Archivo de la categoría ‘Microbiología’

Feria de ciencias: dos experimentos de microbiología para niños (1)

Caso típico: niños que llegan a casa con el anuncio de que tienen que pergeñar un proyecto para una feria de ciencias del colegio. Padres horrorizados que se lanzan a suplicar la intercesión de San Google. Y de ahí salen los grandes clásicos: el volcán de bicarbonato y vinagre, el huevo blando, los papelitos de pH, experimentos con globos, cristalización, agua que se calienta, se enfría o se desala, demostraciones variadas de los usos de la electricidad…

Placas con microbios sembrados de muestras ambientales. Imagen de J. Y.

Placas con microbios sembrados de muestras ambientales. Imagen de J. Y.

Es cierto que rebuscando un poco se pueden encontrar otros proyectos más originales y no tan trillados. Pero con el fin de ampliar un poco el repertorio de dádivas de San Google, y por si a alguien le sirven, hoy y mañana (puede que pasado mañana) voy a contar aquí los experimentos microbiológicos que hemos hecho con mis hijos de 8 y 10 años.

Son proyectos sencillos, bonitos, didácticos y, sobre todo, son experimentos reales, en los que el resultado no es del todo previsible: no solo son versiones básicas de trabajos que se llevan a cabo en los laboratorios de los mayores, sino que los niños tendrán la ocasión de investigar algo que nadie antes ha hecho jamás (dado que nadie ha tomado muestras en su casa de ustedes). Es decir, ciencia de verdad, en talla XS. Es cierto que requieren un gasto; pero como siempre digo, mucho menos que una equipación de fútbol. Es una cuestión de prioridades y cada uno tenemos las nuestras, así que allá cada cual.

El primer experimento lo hemos titulado:

EL ZOO DE LOS MICROBIOS

Un dato para los pequeños que también sorprende a los mayores: un estudio publicado este año estima en un billón (un millón de millones) el número de especies microbianas en la Tierra. Teniendo en cuenta las que ya conocemos, esto significa que el 99,999% de ellas son aún desconocidas, y que la inmensa mayoría lo serán siempre. Los microbios son un campo de plena actualidad; la Casa Blanca acaba de lanzar una iniciativa de catalogación de microbiomas que reunirá 500 millones de dólares de distintas fuentes.

Ya expliqué aquí que, frente a esa idea clásica de que los humanos somos como una suerte de presidentes del consejo de administracion de los seres terrícolas, en realidad somos el último mono (nunca mejor dicho). Las últimas versiones de la taxonomía de la vida terrestre nos sitúan a todos los animales (junto con los hongos) en la minúscula ramita de los opistocontos, que les costará encontrar en esta versión actualizada del árbol de la vida (pista: esquina inferior derecha). La inmensa mayoría del ramaje de este árbol corresponde a bacterias y arqueas (antes llamadas arqueobacterias). Y la cosa no para ahí: es probable que andando el tiempo nos convirtamos en una pequeña verruga del grupo de las arqueas, ya que descendemos de ellas.

El árbol de la vida. Imagen de Hug et al, 2016.

El árbol de la vida. Imagen de Hug et al, 2016.

Esta introducción tiene como objetivo situar a las especies, nosotros y los microbios, en el contexto de lo que realmente representamos en este planeta. ¿Y dónde están todos esos microbios? En todas partes: alrededor de nosotros, encima de nosotros y dentro de nosotros. Pero no hay que asustarse: la mayoría de los que conviven con nosotros son inofensivos o beneficiosos, y de hecho a un microbioma sano le debemos nuestra propia salud. En este experimento vamos a descubrir la diversidad microbiana que nos rodea y que habita también en nosotros.

Materiales:

Placas de LB agar. El LB es un medio clásico para cultivar bacterias en el laboratorio. Obviamente solo permite el crecimiento de unas cuantas especies, pero es suficiente para admirar la biodiversidad de los microbios. Se compone de triptona, extracto de levadura y sal. El agar, una especie de gelatina vegetal extraída de las algas, se añade como agente gelificante para dar un soporte sólido. Las placas petri estériles de LB agar pueden comprarse por internet, por ejemplo aquí en eBay. Tardan una semana larga en llegar y salen a un par de euros la placa (en lotes de 10). Una vez que las reciban, consérvenlas en la nevera y protegidas de la luz (vienen envueltas en papel de aluminio) hasta que las vayan a utilizar.

Bastoncillos de algodón estériles. En este experimento necesitamos esterilidad para asegurarnos de que las bacterias y hongos que van a crecer en las placas proceden de las muestras que hemos tomado, y no de contaminaciones. Las placas de eBay que he mencionado arriba vienen con bastoncillos estériles, uno por cada placa.

Suero fisiológico estéril. Se vende en las farmacias en viales de plástico monodosis.

Horno casero. Las placas se incubarán a 37 ºC, la temperatura fisiológica. Mi horno es antiguo, no tiene un display digital y las marcas de los mandos de control se borraron hace décadas. Aun así, logramos calibrarlo fácilmente a 37 ºC con bastante exactitud y un poco de paciencia. Metan dentro un vaso de agua con un termómetro y vayan subiendo o bajando la rueda hasta que obtengan una temperatura entre los 35 y los 38 ºC; mejor quedarse un poco corto.

Toma de muestra de la tecla A de un ordenador. Imagen de J. Y.

Toma de muestra de la tecla A de un ordenador. Imagen de J. Y.

Una vez que tenemos los materiales, se trata de elegir los lugares que vamos a muestrear para sembrar sus microbios en las placas y observar qué crece. Nosotros elegimos esta lista de muestreos: corporales (nariz, boca, heces), ambiente casero (tabla de cortar alimentos, suelo, teclado de ordenador, tablet, pomo de puerta, váter, yogur) y ambiente exterior (un estanque). Pero la imaginación es libre, y hagan lo que hagan será algo nuevo: los microbiólogos han tomado muestras de los ambientes de otras personas, pero no del de ustedes. Si les apetece, prueben a experimentar: estornudar o toser en una placa, lavarse las manos y luego poner los dedos sobre el agar…

Ahora toca tomar las muestras. Para los lugares húmedos, como la boca, bastará con chupar bien el bastoncillo. Cuando se trata de lugares secos, como el suelo o la tablet, la técnica consiste en humedecer el bastoncillo con suero estéril y repasarlo con fuerza sobre un pequeño pedazo de superficie, como un cuadrado de unos centímetros de lado. Es importante girar el bastoncillo mientras se toma la muestra para que toda su superficie se impregne de microbios. Y una vez recogida la muestra, escurran el bastoncillo contra la superficie para eliminar la humedad sobrante y no inundar las placas.

La parte escatológica: nosotros tomamos una muestra de heces para que los niños aprendan en qué consiste lo que echamos fuera; sobre todo, bacterias. Para no sembrar directamente las heces, lo que no solo sería bastante repugnante sino que además contendría una población demasiado abundante, lo que hicimos fue diluir: hundir la punta de un palillo en la muestra y luego agitarla en un poquito de suero para liberar su población microbiana. No es necesario un palillo estéril. Después, remojen el bastoncillo en el suero con las bacterias resuspendidas, y a sembrar.

Siembra de una placa. Imagen de J. Y.

Siembra de una placa. Imagen de J. Y.

Para sembrar las placas, háganlo de la siguiente manera (incluyo foto). La placa se abre ligeramente con una mano, sin quitar del todo la tapa, y con la otra mano se hace un zigzag con el bastoncillo cubriendo toda la superficie del agar. Asegúrense también de girar el bastoncillo mientras hacen la siembra, y procuren no hablar o respirar sobre la placa mientras la mantienen abierta. Marquen cada placa escribiendo con un rotulador permanente de dónde procede la muestra. Las placas se marcan en la base (no en la tapa), con letras pequeñas y pegadas al borde circular para que no impidan visualizar las colonias.

Ahora, a incubar. Las placas se incuban en el horno a 37 ºC y boca abajo, con la marca hacia arriba. De otro modo, la condensación de humedad en la tapa podría dispersar los microbios si las gotas cayeran sobre el agar.

Después de la primera noche de incubación, verán que sus colonias empiezan a crecer: blancas, amarillas, anaranjadas, brillantes, redondas, irregulares, con un diminuto cráter en el centro… Aunque en este experimento es imposible identificar las especies, descubrirán colonias de diferentes formas y colores, correspondientes a distintos tipos de bacterias y levaduras. Los mohos, sobre todo verdes y blancos, tardarán unos días más.

Idealmente cada colonia procede de un solo microbio, aunque este experimento no pretende ser cuantitativo. Aun así, los resultados les darán una idea de dónde hay mayores poblaciones de microbios. En nuestro caso, la nariz y la tabla de cortar ganaron a todas las demás muestras. Probablemente comprobarán, como en nuestro caso, que una tablet o el teclado de un ordenador tienen una población microbiana mucho más abundante que el interior de la taza de un váter limpio. En cuanto a la mayor diversidad, juzgando solo por el aspecto y el color de las colonias, la obtuvimos del teclado del ordenador.

Incubación de placas en el horno calibrado a 37 ºC. Imagen de J. Y.

Incubación de placas en el horno calibrado a 37 ºC. Imagen de J. Y.

Y por último, a anotar las conclusiones: dónde hay más microbios o menos, dónde los hay de más tipos distintos, qué colores y formas tienen las colonias… Acompañen la presentación con fotos y dibujos. Seguro que los resultados les sorprenderán. Por ejemplo, si el experimento ha salido bien, descubrirán que en la muestra de yogur no ha crecido nada, a pesar del hecho conocido de que este alimento está formado sobre todo por bacterias. El motivo es que las bacterias del yogur no crecen bien en LB; crecen mejor sin aire, pero sobre todo necesitan otros nutrientes y un medio más ácido.

Pueden incubar las placas durante varios días, incluso a temperatura ambiente fuera del horno. Hay una norma: los niños no abren las placas. En el LB no suele crecer nada peligroso, pero la precaución no está de más. Si observan condensación en las tapas, pueden abrir las placas y retirar el agua con una servilleta de papel, pero es mejor que esto lo hagan los mayores. Para llevar las placas al colegio, séllenlas por los bordes con papel celo para que no puedan abrirse.

Podrán contarles a los niños que experimentos como este se realizan en los laboratorios de los mayores para muestrear la presencia de microbios, por ejemplo en los hospitales, y para descubrir nuevas especies. Naturalmente en estos trabajos de campo las muestras se recogen con más rigor y se hacen análisis genómicos para identificar las especies, ya que la gran mayoría de las bacterias no son cultivables, mientras que otras requieren medios más complejos y sofisticados que el LB. Pero el experimento les abrirá los ojos a la existencia de un mundo microbiano que está en todas partes y que antes no podían ni imaginar.

