Entradas etiquetadas como ‘biología sintética’

Teleinvasión biológica: imprimir seres vivos a distancia en otros mundos

El otro día adelanté que les contaría otra fantasía sobre teleinvasiones, palabra que designa una invasión alienígena a distancia sin que los invasores estén presentes en persona, o en lo que sea, sobre el terreno del planeta invadido.

Como les expliqué, un concepto hoy plausible es el de emplear máquinas teledirigidas; tan plausible que ya se utiliza para nuestras invasiones locales, mediante drones y otros aparatos controlados a distancia. Un paso más allá será recurrir a máquinas inteligentes capaces de tomar sus propias decisiones, no necesariamente más crueles e inhumanas que las de un comandante de carne y hueso, como demuestran las pruebas que es innecesario citar.

Pero imaginen lo siguiente, y explótenlo si les apetece para escribir una historia: la población mundial está siendo exterminada por un extraño y letal patógeno, cuyo análisis revela que no se trata de un microorganismo natural terrestre. Cuando los epidemiólogos rastrean el patrón de propagación en busca del foco inicial, encuentran que no se localiza en una zona densamente poblada, sino muy al contrario, en una región extremadamente remota, desde la cual el patógeno ha podido propagarse por la circulación atmosférica. Cuando una expedición llega al lugar, encuentra un artefacto de procedencia desconocida. Al estudiarlo, los científicos descubren que no es una nave, sino una fábrica automatizada: un sintetizador biológico que ha creado el agente invasor a partir de materias primas moleculares. Los expedicionarios destruyen el aparato, pero ya es demasiado tarde para la humanidad. Mientras, los seres que enviaron la máquina esperan a que se complete la limpieza de su nuevo hogar.

¿Pura fantasía? Hoy sí. Pero sepan que el primer prototipo de una máquina controlable a distancia y capaz de crear un patógeno a partir de componentes moleculares básicos ya existe. Se llama Convertidor de Digital a Biológico (DBC, en inglés), se ha descrito hace pocas semanas en la revista Nature Biotechnology, y se ha utilizado ya para fabricar un virus de la gripe A H1N1 y un virus que infecta a las bacterias llamado ΦX174.

Este es el aspecto del prototipo del DBC. Imagen de Craig Venter et al. / Nature Biotechnology.

Este es el aspecto del prototipo del DBC. Imagen de Craig Venter et al. / Nature Biotechnology.

El autor de este prodigio es el biólogo, empresario y millonario J. Craig Venter, en su día artífice del Proyecto Genoma Humano en su rama privada, y uno de los líderes mundiales en el campo de la biología sintética. Entre sus últimos logros figura, en marzo de 2016, la creación de una bacteria con el genoma artificial mínimo necesario para la vida, que conté aquí.

Venter lleva unos años trabajando en torno a la idea de lo que él mismo llama “teletransporte biológico”, aunque la denominación puede ser engañosa, dado que lo único que se transporta en este caso es la información. El DBC puede recibir a distancia, por internet o radio, una secuencia genética o la secuencia de aminoácidos de una proteína. Después la máquina imprime la molécula utilizando sus componentes básicos. Tampoco “imprimir” es quizá el término más adecuado, pero Venter lo emplea del mismo modo que hoy se usa para hablar de impresión en 3D. En lugar de cartuchos con tinta de colores, el DBC utiliza depósitos con los ladrillos del ADN: adenina (A), guanina (G), timina (T) y citosina (C).

El DBC es todavía un prototipo, una máquina formada por piezas sueltas. Pero funciona, y ya ha sido capaz de imprimir cadenas de ADN y ARN, proteínas y partículas virales. Y naturalmente, más allá del argumento fantástico de la teleinvasión biológica, todo esto tiene un propósito. Pero sobre el ruido de fondo del rasgado de vestiduras de los anticiencia, déjenme hundir una idea hacia el fondo: el primer propósito de la ciencia, y el único necesario para justificarla, es el conocimiento, porque el conocimiento es cultura.

Pero sí, hay aplicaciones prácticas. La idea que inspira la biología sintética es dominar la creación de la vida para obtener beneficios de una manera mejor que la actual, o que simplemente no son alcanzables de otro modo. Los microorganismos sintéticos pueden descontaminar el medio ambiente, fabricar energía o compuestos de interés, como medicamentos, alimentos, productos industriales o vacunas.

Volviendo al DBC, Venter imagina un futuro en el que estas máquinas estarán repartidas por el mundo para fabricar, por ejemplo, vacunas o fármacos. Ante una futura pandemia, y una vez que se logre obtener un remedio, no será necesario transportarlo a todas las zonas afectadas; bastará con transmitir las instrucciones a los DBC, y estos se encargarán de producirlo in situ.

Hasta aquí, tal vez algún lector biólogo replicará que los sintetizadores de oligonucleótidos existen desde hace décadas, aunque necesiten un operador humano para introducir las órdenes. Noten la diferencia, más allá de que antes se hablaba de “sintetizar” y hoy de “imprimir”: el DBC no solo crea cadenas cortas de ADN o ARN, sino genomas sencillos completos y proteínas, y los ensambla en partículas funcionales, todo ello sin que un humano esté presente. Pero el verdadero salto viene de las posibilidades futuras de esta tecnología cuando se conjuga con otros trabajos previos en biología sintética: concretamente, la posibilidad de imprimir microbios con genomas sintéticos diseñados a voluntad.

Venter es un tipo propenso a mirar de lejos que no se ha resistido a fantasear con la futura evolución de esta tecnología. Y uno de sus posibles usos, dice, sería producir microbios en Marte capaces de modificar el entorno para hacerlo más habitable para el ser humano; es lo que se conoce como terraformación, y es una posibilidad que Venter ya ha discutido con otro genio visionario embarcado en el proyecto de fundar una colonia marciana, Elon Musk.

