una red global llamada Event Horizon Telescope (EHT) cuyo objetivo es convertir la Tierra en un enorme ojo, un telescopio virtual global con la suficiente capacidad de resolución como para poder captar una imagen de Sagitario A*.

El trabajo ha sido titánico; el volumen de datos era tal que no podían transmitirse por internet, sino que debían transportarse en discos físicos por avión hasta las sedes centrales del proyecto en Bonn (Alemania) y el Instituto Tecnológico de Massachusetts.

Pero por fin y después de años de espera, mañana es el día: a las 3 de la tarde en horario peninsular español (13:00 en tiempo universal coordinado), los científicos del EHT darán a conocer los resultados del proyecto mediante siete ruedas de prensa simultáneas en distintos lugares del mundo, una de ellas en castellano desde Santiago de Chile. Si todo ha salido como se espera, será un hito en la historia de la ciencia. Y aquí se lo contaré.

Ya van tres arrugas en el espacio-tiempo: detectada una nueva onda gravitacional

The first cut is the deepest (el primer corte es el más profundo), decía una canción de Cat Stevens. La primera vez siempre deja una huella más honda: el primer amor, la primera experiencia sexual o… la primera detección de ondas gravitacionales.

Cuando el 11 de febrero de 2016 los responsables del experimento LIGO (Laser Interferometer Gravitational-wave Observatory) anunciaban por primera vez la confirmación de las ondas gravitacionales pronosticadas por Einstein hace 100 años, todos los medios del mundo seguían la estela de la que se presentó como la noticia científica más importante del siglo.

Hoy se ha anunciado la tercera detección de este tipo de ondas, y está claro que la noticia no llegará tan lejos. Lo cual podría aprovecharse como un motivo de queja, pero me apetece interpretarlo justo del modo contrario: lo que es una increíble noticia es que la detección de ondas gravitacionales se haya convertido casi en algo rutinario.

Primero, refresquemos la memoria. Hace un siglo, Albert Einstein explicó la gravedad, hasta entonces una influencia misteriosa ejercida a distancia por los cuerpos, por la existencia de un tejido formado por el espacio y el tiempo, que pone en contacto los objetos y se deforma por acción de la masa. Una manera clásica de ilustrarlo es la cama elástica, donde una bola de bolos forma una depresión que atraerá hacia ella cualquier otro objeto que lancemos.

Einstein predijo que una fuerte perturbación de esta especie de alfombra del universo causaría arrugas que se propagarían por el cosmos, como una piedra en un lago. Pero dado que estas ondas son muy débiles, hasta hace muy poco tiempo los científicos no disponían de instrumentos lo suficientemente sensibles como para detectarlas.

Esto ha cambiado gracias a LIGO, un experimento compuesto por dos detectores gemelos en dos lugares distintos de EEUU. Cada uno de ellos está compuesto por dos tubos de cuatro kilómetros dispuestos en direcciones perpendiculares, de modo que es posible medir cómo se acortan cuando estas ondas invisibles llegan a la Tierra procedentes de un gran cataclismo cósmico; por ejemplo, la fusión de dos agujeros negros. Incluso una catástrofe espacial de este calibre hace que los tubos se encojan en una longitud ridícula, mil veces menor que el diámetro de un protón.

Ilustración de un agujero negro binario antes de la fusión. Imagen de LIGO.

Ilustración de un agujero negro binario antes de la fusión. Imagen de LIGO.

LIGO consiguió por primera vez medir una onda de este tipo el 14 de septiembre de 2015, aunque los resultados no se hicieron públicos hasta febrero de 2016. La onda procedía de la fusión de dos agujeros negros para dar lugar a uno solo, tan pesado como 62 soles, a una distancia de 1.300 millones de años luz. El hallazgo sirvió además a los científicos para confirmar la existencia de agujeros negros tan grandes producidos por el colapso de una estrella, algo que hasta entonces no se conocía.

El 26 de diciembre de 2015 se detectó una segunda onda, también provocada por la fusión de dos agujeros negros en uno solo, en este caso de 21 veces la masa del Sol, y a 1.400 millones de años luz. El nuevo hallazgo confirmaba que se abre una nueva era para la astronomía: del mismo modo que puede observarse una estrella por su luz, LIGO es también un telescopio que detecta otro tipo de emisión diferente, antes inaccesible a la observación científica. Este mismo año se sumará un tercer detector en suelo europeo, Virgo, situado en Italia.

La tercera onda gravitacional anunciada hoy, detectada el pasado 4 de enero y designada por su fecha GW170104, es curiosamente la más antigua en el tiempo. Procede también de la fusión de dos agujeros negros, pero en este caso a 3.000 millones de años luz de distancia, lo que implica que tuvo lugar hace 3.000 millones de años. El tamaño rellena un hueco entre las dos detecciones anteriores: los dos agujeros negros de partida tenían 32 y 19 masas solares, dando como resultado uno de 49 masas solares con un diámetro de unos 280 kilómetros; casi 50 veces la masa del Sol concentrada en una bola que cabría entre Madrid y Zaragoza. Las 2 masas solares que se pierden en la suma se transforman en la energía gravitacional que se propaga por el universo.

