Entradas etiquetadas como ‘vida en Marte’

El día que más cerca estuvimos de hallar vida en Marte

El 30 de julio de 1976 se encontró vida en Marte. O, al menos, eso es lo que lleva defendiendo desde hace 22 años Gilbert Levin, ingeniero responsable de uno de los experimentos de la única misión en la historia de la exploración espacial que ha buscado vida en otro mundo: las dos sondas gemelas Viking 1 y 2, que se posaron en dos lugares de Marte distantes entre sí más de 6.000 kilómetros para responder a la vieja incógnita de si existe algo vivo en el que entonces se creía el segundo mundo más propicio del Sistema Solar para la vida.

Sobre la misión Viking ya he hablado aquí en varias ocasiones. Para la biología es una referencia única, ya que, no está de más repetirlo, a continuación sigue la lista de todas las misiones lanzadas al espacio en busca de vida.

1. Viking.

Y ya. Y por el momento no hay ninguna otra prevista para buscar vida in situ. Así que, quienes se quejan del dinero gastado en la búsqueda de alienígenas, y no empleado para otros fines más urgentes aquí en la Tierra, pueden estar tranquilos: el ser humano no está gastando ni, que esté previsto, va a gastar un solo céntimo en tratar de comprender por vías racionales quiénes somos en el universo; eso sí, seguirá dedicando ingentes cantidades de riqueza a tratar de averiguarlo por vías espirituales, esotéricas y mágicas.

Imagen de la sonda Viking 1 en Marte. Imagen de Roel van der Hoorn / NASA / JPL / Wikipedia.

Imagen de la sonda Viking 1 en Marte. Imagen de Roel van der Hoorn / NASA / JPL / Wikipedia.

Viking fue el producto de un momento de mucha euforia y poco dinero. Tras el éxito de la conquista de la Luna se diseñó un programa llamado Voyager (no relacionado con las dos sondas del mismo nombre que exploran el espacio profundo) cuyo objetivo era enviar aparatos a Marte en los años 70 para preparar el terreno a las misiones tripuladas en los 80. Voyager fue una de las víctimas del brutal hachazo a los presupuestos de la NASA que causó la cancelación del programa Apolo. Y aunque la posibilidad de enviar astronautas a Marte se esfumó por completo, Viking fue una versión más modesta y barata que recuperaba los objetivos científicos de Voyager.

Entre esos objetivos, había uno por encima de todos los demás: buscar vida. También esto era un producto de la euforia del momento: entre los años 60 y 70, había que ser realmente un descreído incurable para pensar que no había vida en otros mundos. La misión Viking iba a por todas, con una serie de instrumentos de la última tecnología de la época, destinados a esclarecer a la primera si había algo vivo en Marte.

Y sí, lo había. Eso fue lo que encontraron Levin y el resto de científicos del experimento de emisión marcada (Labeled Release, LR): las dos Viking, en enclaves muy alejados entre sí, detectaron presunta actividad microbiana.

El LR era muy sencillo en su idea, muy complejo para llevarla a la práctica en un aparato situado en otro planeta que debía funcionar por sí solo. En 1952, Levin había inventado un método para detectar contaminación microbiana en el agua y en los alimentos, que se basaba en el famoso experimento con el que Louis Pasteur refutó la generación espontánea.

Pasteur demostró cómo la entrada de microbios al interior de un matraz podía demostrarse por el efecto de su actividad sobre un caldo de cultivo, y cómo la esterilización por calor eliminaba dicha actividad. De igual modo, el método de Levin consistía en dar alimento a los posibles microbios marcianos y medir después la presencia de compuestos resultantes de ese metabolismo. En el caso del LR, el carbono suministrado era radiactivo con el fin de poder detectarlo (los isótopos radiactivos son un marcaje muy habitual en los experimentos biológicos, porque pitan) si las muestras de suelo marciano emitían CO2, el producto de desecho común en los seres vivos.

Fue aquel 30 de julio cuando Levin y sus colaboradores recibieron los primeros resultados de las Viking, y eran positivos. Había algo en Marte que estaba consumiendo los nutrientes y produciendo CO2. Los resultados aguantaron todos los controles incluidos en el experimento y las pruebas adicionales del sistema realizadas en la Tierra.

La primera imagen tomada en la superficie de Marte, por la sonda Viking 1 el 20 de julio de 1976. Imagen de NASA/JPL.

La primera imagen tomada en la superficie de Marte, por la sonda Viking 1 el 20 de julio de 1976. Imagen de NASA/JPL.

Entonces, ¿caso cerrado? Por desgracia, no. Otro experimento de las Viking encargado de detectar moléculas orgánicas, las que forman todos los seres vivos conocidos, dio resultado negativo, lo que finalmente llevó a la NASA a concluir que los datos del LR eran solo un falso positivo. Pero después de años manteniendo una posición cauta, en 1997 Levin presentó su conclusión definitiva: las Viking habían encontrado vida en Marte.

Desde entonces, Levin ha continuado defendiendo su hipótesis a través de las décadas. Curiosamente, misiones posteriores con aparatos más sensibles han podido confirmar que sí existen moléculas orgánicas en Marte, lo que elimina la objeción por la que en su día se rechazaron los resultados del LR. Pero ¿por qué, a pesar de esto, las conclusiones de Levin no se han aceptado como válidas?

La respuesta está en que, tratándose de una proclama tan extraordinaria, las pruebas deben ser también extraordinarias. Un experimento LR en la Tierra requeriría demostraciones menos exigentes, dado que la existencia de vida aquí es algo sobradamente probado. Pero para admitir que las Viking encontraron vida, antes deberían descartarse por completo y de forma inequívoca todas las hipótesis alternativas; es decir, que la reacción del carbono observada en el LR no se debió a algún proceso puramente químico o geológico en lugar de bioquímico o biológico.

Esto habría podido hacerse si se hubiera seguido trabajando para profundizar en la misma línea, pero no se hizo. Es curioso cómo la línea posterior la ha marcado no un experimento exitoso, sino uno fallido: si las Viking no hubieran fracasado en la detección de las moléculas orgánicas que de hecho sí existen en Marte, es probable que después de aquella misión se hubiera continuado tratando de confirmar la presencia de vida.