Aquí entramos de nuevo en el terreno de la ciencia ficción, pero en una que no es teóricamente imposible. Venter quiere llegar a obtener una “célula receptora universal”, una bacteria vacía similar a la que él rellenó con un genoma artificial, pero que sea capaz de aceptar cualquier secuencia genética que se le quiera implantar para hacer lo que uno quiera que haga, o… convertirse en lo que uno quiera que se convierta. Incluso, tal vez, en un humano.

Sí, sí, un humano. Esta es la idea lanzada por George Church y Gary Ruvkun, biólogos sintéticos de la Universidad de Harvard. Church, Ruvkun y otros piensan que es ilusorio e inútil tratar de viajar a otras estrellas, y que en su lugar la expansión de la humanidad por el universo se llevará a cabo enviando bacterias cargadas con el genoma humano y utilizándolas después para imprimir humanos en el destino elegido.

Al fin y al cabo, una célula es lo que dice su genoma; una célula A puede transformarse en otra célula B si se le insertan los genes de la célula B. Y así, célula a celula, creciendo, dividiéndose y diferenciándose, una sola célula acaba creando un organismo humano completo. Esto ocurre en cada gestación. Pero también ha ocurrido a lo largo de nuestra evolución desde que éramos bacterias (o arqueas).

De hecho, si podría ocurrir, ¿cómo podemos saber que no ha ocurrido ya? Esta es la idea de Adam Steltzner, ingeniero jefe del rover marciano Curiosity en la NASA. “Puede que sea así como nosotros llegamos aquí”, dice Steltzner. ¿Y si nosotros, todos, la vida en la Tierra, fuéramos el producto de un DBC que alguien trajo aquí hace miles de millones de años?

Drácula, Poe, el Kama Sutra y OK Go sobrevivirán al fin del mundo

No es que la música de OK Go sea de mi más especial predilección (como ya he manifestado aquí, mis preferencias suelen ir por otros sonidos), pero admiro lo que hacen estos cuatro tipos de Chicago. Adoro a la gente que camina en sentido contrario a los demás, a quienes se toman demasiadas molestias para algo que realmente no lo requiere, y a los que se enfrascan en algo anteponiendo la pasión al plan de negocio. Es decir, a quienes violan las tres leyes fundamentales del universo: la ley de la inercia, la ley del mínimo esfuerzo y la ley de la conservación de lo que sea.

Captura del vídeo de OK Go. Imagen de YouTube.

Captura del vídeo de OK Go. Imagen de YouTube.

Para quien aún no los conozca, explico que lo más distintivo de OK Go son sus vídeos. Entre tanta saturación de efectos digitales y realidad virtual, ellos se diferencian por organizar unas complejísimas coreografías reales, increíblemente sincronizadas, que a menudo se ruedan en un solo plano secuencia y que además en muchos casos juegan con la ciencia aplicada. Si les interesa descubrirlos, basta una simple búsqueda en YouTube. Pero hay un motivo para que hoy traiga aquí uno de sus clips, el de This Too Shall Pass.

Para este tema, organizaron un montaje al estilo de lo que en EEUU llaman una máquina de Rube Goldberg. Los que pasamos de los 40 tenemos aquí un equivalente cultural propio, los Grandes Inventos del TBO, cuyo principal artífice fue el dibujante catalán Ramón Sabatés.

Tanto Goldberg como Sabatés presentaban a un ficticio profesor (Lucifer Gorgonzola Butts en la versión americana, Franz de Copenhague en la española) que diseñaba unas complicadísimas máquinas cuyo resultado era una tarea muy tonta, fácilmente accesible por medios infinitamente más simples; por ejemplo, limpiar la boca con la servilleta. En el caso del vídeo de OK Go, el resultado final de su máquina es disparar un chorro de pintura a cada uno de los integrantes de la banda.

El motivo por el que hoy lo traigo aquí es que este clip de OK Go es el primer vídeo jamás codificado en forma de ADN. Ya he explicado aquí y en otros medios en qué consiste la codificación de archivos digitales en material genético: se diseña un sistema de conversión del código binario (unos y ceros) a las cuatro bases del ADN (A, T, G y C), se traduce el archivo deseado y se sintetiza una cadena de ADN con esa secuencia.

Y también he explicado por qué esta línea de investigación es interesante: los soportes digitales caducan rápidamente, bien porque se estropean, o bien porque aparecen otros formatos y soportes nuevos que dejan obsoletos a los antiguos. En cuanto a su conservación física, el ADN puede durar cientos de años, miles de años, incluso millones de años, según el sistema de almacenamiento elegido. Y en cuanto a su vigencia tecnológica, si de algo no cabe absolutamente ninguna duda es de que siempre vamos a seguir necesitando dispositivos de lectura de ADN. Las máquinas cambiarán, pero el ADN continuará siendo el mismo por los siglos de los siglos.

Entre los grupos de investigación que trabajan en esta línea se encuentra un equipo de Microsoft Research y la Universidad de Washington (EEUU). El pasado abril, los investigadores presentaron en un congreso la codificación de cuatro imágenes en forma de ADN. Ahora han anunciado un nuevo hito: la conversión a material genético de la Declaración Universal de los Derechos Humanos en más de 100 idiomas, los 100 libros de dominio público más descargados del Proyecto Gutenberg, la base de datos de semillas del proyecto Crop Trust y, claro está, el vídeo de OK Go en alta definición. En total, 200 MB; una ridiculez para los tamaños digitales, un gran salto para el almacenamiento en ADN.