Mañana, el segundo experimento.

Algunos de los resultados. De izquierda a derecha y de arriba abajo, placas sembradas con muestras de nariz, boca, teclado de ordenador, tabla de cortar, suelo y estanque. Imagen de J. Y.

Algunos de los resultados. De izquierda a derecha y de arriba abajo, placas sembradas con muestras de nariz, boca, teclado de ordenador, tabla de cortar, suelo y estanque. Imagen de J. Y.

Sí, el vínculo zika-microcefalia está demostrado

Imagino que los grandes teóricos del periodismo ya habrán escrito toneladas de folios sobre la cuestión, aunque tal vez no estos mismos términos que me permito libremente pervertir de su significado original: el problema de la limitación del espacio-tiempo dedicado a las noticias es que relativiza la masa de información para el punto de vista del observador. O dicho menos pomposamente: cuando no se habla de algo, creemos que no existe.

La estructura del virus del Zika. Imagen de Purdue University.

La estructura del virus del Zika. Imagen de Purdue University.

En una sociedad con tal exceso de oferta informativa como la actual se supone que el destinatario final, el ciudadano, tiene la posibilidad de elegir. En la práctica, supongo que todas las cabras tendemos a tirar hacia nuestro monte particular, y eso nos induce a pensar que algunos asuntos han dejado de existir cuando no nos los arrojan a la cara en los principales titulares. Es lo que sucede con el brote de virus del Zika. Después del revuelo del pasado febrero, cuando los casos de infección comenzaron a extenderse por el mundo y se avisó del riesgo de microcefalia que ya era una terrible lacra en Brasil, la presencia del zika en los medios decayó en picado, como era de esperar.

Es natural que la mayoría de la gente se olvide de ello hasta que el virus rebrote en los medios debido a una novedad de interés general, como ha sido ahora la detección del primer caso de microcefalia asociada al zika en España. Lo que no es tan natural es que un periodista no actualice sus datos antes de hablar de ello y propague informaciones anticuadas que hoy ya son erróneas, y por tanto siembran la confusión.

He sabido que ayer un famoso comunicador abrió su programa de radio informando del caso de Cataluña, para añadir a continuación que el vínculo entre microcefalia y zika de momento es solo una «relación estadística» sin demostración.

Y en efecto, así era en febrero. Pero por suerte, los científicos siguen trabajando con el mismo ahínco cuando nadie se acuerda de ellos. El esfuerzo volcado en los últimos meses en la investigación del zika ha sido inmenso. Para que se hagan una idea, la principal base de datos de estudios biomédicos registra a fecha de hoy un total de 697 trabajos sobre el zika. De ellos, más de 500 se han publicado en el último año, desde que se registraron los primeros casos en Brasil. Las conclusiones de todo este volumen de investigación son muy claras y muy conocidas para todo el que se haya molestado en ir más allá de los titulares. Y todo periodista está obligado a informarse antes de informar para no desinformar.

Que quede bien claro:

LA RELACIÓN BIOLÓGICA CAUSA-EFECTO ENTRE EL VIRUS DEL ZIKA Y LA MICROCEFALIA ESTÁ EXPERIMENTALMENTE PROBADA.

Ya no es una simple correlación estadística (de las cuales este que suscribe siempre desconfía, como sabrán los visitantes asiduos de este blog). Por supuesto, aún es mucho lo que se ignora, pero al menos ya se conoce mejor al enemigo y algunas de sus insidias.

Repaso lo más importante ocurrido en estos tres meses desde que el zika desapareció de los medios españoles. En marzo la relación entre zika y microcefalia aún era solo probable. A comienzos de aquel mes, un estudio publicado en The New England Journal Of Medicine descubrió que el 29% de las mujeres embarazadas infectadas por zika incluidas en el estudio presentaba graves anomalías fetales como daños en el sistema nervioso central, insuficiencia placentaria o muerte fetal, frente a ninguna de las no infectadas. La muestra era pequeña, pero los resultados contribuyeron a acallar ciertos bulos que por entonces circulaban por la red entre los conspiranoicos, como la posible implicación de pesticidas o vacunas.

Células madre neurales infectadas por el virus del Zika. El virus aparece en verde, y en rojo las células muertas. Imagen de Sarah C. Ogden/Johns Hopkins Medicine.

Células madre neurales infectadas por el virus del Zika. El virus aparece en verde, y en rojo las células muertas. Imagen de Sarah C. Ogden/Johns Hopkins Medicine.

Pero al mismo tiempo, comenzaban a llegar las confirmaciones experimentales. El 4 de marzo, un importantísimo estudio en Cell Stem Cell revelaba que el virus infecta selectivamente las células madre neurales que dan origen al córtex cerebral, reduciendo su crecimiento. Esta fue la primera prueba clara de la implicación directa del virus en el proceso patológico que da lugar a la microcefalia.

El 17 de marzo, un estudio identificaba las 100 ciudades del mundo con mayor riesgo de importación de casos de zika y con posibilidad de sostener poblaciones de mosquitos Aedes aegypti o Aedes albopictus (mosquito tigre) que podrían dispersar la infección. Madrid y Barcelona se encuentran entre ellas, aunque su nivel de riesgo se considera menor que el de Lisboa, París, Londres, Ámsterdam o Roma.

El 31 de marzo se desvelaba la estructura del virus, un hito fundamental en la lucha contra el patógeno. Pero el salto definitivo llegaba el 13 de abril. Un análisis publicado en The New England Journal of Medicine revisaba toda la información disponible hasta la fecha. Sus autores escribían: «Sobre la base de esta revisión, concluimos que existe una relación causal entre la infección prenatal por virus del Zika y la microcefalia y otras anomalías cerebrales graves».

El mismo día, el Centro para el Control de Enfermedades de EEUU (CDC) emitía un comunicado en el que valoraba «la rigurosa evaluación de las pruebas utilizando criterios científicos establecidos», para sellar oficialmente de forma definitiva: «el virus del Zika causa microcefalia y otros graves defectos cerebrales en los fetos».

Por su parte, la Organización Mundial de la Salud reconocía el «consenso científico» y desmentía los bulos que culpaban de la microcefalia a otras causas. Otro estudio publicado en abril vinculaba los casos de Síndrome de Guillain-Barré en la Polinesia con la infección por zika: todos los pacientes estudiados tenían anticuerpos contra el virus. Además, hay indicios preliminares de que el zika podría estar ligado a otra enfermedad neurológica llamada Encefalomielitis Diseminada Aguda.

También en abril se informó de la detección de anticuerpos contra el zika en el sistema nervioso central en 30 de 31 bebés brasileños con microcefalia. Dado que el tipo de anticuerpos encontrado (IgM) no atraviesa la placenta ni la barrera entre la sangre y el sistema nervioso central, esto significa que la infección estaba en el cerebro y era congénita. El virus también ha aparecido en placenta y líquido amniótico, aunque aún no parece claro cómo logra introducirse en la cavidad fetal. El 20 de abril se informaba de la detección del virus en monos brasileños, lo que sugiere un posible papel de estos animales como reservorios de la infección.

Un minicerebro creado en laboratorio e infectado por el virus del Zika (en verde). Imagen de Xuyu Qian/Johns Hopkins University.

Un minicerebro creado en laboratorio e infectado por el virus del Zika (en verde). Imagen de Xuyu Qian/Johns Hopkins University.

Utilizando impresión 3D, los investigadores han logrado crear minicerebros, organoides que simulan los órganos reales para estudiar la infección. Según publicaba Cell el 22 de abril, la investigación con estos organoides demuestra que el zika infecta con preferencia las células madre neurales durante el primer trimestre del embarazo. Los daños del zika a los organoides cerebrales ya se habían apuntado en otro estudio previo.

Gracias a los organoides, la investigación sobre el zika progresa mucho más deprisa. Esta semana hemos conocido uno de los perjuicios que causa el zika en las células madre neurales. Según publicaba Cell Stem Cell, las células infectadas disparan una respuesta inmunitaria innata (la primera línea de defensa) dependiente de una molécula llamada TLR3. La respuesta lleva a la autodestrucción de la célula, lo que provoca un encogimiento del tejido similar a lo que sucede en la microcefalia.

Test de diagnóstico de zika desarrollado por el MIT. Imagen de Wyss Institute at Harvard University.

Test de diagnóstico de zika desarrollado por el MIT. Imagen de Wyss Institute at Harvard University.

Otra línea de investigación progresa para llevar el diagnóstico de la enfermedad a las zonas donde sea necesario. El 28 de abril se aprobó de urgencia en EEUU el primer test de diagnóstico. El 6 de mayo se ha publicado en Cell un test rápido y barato en papel desarrollado por el Instituto Tecnológico de Massachusetts que permite diagnosticar el zika en un par de horas con muestras de sangre, orina o saliva, distinguiéndolo del dengue. El sistema es innovador, mucho más específico y sofisticado que los típicos tests rápidos de malaria. La pega es que, aunque el resultado es visual, está concebido para leerse con un dispositivo electrónico, lo que puede limitar su uso en regiones remotas.

En cuanto a las posibilidades de tratamiento, aún no existen. Pero también se están aportando avances prometedores, y ya existen modelos en ratón que permiten estudiar la evolución de la infección. La cloroquina, un fármaco contra la malaria, podría ser útil en la lucha contra la enfermedad. Esta semana hemos sabido que los mosquitos infectados por Wolbachia, una bacteria típica de los insectos, son incapaces de transmitir el zika. Ya se conocía la capacidad de este microbio de impedir a los mosquitos la transmisión de otros patógenos humanos, como el dengue, el chikunguña y el parásito de la malaria. Si fuera posible reemplazar la población natural del mosquito Aedes por otra infectada con Wolbachia, sus picaduras serían inofensivas.

Dejo para el final un aspecto intrigante. Una de las mayores incógnitas aún es por qué el zika solo provoca microcefalia y otros trastornos neurológicos en los fetos de algunas mujeres embarazadas, y no en otras. Un estudio aún sin publicar, disponible en la web de prepublicaciones bioRxiv, descubre que los anticuerpos contra el dengue potencian la infección por el zika. Los dos virus son muy parecidos y se solapan en amplias regiones del mundo, por lo que no es raro encontrar pacientes que hayan sufrido ambas infecciones.