Este mes, Levin ha vuelto a la carga, publicando en Scientific American (una revista popular de ciencia, pero no una revista científica) un artículo en el que continúa defendiendo su hipótesis de que las Viking hallaron vida en Marte. Levin recuerda sus resultados, y con mucho acierto escribe: «Inexplicablemente, más de 43 años después de las Viking, ninguna de las sondas posteriores que la NASA ha posado en Marte ha llevado un instrumento de detección de vida para profundizar en estos emocionantes resultados. En su lugar, la agencia ha lanzado una serie de misiones a Marte para determinar si alguna vez existió un hábitat adecuado para la vida, y de ser así, finalmente traer muestras a la Tierra para su examen biológico».

Es decir, rescatando un símil que ya he utilizado aquí, es como analizar si en una casa hay mascotas viendo si existe algún rastro de que hay o hubo en algún momento una caseta de perro, una cama de gato o una jaula de hámster, y buscando en los armarios de la cocina para saber si hay comida de perros, gatos o hámsters, en lugar de mirar directamente si en la casa hay un perro, un gato o un hámster.

También hay que decir que no todos los argumentos de Levin son impecablemente rigurosos. Entre los muchos indicios adicionales que aporta a favor de la vida en Marte, menciona alguno un poco exótico: una imagen tomada por el rover Curiosity, dice, mostraba una formación similar a un gusano. Otras imágenes, añade, parecen mostrar líquenes o estromatolitos (tapetes de microbios fosilizados). Pero aparte del hecho de que pensar que en Marte existen no ya microbios, sino gusanos o líquenes, es algo que muchos no vamos a creernos a no ser que nos los restriguen por la cara, esto no favorece precisamente su tesis; la pareidolia ha sido el argumento tradicional de multitud de ideas pseudocientíficas. Y dejando de lado el clásico de Jesús en la tostada, en Marte ya hemos tenido nuestra buena ración de fotos de caras, bichos, hombrecillos, lagartos e incluso elefantes.

Pareidolia: la imagen de un elefante en la región marciana de Elysium Planitia. Imagen de NASA/JPL/University of Arizona.

Pareidolia: la imagen de un elefante en la región marciana de Elysium Planitia. Imagen de NASA/JPL/University of Arizona.

Por último, Levin añade que en 43 años ningún experimento o teoría ha proporcionado una explicación definitiva no biológica de los resultados del LR. Pero también aquí el autor está cayendo en un argumento popular, pero no científico: es la explicación biológica la que debe probarse.

Pero sí hace notar una gran contradicción, y es que «la NASA mantiene la búsqueda de vida alienígena entre sus prioridades más altas», y a pesar de ello, no hace nada al respecto. Levin cuenta un detalle interesante, y es que propuso a la NASA un experimento para el rover Mars 2020, la próxima misión marciana que se lanzará el año próximo.

La idea de Levin era un instrumento basado en el LR que fuera capaz de detectar la quiralidad de las moléculas. La quiralidad es lo que tienen los guantes: un guante derecho no se transforma en un guante izquierdo cuando lo giramos, porque está fabricado con una quiralidad concreta. Lo mismo sucede con las moléculas de los seres vivos, ya que las enzimas, los catalizadores de los procesos biológicos, utilizan y producen moléculas con una quiralidad concreta, izquierda o derecha.

Si los resultados del LR se debieron a un proceso puramente químico geológico, la quiralidad debería ser arbitraria: se encontrarían tantas moléculas a derechas como a izquierdas. Por el contrario, si se encontrara una quiralidad preferente, sin duda sería una prueba de que hay enzimas implicadas, y que por lo tanto es un proceso biológico. Pero si Levin presentó un proyecto formal, en cualquier caso la NASA no lo seleccionó, porque la carga de instrumentos del Mars 2020 ya está definida y no incluye ningún instrumento biológico.

Pero ¿por qué la NASA no busca vida alienígena, si se supone que es uno de sus objetivos prioritarios? Mañana lo explicaremos.

El ser humano no busca vida extraterrestre. Parte 2: en el espacio, setas y Rolex

En la historia de la exploración espacial se han lanzado más de 550 misiones al espacio, tripuladas o no, sin incluir satélites comerciales, de comunicaciones o aquellos destinados a la observación de la Tierra. De todas estas misiones, ¿saben cuántas han estado dedicadas a la búsqueda de vida extraterrestre?

Una.

En 1976, en pleno furor de la moda alienígena, aterrizaron en Marte las dos sondas gemelas Viking de la NASA, en la primera y hasta ahora única misión diseñada específicamente para buscar vida extraterrestre. Los responsables del proyecto crearon una serie de experimentos increíblemente astutos para determinar de forma indirecta si había microbios en Marte. Por entonces aún no existían las técnicas de secuenciación de ADN, y difícilmente había otra posibilidad más directa que intentar encontrar actividad metabólica en el suelo.

Imagen tomada por la sonda Viking 2 en Marte en 1976. Imagen de NASA.

Imagen tomada por la sonda Viking 2 en Marte en 1976. Imagen de NASA.

El problema es que los resultados de los experimentos de las Viking fueron inconcluyentes: ambas sondas detectaron lo que parecía actividad metabólica, pero en cambio no encontraron moléculas orgánicas, lo cual era contradictorio. Por ello se dejaron los resultados en suspenso, interpretando que la detección de actividad metabólica era un falso positivo.

Curiosamente, las últimas misiones a Marte han confirmado que sí existen moléculas orgánicas, por lo que se ha eliminado el obstáculo que en su día impidió concluir que hay vida marciana. Pero obviamente, nadie va a atreverse a sostener esta afirmación hasta disponer de nuevas pruebas más concluyentes, que con la tecnología actual serían posibles.

¿Por qué diablos entonces no se envían nuevas sondas con aparatos más modernos como amplificadores (PCR) o secuenciadores de ADN? Esta es una pregunta que algunos nos hacemos. Hoy el panorama de las misiones espaciales está dominado por físicos, químicos, geólogos, científicos planetarios… En las sondas que se envían al espacio no hay hueco para los astrobiólogos, que deben quedarse en casa estudiando cosas como los hábitats y microbios terrestres que podrían parecerse a los hábitats y microbios extraterrestres.

Por ejemplo, hace unos meses se produjo una curiosa situación cuando la NASA presentó en una charla nuevos datos sobre penachos de vapor que emergen desde el océano subglacial de Europa, la luna de Júpiter. El interés central del hallazgo era la posibilidad de que la química de estos penachos soporte la existencia de vida. Pero los ponentes responsables del estudio no hacían sino dar vueltas en torno a esta cuestión central, ya que entre ellos no había ningún astrobiólogo.