Según Karin Strauss, la investigadora principal del proyecto en Microsoft, eligieron este vídeo de OK Go porque guarda paralelismo con el trabajo que ellos llevan a cabo. “Son muy innovadores y están reuniendo en su campo cosas diferentes de distintas áreas, y sentimos que estamos haciendo algo muy similar”.

Naturalmente, la codificación en ADN tiene sus inconvenientes, y siempre los tendrá. Tanto escribir como leer una secuencia genética es mucho más lento que escribir o leer un archivo binario, y más costoso. En general el sistema no se contempla como para un uso inmediato de los datos en dispositivos móviles, sino para crear repositorios a largo plazo. Pero a cambio, la densidad de información que puede alcanzar el ADN es 100 millones de veces mayor que las cintas magnéticas empleadas hoy en los grandes centros de datos: según los investigadores de Washington, los datos que llenarían todo el volumen de un hipermercado en formato electrónico caben en un terrón de azúcar si se traducen a ADN.

Pero sobre todo, su enorme ventaja es la durabilidad. Si algún día llegara ese fin del mundo que tantas veces hemos contemplado desde la butaca y del que tanto llevan advirtiéndonos, difícilmente se salvarían los datos digitales. Suelen decirnos que en el mundo existen muchas copias de toda la información que volcamos en la red, como estas palabras que estoy escribiendo. Pero ¿cuántas son “muchas”? ¿Decenas? ¿Centenas? ¿Millares, como mucho? Cada una de esas copias está escrita en un sofisticado y frágil soporte electrónico. ¿Cuántos de ellos se salvarían en caso de una catástrofe planetaria?

Como ha demostrado el investigador del Instituto Federal Suizo de Tecnología en Zúrich (ETH) Robert Grass, el ADN puede encapsularse en fósiles artificiales capaces de proteger la información que guardan durante miles o tal vez millones de años. El método consiste en encapsular la molécula en minúsculas bolitas de sílice de 0,15 milésimas de milímetro; es decir, granos de arena muy fina.

Hagamos una pequeña cuenta recreativa: según las compañías EMC Corporation e International Data Corporation, en 2020 el universo digital ocupará un total de 44 zettabytes (ZB), o 44.000 millones de terabytes (TB), o 44 billones de gigabytes (GB). La compañía Cisco calculó que un ZB ocuparía el mismo volumen que la Gran Muralla China. Tomando una cifra publicada para el volumen de la muralla de 34.423.725.600 pies cúbicos, o 974.771.357 metros cúbicos, tenemos que en 2020 el volumen total de datos digitales del planeta será de 42.889.939.708 metros cúbicos.

En forma de ADN, la densidad de almacenamiento es 100 millones de veces mayor, lo que nos daría un volumen de unos 429 metros cúbicos. La raíz cúbica de 429 es aproximadamente 7,5. Es decir, que en un cubo de arena de siete metros y medio de lado cabría, en forma de ADN, toda la información digital jamás producida desde el origen de la humanidad hasta 2020.

Y cuando se sintetiza ADN, no se fabrica una sola copia, sino millones. Playas y playas de nanocápsulas de sílice que conservarían todo lo que fuimos, durante millones de años. Por supuesto que, en caso de apocalipsis, deberíamos esperar a que los supervivientes reinventaran de nuevo la tecnología necesaria para leerlo. O a que otros lo hicieran por nosotros y así llegaran a saber quiénes fuimos.

Por si se lo están preguntando, en ese puñado de libros ya codificados para la eternidad solo hay uno de un autor español, y no es necesario que les aclare de cuál se trata. Pero lamento comunicarles que esta versión comienza así:

In a village of La Mancha, the name of which I have no desire to call to mind, there lived not long since one of those gentlemen that keep a lance in the lance-rack, an old buckler, a lean hack, and a greyhound for coursing. An olla of rather more beef than mutton, a salad on most nights, scraps on Saturdays, lentils on Fridays, and a pigeon or so extra on Sundays, made away with three-quarters of his income.

Antes de que nadie se lleve las manos a la cabeza, insisto en lo que he mencionado más arriba: son los 100 libros más descargados. El Proyecto Gutenberg también dispone de la versión original en castellano. Pero si el Quixote acumula más del doble de descargas que el Quijote, la culpa no es del Proyecto Gutenberg.

Y sí, están el Drácula de Stoker, La metamorfosis y El proceso de Kafka y (solo) dos de los cinco volúmes de las obras completas de Poe. Y Wells. Y Anna Karenina. Y Moby Dick. Y El corazón de las Tinieblas. Y El retrato de Dorian Gray. Y Madame Bovary. Ah, y el Kama Sutra, para que no se nos olvide nada. Personalmente, y si pudiera elegir, añadiría a Proust, La vida es sueño, algunas cosas de Hemingway, Fitzgerald, Steinbeck… Lovecraft… ¡Dinesen, claro!… Y los rusos… algo más de Verne… Y claro, todo el romanticismo español. Pero también Zola. Y Víctor Hugo. Qué difícil es elegir. Pero por razones que no vienen al caso, me gustaría poder volver a escuchar al menos la obertura de la Cavalleria Rusticana de Mascagni, el Moonriver cantado por Audrey Hepburn, November Rain de Guns N’ Roses, el Ecstasy of Gold/Call of Ktulu/Master of Puppets de Metallica, Janie Jones de los Clash y Ceremony de Joy Division. Y el Script of the Bridge completo de los Chameleons. Habría muchísimos más. Pero con esto creo que bastaría para entretenerme mientras espero el fin.