Este mecanismo tiene una conocida base biológica, y funciona así: una persona infectada por un virus desarrolla anticuerpos frente a él. Si después sufre una nueva infección por una cepa diferente del mismo patógeno, puede suceder que los anticuerpos se peguen a él sin neutralizarlo. Estos virus activos son engullidos por unas células del sistema inmunitario llamadas macrófagos, que reconocen los anticuerpos y se los tragan. Así, los anticuerpos sirven de caballo de Troya para que el virus invada los macrófagos, lo que potencia la infección.

¿Podría ser este un factor relacionado con la distinta virulencia de la enfermedad del zika en diferentes pacientes? El primer caso de microcefalia asociada al zika en España es una mujer embarazada que también contrajo dengue. Imagino que la conexión detectada entre dengue y zika deberá ser explorada mucho más a fondo para valorar sus posibles implicaciones en los efectos del virus.

Norovirus, no sólo en el agua de Andorra

Por resumir la historia que todo el mundo ya conoce, el origen de un brote de gastroenteritis en Cataluña que ha afectado a más de 4.000 personas en cientos de empresas se localizó en los water coolers, esos dispensadores de agua de garrafa tan típicos en las oficinas y, no lo nieguen, uno de los rincones preferidos de reunión y chismorreo en todo ecosistema laboral.

Garrafas de agua. Imagen de Wikipedia.

Garrafas de agua. Imagen de Wikipedia.

En este caso las aguas procedían del manantial andorrano de Arinsal, embotelladas por la empresa Aigües del Pirineu y distribuidas por la empresa Eden Springs. La Universidad de Barcelona confirmó, y la Agència de Salut Pública de Catalunya difundió, que el malvado responsable es el norovirus, detectado en el agua a títulos muy elevados en sus dos variantes, unas 5.000 copias por litro del genogrupo I y unas 10.000 del II (en fin, una barbaridad). Teniendo en cuenta que el norovirus es capaz de provocar síntomas con unas cuantas copias, a muchos les hubiera bastado un pequeño sorbito para enfermar.

Aunque la hipótesis más creíble era culpar a las garrafas reutilizables, las últimas noticias han localizado la contaminación en el propio manantial, lo cual resulta del todo raro, sobre todo teniendo en cuenta que en el agua no se ha detectado presencia bacteriana. Otro dato extraño es que la titulación del virus en el acuífero ha resultado enormemente inferior a la de los análisis en Cataluña. Esperemos que la investigación nos ofrezca más datos en los próximos días.

Lo primero que me ha sorprendido del caso, sin tratar de minimizar el suceso, es el bombo con el que muchos medios han tratado el origen del brote: «contaminación fecal humana». And the Oscar goes to… este titular de la Cadena SER: «Caca humana causó la intoxicación del agua Eden». Como lo leen. Pero vamos a ver: ¿de dónde pensaban que procede la contaminación de comidas o bebidas con microorganismos patógenos? ¿Acaso alguien piensa que las coliformes o las salmonelas surgen por generación espontánea, como los pulgones de Aristóteles de las gotas de rocío? En el caso del norovirus, se puede asegurar que el origen es humano. Pero ¿importa demasiado la especie de la que procedan las heces que han entrado en contacto con lo que nos llevamos a la boca?

Por situar las cosas en sus justos términos: es probable que, sin saberlo, alguna vez hayan padecido una infección por norovirus (los legisladores del mundo vírico recomiendan llamarlo por su nombre propio, virus de Norwalk, pero haremos la vista gorda). Muy oportunamente, justo ayer se ha publicado un estudio que cifra en 699 millones de personas los afectados por norovirus cada año; es decir, casi uno de cada diez habitantes del planeta cada año, con 219.000 muertes que, como siempre, tocan a los más débiles. Los norovirus son la principal causa de gastroenteritis vírica en el mundo, y en los países desarrollados probablemente la principal causa de gastroenteritis, punto.

Los norovirus son típicos de los lugares donde la gente se reúne. Junto con los rotavirus, forman el comando especial de virus de las guarderías, pero también son clásicos en caterings, campamentos, convenciones y, sobre todo y muy especialmente, cruceros. Si alguna vez han oído de un crucero suspendido por un brote de gastroenteritis, eso es, casi con total certeza, norovirus. Para que se hagan una idea de lo común que es el problema, el Centro para el Control de Enfermedades de EEUU (CDC) registra en 2015 12 brotes de gastroenteritis en otros tantos buques de crucero; 11 de ellos fueron norovirus. En lo que llevamos de 2016 ya llevamos ocho barcos afectados; en cinco de ellos se ha confirmado que la causa ha sido norovirus.

Impresión en 3D de la estructura de un virus de Norwalk (norovirus). Imagen de NIAID / Wikipedia.

Impresión en 3D de la estructura de un virus de Norwalk (norovirus). Imagen de NIAID / Wikipedia.

Y todo ello porque los norovirus son altamente contagiosos. En los cruceros suelen transmitirse por una simple cadena de contactos: boca-mano-pinzas_para_servirse_los_croissants_del_desayuno-mano-boca (la primera «boca» puede también sustituirse por su extremo contrario). Y por cierto, se ha demostrado que lavarse las manos con agua y jabón es más eficaz como método de prevención que frotarlas con productos basados en el alcohol, ya que el virus carece de la envoltura de lípidos sobre la que actúa el alcohol.

Son virus que aguantan bastante bien a la intemperie, y que además tienen la habilidad de transmitirse de persona a persona por minúsculas gotitas de agua en el aire (aerosol). Si la contaminación fecal les parecía asquerosa, a ver qué opinan de este otro caso: en 2000 se publicó un estudio que describía un brote de gastroenteritis en un restaurante donde una persona había vomitado en el suelo. Al estudiar el caso, los investigadores descubrieron que la ubicación de los afectados formaba un círculo alrededor de la mesa del enfermo, con más contagiados cuanto más cerca. La explicación: el norovirus se transmitió por diminutas gotitas de vómito que flotaron por el aire hasta las bocas de los demás comensales.

Muchos de los brotes de norovirus proceden de contaminación de alimentos, sobre todo vegetales, mejillones y ostras. En EEUU, entre 1973 y 2012 se registraron 260 brotes de gastroenteritis por norovirus causados por verduras. Otro estudio en Eslovenia publicado en 2015 descubrió que más de uno de cada diez mejillones recogidos en la costa del Adriático contenía norovirus. Otra fuente que se ha detectado con frecuencia en Europa es la fresa o frambuesa congelada, a menudo de origen chino. Y por si se lo están preguntando, sí, todos estos casos también se deben a contaminación fecal humana, que en algunos países se filtra a las redes de abastecimiento de agua. No solo en el tercer mundo: hace unos años se produjo un caso en una fábrica de Euskadi.

¿Y qué hay del agua embotellada? Las autoridades catalanas dijeron en rueda de prensa que es la primera vez en el mundo que se detecta contaminación por norovirus en agua mineral embotellada. La verdad es que no es del todo cierto: hay al menos otro caso anterior descrito en 2011 de un brote de norovirus por agua de manantial embotellada en China (y un segundo caso sospechoso no confirmado en el mismo país). Pero independientemente de esto, hay algo que estos responsables no contaron: no se han detectado anteriormente norovirus en el agua embotellada… porque no suelen buscarse. Las legislaciones habituales en los países, incluida España, obligan a un control microbiológico de las aguas embotelladas, pero sólo para la verificación de bacterias, no de virus.

El motivo de esto último es probablemente práctico. Mientras que controlar la presencia de bacterias es muy sencillo, ya que basta un simple cultivo, para detectar virus en el agua embotellada se requieren procedimientos más complicados, que incluyen una filtración/concentración y detección del ARN por técnicas moleculares. En los últimos años se han publicado diversas apuestas de protocolos de detección de virus en aguas embotelladas para consumo, pero aún no se ha adoptado un estándar. Y si bien es cierto que algunas bacterias, como las coliformes y los estreptococos fecales, pueden servir de indicadores de una contaminación que podría también acarrear norovirus, el problema es que estos son más persistentes: a las bacterias no se les da muy bien sobrevivir simplemente en agua; en cambio, los norovirus aguantan durante meses, quizá años.

Uno de los problemas para la detección de los norovirus en muestras de agua embotellada es que tienen además la molesta manía de pegarse al plástico; según un estudio, un 90% de la carga total de virus se queda adherido a las botellas de PET. Esto puede causar que la contaminación pase inadvertida o se subestime, lo que obliga primero a aplicar un procedimiento para despegar los posibles virus del envase.

Supongamos que una garrafa se rellena una y otra vez con agua contaminada que va añadiendo más copias del virus al plástico. Si en el laboratorio se aplicara un método de elución para recuperar este virus adherido, el resultado podría ser una carga viral mucho mayor que la presente originalmente en el agua. Es sólo una especulación, pero la investigación deberá aclarar la discrepancia entre las cifras de titulación del virus facilitadas por el gobierno andorrano y la Universidad de Barcelona.

Nuestras células tienen tabiques gracias a las bacterias

Entre los biólogos hay quienes sostienen que la vida debe de ser omnipresente en el universo, y quienes opinan que la aparición de cualquier cosa a la que podamos llamar vida requiere de tantos desvíos afortunados en la larguísima carretera de la historia natural que su aparición es algo extremadamente improbable.

Un grupo de arqueas (en rojo) y bacterias (en verde). De una imagen parecida a esta pudo nacer la primera célula compleja, según la teoría de la endosimbiosis. Imagen de Annelie Pernthaler/UFZ.

Un grupo de arqueas (en rojo) y bacterias (en verde). De una imagen parecida a esta pudo nacer la primera célula compleja, según la teoría de la endosimbiosis. Imagen de Annelie Pernthaler/UFZ.

Tanto, que el hecho de que estemos aquí no debe cegarnos por lo que podríamos llamar el síndrome del éxito: un tipo que gana cientos de millones en una lotería puede sentir que ha sido tremendamente fácil, casi inevitable, pero a otros cientos de miles que jugaron no les ha tocado; un cantante de éxito piensa que él se lo ha ganado, pero por cada triunfador hay otros cien, o mil, o cien mil, que se quedaron en el camino, con el mismo (o más) esfuerzo y el mismo (o más) talento que él.

Dicho en términos más biológicos, sostener que la vida es omnipresente no deja de ser un argumento terracéntrico y antropocéntrico, teniendo en cuenta que el conocimiento del que disponemos hasta ahora no lo apoya: aún no hemos encontrado nada vivo fuera de este planeta. Pero es que, además, cuando se indaga en los posibles procesos (esos desvíos afortunados) que han conducido hasta nuestra existencia, sería difícil creer que todo eso pueda ocurrir dos veces en el universo de maneras muy similares sin que alguien lo haya dispuesto así.