Comparación de tamaños de agujeros negros fusionados en la primera detección (GW150914), la segunda (GW151226) y la tercera (GW170104), junto con una cuarta no confirmada. A la izquierda, los tamaños de agujeros negros estelares más pequeños observados antes por técnicas de rayos X. Imagen de LIGO.

Comparación de tamaños de agujeros negros fusionados en la primera detección (GW150914), la segunda (GW151226) y la tercera (GW170104), junto con una cuarta no confirmada. A la izquierda, los tamaños de agujeros negros estelares más pequeños observados antes por técnicas de rayos X. Imagen de LIGO.

Esta animación muestra una simulación de las arrugas en el espacio-tiempo detectadas por LIGO:

Telegrama urgente: cinco claves de las ondas gravitatorias

Era casi un secreto a voces. A finales de 2015, entre la comunidad de físicos corría la idea de que el experimento LIGO podía anunciar este año el descubrimiento de las ondas gravitatorias, y así lo recogimos quienes tenemos asignado el encargo de poner en marcha la bola de cristal para pronosticar lo que la ciencia nos deparará cada año nuevo. Pero dado que LIGO comenzó a funcionar hace más de una década, y que recientemente había sido mejorado y ampliado, parecía que tras el rumor había algo más, aunque sigue siendo pasmoso cómo los físicos responsables del proyecto han sido capaces de mantener la discreción desde el 14 de septiembre pasado, la fecha del gran hallazgo.

He aquí unas breves claves sobre uno de los hallazgos más importantes de la historia de la física, anunciado hoy en rueda de prensa en Washington y publicado al mismo tiempo en la revista Physical Review Letters.

1.

En 1915, Albert Einstein publicó su teoría general de la relatividad, que explica la gravedad como una deformación del tejido espacio-temporal del universo. Una masa deforma este tejido como una bola de bolos sobre una cama elástica; una canica en movimiento giraría en torno a la bola, lo que explica las órbitas de los planetas. Según Einstein, una distorsión violenta de esta alfombra espacio-temporal provocaría ondas que podrían detectarse a distancia, como cuando se tira una piedra a un estanque. Sin embargo, estas ondas son extremadamente tenues.

2.

Desde los años 60 del siglo XX, los científicos comenzaron a diseñar un modo de detectar estas ondas gravitatorias. La idea consiste en construir dos largos túneles perpendiculares, a lo largo de los cuales se hace correr un haz de luz. Dado que las ondas gravitatorias provocan arrugas en el espacio, una onda potente deformaría estos túneles, contrayéndolos o expandiéndolos en una longitud infinitesimal, lo que haría variar el tiempo que la luz tarda en recorrerlos. Sobre esta idea se construyó en EEUU el experimento LIGO con dos sedes, una en Luisiana y otra en el estado de Washington.

3.

Hace 1.300 millones de años, dos agujeros negros que orbitaban uno en torno al otro (o más correctamente, ambos alrededor de su centro de masas) se fusionaron. Cada uno de ellos medía unos 150 kilómetros de diámetro, pesaba unas 30 veces la masa del Sol y giraba a la mitad de la velocidad de la luz. La fusión provocó una violenta emisión de ondas gravitatorias. Pero había que medirlas, y para eso había que disponer de LIGO.

El sistema binario de agujeros negros, antes de la fusión. Imagen de MIT.

El sistema binario de agujeros negros, antes de la fusión. Imagen de MIT.

4.

El 14 de septiembre de 2015, las ondas gravitatorias producidas por la fusión de los dos agujeros negros llegaron a la Tierra, y LIGO pudo detectarlas. Era el primer sistema binario de agujeros negros conocido, y la señal del cataclismo cósmico llegó en un momento en que el ser humano ya disponía de la tecnología necesaria para detectarlo. En palabras de Gabriela González, la física argentina portavoz de LIGO en Luisiana, fue «un regalo de la naturaleza». Y un regalo que hemos podido escuchar: las frecuencias de las ondas gravitatorias están en el espectro audible para el ser humano. Durante la presentación de la rueda de prensa, transmitida por internet, hemos podido escuchar cómo suena la fusión de dos agujeros negros a 1.300 millones de años luz, como un leve trino cósmico.

5.

Los autores del hallazgo han comparado la primera detección de las ondas gravitatorias al momento en que, hace 400 años, Galileo dirigió un telescopio al cielo. Entonces comenzamos a explorar el cosmos a través de ondas electromagnéticas, ya fueran visibles, ultravioletas, infrarrojas, rayos X, rayos gamma… Desde hoy tenemos un modo completamente nuevo de observar el universo, a través de las ondas gravitatorias, por lo que el hallazgo inaugura una nueva era en la historia de la ciencia.