¿Qué es la vida? 473 genes

Chiste malo de biólogos:

–¿Qué se llevaría una bacteria a una isla desierta?

–473 genes.

Malo, porque no es gracioso y, además, hay que explicarlo. Cuatrocientos setenta y tres genes es, desde la semana pasada, el mínimo equipamiento necesario para la supervivencia de un organismo de vida libre. Aunque, de momento, dejemos lo de libre en cursiva.

La historia: el magnate de la biotecnología y científico estadounidense J. Craig Venter lleva años empeñado en la ambición de convertirse en el primer Victor Frankenstein celular de la historia. Así como el médico creado por Mary Shelley (de cuya concepción, por cierto, pronto se cumplirán cien años quiero decir, doscientos años, anda que, cómo estamos…) pretendía crear un ser nuevo a partir de piezas sueltas, Venter trata de hacer lo mismo con una célula. O poco más o menos. En realidad, lo que el científico pretende es fabricar un genoma sintético mínimo esencial y emplearlo para insuflar la vida a una célula sin ADN, vacía, técnicamente muerta (o quizá sería más apropiado no-muerta), tal y como Frankenstein infundía esa “chispa de ser” a su criatura.

Células de JCVI-syn3.0. Imagen de Thomas Deerinck y Mark Ellisman/NCMIR/UCSD.

Células de JCVI-syn3.0. Imagen de Thomas Deerinck y Mark Ellisman/NCMIR/UCSD.

Venter ha recorrido un largo camino para llegar a ello. Comenzó eligiendo la célula, la más pequeña que pudo encontrar: un micoplasma. Los micoplasmas son la pesadilla de los biólogos, ya que contaminan los cultivos celulares y pueden alterar los resultados de los experimentos, pero son tan pequeños que su presencia no se advierte al microscopio. Una célula de Mycoplasma genitalium, la especie elegida por Venter, mide de largo menos de la mitad que el virus del ébola.

El M. genitalium tiene solo 525 genes en un genoma de 580.070 pares de bases, las letras del ADN. Para que se hagan una idea, nuestro genoma mide unos 3.000 millones de pares de bases y contiene unos 20.000 genes. Venter y sus colaboradores crearon en 2008 el primer genoma sintético de M. genitalium, diseñado en un ordenador y fabricado uniendo químicamente las bases del ADN una a una, para luego pegar entre sí los fragmentos grandes en un sistema biológico, una célula de levadura.

En 2010 Venter y su equipo, en el que figuran los veteranos Hamilton O. Smith (Nobel en 1978) y Clyde A. Hutchison III, lograron esa “chispa de ser”, trasplantando un genoma sintético de 1,079 millones de pares de bases de M. mycoides a una célula vacía de otra especie, M. capricolum. El motivo de cambiar de M. genitalium a M. mycoides, cuyo genoma es mayor, fue práctico: esta segunda especie crece más deprisa, lo que acelera los experimentos.

Aquella primera versión recibió el nombre de JCVI-syn1.0, o versión sintética 1.0 del J. Craig Venter Institute. Pero sus 901 genes y su millón de pares de bases eran probablemente mucho más de lo realmente esencial para la vida, a juicio de los investigadores. Así comenzó el proceso de ir descartando genes hasta quedarse con ese equipamiento mínimo necesario para la supervivencia.

El primer intento fue infructuoso: Venter y sus colaboradores se quedaron con un ADN de 483.000 pares de bases y solo 471 genes, pero la criatura de Frankenstein no volvió a la vida. En el proceso de ir pelando el genoma del M. mycoides, habían roto algo vital. Vuelta a la pizarra, y a comenzar de nuevo.

Y así llegamos al momento presente. O mejor dicho, a la semana pasada, cuando quien suscribe, de vacaciones en la hermosa y rabiosamente verde Extremadura septentrional, se encontró en los papeles con JCVI-syn3.0, la nueva criatura de Venter publicada en Science que, esta vez sí, funciona: 473 genes en 531.000 pares de bases, un genoma sensiblemente más pequeño que el de M. genitalium.

¿Y esto para qué sirve?, es la primera pregunta. La respuesta clásica que verbalizan los biólogos sintéticos es que los organismos de diseño permitirán en el futuro producir fármacos o combustibles, o destruir contaminantes del medio, entre otras aplicaciones. Pero la respuesta que no verbalizan, por lo menos no ante quien pregunte “¿y esto para qué sirve?”, es que se trata de conocer: en la respuesta está la comprensión de ese extraño fenómeno que llamamos vida.

(Nota: claro que, para muchos biólogos sintéticos, el camino elegido por Venter tiene más de ciencia recreativa, o incluso de egolatría recreativa, que de biología sensata. Cuando el magnate comenzó este proyecto aún no existía el sistema de edición genómica CRISPR. Pero desde que existe CRISPR, hoy todo lo que Venter hace podría lograrse mucho más cabal y fácilmente juntando y tuneando piezas ya prefabricadas por la naturaleza.)

Y sobre esto de la vida, lo que nos revela el experimento de Venter es que estamos aún muy lejos de comprenderlo: de los 473 genes, hay 149 sobre los que no se tiene la menor idea de para qué diablos sirven.

Lo cual, en el fondo, no hace sino ilustrar una vez más que aún nos queda mucho por conocer de cómo funciona la biología. Tal vez se hayan quedado con la idea de que los organismos más aparentemente pequeños y sencillos tienen menos genes, y que el presunto rey de la evolución, el ser humano, con sus Mozarts y sus Einsteins, debería ostentar el récord genómico. Olvídense de esto: la pulga de agua Daphnia, un diminuto crustáceo, tiene unos 31.000 genes, un 50% más que nosotros. Claro que esto no es nada en comparación con el genoma del pino taeda del sureste de Estados Unidos: unos 20.148 millones de pares de bases, casi siete veces el humano, con más de 50.000 genes estimados. Y muy probablemente los hay aún mayores: el genoma de la planta japonesa Paris japonica, aún no secuenciado, podría llegar a los 150.000 millones de pares de bases.