Una de esas carambolas de la evolución de la vida es la llamada teoría endosimbiótica, o simbiogénesis. Contándolo en formato rewind, la existencia de vida inteligente como nosotros requirió la formación de organismos complejos con órganos y tejidos, y estos precisaron de la especialización de las células, lo que a su vez necesitó de la aparición de compartimentos internos en esas células para formar sus propios orgánulos, lo que procede –según la teoría evolutiva mayoritariamente aceptada hoy– de unas células simples sin esos compartimentos que se asociaron en beneficio mutuo para dar lugar a células más complejas. Estas primeras células simples eran lo que hoy conocemos como bacterias o arqueas.

Contémoslo ahora en formato fast forward: desde aquellas primeras bacterias y arqueas (procariotas), si no se hubiera producido esa asociación en beneficio mutuo (simbiosis), hoy no estaríamos aquí: la aparición de las células complejas (eucariotas) con sus orgánulos, sus especializaciones en órganos y tejidos, la formación de organismos superiores y la llegada del ser humano con todas sus habilidades y logros, hasta el rodaje del quinto episodio de Indiana Jones, jamás se habrían producido sin aquel único, raro, improbable y extravagante premio de lotería que fue la simbiosis entre dos células procariotas.

(Nota para los más puntillosos: lo mismo podría decirse de la temporada anterior, la que llevó a la aparición de esas primeras células procariotas, pero no es el objeto de este artículo.)

Así fue como sucedió, según el pensamiento de la biología actual: una arquea y una α-proteobacteria andaban por ahí tranquilamente a sus cosas, cuando una le dijo a otra algo parecido a aquella cita de Memorias de África: «Mira, yo se lo que tu sientes por mí, y tu sabes lo que siento por ti. Nos entendemos bien así. Acostémonos. Verás lo que yo hago por ti». Así que la α-proteobacteria se quedó a vivir dentro de la arquea, convirtiéndose con el tiempo en una parte de ella que le proporcionaba energía. Hoy llamamos a esa parte mitocondria. A cambio, la bacteria obtenía protección, seguridad, supervivencia.

Esta teoría del origen de las células eucariotas como una simbiosis entre dos células procariotas simples fue elaborada en los años 60 por la bióloga Lynn Margulis, a quien entonces nadie tomó en serio. Hoy, ya fallecida, se aplaude su genio.

Otro de los científicos que más han aportado a la teoría de la endosimbiosis es Bill Martin, de la Universidad Heinrich Heine de Dusseldorf (Alemania). En vida de Margulis, Martin sostuvo interesantes debates con ella sobre los flecos finos de la teoría.

Hace unos días, Bill me envió un nuevo artículo que él y sus colaboradores Sven Gould y Sriram Garg publicarán próximamente en la revista Trends in Microbiology, del grupo Cell, y en el que proponen un fascinante corolario de la teoría endosimbiótica. Naturalmente, la célula eucariota es mucho más que mitocondrias. De hecho, se define esencialmente por tener un núcleo celular, una especie de globo que contiene el material genético, pero es la existencia de múltiples globos, o tabiques que separan internamente las distintas partes de la célula, lo que distingue a los eucariotas de los procariotas.

Esos globos y tabiques internos no son fijos, sino que van moviéndose para transportar cosas (moléculas) de un sitio a otro de la célula, o de su interior al exterior. Esto se conoce como tráfico vesicular, y es un rasgo propio de la célula eucariota. El conjunto más complejo de esos globos y tabiques es el retículo endoplásmico, donde se fabrican las proteínas que luego se llevan al lugar en el que deben actuar.

¿De dónde surgió todo ese tráfico vesicular? En su artículo, Bill y sus colaboradores detallan cómo todos esos globos y tabiques (membranas), incluyendo el núcleo celular, pudieron aparecer también como consecuencia de la endosimbiosis. Las bacterias y arqueas tienen también un cierto tráfico vesicular, pero solo hacia el exterior, para verter el contenido de esos globos fuera de la célula. Lo que proponen los investigadores es que este tráfico vesicular de la α-proteobacteria que se quedó a vivir dentro de una arquea es el origen de todo el tabicado interior de nuestras células actuales, incluyendo el retículo endoplásmico y el núcleo.

Esta elegante hipótesis tiene un detalle especialmente revelador: resulta que las membranas de las arqueas y de las bacterias están fabricadas de un material diferente. Las membranas celulares están formadas por grasas, gracias a lo cual consiguen separar distintos ambientes acuosos; es el mismo principio que separa el agua y el aceite lo que permite que existan las células. Pero bacterias y arqueas utilizan grasas distintas: las primeras emplean ácidos grasos, lo mismo que nosotros, mientras que las arqueas recurren a otros componentes llamados isoprenoides. Pregunta: si nuestras células proceden de una arquea que se comió una bacteria, ¿por qué nuestra membrana se parece a la de la bacteria, y no a la de la arquea?

El artículo de Bill ofrece la solución: cuando las vesículas creadas por la bacteria fueron viajando a través del interior de la arquea hasta su superficie, y según se iban fusionando con la membrana exterior de la arquea, la composición de esta fue transformándose poco a poco, dejando de ser una membrana de arquea y convirtiéndose en una membrana de bacteria, como la nuestra.

«Nuestra propuesta apenas requiere innovaciones o procesos evolutivos excepcionales o únicos, tanto en el ancestro mitocondrial como en la arquea hospedadora, para originar una función básica de retículo endoplásmico con un flujo de vesículas dirigido hacia el exterior», escriben los autores.

Este es un potente argumento a favor de la hipótesis, ya que a menudo la dificultad a la hora de explicar los procesos evolutivos es unir los puntos de manera que el desarrollo de la trama resulte creíble, sin saltos bruscos como en las malas películas donde aparece un personaje nuevo diez minutos antes del final para que todo cuadre. El artículo de Bill es de los que logran explicar la serie de la evolución de manera que logremos entender cómo hemos llegado hasta aquí desde las temporadas anteriores, esas que nos perdimos y que nunca llegaremos a ver.

¿Qué es la vida? 473 genes

Chiste malo de biólogos:

–¿Qué se llevaría una bacteria a una isla desierta?

–473 genes.

Malo, porque no es gracioso y, además, hay que explicarlo. Cuatrocientos setenta y tres genes es, desde la semana pasada, el mínimo equipamiento necesario para la supervivencia de un organismo de vida libre. Aunque, de momento, dejemos lo de libre en cursiva.

La historia: el magnate de la biotecnología y científico estadounidense J. Craig Venter lleva años empeñado en la ambición de convertirse en el primer Victor Frankenstein celular de la historia. Así como el médico creado por Mary Shelley (de cuya concepción, por cierto, pronto se cumplirán cien años quiero decir, doscientos años, anda que, cómo estamos…) pretendía crear un ser nuevo a partir de piezas sueltas, Venter trata de hacer lo mismo con una célula. O poco más o menos. En realidad, lo que el científico pretende es fabricar un genoma sintético mínimo esencial y emplearlo para insuflar la vida a una célula sin ADN, vacía, técnicamente muerta (o quizá sería más apropiado no-muerta), tal y como Frankenstein infundía esa «chispa de ser» a su criatura.

Células de JCVI-syn3.0. Imagen de Thomas Deerinck y Mark Ellisman/NCMIR/UCSD.

Células de JCVI-syn3.0. Imagen de Thomas Deerinck y Mark Ellisman/NCMIR/UCSD.

Venter ha recorrido un largo camino para llegar a ello. Comenzó eligiendo la célula, la más pequeña que pudo encontrar: un micoplasma. Los micoplasmas son la pesadilla de los biólogos, ya que contaminan los cultivos celulares y pueden alterar los resultados de los experimentos, pero son tan pequeños que su presencia no se advierte al microscopio. Una célula de Mycoplasma genitalium, la especie elegida por Venter, mide de largo menos de la mitad que el virus del ébola.

El M. genitalium tiene solo 525 genes en un genoma de 580.070 pares de bases, las letras del ADN. Para que se hagan una idea, nuestro genoma mide unos 3.000 millones de pares de bases y contiene unos 20.000 genes. Venter y sus colaboradores crearon en 2008 el primer genoma sintético de M. genitalium, diseñado en un ordenador y fabricado uniendo químicamente las bases del ADN una a una, para luego pegar entre sí los fragmentos grandes en un sistema biológico, una célula de levadura.

En 2010 Venter y su equipo, en el que figuran los veteranos Hamilton O. Smith (Nobel en 1978) y Clyde A. Hutchison III, lograron esa «chispa de ser», trasplantando un genoma sintético de 1,079 millones de pares de bases de M. mycoides a una célula vacía de otra especie, M. capricolum. El motivo de cambiar de M. genitalium a M. mycoides, cuyo genoma es mayor, fue práctico: esta segunda especie crece más deprisa, lo que acelera los experimentos.

Aquella primera versión recibió el nombre de JCVI-syn1.0, o versión sintética 1.0 del J. Craig Venter Institute. Pero sus 901 genes y su millón de pares de bases eran probablemente mucho más de lo realmente esencial para la vida, a juicio de los investigadores. Así comenzó el proceso de ir descartando genes hasta quedarse con ese equipamiento mínimo necesario para la supervivencia.

El primer intento fue infructuoso: Venter y sus colaboradores se quedaron con un ADN de 483.000 pares de bases y solo 471 genes, pero la criatura de Frankenstein no volvió a la vida. En el proceso de ir pelando el genoma del M. mycoides, habían roto algo vital. Vuelta a la pizarra, y a comenzar de nuevo.

Y así llegamos al momento presente. O mejor dicho, a la semana pasada, cuando quien suscribe, de vacaciones en la hermosa y rabiosamente verde Extremadura septentrional, se encontró en los papeles con JCVI-syn3.0, la nueva criatura de Venter publicada en Science que, esta vez sí, funciona: 473 genes en 531.000 pares de bases, un genoma sensiblemente más pequeño que el de M. genitalium.

¿Y esto para qué sirve?, es la primera pregunta. La respuesta clásica que verbalizan los biólogos sintéticos es que los organismos de diseño permitirán en el futuro producir fármacos o combustibles, o destruir contaminantes del medio, entre otras aplicaciones. Pero la respuesta que no verbalizan, por lo menos no ante quien pregunte «¿y esto para qué sirve?», es que se trata de conocer: en la respuesta está la comprensión de ese extraño fenómeno que llamamos vida.

(Nota: claro que, para muchos biólogos sintéticos, el camino elegido por Venter tiene más de ciencia recreativa, o incluso de egolatría recreativa, que de biología sensata. Cuando el magnate comenzó este proyecto aún no existía el sistema de edición genómica CRISPR. Pero desde que existe CRISPR, hoy todo lo que Venter hace podría lograrse mucho más cabal y fácilmente juntando y tuneando piezas ya prefabricadas por la naturaleza.)

