Archivo de la categoría ‘Evolución’

¿Y si nuestros recuerdos fueran priones (como los de las vacas locas)?

¿Cómo es posible que recordemos algo ocurrido hace diez, veinte, treinta, cuarenta años? A veces lo más simple para nuestra experiencia diaria es lo más complicado de explicar desde el punto de vista biológico: ¿qué rastro tangible queda hoy en nuestro organismo de aquel episodio de cuando teníamos seis años?

El conocimiento de hoy dicta que los recuerdos a largo plazo se almacenan gracias a cambios en el sistema neuronal con capacidad de perpetuarse, como nuevas proteínas y conexiones sinápticas. Pero ¿cómo se mantienen activas estas conexiones durante años, cuando el estímulo que las provocó lleva largo tiempo desaparecido? La memoria a largo plazo es una especie de fantasma molecular cuya capacidad de persistencia aún esconde muchos secretos.

Eso, una vaca. Imagen de dominio público / Pixabay.

Eso, una vaca. Imagen de dominio público / Pixabay.

En los últimos años está tomando forma una teoría arriesgada, como todo lo nuevo, pero brillante y plausible, como todo lo nuevo que acaba triunfando. Según esta idea, la memoria puede persistir a largo plazo gracias a los priones. Recordemos la famosa encefalopatía espongiforme bovina, el «mal de las vacas locas» que se transmitía a los humanos a través del consumo de tejidos animales contaminados. Las responsables de esta enfermedad son unas proteínas peculiares que actúan como los zombis de la cultura popular, destruyendo, sembrando el caos y convirtiendo a otros en lo mismo que ellos.

En el caso de los priones, se trata de proteínas peligrosamente mal conformadas que además son capaces de transmitir esta configuración errónea a otras. El resultado es que actúan como agentes infecciosos, extendiendo sus efectos patológicos a otras zonas sanas. Estos efectos normalmente consisten en pegarse unas a otras formando bloques que inutilizan las células y las destruyen. Los humanos tenemos una forma propia de encefalopatía similar a la que provocaba el consumo de animales enfermos, la Enfermedad de Creutzfeldt-Jakob. En las tribus caníbales de Papúa Nueva Guinea se documentó otra forma similar llamada kuru. Las ovejas tienen su propia versión, el scrapie o tembladera.

Como ya conté aquí, los priones son una especie de Cuarto Milenio de la biología. Durante años los biólogos se frotaban los ojos de incredulidad ante la hipótesis de que existían agentes infecciosos capaces de propagarse y transmitirse de persona a persona (o más genéricamente, de animal a animal) sin ningún tipo de material genético, compuestos solo por proteínas que proceden de nuestros propios genes, y que por algún motivo y mecanismo pueden volverse locas y llegar a matarnos. Pura ciencia ficción de serie B. Pero lo bueno o malo de la ciencia, según para quién, es que tampoco se calla cuando lo que tiene que decirnos no va a gustarnos nada. Y aunque los priones fueran en sus inicios una especie de herejía biológica, ahí están.

No solo están, sino que posiblemente en el futuro adquieran mayor protagonismo en campos hasta ahora insospechados. Últimamente vienen acumulándose indicios de que los priones podrían estar implicados en otras enfermedades neurodegenerativas como el alzhéimer (con lo que esto conlleva de que puedan transmitirse). Pero los priones aún tienen mucho por revelar, y casi en el primer puesto figura una pregunta: ¿qué hemos hecho nosotros (biológicamente hablando) para merecer esto (un peligro mortal oculto en nuestros propios genes)? ¿Qué sentido evolutivo tiene su existencia? ¿Lo tiene?

Una posibilidad es que los priones no solo existan para amargarnos la vida, sino que originalmente hayan sobrevivido a los hachazos de la evolución porque en realidad aportan otras funciones beneficiosas, y que hasta ahora solo hayamos conocido lo peor de ellos, su faceta destructora. Pero ¿qué funciones beneficiosas?

Y así volvemos a la memoria. Si se trata de conservar un recuerdo a largo plazo que no puede guardarse en la caja fuerte del material genético, ¿qué mejor que encargárselo a una proteína capaz de perpetuarse? Así es como está naciendo la idea de que los priones puedan ser una especie de guardianes de la memoria.