En el otro extremo tenemos a la bacteria Carsonella ruddii con 159.662 pares de bases y solo 182 genes. Y aún más abajo, Nasuia deltocephalinicola, con 112.091 pares de bases y 137 genes. Otra bacteria, Tremblaya princeps, tiene un genoma ligeramente mayor que el de Nasuia, pero con solo 120 genes. Pero el pez globo de agua dulce Tetraodon nigroviridis tiene un genoma ridículo para un vertebrado, de unos 350 millones de pares de bases. ¿Y para qué demonios necesita la bacteria Solibacter usitatus un genoma de 9,9 millones de pares de bases?

Al comienzo hablé de la nueva bacteria de Venter como de vida libre, en cursiva. Lo cierto es que esta bacteria, aunque se reproduce de forma autónoma, no podría vivir fuera de las placas de cultivo. Los investigadores le han robado tantos genes que necesita un suplemento de ciertos nutrientes esenciales. Así que, en el fondo, es un organismo dependiente, como lo son Carsonella, Nasuia o Tremblaya, que solo pueden vivir en el interior de células de insectos en una simbiosis obligatoria. Y esto implica que, con toda probabilidad, la vida aún puede reducirse más allá de los 473 genes. Siempre, claro, que podamos seguir llamándola vida.

Resumiendo: ¿qué es la vida? No sabemos. Tal vez Calderón la definió mejor: una ilusión, una sombra, una ficción…

Feliz cumpleaños, Roy Batty, víctima de la singularidad biológica

Es imperdonable que hasta ahora se me haya escapado la coincidencia entre el cumpleaños de Roy Batty (Nexus-6) y los de Stephen Hawking, David Bowie, Elvis Presley y Alfred Russell Wallace; teniendo en cuenta, como vínculo personal con esta fecha, que un servidor también cayó sobre el mundo un 8 de enero.

Roy Batty, lágrimas en la lluvia. Imagen de Warner Bros.

Roy Batty, lágrimas en la lluvia. Imagen de Warner Bros.

Todo fan de la que para muchos es la mejor película de Ridley Scott (eufemismo para enmascarar que lo es para mí, tal vez junto con Alien) sabe que el propio Rutger Hauer reescribió el texto que Roy Batty debía recitar en esa secuencia final como himno a su propia muerte. Al hacerlo simplificó un original demasiado pomposo y añadió la frase más conocida e inmortal de aquel discurso, la de las lágrimas en la lluvia. También de su cosecha son las referencias de jerga: ni los Rayos C ni la Puerta de Tannhauser corresponden a ningún concepto físico o astronómico real; y que yo sepa, tampoco el actor holandés ha explicado nunca en qué se inspiró para elegir esos términos (más allá de la ópera de Wagner).

Pero la Puerta de Tannhauser y el monólogo del replicante no solo se han convertido en iconos de la cultura pop repetidos después en otras películas, cómics y videojuegos. Los propios científicos, a menudo criados a los pechos de la ficción, han rendido sus propios homenajes personales. Curiosamente, la prédica de Batty aparece en un par de centenares de estudios académicos y tesis doctorales; en muchos casos como simple cita de inspiración.

Pocos discutirían que Blade Runner reúne una amplia gama de argumentos para configurar una obra maestra extrañamente abierta, viva y palpitante; no hay muchos casos más en los que se hayan presentado tantas versiones alternativas y se haya debatido tanto sobre el significado de algunos de sus argumentos, hasta tal punto que incluso la identidad del principal personaje –Rick Deckard– está en entredicho; y esto es especialmente relevante porque determina hasta qué punto el héroe acaba villanizado en la misma medida en la que el villano resulta finalmente heroico.

Pero dado que este es un blog de ciencia, desde el punto de vista científico se podría decir que Blade Runner forma parte de un motivo argumental en el que Scott ha dado lo mejor de su carrera, no siempre regular. Suele decirse que la reflexión sobre la inteligencia artificial forma un hilo conductor en parte de la filmografía de Scott, incluyendo Blade Runner, Alien o Prometheus. Pero desde el punto de vista de un biólogo, esta cuestión tendría un enfoque alternativo: no es la inteligencia artificial; es la inteligencia que surge de forma natural como consecuencia del desarrollo de la biología sintética y la biónica.

Tanto en Blade Runner como en Alien y Prometheus se ha alcanzado el nivel tecnológico necesario para crear seres vivos sintéticos que no son robots, dado que tienen al menos una parte esencial biológica o biónica. De hecho, en Blade Runner son tan indistinguibles de los humanos reales que se requiere un dispositivo de análisis psico-fisiológico llamado Voight-Kampff para descubrir su verdadera naturaleza.

En biología estamos aún muy lejos de alcanzar semejantes cotas de desarrollo, pero podríamos adivinar que existen dos líneas de investigación destinadas a confluir en un punto intermedio. Por un lado, la biología sintética trata de construir seres elementales a partir de los bloques fundamentales de la vida, tales como macromoléculas u orgánulos. Una vez conseguida la célula, el siguiente hito sería el tejido, después el órgano, el sistema y el ser completo. Esta sería una línea de progreso de abajo arriba, que busca construir la complejidad desde lo simple. Pero en el extremo contrario existe otra dirección de arriba abajo que pretende reemplazar nuestra biología original por componentes biónicos o biológicos sintéticos; es decir, órganos o miembros creados por procedimientos artificiales, ya sea a partir de componentes vivos, de materia inerte o de una mezcla de ambos.