Y sobre esto de la vida, lo que nos revela el experimento de Venter es que estamos aún muy lejos de comprenderlo: de los 473 genes, hay 149 sobre los que no se tiene la menor idea de para qué diablos sirven.

Lo cual, en el fondo, no hace sino ilustrar una vez más que aún nos queda mucho por conocer de cómo funciona la biología. Tal vez se hayan quedado con la idea de que los organismos más aparentemente pequeños y sencillos tienen menos genes, y que el presunto rey de la evolución, el ser humano, con sus Mozarts y sus Einsteins, debería ostentar el récord genómico. Olvídense de esto: la pulga de agua Daphnia, un diminuto crustáceo, tiene unos 31.000 genes, un 50% más que nosotros. Claro que esto no es nada en comparación con el genoma del pino taeda del sureste de Estados Unidos: unos 20.148 millones de pares de bases, casi siete veces el humano, con más de 50.000 genes estimados. Y muy probablemente los hay aún mayores: el genoma de la planta japonesa Paris japonica, aún no secuenciado, podría llegar a los 150.000 millones de pares de bases.

En el otro extremo tenemos a la bacteria Carsonella ruddii con 159.662 pares de bases y solo 182 genes. Y aún más abajo, Nasuia deltocephalinicola, con 112.091 pares de bases y 137 genes. Otra bacteria, Tremblaya princeps, tiene un genoma ligeramente mayor que el de Nasuia, pero con solo 120 genes. Pero el pez globo de agua dulce Tetraodon nigroviridis tiene un genoma ridículo para un vertebrado, de unos 350 millones de pares de bases. ¿Y para qué demonios necesita la bacteria Solibacter usitatus un genoma de 9,9 millones de pares de bases?

Al comienzo hablé de la nueva bacteria de Venter como de vida libre, en cursiva. Lo cierto es que esta bacteria, aunque se reproduce de forma autónoma, no podría vivir fuera de las placas de cultivo. Los investigadores le han robado tantos genes que necesita un suplemento de ciertos nutrientes esenciales. Así que, en el fondo, es un organismo dependiente, como lo son Carsonella, Nasuia o Tremblaya, que solo pueden vivir en el interior de células de insectos en una simbiosis obligatoria. Y esto implica que, con toda probabilidad, la vida aún puede reducirse más allá de los 473 genes. Siempre, claro, que podamos seguir llamándola vida.

Resumiendo: ¿qué es la vida? No sabemos. Tal vez Calderón la definió mejor: una ilusión, una sombra, una ficción…

La gripe española y El Ministerio del Tiempo

No soy muy de series. Parafraseando a Umbral, quien puestos a tragarse un argumento prefería la hora y media de una película antes que dedicar varios días a leer un libro, lo que a mí me sucede con las series es que a menudo me transmiten la impresión de estar alargando las tramas eterna e innecesariamente para continuar exprimiéndome como fuente de ingresos publicitarios. En este sentido, y aunque la tele pública de todos no atraviesa precisamente sus mejores momentos, me seduce la comodidad de ver algo en la pantalla sin inoportunos y cansinos cortes de publi.

Y entre tanta serie que explota caminos ya tan trillados como la comedia de trazo grueso, el choque de costumbrismos culturales o el thriller de asesinato que en inglés llaman Whodunit (¿Quién lo hizo?; lo malo es que en muchos casos la respuesta es: ¿Y a mí qué me importa?), la apuesta de El Ministerio del Tiempo es innovadora y, por tanto, arriesgada; algo que se agradece y que cada vez es más escaso, y más difícil encontrarlo fuera de las cadenas que no compiten en el mercado publicitario.

Ya elogié aquí en la pasada temporada el tratamiento original que hace la serie de TVE de un subgénero tan clásico como el de los viajes en el tiempo, pero al que sus creadores han sabido aplicar una fresca vuelta de tuerca, apuntando sin proponérselo a un modelo metafísico llamado Universo de Bloque Creciente. Aunque es evidente que el triunfo de la serie no se debe a que guste a los metafísicos: gusta a todos porque está bien diseñada, bien guionizada, bien realizada, bien interpretada, bien digitalizada y bien vestida. Pero además se agradece que una serie trasluzca inteligencia.

El doctor Vargas observa una muestra de sangre de un paciente. Imagen de TVE/Tamara Arranz.

El doctor Vargas observa una muestra de sangre de un paciente. Imagen de TVE/Tamara Arranz.

Esto sucede también con el último capítulo, el 13, titulado Un virus de otro tiempo. Si podemos enviar personas a través del tiempo, ¿por qué no un virus? Esta era la brillante premisa que ponía a los personajes de la serie en un complejo apuro cuando una de sus protas, Irene (Cayetana Guillén Cuervo), se trae a la actualidad la infame gripe española que mató a unos 50 millones de personas al final de la Primera Guerra Mundial.

No pretendo afear a los guionistas su trabajo de documentación, que es impecable en cuanto a la exhumación de los datos históricos en los que se basan las tramas de la serie. Que la documentación científica sea también irreprochable tal vez sea ya mucho pedir. Ni siquiera en Hollywood esto es lo más habitual; y eso que allí cuentan con algo llamado The Science & Entertainment Exchange, un programa de la Academia Nacional de Ciencias de EEUU que presta asesoría científica gratuita a los cineastas cuando lo necesitan, incluso escribiéndoles ecuaciones reales cuando una pizarra de universidad sale en el plano.

Pero no puedo evitar hacer un par de comentarios para aclarar algunas confusiones comunes sobre la gripe española; que, como bien explicaban después en el making of, no era española, aunque se llamó así porque las primeras noticias sobre la epidemia trascendieron desde España, que no había participado en la Primera Guerra Mundial y por tanto no estaba sometida a censura informativa.

La gripe española fue una calamidad global sin parangón en la historia conocida de la epidemiología, ni siquiera igualada por los desastres de la peste negra. Aún no se conoce con exactitud por qué aquella cepa fue tan letal. Se han aportado varias explicaciones, algunas relacionadas con el propio virus (como su facilidad de contagio inusual) y otras con circunstancias históricas y sociales de la época.

Pero aunque sería muy conveniente no tener que encontrarnos de nuevo con aquel virus, parece obvio que sus repercusiones hoy no serían tan serias como las que tuvo en su época, gracias al avance de los diagnósticos y tratamientos. En 2013, un estudio modelizó el efecto que tendría en la actualidad una pandemia de aquel mismo virus, y la conclusión era que las tasas de mortalidad serían un 70% inferores a lo que fueron entonces. «Una gripe española en tiempos actuales no representa el peor escenario en términos de riesgo pandémico», concluía el estudio.

De hecho, ya he contado aquí que son otras cepas de gripe las que hoy preocupan a los expertos; y que al contrario de lo que se afirmaba en el capítulo, la gripe de 2009 no provocó una reacción de alarma exagerada, sino el estado de alerta necesario ante una gripe que entonces era nueva y cuyos efectos eran incalculables. La Organización Mundial de la Salud, y cualquiera que estuviera en el pellejo de sus responsables, siempre preferirá haber reaccionado con contundencia ante una amenaza que luego no era para tanto, antes que tener que lamentar el haber respondido con pasividad e ineficacia ante una catástrofe sanitaria.

Una incorrección en el capítulo se ponía en boca del médico del Ministerio, quien afirmaba que Irene sobreviviría a la infección porque era fuerte y sus defensas responderían adecuadamente. Hubo algo muy peculiar con la gripe española que no se ha dado en otras epidemias de esta enfermedad, incluyendo las estacionales. Mientras que las gripes suelen ser más graves para los pacientes más débiles, como niños, ancianos o personas inmunocomprometidas, en cambio la epidemia de 1918 mataba a hombres y mujeres jóvenes y sanos.

Hay una explicación para esto que hoy se acepta de forma general: la gripe española mataba porque disparaba una tormenta de citoquinas, una reacción apabullante del sistema inmunitario que destroza el propio organismo. Y por tanto, cuanto más fuerte era el organismo del paciente, más fuerte era también la tormenta de citoquinas que la gripe le provocaba.

Ya conté aquí que este fenómeno parece ser también la causa de la letalidad del ébola. Y dado que la gripe española mataba por un mecanismo similar, una de las firmas de esta epidemia fue que sus afectados morían con síntomas más parecidos a una fiebre hemorrágica que a lo que normalmente entendemos por gripe. Aunque no hubiera quedado bonito en la pantalla, lo cierto es que las víctimas mortales de la gripe española terminaban bañadas en sangre, por dentro y por fuera.

Y por cierto, y tal como conté para el caso del ébola, en la gripe española también sucedía que las infecciones oportunistas aprovechaban la desestabilización del sistema inmunitario para causar infecciones secundarias graves. Hoy los especialistas piensan que muchos de los infectados morían en realidad de una neumonía bacteriana propiciada por la gripe, por lo que el tratamiento con antibióticos –al contrario de lo que se contaba en el capítulo– sí sería una manera adecuada de contener el empeoramiento general de los pacientes, al mantener a raya estas infecciones colaterales.

Amelia y Pacino, con las muestras del virus. Imagen de TVE/Tamara Arranz.

Amelia y Pacino, con las muestras del virus. Imagen de TVE/Tamara Arranz.

Por último, Amelia y Pacino pretendían inactivar el virus dejando el recipiente de las muestras abierto en un laboratorio con la calefacción alta. Pero por desgracia, esto no habría bastado: un estudio de 2014 determinó que el virus de 1918 solo se inactiva por completo después de 6 horas a 50 ºC. Por muy alta que fuera la temperatura del laboratorio, y dado que además Amelia y Pacino no se preocuparon de vaciar el nitrógeno líquido del contenedor, los empleados de la compañía farmacéutica podrían haber recuperado las muestras casi intactas a la mañana siguiente.

Todo lo cual, insisto, no enturbia la gran calidad de una serie que despunta entre la mediocridad general, y de la cual otras cadenas deberían tomar ejemplo. Aunque hacerlo tras la estela del triunfo ajeno siempre es lo más fácil.

¿Tendremos en octubre un Nobel español de ciencia?

Quédense con este nombre: Francisco Juan Martínez Mójica, un investigador de la Universidad de Alicante que desde el pasado 14 de enero viene recibiendo una atención inusitada por parte de los medios. Inusitada porque la línea de investigación de Mójica nace de un campo de enorme interés científico –la genética de los microbios extremófilos–, pero que difícilmente traspasa las fronteras más allá de lugares como este blog, en un país donde la ciencia apenas capta la atención del gran público salvo cuando se trata de grandes titulares sobre, pongamos, el cáncer.