Una lección aprendida de las Viking es que buscar vida alienígena es una tarea complicada y confusa. Pero no parece suficiente motivo como para que desde entonces no se haya lanzado al espacio ni una sola misión con este propósito. De haberse seguido una línea constante y creciente de ensayo, error y mejora desde los años 70, y con las tecnologías disponibles ahora, probablemente hoy sería una tarea mucho menos complicada y confusa.

Por supuesto, son numerosas las misiones destinadas a buscar condiciones habitables: exoplanetas idóneos, moléculas orgánicas en el Sistema Solar, condiciones compatibles con la vida… Pero habitable no es lo mismo que habitado. Podría tocar un objeto frente a mí y deducir que es una jaula de hámster. Si sigo tocando dentro, podré encontrar un cuenco con comida, un recipiente con agua, una rueda… Llego a la conclusión de que es una jaula perfectamente habitable para un hámster. Pero no tengo la menor idea de si dentro hay realmente un hámster o no. Después de las Viking, ninguna misión ha ido equipada con los instrumentos necesarios para saber si en la jaula hay un hámster.

Pero si las complicaciones de la búsqueda del hámster no justifican el hecho de no intentarlo, en cambio hay otro motivo que sí basta para tirar a la basura cualquier propuesta que llegue a las agencias espaciales con la palabra “vida” en la línea donde dice “objetivos”: la protección planetaria.

La protección planetaria, de la que ya he hablado aquí en varias ocasiones, es una directriz que obliga a las agencias espaciales a evitar deliberadamente la intrusión en aquellos lugares en los que podría haber vida extraterrestre, por temor a contaminarla con los microbios terrestres que viajan camuflados como polizones en las sondas. La NASA ha reconocido explícitamente que evita aquellos lugares de Marte con mayor probabilidad de albergar vida.

Sin duda, la protección planetaria es una política muy juiciosa, responsable y respetuosa con los posibles ecosistemas extraterrestres. Y a la que algún día habrá que renunciar, o al menos matizar, si es que queremos llegar a saber si existe vida más allá de nuestras propias narices.

En resumen, todo esto recuerda a aquel chiste sobre los dos tipos que están buscando setas cuando uno de ellos encuentra un Rolex, a lo que el otro replica: ¿pero estamos a setas o a Rolex? El ser humano lleva ya décadas a setas; y si uno encuentra un Rolex por casualidad, sabemos que probablemente es un chiste.

Sin embargo, se diría que algo está cambiando. En los últimos tiempos parece existir un cierto caldo de cultivo que sugiere un cambio de rumbo, un cambio de aires. Quizá ya se está superando el sonrojo del fenómeno ovni; no es que hoy haya menos creyentes, pero ya ha quedado claro que es territorio de Cuarto Milenio y Año Cero, no de la realidad física. Quizá la avalancha de pruebas de habitabilidad ya acumuladas ha abierto boca para que ahora nos apetezca algo más sustancioso. Quizá ya estamos un poco cansados de no hacer otra cosa que recoger setas, y puede que ahora vayamos a Rolex. Mañana lo contamos.

¿Microbios peligrosos en el espacio? Sí, pero los enviamos nosotros

Quien haya leído el libro de Michael Crichton La amenaza de Andrómeda (1969), o haya visto la película de Robert Wise (1971) o la más reciente miniserie coproducida por Tony y Ridley Scott (2008), recordará que se trataba de la lucha de un equipo de científicos contra un peligroso microorganismo alienígena que lograba abrirse paso hasta la Tierra a bordo de un satélite.

Un fotograma de 'La amenaza de Andrómeda' (1971). Imagen de Universal Pictures.

Un fotograma de ‘La amenaza de Andrómeda’ (1971). Imagen de Universal Pictures.

Otras muchas obras de ciencia ficción han explotado la misma premisa, sobre todo después del libro de Crichton; pero como obviamente a los productores de cine les aprovecha infinitamente más el aplauso del público que el de los biólogos, muchas de estas películas se llevan un suspenso morrocotudo en verosimilitud científica, e incluso en originalidad (los argumentos suelen ser cansinamente repetitivos).

No es el caso de la novela de Crichton, que se atrevió con el arriesgado planteamiento de basar su suspense en la sorpresa científica, y no en el susto fácil. Debido a ello la película de Wise no tiene precisamente el tipo de ritmo trepidante al gusto de hoy. La miniserie de 2008 trata de repartir algo más de acción, pero quien quiera seguir el hilo científico de la trama deberá añadir un pequeño esfuerzo de atención.

En un momento de la historia (¡atención, spoiler!), el gobierno de EEUU decide arrojar una bomba nuclear sobre el pueblo de Arizona donde comenzó la infección, con el propósito de erradicarla. Mientras el avión se dispone a disparar su carga, los científicos descubren de repente que las muestras de Andrómeda irradiadas en el laboratorio han proliferado en lugar de morir. El microbio es capaz de crecer transformando la energía en materia, y por tanto una explosión atómica no haría sino hacerle más fuerte: le serviría una descomunal dosis de alimento que lo llevaría a multiplicarse sin control. En el último segundo, la alerta de los científicos consigue que la bomba no se lance y logra evitar así un desastre irreversible.

Un fotograma de la miniserie 'La amenaza de Andrómeda' (2008). Imagen de A.S. Films / Scott Free Productions / Traveler's Rest Films.

Un fotograma de la miniserie ‘La amenaza de Andrómeda’ (2008). Imagen de A.S. Films / Scott Free Productions / Traveler’s Rest Films.

¿Simple ficción? Recientemente hemos conocido un caso que guarda un intrigante paralelismo con lo imaginado por Crichton: un microbio que se alimenta de aquello que debería matarlo. Pero lógicamente, no es una forma de vida extraterrestre, sino muy nuestra, tanto que está enormemente extendida por el suelo y el agua de la Tierra. Y es probable que también la hayamos enviado al espacio, y a los planetas y lunas donde nuestras sondas han aterrizado.

La historia comienza con la idea de Rakesh Mogul, profesor de bioquímica de la Universidad Politécnica Estatal de California, de lanzar un proyecto de investigación para que sus estudiantes pudieran curtirse en el trabajo científico y elaborar sus trabajos de graduación con algo que fuera ciencia real. Para ello, Mogul consiguió diversas cepas de la bacteria Acinetobacter que habían sido aisladas no en lugares cualesquiera, sino en algunos de los reductos más estériles de la Tierra: las salas blancas de la NASA donde se habían montado sondas marcianas como Mars Odyssey y Phoenix.