Los futuristas como Ray Kurzweil teorizan sobre el concepto de singularidad tecnológica, un posible momento futuro en el que la inteligencia artificial escapará a nuestro control al ser capaz de crear un circuito propio y retroalimentado de creación y mejora sin intervención humana. De la misma manera podríamos plantear la posibilidad de una singularidad biológica: sería el momento en el que los enfoques arriba-abajo y abajo-arriba de la biología sintética llegarían a encontrarse. Es decir, cuando un ser creado artificialmente fuera indistinguible de otro de origen natural profundamente modificado por procedimientos de ingeniería biológica.

Este es, en cierto modo, el dilema que plantea Blade Runner sobre el significado de nuestra humanidad: una vez alcanzada esa singularidad biológica, se borra la frontera entre lo que es realmente un ser humano y lo que no lo es. En una civilización que domina la biología sintética, los Nexus-6 son tan humanos como nosotros; Roy Batty es una víctima, y Deckard es el villano que se aprovecha de esa victimización. La misma situación se ha repetido históricamente cuando se trata de los otros: diferentes razas, procedencias, culturas o capacidades físicas o mentales. No cabe duda de que aún está muy lejano el día en que llegue esta singularidad biológica. Pero no está mal que vayamos pensando en ello.

Les dejo con la secuencia. Y frente a los puristas de las versiones originales, casi la mitad de este homenaje debería ir al gran Constantino Romero.

ADN, el disco duro del futuro (II)… que durará dos millones de años

Esta es la gran paradoja de la información en la era digital: es imposible borrar nuestro rastro en internet, por mucho que nos empeñemos en lograrlo. Y sin embargo, podemos perder fácilmente nuestros archivos para siempre a causa de un error o una avería. Es más: ningún soporte físico digital está concebido para durar más de medio siglo. Ni discos duros, ni CD, ni DVD, ni memoria flash. Ninguno.

En cambio, conservamos códices medievales que han perdurado cientos de años, y que perdurarán cientos de años más. Tenemos manuscritos que han sobrevivido durante milenios. ¿De qué sirve digitalizar las pinturas de Altamira, si la versión digital deberá cambiarse de soporte sucesivamente para que no desaparezca, mientras el original pervivirá sin que nadie lo toque (especialmente si nadie lo toca)? ¿Acaso creemos que al digitalizar una obra antigua la estamos perpetuando?

De todo lo anterior podríamos llegar a deducir que el soporte del futuro no es otro que el papel. ¿Sorpresa? ¿Absurdo?

Pero el papel puede mojarse, quemarse o ser pasto de los bichos. Una pequeña trampa en el argumento anterior es que, en realidad, se supone que solo conservamos una pequeña parte de todo el papel que jamás se ha escrito o impreso. La inmensa mayoría se ha perdido.

Lo cierto es que, para descubrir mejores soportes de información que el papel y la electrónica, nada mejor que echar una mirada a nuestro entorno natural. La tecnología actual nos permite acceder a información que la naturaleza ha preservado durante cientos de miles de años, en forma de ADN en huesos fósiles. El investigador del Instituto Federal Suizo de Tecnología en Zúrich (ETH) Robert Grass lo explica así a Ciencias Mixtas: “Los libros más antiguos que conocemos tienen más de 1.000 años, y los jeroglíficos se han almacenado en la piedra durante varios miles de años. Este es un plazo largo, pero todavía corto si lo comparamos con los datos que podemos construir a partir del ADN de huesos arqueológicos, que llega hasta los 700.000 años de antigüedad”. Grass se refiere al logro de un equipo de investigadores de la Universidad de Copenhague (Dinamarca), que en julio de 2013 publicó en Nature la secuenciación del genoma de un caballo del Pleistoceno a partir de un hueso conservado en el permafrost de Canadá durante más de medio millón de años.

Ilustración artística del uso de ADN fósil. Imagen de Philipp Stoussel / ETH Zurich.

Ilustración artística del uso de ADN fósil. Imagen de Philipp Stoussel / ETH Zurich.

Grass se planteó el reto de conseguir lo mismo por una técnica artificial; fabricar un fósil capaz de conservar ADN intacto durante tanto tiempo que los procedimientos actuales de almacenamiento de información a largo plazo quedaran ampliamente sobrepasados. La respuesta fue el cristal: encapsular el ADN en esferas de sílice de unos 150 nanómetros, 0,15 milésimas de milímetro. Una vez construidos estos fósiles, y para analizar su durabilidad, Grass y sus colaboradores incubaron las partículas durante un mes a 60 o 70 ºC, lo que simula la degradación química que sufrirían a lo largo de cientos de años. Una vez terminado el tratamiento, los investigadores extrajeron el ADN de su caparazón de arena empleando soluciones de fluoruro como las que se utilizan en el grabado químico, para finalmente leer las secuencias y comprobar su integridad.

A partir de sus resultados, y comparándolos con la dinámica de degradación del ADN en el hueso, los investigadores han estimado cuánto tiempo podrían sobrevivir las muestras siendo aún legibles. Según exponen en su estudio, publicado en la revista Angewandte Chemie, a las temperaturas de Zúrich el ADN se conservaría durante 2.000 años, que aumentarían hasta 100.000 en el lugar más frío de Suiza. Pero si las esferas de sílice se almacenaran en el Banco Mundial de Semillas de Svalbard, una instalación subterránea en Noruega que se mantiene a -18 ºC, el ADN podría durar “más de dos millones de años”, escriben los científicos.