Las salinas de Santa Pola, donde comenzó la historia de CRISPR. Imagen de Wikipedia.

Las salinas de Santa Pola, donde comenzó la historia de CRISPR. Imagen de Wikipedia.

Pero tan inusitada como merecida, porque esa línea de investigación llevaría a Mójica a convertirse en la estrella de la revolución del siglo XXI en ingeniería genética, que lleva el nombre de CRISPR. O mejor dicho, esa línea y otra cosa; porque desgraciadamente para un científico alicantino trabajando en la Universidad de Alicante, por brillante que sea, se requiere un empujoncito más. Y como ahora contaré, por fortuna Mójica ha recibido ese empujoncito más que se revelará clave si finalmente el investigador se convierte en el primer Nobel español de ciencia desde Ramón y Cajal (siempre debo añadir esta coletilla: Severo Ochoa llevaba 23 años fuera de España y tres como ciudadano estadounidense cuando ganó el Nobel).

Mójica comenzó su tesis doctoral investigando por qué una arquea (microbios que no son bacterias, aunque lo parezcan) de las salinas de Santa Pola se veía afectada de distinta manera por las enzimas de restricción (herramientas utilizadas para cortar el ADN por lugares deseados) en función de la concentración de sal en el medio de cultivo. A primera vista esta línea de trabajo parecería algo muy alejado de convertirse en la próxima revolución genética; sin embargo, las principales herramientas moleculares empleadas en los laboratorios han nacido del estudio de las bacterias y sus virus, como es el caso de las propias enzimas de restricción.

Al estudiar el genoma de esta arquea, llamada Haloferax mediterranei, Mójica descubrió que llevaba una curiosa marca, compuesta por secuencias repetidas y separadas por otros fragmentos dispares; un patrón que implicaba probablemente una función determinada, aunque desconocida. El investigador descubrió estas mismas estructuras en otras arqueas, y supo también que un grupo de la Universidad de Osaka, en Japón, ya había descrito en 1987 unas estructuras similares en otro microbio biológicamente más relevante, la bacteria Escherichia coli. Mójica y sus colaboradores publicaron estas secuencias en 1995 y llamaron a los fragmentos repetidos TREPs, por secuencias Palindrómicas (que se leen igual al derecho y al revés) Extragénicas (fuera de los genes) Repetidas en Tándem (varias veces).

Aún se desconocía cuál era la función de estos pedazos de genoma bacteriano o arqueano. Mójica y sus colaboradores sugerían en su estudio que podían controlar la distribución de las copias del genoma en las células hijas cuando la bacteria o la arquea se dividen, una hipótesis que resultaría equivocada.

Por entonces Mójica había terminado su tesis doctoral y se marchó al extranjero para completar un corto postdoctorado en Oxford, antes de regresar a la Universidad de Alicante. Ante la posibilidad de que las secuencias descubiertas participaran en la división de copias del genoma, por aquellos años Mójica se dedicó a estudiar la influencia de las TREPs en la topología del ADN, es decir, su forma.

De vuelta en Alicante, comenzó a examinar y comparar los genomas de otros microbios. En 2000, Mójica y sus colaboradores describían la identificación de estas secuencias en una veintena de especies. En aquel estudio proponían un nuevo nombre: Repeticiones Cortas Regularmente Espaciadas, o SRSRs. Aún sin pistas claras sobre su función: «Surge la pregunta sobre si las SRSRs tienen una función común en procariotas [bacterias y arqueas], o si su presencia es un resto de secuencias antiguas y su papel se diversificó a lo largo de la evolución», escribían.

Por entonces estas secuencias ya captaban la atención de los microbiólogos. Otros investigadores descubrían secuencias SRSRs en diferentes especies y localizaban además genes funcionales próximos a ellas, a los que se les suponía una función relacionada con estas estructuras. En 2002, un equipo de la Universidad de Utrecht (Países Bajos) publicaba un estudio que rebautizaba las SRSRs como Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas, o CRISPR, además de identificar estos Genes Asociados a CRISPR, o genes cas.

En el estudio, y esto es importante, Ruud Jansen y sus colaboradores escribían: «Cada miembro de esta familia de repeticiones ha sido designado de forma diferente por los autores originales, llevando a una nomenclatura confusa. Para reconocer la reunión de esta clase de repeticiones como una familia y evitar nomenclatura confusa, Mójica y colaboradores y nuestro grupo hemos acordado utilizar en este estudio y en futuras publicaciones el acrónimo CRISPR». Según trascendió después, fue el propio Mójica quien sugirió la nueva designación, pero esta apareció por primera vez en un estudio firmado por un equipo holandés.

Fue a continuación cuando llegó el gran salto cualitativo. En 2003 Mójica decidió cambiar el foco: en lugar de investigar las secuencias repetidas, las que habían permitido identificar las CRISPR, se preguntó qué demonios pintaban allí los fragmentos que las separaban, y que eran diferentes de unos microbios a otros. Y al estudiar un espaciador de una bacteria E. coli, descubrió que era idéntico a un trozo del genoma de un virus que infecta a esta bacteria, llamado fago P1. Pero con una peculiaridad: la E. coli que llevaba aquel separador era inmune al fago P1.

Este fue el eureka. Y este es el verdadero mérito que hace a Mójica merecedor del Nobel: al estudiar otros varios miles de espaciadores, descubrió que en todos los casos se trataba de secuencias pertenecientes a virus bacteriófagos (que atacan a las bacterias) o a moléculas de ADN que saltan de unas bacterias a otras (llamadas plásmidos). Y que en todos los casos, las bacterias con aquellos espaciadores eran inmunes a los respectivos virus o plásmidos. Mójica había encontrado la función de los separadores y, por tanto, de las CRISPR: un sistema inmunitario adaptativo propio de las bacterias y arqueas.

La idea era genial. Y además, era cierta. Pero al principio nadie quería creerlo: el estudio de Mójica fue rechazado por la revista Nature sin siquiera revisarlo, y después por la revista PNAS, y luego por Molecular Microbiology, y por Nucleic Acid Research. Por fin en 2005 el estudio fue publicado por Journal of Molecular Evolution, pero no sin un largo proceso de revisión que duró todo un año.

Imagino lo que están preguntándose, y la respuesta es sí: para un grupo de cuatro científicos de la Universidad de Alicante, sin contar con las firmas de otros investigadores de instituciones más rimbombantes, es muy difícil publicar en Nature, aunque hayan descubierto la rueda. En ciencia también hay clases, y hay prejuicios.

Lo que sucedió luego ya no compete a este artículo: andando el tiempo, el sistema CRISPR sería aplicado por las investigadoras Emmanuelle Charpentier y Jennifer Doudna para crear un sistema de edición genómica (o corta-pega de fragmentos de ADN) preciso y precioso con el que ahora se plantean futuros logros como la curación de enfermedades genéticas, entre otras muchas aplicaciones de la que es, para todos sin excepción, la revolución genómica del siglo XXI. Charpentier y Doudna ganaron el premio Princesa de Asturias de Investigación 2015; pero sobre todo, recibieron los tres millones de dólares del Breakthrough Prize de Ciencias de la Vida.

¿Y Mójica?, se preguntarán. Pues bien: Mójica ha pasado como un completo desconocido hasta el pasado 14 de enero. Ese día, Eric S. Lander publicaba un artículo en la revista Cell titulado The Heroes of CRISPR (Los héroes de CRISPR). Lander escribía: «En los últimos meses, he buscado comprender la historia de CRISPR que se remonta a 20 años atrás, incluyendo la historia de las ideas y de las personas». Y también escribía que en 2003 Mójica era «el claro líder en el naciente campo de CRISPR». Y también: «El antes oscuro sistema microbiano, descubierto 20 años antes en unas salinas en España, era ahora el foco de números especiales en revistas científicas, titulares en el New York Times, start-ups biotecnológicas, y cumbres internacionales sobre ética. CRISPR había llegado».

¿Qué importancia tiene esto? La respuesta es: toda. Este es el empujoncito al que me refería más arriba. Sepan que Cell es la revista de biología más importante del mundo. Sepan que Eric Lander es profesor del Instituto Tecnológico de Massachusetts (MIT), fundador del Instituto Broad del MIT y Harvard, codirector del Proyecto Genoma Humano y copresidente del Consejo Asesor de Ciencia y Tecnología del presidente Barack Obama. En resumen, Eric Lander es algo muy parecido a lo que solemos llamar Dios.

Y la palabra de Dios ha obrado su milagro. Traigo aquí una curiosa comparación por cortesía de la máquina del tiempo de internet, Wayback Machine. El 13 de diciembre de 2015, la entrada en la Wikipedia sobre CRISPR contaba la historia de esta tecnología haciendo una breve referencia al trabajo de Mójica, pero sin mencionar para nada su nombre. Un mes después, el 14 de enero, esta misma entrada ya incluía el nombre de Mójica, destacando además que fue él quien propuso el nombre de CRISPR. Desde la publicación del artículo de Lander, el nombre de Mójica ya aparece ampliamente ligado al descubrimiento de CRISPR, y los medios españoles se han volcado en destacar su figura y su contribución.

En resumen: ¿Habrá un premio Nobel para CRISPR? Sin duda; tal vez no este año, pero más tarde o más temprano. ¿Será Mójica uno de los premiados? Es difícil apostar. Lander ha conseguido que el nombre de Mójica pueda cotizar en el mercado de los Nobel, pero aquí solo he contado una parte de la historia: lo cierto es que hay otros investigadores con una relevante implicación en el camino de CRISPR.

El premio Nobel se concede como máximo a tres investigadores; Charpentier y Doudna parecen seguras, pero el tercer nombre podría estar en disputa. Al menos otro científico, el francés Gilles Vergnaud, llegó a la misma conclusión que Mójica sobre la inmunidad de las bacterias al mismo tiempo y de forma independiente, aunque su estudio se publicó un mes más tarde, y ya con el nombre de CRISPR acuñado por el alicantino. Otro candidato sería Feng Zhang, del MIT, quien optimizó el sistema como herramienta genómica y lo aplicó por primera vez a células humanas.

Mójica parece un candidato más adecuado que Vergnaud al ser quien primero identificó las CRISPR como una marca común en un gran número de especies microbianas e intuyó para ellas un significado biológico que resultó correcto; de hecho, el nombre del francés ha sido omitido en la página de la historia de CRISPR en la web del Instituto Broad. En cambio, la rivalidad de Zhang es más dura, ya que el sistema CRISPR no sería hoy lo que es sin su contribución. Tal vez el próximo octubre tengamos la solución. Y quizá, Lander mediante, un Nobel español.