Estas salas funcionan bajo estrictos criterios de limpieza y esterilización. Cualquiera que entre a trabajar en ellas debe pasar por varias esclusas de descontaminación y vestir trajes estériles. Pero a pesar de los exigentes protocolos, un objetivo de cero microbios es imposible, y ciertas bacterias consiguen quedarse a vivir. Una de ellas es Acinetobacter, una bacteria común del medio ambiente y bastante dura que resiste la acción de varios desinfectantes y antibióticos, por lo que es una causa frecuente de infecciones hospitalarias.

Bacterias Acinetobacter al microscopio electrónico. Imagen de CDC / Matthew J. Arduino / Public Health Image Library.

Bacterias Acinetobacter al microscopio electrónico. Imagen de CDC / Matthew J. Arduino / Public Health Image Library.

Mogul y sus estudiantes cultivaron las cepas de Acinetobacter de las salas blancas en medios muy pobres en nutrientes, y observaron algo escalofriante: cuando este bicho no tiene qué comer y se le riega con etanol para matarlo (el alcohol normal de farmacia), ¿adivinan qué hace? Se lo come; lo degrada y lo utiliza como fuente de carbono y energía para seguir creciendo. Los resultados indican que la bacteria también crece en presencia de otro alcohol esterilizante, el isopropanol, y de Kleenol 30, un potente detergente empleado para la limpieza de las salas. Por último, tampoco se inmuta ante el agua oxigenada.

Pero dejando de lado las terribles implicaciones de estos resultados de cara al peligro de nuestras superbacterias aquí en la Tierra (esto ya lo he comentado recientemente aquí y aquí), el hecho de que estos microbios se aislaran en las salas de ensamblaje de sondas espaciales implica que estamos enviando microbios al espacio de forma no intencionada.

De hecho, esto es algo que los científicos conocen muy bien: como he contado aquí, regularmente se vigila el nivel de contaminación microbiológica de las sondas, y en casos como los rovers marcianos Curiosity, Opportunity y Spirit se han detectado más de 300 especies de bacterias; algunas, como las del género Bacillus, capaces de formar esporas resistentes que brotan cuando encuentran condiciones adecuadas.

La NASA trabaja con un límite de 300.000 esporas bacterianas en cualquier sonda dirigida a un lugar sensible como Marte, donde estas esporas podrían brotar, originar poblaciones viables y quizá sobrecrecer a cualquier posible especie microbiana nativa, si es que la hay. Esta cifra podría parecer abultada, pero en realidad refleja el mayor nivel de esterilidad que puede alcanzarse; suele hablarse de que cada centímetro cuadrado de nuestra piel contiene un millón de bacterias.

El rover marciano Curiosity en la sala blanca. Imagen de NASA / JPL-Caltech.

El rover marciano Curiosity en la sala blanca. Imagen de NASA / JPL-Caltech.

La protección planetaria, o cómo evitar la contaminación y destrucción de posibles ecosistemas extraterrestres con nuestros propios microbios, forma parte habitual del diseño de las misiones espaciales, pero preocupa cada vez más cuando se está hablando de futuras misiones tripuladas a Marte o de enviar sondas a lugares como Europa, la luna de Júpiter que alberga un gran océano bajo su costra de hielo. En julio, un informe de las Academias Nacionales de Ciencias, Ingeniería y Medicina de EEUU instaba a la NASA a revisar y actualizar sus políticas de protección planetaria.

Sin embargo, la entrada de nuevos operadores privados complica aún más el panorama. Cuando en febrero Elon Musk lanzó al espacio su deportivo Tesla, algunos científicos ya advirtieron de que una posible colisión del coche con Marte podría contaminar el ambiente marciano; es evidente que el deportivo de Musk no se ensambló en una sala blanca. Pero incluso la contaminación microbiana de un coche es una broma comparada con la nuestra propia. Los humanos somos sacos andantes de bacterias, y cualquier misión tripulada significará la liberación inevitable de infinidad de microbios al medio.

Ante todo esto, ¿qué hacer? Los más estrictos abogan por políticas hiperproteccionistas, y la propia NASA insinúa que el diseño de sus misiones marcianas trata de evitar enclaves con mayor probabilidad de vida. Pero la incongruencia salta a la vista: si evitamos los lugares con mayor probabilidad de vida, ¿cómo vamos a averiguar si hay vida?

Por ello, otros expertos rechazan estas posturas extremas que bloquearían la investigación de posibles formas de vida alienígena. El genetista de Harvard Gary Ruvkun, miembro del comité autor del informe, decía al diario The Washington Post que la idea de que un microbio polizón en una sonda espacial pudiera invadir otro planeta es «como de risa», «como una ideología de los años 50». Lo mismo opina Ruvkun de la posibilidad contraria, un microbio marciano que pudiera llegar a la Tierra en una misión de ida y vuelta y colonizar nuestro planeta.

Sin embargo, y citando a un famoso humorista, ¿y si sí?

Ruvkun basa su argumento en descartar por completo la posibilidad, pero esta es una pequeña trampa; las futuras políticas de protección planetaria no pueden simplemente hacer desaparecer la bolita como los trileros. En algún momento deberá llegarse a un acuerdo que incluya el reconocimiento expreso de los riesgos como un precio que tal vez haya que pagar si queremos seguir explorando el cosmos. Y deberá decidirse si se paga o no. Y si se acepta, quizá haya que desechar la corrección política que hoy tiñe el lenguaje sobre protección planetaria –curiosamente, en esto hay coincidencias en la ciencia y en la anticiencia– para ceñirse a un objetivo más realista y asumible de minimizar la interferencia pero no de eliminarla, si esto supondría renunciar a explicar el origen y el misterio de la vida.

En un lugar de la Mancha hay microbios casi marcianos

La astrobiología es una curiosa ciencia, tanto que algunos incluso llegan a calificarla de pseudociencia. Tiene como objetivo de su estudio algo cuya existencia aún no consta, la vida alienígena. Pero más que esto, se trata de que es imposible demostrar que NO existe vida extraterrestre. Los puristas más tiquismiquis alegan que no cumple el criterio de falsación enunciado por Popper en su definición del método científico, y que por tanto no puede considerarse una ciencia.

