BLOGS
Ciencias mixtas Ciencias mixtas

Los secretos de las ciencias para
los que también son de letras

Entradas etiquetadas como ‘ritmos circadianos’

Los Nobel, uno fresco, otro rancio, y siempre dejan a alguien fuera

Como cada año por estas fechas, no puede faltar en este blog un comentario sobre lo que nos ha traído la edición de turno de los premios Nobel. Y aunque cumplo con esta autoimpuesta obligación, debo confesarles que lo hago con la boca un poco pastosa. No por desmerecer a los ganadores, siempre científicos de altísimos logros, sino por otros motivos que año tras año suelo traer aquí y que conciernen a los propios premios.

Imagen de Wikipedia.

Imagen de Wikipedia.

En primer lugar, están los merecimientos no premiados de los que siempre se quedan por debajo de la línea de corte. Ya lo he dicho aquí, y no descubro nada nuevo: ya no hay Ramones y Cajales encerrados a solas en su laboratorio. Vivimos en la época de la ciencia colaborativa y a veces incluso multitudinaria, donde algunos estudios vienen firmados por miles de autores. No exagero: hace un par de años, un estudio de estimación de la masa del bosón de Higgs batió todos los récords conocidos al venir firmado por una lista de 5.154 autores. Nueve páginas de estudio, 24 páginas de nombres.

En el caso que nos ocupa, el Nobel de Física 2017 anunciado esta semana ha premiado la detección de ondas gravitacionales, un hito histórico que se anunció y publicó por primera vez en febrero de 2016, que confirmó la predicción planteada por Einstein hace un siglo y que según los físicos abre una nueva era de la astronomía, ya que enciende una nueva luz, que en este caso no es luz, para observar el universo.

Pero aunque sin duda el hallazgo merece los máximos honores que puedan concederse en el mundo de la ciencia, el problema es que los Nobel fueron instituidos por un tipo que murió hace 121 años, cuando la ciencia era cosa de matrimonios Curies investigando en un cobertizo. Y las normas de los Nobel dicen que como máximo se puede premiar a tres científicos para cada categoría.

Los agraciados en este caso han sido Rainer Weiss, Barry Barish y Kip Thorne, los tres estadounidenses, el primero nacido en Alemania. Weiss se queda con la mitad del premio, mientras que Barish y Thorne se reparten el otro 50%.

No cabe duda de que los tres lo merecen. Weiss fue quien inventó el detector que ha servido para pescar por primera vez las arrugas en el tejido del espacio-tiempo, producidas por un evento cataclísmico como la fusión de dos agujeros negros. Thorne ha sido la cabeza más visible en el desarrollo de la teoría de las ondas gravitacionales, además de ser un divulgador mediático y popular: creó el modelo de agujero negro que aparecía en la película Interstellar. Por su parte, Barish ha sido el principal artífice de LIGO, el detector que primero observó las ondas gravitacionales y que se construyó según el modelo de Weiss apoyado en la teoría de Thorne.

Pero más de mil científicos firmaron el estudio que describió la primicia de las ondas gravitacionales. Sus diversos grados de contribución no quedan reflejados en la lista de autores, ya que en casos así no se sigue la convención clásica de situar al principal autor directo del trabajo en primer lugar y al investigador senior en el último; aquí la lista es alfabética, sin un responsable identificado. El primero de la lista era un tal Abbott, cuyo único mérito para que aquel estudio histórico ahora se cite como “Abbott et al.” fue su ventaja alfabética. De hecho, había tres Abbotts en la lista de autores.

¿Se hace justicia premiando solo a tres? Tengo para mí que los físicos especializados en la materia, sobre todo quienes hayan participado de forma más directa o indirecta en este campo de estudio, tal vez tengan la sensación de que queda alguna cuenta no saldada.

Como mínimo, habrá quienes achaquen al jurado que haya olvidado la importantísima contribución de Virgo, el socio europeo del experimento LIGO. Ambos nacieron de forma independiente en los años 80, LIGO en EEUU y Virgo en Italia como producto de una iniciativa italo-francesa. Con el paso de los años, LIGO y Virgo comenzaron a trabajar en una colaboración que estaba ya muy bien trabada antes de que el detector estadounidense lograra la primera detección de las ondas gravitacionales. La cuarta detección de ondas de este tipo, anunciada hace solo unos días, se ha producido en paralelo en LIGO y en Virgo. ¿Es justo dejar a los artífices del proyecto europeo sin el reconocimiento del Nobel?

Por supuesto, son las normas de los premios. Pero miren esto: el testamento de Nobel no mencionaba en absoluto a tres premiados por cada categoría, sino que se refería simplemente a “la persona que…”. Por lo tanto, si se trata de ceñirse estrictamente a la última voluntad del fundador de los premios, estos no deberían repartirse.