El ébola no mata, solo deja que otros maten

Si han seguido los artículos anteriores publicados aquí sobre el ébola y su primo asturiano, el lloviu, recordarán que dejé colgada una pregunta: ¿cómo mata el ébola? Mientras las maquinarias de los centros públicos de investigación y las compañías biotecnológicas trabajan a pleno gas para preparar un repertorio de fármacos y vacunas con los que salir al paso de la próxima epidemia de ébola (que llegará, no lo duden), aún seguimos sin comprender lo fundamental: por qué el ébola es tan agresivo con el organismo humano mientras que una variante suya muy parecida, el reston, apenas nos causa molestias. Y sobre el lloviu, solo tenemos una gran X.

El virus del Ébola, en una imagen coloreada de microscopía electrónica. Imagen de NIAID / Wikipedia.

El virus del Ébola, en una imagen coloreada de microscopía electrónica. Imagen de NIAID / Wikipedia.

El Virus de Inmunodeficiencia Humana (VIH) pronto reveló sus armas. Desde el principio se supo que era un virus linfotrópico, es decir, que infectaba a los linfocitos, y al neutralizar el sistema inmunitario específico permite que otros microorganismos patógenos se adueñen del organismo. En el sida no es el VIH el que mata; el virus se limita a desarbolar la inmunidad para que las infecciones oportunistas se encarguen de acabar el trabajo.

Por otra parte, sabemos que algunos de los síntomas asociados a infecciones virales no están provocadas por el patógeno, sino por nosotros mismos. La fiebre, por ejemplo, es una respuesta de nuestro propio organismo, que sirve para combatir el virus y al mismo tiempo nos alerta de que algo no va bien.

¿Qué hay del ébola? Parece bien establecido que el virus del ébola entra en las células a través de una cerradura en la superficie celular llamada NPC1, una proteína cuya función normal es participar en el tráfico interno del colesterol (aunque existe posiblemente una segunda vía de entrada, otra proteína llamada TIM-1 o HAVCR1). NPC1 existe en casi todos los tejidos humanos, lo que en principio convierte a la mayor parte de las células en posibles dianas del virus. Una vez que el ébola ha entrado, hace lo que todos los virus: hackea la maquinaria celular para reproducirse y fabricar nuevas copias de sí mismo, lo que resulta en la muerte de la célula.

¿Es esto suficiente para explicar los devastadores efectos del virus? Podría parecer que sí. Pero no olvidemos que, mientras ocurre todo esto, el organismo no asiste pasivo a su destrucción, sino que pone en marcha una potente respuesta inmunitaria. Sabemos que el ébola neutraliza algunos de estos procesos; ya he contado aquí que en los humanos derriba la primera línea de defensa, la respuesta innata, y además afecta gravemente a varios tipos de células de la respuesta específica, lo que deja al sistema inmune en cuadro. Pero sabemos que el VIH destruye el ejército inmunitario y, sin embargo, las infecciones asociadas al sida tardan varios años en provocar el colapso del organismo.

Paradójicamente, y a pesar de que el ébola se considera un virus inmunosupresor, al mismo tiempo es capaz de disparar una potente respuesta inmunitaria, que continúa activa incluso cuando el virus ya ha desaparecido en los pacientes que logran curarse. Cuando las células muertas descargan su contenido, y las células encargadas de regular la respuesta inmunitaria se ven incapaces de contenerla, ocurre algo llamado tormenta de citoquinas: se produce una sobreactivación del sistema inmune que comienza a desestabilizar todo el sistema. Uno de los síntomas de la tormenta de citoquinas es que los vasos sanguíneos se hacen más permeables, lo que provoca hemorragias internas y externas; la presión sanguínea se desploma, el oxígeno no llega a los tejidos y se produce un fallo multiorgánico que lleva a la muerte.

Este cuadro tiene un nombre: choque séptico.

Si el ébola mata por un choque séptico causado por la tormenta de citoquinas, la conclusión es que el paciente muere debido sobre todo a la propia agresión del organismo, más que a la destrucción causada por el propio virus. La relación entre ébola y sepsis parece ya bien establecida, y algunos expertos sugieren que el tratamiento intensivo del choque séptico podría ayudar a combatir el progreso de la enfermedad (como aquí, aquí, aquí o aquí).

Pero tal vez esto tampoco sea todo. Hay casos descritos en los que la enfermedad del ébola se ha complicado con una sepsis provocada por bacterias (como este). Las infecciones por bacterias y hongos son típicas causas de choque séptico. En los pacientes de ébola, la permeabilidad de los vasos sanguíneos inducida por la tormenta de citoquinas puede permitir el paso a la sangre de bacterias que normalmente se encuentran en nuestras superficies expuestas o en nuestro intestino, donde no causan daño; pero si colonizan el organismo, pueden matarnos.

En resumen: al menos en algunos casos, la infección por el ébola puede abrir la vía a otra infección secundaria por bacterias, y esta podría ser una causa adicional del desastre que lleva al paciente al fallo multiorgánico y a la muerte.

Este puede ser un factor clave en la enfermedad del ébola, más importante de lo que hasta ahora podía sospecharse. Así se deduce de un estudio elaborado por la compañía bioinformática española Era7, con sede en Granada. Los investigadores han analizado las secuencias genéticas publicadas a partir de 99 muestras de suero de pacientes afectados por ébola, y han encontrado firmas genéticas bacterianas absolutamente en todas ellas, las 99; todos los pacientes tenían su sangre invadida por bacterias.

Los perfiles genéticos bacterianos hallados por Era7 en las muestras de los pacientes incluyen tipos comunes en los humanos como estreptococos, estafilococos, seudomonas, clostridios, bacilos o proteobacterias. Y curiosamente, en muchos casos se trata de especies no cultivadas, motivo por el cual algunos tests de infección bacteriana en pacientes de ébola podrían no haber detectado nada.

El estudio incluye otros indicios muy interesantes; por ejemplo, en algunos casos parece que el progreso de la enfermedad se relaciona más con la gravedad de la invasión bacteriana que con la carga viral del propio ébola. Los autores sugieren que esta infección secundaria podría tener un peso insospechado hasta ahora en la enfermedad. Y de ser así, abriría una nueva vía para el tratamiento del ébola, ya que contra las bacterias sí disponemos de buenas armas: los antibióticos.

Los resultados de Era7 aún son preliminares, y deberían completarse con controles adecuados que excluyan la posibilidad de contaminación de las muestras. Por el momento, un primer borrador del estudio está disponible en la web de prepublicaciones bioRxiv. Si los resultados se confirman, podrían representar un avance significativo en el conocimiento de la enfermedad del ébola y una pista muy prometedora para diseñar nuevos protocolos de tratamiento.

Los murciélagos, superinmunes al ébola (¿y al lloviu?)

Esta semana escribía aquí sobre el lloviu, un primo cercano del ébola descubierto en cadáveres de murciélagos en una cueva asturiana. Contaba también la paradoja de cómo dos virus tan similares parecen afectar a especies distintas de manera muy diferente: el ébola nos mata pero es inocuo para los murciélagos, mientras que la hipótesis sobre el lloviu (todavía sin ninguna prueba) es que podría aniquilar a estos últimos.

El zorro volador negro, 'Pteropus alecto'. Imagen de Wikipedia.

El zorro volador negro, ‘Pteropus alecto’. Imagen de Wikipedia.

Sobre sus posibles efectos en humanos aún no se conoce absolutamente nada, salvo la ausencia de casos autóctonos de fiebre hemorrágica en España (sin que la ausencia de prueba sea prueba de ausencia). Es decir, que en España, Portugal y Francia, países donde se hallaron los miles de murciélagos muertos que motivaron el hallazgo del lloviu, no se sabe de nadie que haya enfermado gravemente después de visitar una cueva.

Muy oportunamente, esta misma semana la revista PNAS ha publicado un estudio que podría resolver esta paradoja y ayudarnos a comprender por qué los murciélagos son inmunes al ébola y a otro centenar de virus que transportan sin inmutarse, muchos de los cuales son letales para nosotros. Y de paso, este avance abre una nueva vía de estudio de los posibles efectos del lloviu.

Debo comenzar explicándoles qué es el interferón. Sin duda han oído hablar de que nuestro sistema inmunitario reacciona específicamente contra los patógenos que nos invaden, y guarda memoria de la identidad de estos atacantes. En esto se basa la eficacia de las vacunas: el organismo recuerda agresiones pasadas y mantiene un arsenal de reserva preparado y adaptado para responder de nuevo contra esos invasores si se les ocurre volver a aparecer.

Pero por delante de esta inmunidad específica, existe una primera línea de defensa llamada respuesta inmune innata. Esta es la fuerza de intervención rápida, la que se dispara de forma inmediata a una infección y que no es específica ni adaptada al patógeno concreto. Entre los mecanismos de este sistema innato se encuentra un grupo de moléculas llamadas interferones, cuya función es dar la señal de alarma y poner en marcha otra serie de respuestas, incluyendo las específicas.

Hay tres tipos de interferones, I, II y III, que a su vez tienen subtipos: los humanos tenemos cinco de tipo I, designados con las letras griegas alfa, beta, épsilon, kappa y omega. Y a su vez, tenemos hasta 12 o 13 interferones alfa; todo ello suma, que conozcamos hasta ahora, una veintena larga de interferones humanos.

Sin embargo, los murciélagos solo tienen tres interferones alfa, más o menos la cuarta parte que nosotros. De hecho, es el mamífero conocido hoy con menos variedad de interferones. Esto es lo primero que revela el nuevo estudio, en el que un grupo de investigadores de Australia y Singapur ha analizado el repertorio de interferones del zorro volador negro (Pteropus alecto), un murciélago frugívoro australiano.

Lo segundo que hemos sabido gracias al estudio es que estos tres interferones alfa de los murciélagos están activos siempre, haya o no infección, a diferencia de lo que ocurre en otras especies. Estos animales están en un continuo estado de guerra contra los virus. Y según los autores del estudio, esta superinmunidad podría ser la causa de que los murciélagos sean capaces de llevar dentro de sí virus peligrosos como el ébola sin sucumbir a ellos, manteniéndolos siempre a raya mediante comandos de interferón siempre desplegados sobre el terreno.

Hasta aquí, todo suena perfecto. Pero mi reacción al leer los resultados de este estudio fue de sorpresa, ya que precisamente el trabajo que comenté esta semana sobre el lloviu afirmaba que las proteínas de este virus y del ébola bloqueaban el interferón alfa en las células de murciélago. De hecho, sus autores escribían que «las proteínas VP35 del ébola y el marburgo inhiben la producción de interferón alfa/beta» y que «la VP35 del lloviu bloquea la producción de interferón alfa/beta».