Pero es evidente que, mientras no se demuestre lo contrario, en ningún caso la astrobiología podría considerarse una pseudociencia al mismo nivel que la parapsicología o la astrología. Tal vez en todos los casos podamos decir que se trata de disciplinas que están casi en el puesto de aduanas de la ciencia, mirando hacia esa frontera. Pero obviamente, la astrobiología está dentro, mientras que las otras están fuera, y esto marca una diferencia como estar a un lado o al otro de la frontera entre, digamos, Yemen y Omán, o sea, entre un país arrasado por la guerra y otro donde se vive con tranquilidad.

Tal vez esa condición fronteriza es la que tiene un especial atractivo para los que tenemos una mente científico-fantasiosa, o científica mixta, o lo que sea. Pero tampoco hay que dejarse llevar demasiado por las figuraciones: en realidad la astrobiología tampoco está compuesta por un montón de tipos y tipas sentadas con los brazos cruzados y tirando avioncitos de papel a la espera de que alguien descubra algo que les dé tarea.

Mientras llega ese momento, una de las ocupaciones fundamentales de los astrobiólogos (pero ni mucho menos la única) es investigar los límites de la vida terrestre, con la idea de que los seres más inadaptados a lo que entendemos como el hábitat terrícola medio vivirían muy a gusto en otros lugares más raritos del cosmos, y por tanto pueden ser parecidos a los que podrían encontrarse en planetas como Marte. Y por el camino, el estudio de estos bichos llamados extremófilos –o amantes de las condiciones extremas– puede revelar nuevos hallazgos básicos de cómo funciona la biología, o puede también abrir una vía hacia nuevas aplicaciones industriales.

En esta línea es donde encaja un estudio presentado esta semana en el Congreso Europeo de Ciencia Planetaria, que se clausuró ayer en Berlín. En este trabajo, los investigadores indios Rebecca Thombre, Priyanka Kulkarni y Bhalamurugan Sivaraman, junto con el español Felipe Gómez del Centro de Astrobiología (CAB) de Madrid, han descrito ciertos microbios presentes en dos lagunas manchegas que tal vez podrían sobrevivir en ciertos lugares de Marte o en el océano subglacial de Europa, la luna de Júpiter que hoy triunfa en las apuestas sobre la posible existencia de vida en nuestro vecindario solar.

La laguna de Peña Hueca, en Villacañas (Toledo). Imagen de Europlanet / F Gómez / R Thombre.

La laguna de Peña Hueca, en Villacañas (Toledo). Imagen de Europlanet / F Gómez / R Thombre.

Las lagunas de Peña Hueca y Tirez forman parte de los humedales de Villacañas, en la provincia de Toledo, una formación natural junto a una zona industrial que durante años estuvo castigada por la contaminación y abandonada a su suerte, y que en los últimos años se ha rehabilitado para convertirse en un enclave ecológico privilegiado. En aquel paraje sobrevive el grillo cascabel de plata (Gryllodinus kerkennensis), un animalito cuyo sonido dicen que se asemeja al tintineo de una campanilla, y que se creía extinguido en este continente desde 1936. En 2008, investigadores españoles lo descubrieron agazapado en los humedales de Villacañas, que se han convertido en su último bastión europeo conocido.

Pero una faceta de la vida en aquel lugar de la Mancha que está interesando especialmente es la de sus habitantes más pequeños, aquellos que no pueden verse a simple vista, pero cuyos efectos son visibles incluso a gran altura desde el aire, ya que en las estaciones húmedas dan a la laguna de Peña Hueca un color rosa característico. Se trata de una variedad específica del alga unicelular Dunaliella salina que los autores del nuevo estudio han denominado EP-1. Este microorganismo, cuyas células rojas tiñen el agua de un color rojizo, es un extremófilo halófilo, un microbio capaz de crecer a gusto en altísimas concentraciones de sal que serían letales para otros seres vivos. Además, los investigadores han encontrado también en la laguna una bacteria llamada Halomonas gomseomensis PLR-1, igualmente adaptada a aguas extremadamente salinas.

La laguna de Peña Hueca, en Villacañas (Toledo). Imagen de Europlanet / F Gómez / R Thombre.

La laguna de Peña Hueca, en Villacañas (Toledo). Imagen de Europlanet / F Gómez / R Thombre.

El secreto de estos microorganismos para soportar una vida en salazón es producir un compuesto que engaña a las leyes de la física. Otro organismo cualquiera se deshidrata en presencia de dosis de sal tan altas, porque la presión osmótica tiene a hacer fluir el agua de su interior hacia el exterior en un intento (inútil) de equilibrar la concentración de sal a ambos lados de la célula. Para evitar esta pérdida, Dunaliella produce grandes cantidades de compuestos como el glicerol, que imita la concentración externa de sal y así logra que la célula no pierda agua.

Por otra parte, el color rojo del alga se debe a su gran producción de β-caroteno, el mismo compuesto que pinta las zanahorias de naranja, y que permite a Dunaliella protegerse de la nociva luz ultravioleta del sol. Debido a que el β-caroteno es un antioxidante y un precursor de la vitamina A, en todo el mundo se utiliza esta alga como diminuta factoría química para producir carotenoides destinados a la industria cosmética y a la alimentación.

Pero más allá de su importancia en la Tierra, los microbios presentes en Peña Hueca y Tirez pueden revelar pistas sobre cómo podría ser la vida en Marte. Los astrobiólogos estudian múltiples lugares terrestres que se conocen como análogos marcianos, enclaves que por sus condiciones geológicas y químicas son similares a distintas ubicaciones del planeta vecino y cuyos habitantes podrían tal vez sobrevivir allí; y por tanto, si existe vida en Marte, tal vez pueda ser similar a estos microbios extremófilos terrestres.

Muestras rojas del alga Dunaliella salina EP-1 en un cristal de sal. Imagen de Europlanet / F Gómez / R Thombre.

Muestras rojas del alga Dunaliella salina EP-1 en un cristal de sal. Imagen de Europlanet / F Gómez / R Thombre.

Según los autores del nuevo estudio, Peña Hueca es un buen análogo de los depósitos de cloruro en los altiplanos meridionales de Marte, el área más abrupta que ocupa dos terceras partes de la superficie marciana. Pero la laguna manchega también podría reflejar condiciones parecidas a las del gran océano que se extiende bajo el hielo en Europa, una de las muchas lunas de Júpiter.