Pero la limitada representatividad de la lista de premiados no es el único defecto de los Nobel. Otro que también he comentado aquí en años anteriores es la tendencia a premiar trabajos tan antiguos que ni sus autores ya se lo esperaban, si es que siguen vivos. Y en esto tampoco se respetan las instrucciones de Alfred Nobel, ya que él especificó que los premios deberían concederse a quien “durante el año precedente haya conferido el mayor beneficio a la humanidad”.

Si al menos este año en Física se ha premiado ciencia fresca y puntera, no ocurre lo mismo con la categoría de Fisiología o Medicina. Los tres galardonados, Jeffrey Hall, Michael Rosbash y Michael Young, todos estadounidenses, lograron sus avances fundamentales sobre los mecanismos moleculares del reloj biológico (los ritmos circadianos) allá por los años 80.

De hecho, hay un dato muy ilustrativo. A diferencia del caso de las ondas gravitacionales, en el campo de los ritmos circadianos sí hay dos nombres que muy claramente deberían encabezar una lista de candidatos a recibir los honores: Seymour Benzer y su estudiante Ron Konopka, los genetistas estadounidenses que primero descubrieron las mutaciones en los genes circadianos con las cuales pudo escribirse la ciencia moderna de la cronobiología. Pero Benzer falleció en 2007, y Konopka en 2015. Y no hay Nobel póstumo. El premio en este caso se ha concedido a una segunda generación de investigadores porque se ha concedido tan a destiempo que los de la primera murieron sin el debido reconocimiento.

En este caso, los Nobel pecan una vez más de conservadurismo, de no apostar por avances más recientes cuyo impacto está hoy de plena actualidad en las páginas de las revistas científicas. Por ejemplo, CRISPR, el sistema de corrección de genes que abre la medicina del futuro y en el que nuestro país tiene un firme candidato al premio, el alicantino Francisco Martínez Mojica. Pero dado que este avance también puede optar al Nobel de Química, que se anuncia hoy miércoles dentro de un rato, de momento sigamos conteniendo la respiración.

Qué es el otoño, en dos patadas

¿Qué es el otoño, mamá/papá? A la pregunta de los tiernos infantes durante estos días, un buen número de madres y padres optarán por distintas estrategias de respuesta: la poética (“cariño, el otoño es una rabiosa paleta de ocres y dorados salpicada sobre los campos como una lluvia de purpurina”), la evasiva (“pues hijo, es lo que viene después del verano y antes del invierno”) o la de Donald Trump (“que alguien se lleve a este niño”).

Ni siquiera un subrepticio vistazo a la Wikipedia será de gran ayuda: bastará empezar a leer sobre equinoccios, eclípticas y declinaciones para que una mayoría se decante por la opción c. Pero en realidad, puede ser mucho más sencillo. Aquí lo explico en dos patadas. Eso sí, si hay algún astrónomo en la sala, les ruego que sean clementes y no se me lancen al cuello.

Otoño. Imagen de publicdomainpictures.net.

Otoño. Imagen de publicdomainpictures.net.

Sabemos que el Sol recorre el cielo todos los días, pero este camino va variando a lo largo del año. En un mediodía de verano lo vemos más alto en el cielo, mientras que en invierno sube hasta una altura menor. Imaginemos que la Tierra es un campo de juego. La línea del centro del campo es el ecuador que lo divide en dos mitades, lo que serían nuestros dos hemisferios. Yo me encuentro en el hemisferio norte, así que lo cuento desde mi perspectiva.

Durante la primavera, el Sol está en nuestro campo, y continúa adentrándose más en él hasta el 21 de junio, el comienzo del verano. Ese día alcanza su punto más lejano del centro del campo (el ecuador) y más cercano a nuestra portería, trayéndonos más horas de luz y menos de noche. A partir de entonces, comienza a retirarse hasta el comienzo del otoño (este año, 22 de septiembre); ese día cruza el centro del campo, el ecuador, y continúa su recorrido por el campo contrario (el hemisferio sur) hasta el 21 de diciembre (comienzo del invierno). Y luego, vuelta a empezar.

En resumen: los días de comienzo de primavera y otoño son los dos momentos del año en que el Sol cruza el ecuador. Y dado que esos dos días está en territorio neutral, el día y la noche duran entonces exactamente lo mismo en todos los puntos del planeta: 12 horas de luz, 12 horas de oscuridad. A partir del comienzo del otoño, en el hemisferio norte la noche comienza a ganar minutos al día, mientras que en el sur es al contrario.