¿Dos estudios contradictorios? La solución llegó al releerme más detenidamente el primer trabajo. Los investigadores del Hospital Monte Sinaí de Nueva York dieron por hecho que la vía del interferón alfa estaba bloqueada porque las proteínas de los virus inhibían ciertos procesos que controlan la producción de este mediador inmunitario y otros que a su vez están controlados por él. Además, confirmaron que la infección anulaba la fabricación de interferón beta. Pero en cambio, no analizaron directamente la producción de interferón alfa, y por este pequeño agujero en el diseño experimental se les ha colado un error de bulto que no invalida sus experimentos, pero sí una de las conclusiones que extraen de ellos.

La codirectora del nuevo estudio, Michelle Baker, del CSIRO (el CSIC australiano), me confirma que esta es la explicación de la aparente discrepancia: los investigadores del Monte Sinaí «no incluyen datos que muestren la expresión de interferón alfa», señala. Y en cuanto a los procesos controlados por este mediador, «solo atendieron a uno, y hay muchos otros que también podrían revelar pruebas de la actividad del interferón alfa».

Baker resume: «Nuestros datos indican que al menos uno de los interferones alfa de P. alecto puede estar regulado de forma diferente que en otras especies». Así, esta podría ser la causa de que los murciélagos sean resistentes al ébola y a otros muchos virus que transmiten. Pero ¿qué ocurre con el lloviu? El virus se halló en cadáveres de murciélagos sin signos de ninguna otra anomalía que justificara sus muertes. Pero lo cierto es que tampoco se ha demostrado una relación, y Baker se aferra a este hecho: «Dado que solo se obtuvieron secuencias virales, y no se ha aislado el virus de los murciélagos muertos en España, solo podemos especular que el virus fuera la causa».

El siguiente paso sería entonces estudiar cómo afectan las proteínas del lloviu a la producción de interferón alfa en células de murciélago. Si el virus fuera capaz de tumbar la defensa innata de estos animales, apoyaría la posibilidad de que el lloviu fuera la causa de las muertes masivas. Pero aunque es arriesgado especular, sería raro que un virus tan similar al ébola lograra algo que el propio ébola no consigue. Y si el efecto de ambos sobre el interferón alfa de los murciélagos fuera el mismo, seguiríamos a oscuras sobre la relación entre el lloviu y las muertes.

Pero ¿y si…? Suponiendo que así fuera, y que el lloviu lograra desarticular la primera línea de defensa de los murciélagos, y que esta fuera la causa de las muertes, entonces estaríamos ante un supervirus más potente que el ébola, el coronavirus MERS o el hendra. Y desde luego, de un virus que matase a los murciélagos (y del que se sabe que infecta células humanas) no sería lógico esperar nada bueno. ¿Algún voluntario para mirar qué le pasa al interferón de los murciélagos con las proteínas del lloviu?

El lloviu asturiano se parece cada vez más al ébola

En 2003 tres biólogos españoles publicaron un artículo dando cuenta del extraño hallazgo de miles de cadáveres de murciélagos en cuevas de España, Portugal y Francia. Esta repentina oleada de mortandad alertó a las autoridades españolas, que decidieron encargar una investigación dirigida por el Instituto de Salud Carlos III (ISCIII), laboratorio de referencia en enfermedades animales transmisibles a los humanos, o zoonosis.

Un murciélago de cueva 'Miniopterus schreibersii', especie en la que se descubrió el virus de Lloviu. Imagen de Wikipedia.

Un murciélago de cueva ‘Miniopterus schreibersii’, especie en la que se descubrió el virus de Lloviu. Imagen de Wikipedia.

Las pruebas de rabia resultaron negativas. Pero cuando dos años más tarde se descubrió que los murciélagos actúan como reservorio del virus del Ébola (es decir, que sufren la infección sin verse afectados por ella, sirviendo como almacenes y distribuidores del virus), el entonces jefe del laboratorio competente del ISCIII, Antonio Tenorio, tuvo la luminosa inspiración de comparar el material genético extraído de los cadáveres de murciélagos de la cueva asturiana de Lloviu con las secuencias del virus. Y el resultado fue escalofriante: los murciélagos contenían algo que, en la parte analizada, era idéntico en un 75% al ébola. Según la clasificación actualizada en 2010 de la familia de los filovirus, un virus es ébola si se parece en más de un 50% a él.

Dado que España no cuenta con ninguna instalación de experimentación aprobada para manipular patógenos humanos que requieran un nivel de contención biológica 4, o NCB4 (perdónenme el circunloquio, pero es que es de risa que en los peores momentos de la crisis del ébola se liara en ciertos medios y blogs un tiquismiquismo terminológico sobre si tenemos NCB3+ que son casi-4 o que pueden funcionar como 4 según ciertos estándares pero no otros; aquí no hay laboratorios donde esté permitido trabajar con ébola, y punto), los científicos del ISCIII se aliaron con instituciones de EEUU para estudiar más a fondo lo que llevaban aquellos murciélagos.

El resultado, publicado en 2011, reveló que el virus era justo un pelo por encima del 50% diferente al ébola, más parecido a este que su primo más cercano conocido hasta entonces, el marburgo. Es decir, lo suficientemente distinto como para ponerle otro nombre, pero lo más parecido al ébola que se había descubierto jamás.

Así nació el virus de Lloviu, o LLOV. Actualmente la familia del ébola, los filovirus, se divide en tres géneros: Ebolavirus, con cinco especies (Zaire, Reston, Bundibugyo, Sudán y Taï Forest), Marburgvirus, con una especie y dos tipos (Marburg y Ravn), y Cuevavirus, con el asturiano como único representante.

A estas alturas, y para evitar que a ustedes se les erice el vello, debo aclarar que tanto la cueva de Lloviu como otras en las que se hallaron murciélagos muertos en España, Portugal y Francia están abiertas al público y son regularmente visitadas; y en ninguno de los tres países se conoce ningún caso de fiebre hemorrágica con posterioridad a la visita a uno de estos lugares. Aunque también conviene subrayar que tocar el cadáver de un murciélago (o para el caso, cualquier otro cadáver) nunca es una buena idea. Pero por responder a las preguntas que tal vez les estén surgiendo:

¿Causó el virus de Lloviu las muertes de los murciélagos? No se sabe.

¿Podría el lloviu causar alguna enfermedad en humanos? No se sabe.

¿Todos los parientes del ébola son igualmente fatales para los humanos? Esto sí se sabe, y la respuesta es que no.

Esto último es realmente peculiar, y da idea de lo mucho que se desconoce todavía sobre cómo el ébola y otros filovirus provocan una catástrofe en el organismo. De los cinco ebolavirus conocidos, cuatro de ellos causan fiebre hemorrágica en humanos. El quinto, el virus de Reston, parece ser completamente inofensivo para nosotros, mientras que es letal para los primates no humanos. Y sin embargo los dos marburgvirus conocidos, marburgo y ravn, más diferentes del ébola que el reston, son incluso más mortales para humanos y monos que el propio ébola. Y al menos varios de estos virus infectan a los murciélagos sin provocarles ningún síntoma aparente. ¿Por qué todo esto?

Hay una respuesta larga y otra corta. La corta: no se sabe.

Sobre cómo el ébola mata ya hablaré otro día; hay indicios interesantes, que sin embargo aún no acaban de explicar de forma clara y cristalina por qué este virus es capaz de descomponernos por dentro mientras que otros muy similares no llegan ni a despeinarnos (una pista: no es el virus). Pero de momento, lo único que los científicos pueden hacer para estudiar hasta qué punto el lloviu podría representar una amenaza para nosotros es investigarlo en el laboratorio.

El problema es que aún nadie ha logrado aislar el lloviu para infectar células en cultivo o animales de experimentación. De hecho, y a pesar de que la existencia del virus se conoce ya desde hace cinco años, aún apenas se ha publicado una docena de estudios. Por ello, lo único que ahora puede hacerse es fabricar partes sueltas del virus, a partir de su secuencia genética conocida, y analizar hasta qué punto lo que hacen estas partes sueltas en cultivos celulares se parece a lo que hace el ébola.

Y hasta ahora, esa similitud es total. Como ya conté aquí, parece que el lloviu es capaz de infectar células de humanos y monos por el mismo proceso que el ébola. Ahora el último estudio sobre el virus asturiano, publicado en la revista Virology por dos investigadores de la Facultad de Medicina del Hospital Monte Sinaí de Nueva York, revela un nuevo parecido entre ambos. Ya se sabía que tanto el ébola como su primo el marburgo cortan una serie de respuestas inmunitarias antivirales, lo que facilita su invasión del organismo. Sin embargo, estos dos patógenos humanos utilizan estrategias ligeramente diferentes para hacerlo.

Los científicos del Monte Sinaí han estudiado si el lloviu provoca este tipo de bloqueo inmunitario en células humanas y de murciélago en cultivo (dado que el lloviu aún no ha podido aislarse, lo han hecho empleando otro virus al que disfrazan con las proteínas del asturiano). Y el resultado es que sí, lo hace, y que lo hace como el ébola, no como el marburgo. Es decir, que una presunta infección por lloviu en un ser humano atacaría el sistema inmune del mismo modo que lo hace el ébola.

¿Es este un nuevo indicio de que el lloviu podría provocar en humanos una enfermedad similar a la del ébola? Pues lo cierto es que no, y estos últimos resultados no hacen sino enturbiar aún más nuestra comprensión de cómo actúa el ébola. La clave está en lo siguiente: los investigadores han descubierto que el bloqueo inmunitario provocado por el ébola en células humanas también ocurre del mismo modo en células de murciélago, algo que no se sabía hasta ahora. Sin embargo, se supone que estos mamíferos pasan la infección por el ébola sin síntomas graves. Y aunque aún se trata de una conjetura, se presume que el lloviu mata a los murciélagos. O sea, que dos virus capaces de actuar de manera idéntica en dos especies diferentes afectan a ambas de forma muy distinta. ¿Por qué? Ya lo han adivinado: no se sabe.

En resumen y como conclusión del estudio, hay algo que sí puede afirmarse: que la respuesta inmunitaria humana no sería un obstáculo para la infección por lloviu, como no lo es en el caso del ébola. Pero también que esta respuesta no es la responsable de que los murciélagos sean inmunes al ébola, ya que estos animales sufren el mismo bloqueo inmunitario que los humanos. Así que, como escriben los investigadores en su estudio, «aún no se puede determinar si el lloviu supondría una amenaza para los humanos».