Según Gómez, el astrobiólogo del CAB, especies como estas algas podrían utilizarse incluso para terraformar Marte, es decir, sembrar aquel planeta con microbios que a lo largo de miles de años vayan convirtiendo lo que hoy es un desierto inhóspito en un lugar apto para una amplia variedad de formas de vida, incluida la nuestra. Así pues, entre los molinos y los talleres artesanos de queso se abre ahora también en la Mancha un lugar de peregrinación para unos nuevos caballeros andantes de la ciencia, los astrobiólogos. A saber cómo habría reaccionado Don Quijote a esto.

¿Nos acerca el lago de Marte al descubrimiento de vida? (Spoiler: no)

En este blog suelo reaccionar con cierta frialdad a los hallazgos de agua en Marte, y no precisamente por falta de interés. Más bien todo lo contrario: Marte es el único material científico del que he tirado en mi actividad extraescolar como novelista (Tulipanes de Marte), así que puede imaginarse mi cariño especial por nuestro vecino planetario del cuarto, al que suelo contemplar en el cielo con un loco e imposible sueño viajero detrás de la mirada; sobre todo en días como estos, cuando físicamente está tan cerca de nosotros.

Entiéndase, el hallazgo de una (probable) gran extensión de agua líquida bajo el hielo del polo sur de Marte es uno de los mayores descubrimientos recientes de la ciencia planetaria. Cuando supe de la noticia, lo primero que quise saber es ¿por qué ahora? ¿Por qué no hasta ahora? Y me maravilló la astucia de los investigadores italianos, que modificaron el manejo de los datos para revelar algo que hasta entonces había pasado inadvertido al radar de la sonda orbital Mars Express debido a que el software del aparato enviaba la media de cada 100 lecturas, lo que anulaba la señal del agua. Al actualizar el software para que enviara los registros individuales, allí apareció la firma del agua líquida; quizá no un lago como tal, sino un estrato de roca porosa mojada. Pero agua.

Casquete de hielo en el polo sur de Marte, bajo el cual puede existir un lago de agua líquida. No todo es hielo de agua, ya que el hielo seco (CO2) también está presente. Imagen de ESA/DLR/FU Berlin/CC BY-SA.

Casquete de hielo en el polo sur de Marte, bajo el cual puede existir un lago de agua líquida. No todo es hielo de agua, ya que el hielo seco (CO2) también está presente. Imagen de ESA/DLR/FU Berlin/CC BY-SA.

Mi tibieza no se debe a que el agua líquida en Marte sea un presunto hallazgo recurrente que ya nos ha decepcionado en ocasiones anteriores. Aquí conté la última de ellas: en 2011 y 2015 se publicaron indicios que apoyaban la existencia de torrentes estacionales de agua, en concreto lo que parecía ser una salmuera muy concentrada que puede permanecer en estado líquido hasta -70 oC. Sin embargo, el pasado noviembre se cortaba el agua en Marte: nuevos datos indicaban que en realidad –y a fecha de hoy; la ciencia de verdad es la única que rectifica cuando se equivoca– aquellos torrentes no contienen otra cosa que polvo y arena.

En el caso del nuevo estudio, los expertos han señalado que los datos del radar son muy sugerentes, pero no definitivos, y que deberán contrastarse con otras lecturas. Pero como voy a explicar, incluso aunque la existencia del lago marciano se confirme, en realidad no añade gran cosa a la posibilidad de vida actual en Marte, ni mejora la posición de este planeta en el ranking de lugares del Sistema Solar que hoy podrían albergar comunidades de microbios.

En realidad, la existencia de agua en Marte la conocemos desde 1963, cuando se confirmó la presencia de vapor de agua. En la enrarecida atmósfera marciana el agua hierve a 10 oC y las temperaturas son de congelación profunda, por lo que el hielo y el vapor son claramente lo que allí más se despacha. Pero dado que la geología marciana conserva pruebas abundantes de un pasado acuoso y una vez demostrado que las moléculas de H2O han resistido durante millones de años a la pérdida de la mayor parte de la atmósfera marciana, el resto es una cuestión de buscar nichos con las condiciones adecuadas de presión y temperatura para encontrar el agua en estado líquido.

Y a priori, es muy probable que estos nichos existan. Sin embargo, sus condiciones son brutales. En 2008 la sonda Phoenix de la NASA, posada en el ártico marciano, analizó el suelo y detectó perclorato, una forma extremadamente oxidada del cloro. Phoenix también confirmó la existencia de hielo de agua fuera de los casquetes polares y quizás incluso de gotitas de agua líquida; también vio nevar en Marte.

En lo que se refiere al perclorato, este anión –o esta sal, si lo prefieren– actúa como un potente anticongelante y puede facilitar la presencia de agua líquida en el gélido ambiente marciano. Pero el descubrimiento de este compuesto complicaba las cábalas sobre la posible existencia de microbios marcianos, porque el perclorato es un arma de doble filo: por un lado, es tóxico para la vida en general. Pero por otro, en la Tierra existen microbios que se alimentan de perclorato en lugares como el desierto chileno de Atacama, el enclave más seco de la Tierra.

Pero… como siempre suelo subrayar, los microbios extremófilos terrestres (aquellos que viven en condiciones casi imposibles, como los volcanes, los polos o Chernóbil) son parte de una enorme masa de biodiversidad que se ha expandido para colonizar todos los hábitats a su alcance. Que sepamos, esto no se aplica a Marte. Algunos estudios sugieren que los microbios terrícolas que comen perclorato pudieron ser pioneros evolutivos de nacimiento muy temprano, antes de que la atmósfera terrestre se llenara de oxígeno, lo que sería un argumento a favor de la posible aparición de seres similares en Marte cuando aquel planeta y el nuestro seguían vidas paralelas, al comienzo de su existencia. Pero en el fondo, no lo sabemos, y los astrobiólogos aún discuten si la presencia de esta sal es una buena o una mala noticia para la posibilidad de vida marciana (ver, por ejemplo, aquí y aquí).

En resumen, el perclorato y las temperaturas ambientales son factores que condicionan la posibilidad de agua líquida en Marte, pero también son los principales factores limitantes para la vida en Marte, incluso una vez demostrada la existencia de agua líquida. Así, el hallazgo de un lago probablemente perclórico deja las cosas más o menos como ya estaban respecto a las especulaciones sobre la vida marciana.