Claro que todo esto no tendría sentido si no fuera para conservar información que podamos codificar a voluntad en el ADN. En mi anterior post expliqué la aproximación más rudimentaria al uso del ADN como lenguaje, traducir la secuencia a proteína y utilizar los aminoácidos como alfabeto de 20 letras. Pero este método solo permite codificar textos; para ampliar sus aplicaciones a cualquier tipo de información, es esencial emplear código binario, el idioma en el que se escriben los archivos digitales. Como conté anteriormente, un grupo de jóvenes investigadores chinos presentó un sistema en 2010, pero no es el único. Ya en 1996 se publicó un método ideado por un interesante personaje llamado Joe Davis, conocido como el “científico loco” del Instituto Tecnológico de Massachusetts (MIT).

Davis ha desarrollado su carrera a caballo entre el arte y la ciencia, siempre en la frontera de la originalidad y la innovación. En la década de 1980, tuvo la idea de introducir en una bacteria una obra de arte digitalizada. Para ello creó Microvenus, un símbolo rúnico que es también una representación simplicada de los genitales femeninos. Lo que Davis hizo fue inspirarse en el sistema empleado por Carl Sagan y Frank Drake en el mensaje de Arecibo, una señal de radio lanzada al espacio en 1974: convertir el gráfico en un panel de ceros y unos, y luego encadenar las líneas para transformarlo en un código lineal. Para ello, era necesario que las dimensiones del gráfico original fueran el producto de dos números primos, con el fin de que su reconstrucción en 2D fuera unívoca. A continuación, Davis tradujo el código binario en bases de ADN empleando una equivalencia con un sistema de compresión y añadiendo la clave al comienzo del mensaje.

El icono Microvenus y su codificación en ADN. Nótese que su traducción gráfica a código binario se realiza en un panel de 5x7, ambos números primos. Imagen de Joe Davis / JSTOR Art Journal.

El icono Microvenus y su codificación en ADN. Nótese que su traducción gráfica a código binario se realiza en un panel de 5×7, ambos números primos. Imagen de Joe Davis / JSTOR Art Journal.

La segunda gran aportación del estudio de Grass es un nuevo sistema de codificación que extiende y mejora la idea de Davis. El investigador del ETH y sus colaboradores han creado un método que toma los caracteres de un texto de dos en dos, pero tratándolos como si cada uno fuera un byte (ocho bits), lo que permite aplicarlo a cualquier tipo de archivo digital. El siguiente paso es transformar el conjunto de dos bytes en base 256 (256²=65.536) en un triplete en base 47 (47³=103.823). ¿Y por qué en base 47? Muy sencillo: es necesario asignar a cada triplete de ADN (ver mi post anterior) un número distintivo para hacer la conversión. Como secuenciar y leer cadenas de ADN con muchas bases repetidas (como GGGGGGGGGG o TTTTTTTTTTT) aumenta las posibilidades de error, los científicos se quedaron solo con los tripletes en los que la segunda y la tercera base son distintas; así, AAC es válido, pero CAA no. De este modo, reducen las repeticiones a un máximo de tres: AAC CCG. Con esto, de los 64 tripletes posibles (variaciones con repetición de cuatro elementos tomados de tres en tres), se quedan solo con 48. Pero como el campo bidimensional de valores debe basarse en un número primo, eligieron el más próximo, 47.

Así, cada par de caracteres o bytes queda transformado en un trío de números del 0 al 46, los cuales a su vez se corresponden con tripletes de ADN. Pero para corregir los errores debidos a la degradación del ADN, la síntesis o la lectura, los investigadores introdujeron redundancias de datos mediante códigos de Reed-Solomon, herramientas muy utilizadas, por ejemplo, en comunicaciones espaciales y en la grabación de soportes digitales como discos duros y CD. Para entender cómo funcionan estos códigos, podemos pensar en los bits de paridad empleados antiguamente para transmitir código ASCII; un carácter ASCII se codifica en siete bits binarios (0/1), pero solía introducirse un octavo bit, llamado de paridad, que tomaba el valor de 0 o 1 según la suma del resto de bits iguales a 1 fuera par o impar. De este modo, se incorporaba un valor de comprobación para detectar errores en la transmisión. Otro ejemplo es el dígito de control de los números de las cuentas bancarias. Los códigos Reed-Solomon son más complejos, pero se inspiran en un principio similar.

Empleando este sistema, los científicos codificaron dos textos, la versión en latín del Pacto Federal de 1291 que daba forma a la primera confederación suiza, y la traducción inglesa de El Método de los teoremas mecánicos perteneciente al Palimpsesto de Arquímedes. Tras la síntesis del ADN codificado, su encapsulación en sílice y el tratamiento térmico, los investigadores encontraron cierto grado de degradación del ADN, pero los códigos Reed-Solomon funcionaron a la perfección para corregir los errores. “Por primera vez, mostramos en experimentos reales que formando fósiles artificiales alrededor de nuestra muestra de ADN, y añadiendo esquemas de corrección de errores a la información almacenada en el ADN, este almacenamiento a largo plazo es posible en la práctica”, concluye Grass.

Los científicos están pensando ya en aplicar su sistema a gran escala. “Estamos concibiendo la creación de una biblioteca de información digital para almacenamiento a largo plazo, pero por el momento es todavía un sueño, y requerirá dinero”, apunta Grass. Sin embargo, otras utilidades no resultan tan lejanas: los investigadores han ensayado el sistema para añadir cápsulas magnéticas fósiles de ADN a modo de marcas de agua genéticas o etiquetas de autenticidad en productos como gasolina, aceites cosméticos o aceite de oliva. Las partículas, que son inalterables y solo pueden retirarse mediante imanes en instalaciones especializadas, introducen un sistema de código de barras genético que sirve para evitar falsificaciones y perseguir el contrabando.