En 2003, tres investigadores en EEUU descubrieron que al transferir a las levaduras una proteína neuronal de la liebre de mar Aplysia llamada CEPB, dicha molécula se comportaba como un prión, pero en este caso la forma mala era la buena; es decir, la conformación capaz de perpetuarse era precisamente la que le permitía realizar su función. Los tres científicos lanzaron esa arriesgada y brillante hipótesis: «Proponemos que la conversión de CPEB a un estado de prión en las sinapsis estimuladas ayuda a mantener los cambios sinápticos a largo plazo asociados al almacenamiento de memoria».

Otros estudios han venido a darles la razón. En 2012, investigadores del Instituto Stowers de Kansas City (EEUU) revelaron que Orb2, un tipo de proteína CPEB propio de la mosca Drosophila, se acumula en las sinapsis neuronales y ayuda a mantenerlas activas. Cuando se suprime la función de Orb2, las moscas pierden la memoria a largo plazo.

Y sobra decirlo, las proteínas CEPB están presentes en muchos otros organismos, incluidos nosotros. Todavía no sabemos hasta qué punto ese recuerdo del colegio puede depender de un ente biológico que hasta hace poco conocíamos solo por el brote de una oscura y amenazadora enfermedad a comienzos de este siglo, y que pasó además a la historia de las hemerotecas por las poco afortunadas declaraciones de una ministra de Sanidad. Pero sí sabemos que, en las levaduras, los priones conservan una memoria molecular que permite a estos hongos unicelulares sobrevivir a condiciones ambientales adversas.

Ahora sabemos algo más, y no menos sorprendente. Mañana contaré un nuevo estudio que nos descubre cómo los priones también podrían servir para conservar la memoria en seres a los que, para empezar, muchos ni siquiera les sospecharían la cualidad de tener recuerdos.

Nuestras células tienen tabiques gracias a las bacterias

Entre los biólogos hay quienes sostienen que la vida debe de ser omnipresente en el universo, y quienes opinan que la aparición de cualquier cosa a la que podamos llamar vida requiere de tantos desvíos afortunados en la larguísima carretera de la historia natural que su aparición es algo extremadamente improbable.

Un grupo de arqueas (en rojo) y bacterias (en verde). De una imagen parecida a esta pudo nacer la primera célula compleja, según la teoría de la endosimbiosis. Imagen de Annelie Pernthaler/UFZ.

Un grupo de arqueas (en rojo) y bacterias (en verde). De una imagen parecida a esta pudo nacer la primera célula compleja, según la teoría de la endosimbiosis. Imagen de Annelie Pernthaler/UFZ.

Tanto, que el hecho de que estemos aquí no debe cegarnos por lo que podríamos llamar el síndrome del éxito: un tipo que gana cientos de millones en una lotería puede sentir que ha sido tremendamente fácil, casi inevitable, pero a otros cientos de miles que jugaron no les ha tocado; un cantante de éxito piensa que él se lo ha ganado, pero por cada triunfador hay otros cien, o mil, o cien mil, que se quedaron en el camino, con el mismo (o más) esfuerzo y el mismo (o más) talento que él.

Dicho en términos más biológicos, sostener que la vida es omnipresente no deja de ser un argumento terracéntrico y antropocéntrico, teniendo en cuenta que el conocimiento del que disponemos hasta ahora no lo apoya: aún no hemos encontrado nada vivo fuera de este planeta. Pero es que, además, cuando se indaga en los posibles procesos (esos desvíos afortunados) que han conducido hasta nuestra existencia, sería difícil creer que todo eso pueda ocurrir dos veces en el universo de maneras muy similares sin que alguien lo haya dispuesto así.

Una de esas carambolas de la evolución de la vida es la llamada teoría endosimbiótica, o simbiogénesis. Contándolo en formato rewind, la existencia de vida inteligente como nosotros requirió la formación de organismos complejos con órganos y tejidos, y estos precisaron de la especialización de las células, lo que a su vez necesitó de la aparición de compartimentos internos en esas células para formar sus propios orgánulos, lo que procede –según la teoría evolutiva mayoritariamente aceptada hoy– de unas células simples sin esos compartimentos que se asociaron en beneficio mutuo para dar lugar a células más complejas. Estas primeras células simples eran lo que hoy conocemos como bacterias o arqueas.