Por otra parte, desde hace tiempo se conoce la existencia de cuerpos del Sistema Solar que tienen no un posible lago subglacial, sino todo un inmenso océano global. Dos ejemplos son Encélado, luna de Saturno, y Europa, satélite de Júpiter. Es más, en estas lunas se cree que el agua se mantiene líquida bajo el hielo por un calentamiento debido a la fricción de las mareas causadas por el tirón gravitatorio de los grandes planetas, por lo que estos océanos no necesitarían grandes cantidades de sales tóxicas y serían por tanto más hospitalarios para la vida que un posible lago en Marte.

En resumen, Marte continúa siendo una incógnita, pero en principio sigue pareciendo un objetivo mucho menos prometedor para la búsqueda de vida que otros lugares del Sistema Solar como Europa o Encélado, o incluso Titán (Saturno) o Ganímedes (Júpiter).

En cualquier caso, el argumento final es sin duda el más desolador. Y es que, si alguien espera que de inmediato se prepare una misión para comprobar si hay algo vivo en ese presunto lago marciano, que abandone toda esperanza: los actuales protocolos de protección planetaria, a los que se adhieren organismos como la NASA y la ESA, recomiendan evitar el envío de sondas a enclaves extraterrestres donde los microbios terrícolas polizones podrían contaminar la vida nativa. O sea, que si hay sospecha de vida no pueden enviarse sondas, y si no se envían sondas nunca sabremos si hay vida. Un bonito ejemplo de lo que aquella novela de Joseph Heller acuñó como una trampa 22.

No, no hemos contaminado Marte (pero lo haremos)

"Selfie" del 'Curiosity' tomada en febrero de 2013 en la llanura John Klein, Marte. La imagen es un mosaico de recortes de múltiples tomas (motivo por el cual no aparece el brazo de la cámara). NASA/JPL-Caltech/MSSS.

«Selfie» del ‘Curiosity’ tomada en febrero de 2013 en la llanura John Klein, Marte. La imagen es un mosaico de recortes de múltiples tomas (motivo por el cual no aparece el brazo de la cámara). NASA/JPL-Caltech/MSSS.

Hace un par de días saltó a los medios la noticia de que el robot Curiosity, residente en Marte desde 2012, ha contaminado nuestro barrio vecino enviando allí microbios terrestres sin pretenderlo. La noticia se ha propagado como una gripe virulenta y parece haber encontrado hueco hasta en la hoja parroquial de Vladivostok. Merece la pena desmenuzar más finamente este asunto para situarlo en sus justos términos, especialmente porque días atrás traté aquí la dificultad que entraña explorar otros mundos sin contaminarlos con microbios procedentes de la Tierra que viajen agazapados en las sondas espaciales, sobrevivan a la travesía interplanetaria y puedan cuajar en entornos potencialmente habitables, como el marciano.

Para empezar, hay que detallar la fuente de la que procede la información: al contrario de lo que rebota por ahí de pantalla en pantalla, no se basa en un estudio científico publicado en Nature, sino en una noticia periodística divulgada en la web de esta revista a raíz de varias comunicaciones presentadas en la 114ª reunión anual de la Sociedad Estadounidense de Microbiología (ASM), celebrada esta semana en Boston. Por supuesto, esto último no resta ninguna credibilidad a los datos, presentados en la convención por investigadores de solvencia y tratados con todo el rigor y la profesionalidad por la periodista de ciencia Jyoti Madhusoodanan. Pero no es un estudio publicado en Nature, y hay diferencias importantes: en primer lugar, las comunicaciones presentadas a congresos suelen resumir el trabajo de los investigadores en crudo. Las convenciones sirven de línea caliente a los resultados científicos que aún no se han elaborado formalmente para su presentación a un journal (revista especializada) y que, por tanto, aún no han atravesado el exigente filtro de la revisión por pares. Por este motivo siempre es esencial que la información sobre ciencia detalle sus fuentes, en especial si se trata de resultados aún sin publicar (algo frecuente en este blog y que siempre se vocea claramente para quien quiera escucharlo).

Pero asumiendo que los resultados sean intachables, aún queda otra piedra en el zapato: si los investigadores enviaran estos datos para tratar de presentarlos en Nature, posiblemente no se cuestionarían sus estándares científicos; en cambio, me da en la nariz que los editores de una revista tan exclusiva como la británica preguntarían: «So what?«. Y es que los resultados no aportan ninguna novedad, nada que no se supiera ya sobradamente. De hecho, los mismos investigadores han presentado en el congreso datos similares relativos a anteriores misiones a Marte, incluidas las sondas Viking enviadas en 1976, y que no hacen sino confirmar lo que ya entonces se comprobó y es de dominio público: las naves espaciales que se posan en otros planetas lo hacen bastante limpitas, pero nunca estériles. Llevamos enviando microbios a Marte desde 1971, cuando las soviéticas Mars 2 y 3 tocaron por primera vez el suelo marciano, respectivamente destazándose contra él y besándolo suavemente.

Aunque los artefactos con destino al espacio se ensamblan en las llamadas salas blancas y sus piezas se someten a tratamientos de esterilización, esto no implica que queden libres de todo polvo y paja microbiológicos, algo que en la práctica es casi imposible. Los protocolos establecen un nivel máximo de carga microbiana tolerable, que en el caso de la NASA y tratándose de mundos potencialmente habitables, como Marte, es de 300.000 células viables en toda la superficie de la nave. Esta población microbiana es insignificante comparada con los millones de microorganismos que contiene un solo gramo de suelo terrestre; pero al fin y al cabo, es una población microbiana.

Es cierto que el problema se agranda cuando, además, los protocolos de esterilización no se respetan. En 2011 se divulgó la noticia de que el ensamblaje del Curiosity violó los llamados procedimientos de protección planetaria. Según publicó entonces Space.com, el problema fue una caja estéril que contenía tres piezas de un taladro y que solo debía abrirse en destino para que el brazo del robot las montara en la cabeza perforadora. Por razones que la información no detallaba, alguien abrió la caja y montó una de las piezas en su ubicación definitiva sin que la NASA fuera advertida de ello hasta que ya era demasiado tarde. La responsable de protección planetaria en la agencia estadounidense, Catharine Conley, restó importancia al incidente, asegurando que el Curiosity viajó «más limpio» que ningún otro robot enviado a Marte desde el programa Viking. Además, resaltó Conley, el diseño de esta misión tuvo en cuenta que el lugar de aterrizaje no albergara hielo al menos hasta un metro de profundidad bajo el suelo, para minimizar el riesgo de contaminación por la perforadora.