ADN, el disco duro del futuro

Emplear el ADN de un organismo vivo para guardar información ajena a su función biológica no es ciencia-ficción; ya se ha hecho. La bioencriptación es una de las líneas de investigación más innovadoras y divertidas de la biología molecular, pero con claras aplicaciones prácticas. Y es uno de esos ejemplos fronterizos de Ciencias Mixtas que tan bien encajan aquí. Además de ser un tema irresistible para fantasear sobre los avances futuros de la tecnología y cómo cambiarán el mundo que conocemos.

Para explicar cómo, empecemos dejando sentado algo evidente: el ADN es un código. Siempre que hablamos de genes o genomas, nos referimos a ristras de letras (más propiamente, bases) como aquella que daba título a una magnífica película: GATTACA. En este caso, se trata de una secuencia formada por Guanina-Adenina-Timina-Timina-Adenina-Citosina-Adenina. Este ejemplo comprende los cuatro tipos de bases que forman el ADN: G, A, T y C. Para convertir una cadena de ADN a proteína, el producto de los genes, existe una maquinaria celular que lleva a cabo un proceso de transcripción y traducción. En esta última, las bases de ADN se leen de tres en tres, formando tripletes llamados codones. Cada uno de estos tripletes se traduce en un aminoácido, los eslabones de las proteínas. Por ejemplo, en el título de la película tendríamos dos tripletes, GAT-TAC, y nos olvidamos de la A suelta. GAT corresponde al aminoácido llamado ácido aspártico, y TAC se traduce como tirosina.

La secuencia del ADN se puede utilizar para cifrar y conservar mensajes. Imagen de Miki Yoshihito / Flickr / CC.

La secuencia del ADN puede utilizarse para cifrar y conservar mensajes. Imagen de Miki Yoshihito / Flickr / CC.

Por simple combinatoria, las variaciones con repetición de cuatro elementos tomados de tres en tres nos dan un total de 64 codones posibles, pero las proteínas solo están formadas por 20 tipos de aminoácidos distintos. Lo que ocurre es que en muchos casos la tercera base del triplete no influye en la traducción: GCA, GCT, GCC y GCG tienen un mismo significado común, el aminoácido alanina.

Así, cualquier clase de información podría traducirse sobre el papel a una secuencia de ADN con solo inventar un código de equivalencias. La forma más sencilla es utilizar como alfabeto los 20 aminoácidos, dado que cada uno de ellos se abrevia por una letra: el ácido aspártico es D, la tirosina es Y y la alanina es A. El problema es que así obtenemos un alfabeto incompleto en el que faltan las consonantes B, J, X y Z, pero sobre todo dos vocales, O y U.

A pesar de las limitaciones de este sistema, se ha empleado ya para el fin último de todo este tinglado: convertir la secuencia de ADN sobre el papel en una molécula real que conserve el mensaje introducido y que luego pueda ser descodificada. El ejemplo más conocido es el del magnate de la biotecnología J. Craig Venter, que en 2008 incluyó secuencias codificadas en la recreación sintética del genoma de una bacteria llamada Mycoplasma genitalium; entre ellas, su propio nombre: CRAIGVENTER, pero también citas del escritor irlandés James Joyce y de los físicos Richard Feynman y Robert Oppenheimer. Además de su lado recreativo, estas etiquetas genéticas se emplean con un propósito, imprimir una especie de marcas de agua para diferenciar los genomas manipulados. Por ello es una práctica habitual en la producción de organismos transgénicos.

Pero el del alfabeto incompleto no es el único ni el mayor problema de utilizar el código de traducción a proteínas. Por un lado están los errores; los hay en la escritura (síntesis del ADN diseñado) y en la lectura (secuenciación del ADN producido según el diseño), y este sistema no es lo suficientemente robusto para evitarlos. Y lo que es peor, si estos mensajes se incluyen en el genoma de una bacteria como secuencias inertes, fuera de los genes reales que la célula utiliza, la evolución y sus mutaciones irán desfigurando el texto original a lo largo de las generaciones sucesivas hasta un momento en que se volverá ilegible. Por otra parte, el sistema de proteínas es adecuado para cifrar mensajes de texto, mientras que lo ideal sería emplear un código binario que aceptara cualquier tipo de archivo digital.

En 2010, un equipo de investigadores de la Universidad China de Hong Kong presentó un nuevo sistema de bioencriptación en el concurso de biología sintética iGEM del Instituto Tecnológico de Massachusetts. El diseño de los científicos chinos consistía en transformar el texto en caracteres ASCII, que se representan mediante siete bits binarios (0/1). Así, este sistema acepta cualquier tipo de archivo en formato digital. En su día calculé que el método permitiría codificar el texto completo de la Constitución Española en 139.262 bases de ADN, que se repartirían entre 175 bacterias. Los autores del trabajo aportaban el dato de que todos los archivos que caben en 450 discos duros de 2 terabytes podrían almacenarse en solo un gramo de bacterias. Otras estimaciones han propuesto que en medio kilo de ADN podría codificarse toda la información jamás grabada en los ordenadores de todo el mundo. Y todo a prueba de hackers.

Evidentemente, desde el concepto teórico hasta el día en que podamos grabar un vídeo en el genoma de una población de bacterias y luego reproducirlo en un secuenciador-reproductor habrá que saltar unos cuantos abismos tecnológicos. Pero como contaré mañana, el ADN puede esperar. Miles de años, si hace falta.

Continuará…