Pero debo aclarar que, en la situación real, no tenemos calor en verano y frío en invierno porque el Sol esté más cerca o más lejos de nosotros; nuestra distancia a él es siempre tan grande que esto no influye. La razón de la diferencia de temperatura entre las estaciones se debe a que sus rayos nos caen más directamente en verano y más de refilón en invierno, cuando lo vemos ascender más perezosamente por el cielo.

Así que, lo prometido:

Primera patada: el otoño es cuando el Sol cruza el ecuador para marcharse hacia el hemisferio sur.

Segunda patada: el primer día del otoño es cuando el día dura lo mismo que la noche, antes de que la noche empiece a ganar minutos al día.

Pero aún hay otra patada extra:

Otro de los signos típicos del otoño es que las hojas comienzan a amarillear y a caerse. Pero ¿cómo saben las plantas que ha llegado el otoño? En contra de lo que pudiera parecer, no se debe a las temperaturas, sino a la luz. Es la diferencia en la duración de los días lo que informa a las plantas de que ha llegado el otoño.

En realidad los vegetales no necesitan estar continuamente pendientes de la señal exterior de luz: cuentan con un reloj interno que funciona solo y que les permite guiarse. Este reloj interno sigue activo incluso si las mantenemos con iluminación artificial, aunque las plantas cuentan con el Sol para ajustar su reloj, del mismo modo que nosotros comprobamos el móvil de vez en cuando para poner en hora los relojes de casa.

Girasol. Imagen de Wikipedia.

Girasol. Imagen de Wikipedia.

Un estudio publicado este pasado agosto ha mostrado cómo funciona el reloj interno de las plantas para el caso de los girasoles, con su maravillosa habilidad de contemplar el Sol en su camino a través del cielo. Y con su maravilloso regalo de las pipas.

Sabemos que los girasoles miran al Sol cuando sale por el este y después van rotando su cabeza a medida que transcurre el día, hasta que acaban de cara hacia el oeste en el ocaso. Durante la noche, vuelven a girar para esperar el regreso del Sol al alba.

Los investigadores, de las Universidades de California y Virginia, crecieron las plantas en un espacio interior con una iluminación fija. Descubrieron que durante unos días los girasoles continuaban ejecutando su ritual de este-oeste, hasta que se detenían; se paraban cuando trataban de poner en hora su reloj sincronizándolo con el Sol, pero no lo conseguían.

A continuación, los científicos crearon un día artificial, encendiendo y apagando luces de este a oeste en el espacio interior. Los girasoles volvían entonces a recuperar su movimiento. Pero curiosamente, cuando los investigadores estiraban el día artificial hasta las 30 horas, las plantas perdían la orientación; su reloj interno, como los que fabricamos los humanos, no puede manejar días de 30 horas.

Para entender cómo los girasoles controlan su movimiento, los investigadores pintaron puntos de tinta en ambos lados del tallo, que miran respectivamente hacia el este y el oeste, y midieron la distancia entre ellos a lo largo del tiempo. Descubrieron entonces que durante el día crece más la cara del tallo orientada hacia el este, mientras que por la noche ocurre lo contrario. Este crecimiento diferente en ambos lados del tallo, que está controlado por genes dependientes del reloj interno y de la luz, es el que consigue que la cabeza vaya girando a lo largo del ciclo de 24 horas.

En resumen, el girasol tiene dos tipos de crecimiento: uno continuo, como el resto de plantas, y otro controlado por el reloj interno, cuya precisión depende de esa sincronización con el Sol.

Pero aún falta lo mejor. Los autores del estudio se preguntaron por qué los girasoles, cuando maduran, se quedan permanentemente mirando hacia el este. Y descubrieron algo asombroso: las plantas que miran hacia el este cuando sale el Sol se calientan más por la mañana, y esta mayor temperatura atrae a los insectos polinizadores. Los girasoles encarados hacia la salida del Sol recibían cinco veces más visitas de abejas que las flores inmovilizadas por los investigadores para que miraran hacia el oeste. Cuando anulaban la diferencia de temperatura utilizando un calefactor, las abejas visitaban por igual ambos grupos de flores.

Así, las plantas que esperan a ser polinizadas se quedan de cara al este porque eso les permite reproducirse con mayor facilidad. Pero entonces, ¿por qué no se quedan siempre en esa posición?, se preguntarán. También hay una razón para esto: las plantas que siguen el movimiento del Sol durante su crecimiento reciben así más luz, y consiguen hojas más grandes.

Eso es todo. ¿Ven cómo se puede explicar sin mencionar las palabras equinoccio, solsticio, eclíptica o ritmos circadianos?