Para controlar la carga microbiana de las sondas, los científicos muestrean las superficies del aparato y de la sala de ensamblaje con bastoncillos de algodón, que después se llevan al laboratorio para cultivar los microorganismos presentes e identificarlos por su ADN. Los trabajos presentados en el congreso de la ASM son el resultado de la colaboración entre varias instituciones de EE. UU. dirigidas por la Universidad de Idaho y el Grupo de Biotecnología y Protección Planetaria del Laboratorio de Propulsión a Chorro de la NASA, que llevan años analizando la carga biológica de las sondas espaciales. En el caso del Curiosity, se identificaron 377 especies de bacterias, la mayoría relacionadas con el género Bacillus, muchas de las cuales tienen la capacidad de enquistarse en esporas para resistir condiciones adversas. Los resultados, resumidos en dos comunicaciones (una y dos), indican que 19 de las especies identificadas son capaces de crecer sin oxígeno aprovechando sustratos existentes en Marte, como el perclorato y el sulfato. Las bacterias fueron sometidas a condiciones de desecación, radiación ultravioleta C, alta salinidad y bajas temperaturas. El 11% fueron capaces de soportar múltiples condiciones extremas. «El estudio ayudará a estimar si los microorganismos terrestres suponen un riesgo de contaminación que podría interferir en una futura detección de vida y en las misiones de retorno de muestras», escriben los investigadores en su presentación.

Los científicos presentan también nuevos trabajos que analizan la carga microbiana de misiones anteriores, como los rovers gemelos Opportunity y Spirit y las sondas Viking (estudios uno y dos).  Los resultados fueron parecidos, con 318 microbios identificados en las muestras de los rovers, en su mayoría Bacillus, y una presencia importante de estafilococos, que no forman esporas. De un total de seis misiones a Marte que cubren los últimos 40 años, los investigadores han reunido una colección de 3.500 cepas, de las cuales han identificado 1.322. El 60% corresponden a Bacillus y otros formadoras de esporas, y el 40% restante a Staphylococcus y otras especies no esporulantes. Los investigadores aclaran que todos estos resultados confirman los estudios más rudimentarios practicados con las muestras de las Viking en la época de su lanzamiento, cuando aún no se habían desarrollado las técnicas de secuenciación genómica. Por último, tampoco difieren sustancialmente de lo que anteriormente ya se había demostrado para el caso de Phoenix, el robot estático que analizó exitosamente un entorno cercano al polo norte marciano en 2008. En algunos casos se descubren nuevas especies bacterianas, como el Paenibacillus phoenicis, nombrado en recuerdo de Phoenix.

Con todo lo anterior, quizá ya estemos en condiciones de responder a la pregunta: ¿hemos contaminado Marte? No cabe duda de que ciertos microbios pueden sobrevivir a los viajes espaciales. Los estudios llevados a cabo en la Estación Espacial Internacional que reseñé recientemente demostraban que algunas esporas de Bacillus pueden resisitir un año y medio en el espacio. En cuanto a Marte, es un planeta habitable, pero solo para ciertas formas de vida que en la Tierra consideramos extremófilas, capaces de sobrevivir en entornos invivibles para el resto: sequedad, alcalinidad, temperaturas gélidas, radiaciones letales y una presión atmosférica en torno a los 8 milibares, frente a los más de mil en la Tierra. Hace cuatro años, un equipo de científicos de la Universidad de Florida demostró que la humilde Escherichia coli, una familiar bacteria intestinal y el microbio más utilizado en los laboratorios de todo el mundo, es capaz de sobrevivir en una cámara de simulación de condiciones marcianas durante al menos una semana. Pero una cosa es sobrevivir y otra crecer y multiplicarse, y esto último debería producirse para que podamos hablar de una verdadera contaminación. Y aún no se ha demostrado que se reúnan todos los factores necesarios para ello.

Esto no implica que no existan microbios terrestres capaces de prender y medrar en Marte: también en la reunión de la ASM, otro grupo de investigadores de la Universidad de Arkansas ha propuesto en dos estudios (uno y dos) que los metanógenos, microbios del grupo de las arqueas muy comunes en la Tierra, que viven sin oxígeno, producen gas metano e incluyen especies extremófilas, pueden crecer en condiciones que simulan el ambiente de Marte. «Los metanógenos podrían habitar el subsuelo de Marte», concluyen los investigadores. Pero dadas las condiciones de vida que requieren estos microorganismos, para ellos sería más letal el paso por la sala blanca que el cómodo entorno marciano.

Aun así, parece que es una simple cuestión de tiempo. El Tratado del Espacio Exterior (OST), un acuerdo de adhesión voluntaria que regula el marco ético de actuación más allá de la órbita terrestre, establece que los países serán responsables de cualquier perjuicio y que deberán evitar toda «contaminación dañina». Pero el OST es un instrumento de Naciones Unidas que vincula a los estados, y a corto plazo la primera misión tripulada que podría alcanzar el planeta vecino y contaminarlo irremisiblemente no es una iniciativa pública sino privada, la del controvertido proyecto Mars One; la organización que la promueve no está en absoluto obligada por el OST.

Por otra parte, falta definir qué entendemos por contaminación dañina. A modo de ejemplo, suele plantearse la hipótesis de que en un futuro se detecte algún signo de vida en muestras marcianas. La NASA planea lanzar en 2020 una sonda robótica destinada a recoger material de Marte que sería transportado a la Tierra por misiones posteriores aún sin concretar. De producirse una contaminación, los científicos podrían encontrar microbios en las rocas marcianas que en realidad no fueran nativos del planeta vecino, sino emigrantes terrícolas de vuelta en casa. La situación es análoga a lo que sucede cuando se detectan indicios de microorganismos en meteoritos caídos en la Tierra. Hasta ahora, ha sido fácil determinar que se trataba de contaminaciones terrestres, salvo en los casos de restos inconcluyentes como los presuntos microfósiles del meteorito marciano ALH84001. Pero incluso suponiendo que la evolución hubiera seguido caminos tan paralelos en la Tierra y Marte que fuera imposible discernir entre microbios locales y visitantes, la conclusión final es que estamos ante un dilema de prioridades: ¿preferiremos abrir Marte a la experiencia humana y aceptar la inevitable contaminación, o mantener sus condiciones prístinas sin pisarlo jamás y convertirlo en el santuario natural más restrictivo del universo, donde ni siquiera los científicos que lo estudien tengan permitido el acceso? Vamos, que ni el Monte de El Pardo