Contémoslo ahora en formato fast forward: desde aquellas primeras bacterias y arqueas (procariotas), si no se hubiera producido esa asociación en beneficio mutuo (simbiosis), hoy no estaríamos aquí: la aparición de las células complejas (eucariotas) con sus orgánulos, sus especializaciones en órganos y tejidos, la formación de organismos superiores y la llegada del ser humano con todas sus habilidades y logros, hasta el rodaje del quinto episodio de Indiana Jones, jamás se habrían producido sin aquel único, raro, improbable y extravagante premio de lotería que fue la simbiosis entre dos células procariotas.

(Nota para los más puntillosos: lo mismo podría decirse de la temporada anterior, la que llevó a la aparición de esas primeras células procariotas, pero no es el objeto de este artículo.)

Así fue como sucedió, según el pensamiento de la biología actual: una arquea y una α-proteobacteria andaban por ahí tranquilamente a sus cosas, cuando una le dijo a otra algo parecido a aquella cita de Memorias de África: «Mira, yo se lo que tu sientes por mí, y tu sabes lo que siento por ti. Nos entendemos bien así. Acostémonos. Verás lo que yo hago por ti». Así que la α-proteobacteria se quedó a vivir dentro de la arquea, convirtiéndose con el tiempo en una parte de ella que le proporcionaba energía. Hoy llamamos a esa parte mitocondria. A cambio, la bacteria obtenía protección, seguridad, supervivencia.

Esta teoría del origen de las células eucariotas como una simbiosis entre dos células procariotas simples fue elaborada en los años 60 por la bióloga Lynn Margulis, a quien entonces nadie tomó en serio. Hoy, ya fallecida, se aplaude su genio.

Otro de los científicos que más han aportado a la teoría de la endosimbiosis es Bill Martin, de la Universidad Heinrich Heine de Dusseldorf (Alemania). En vida de Margulis, Martin sostuvo interesantes debates con ella sobre los flecos finos de la teoría.

Hace unos días, Bill me envió un nuevo artículo que él y sus colaboradores Sven Gould y Sriram Garg publicarán próximamente en la revista Trends in Microbiology, del grupo Cell, y en el que proponen un fascinante corolario de la teoría endosimbiótica. Naturalmente, la célula eucariota es mucho más que mitocondrias. De hecho, se define esencialmente por tener un núcleo celular, una especie de globo que contiene el material genético, pero es la existencia de múltiples globos, o tabiques que separan internamente las distintas partes de la célula, lo que distingue a los eucariotas de los procariotas.

Esos globos y tabiques internos no son fijos, sino que van moviéndose para transportar cosas (moléculas) de un sitio a otro de la célula, o de su interior al exterior. Esto se conoce como tráfico vesicular, y es un rasgo propio de la célula eucariota. El conjunto más complejo de esos globos y tabiques es el retículo endoplásmico, donde se fabrican las proteínas que luego se llevan al lugar en el que deben actuar.

¿De dónde surgió todo ese tráfico vesicular? En su artículo, Bill y sus colaboradores detallan cómo todos esos globos y tabiques (membranas), incluyendo el núcleo celular, pudieron aparecer también como consecuencia de la endosimbiosis. Las bacterias y arqueas tienen también un cierto tráfico vesicular, pero solo hacia el exterior, para verter el contenido de esos globos fuera de la célula. Lo que proponen los investigadores es que este tráfico vesicular de la α-proteobacteria que se quedó a vivir dentro de una arquea es el origen de todo el tabicado interior de nuestras células actuales, incluyendo el retículo endoplásmico y el núcleo.

Esta elegante hipótesis tiene un detalle especialmente revelador: resulta que las membranas de las arqueas y de las bacterias están fabricadas de un material diferente. Las membranas celulares están formadas por grasas, gracias a lo cual consiguen separar distintos ambientes acuosos; es el mismo principio que separa el agua y el aceite lo que permite que existan las células. Pero bacterias y arqueas utilizan grasas distintas: las primeras emplean ácidos grasos, lo mismo que nosotros, mientras que las arqueas recurren a otros componentes llamados isoprenoides. Pregunta: si nuestras células proceden de una arquea que se comió una bacteria, ¿por qué nuestra membrana se parece a la de la bacteria, y no a la de la arquea?

El artículo de Bill ofrece la solución: cuando las vesículas creadas por la bacteria fueron viajando a través del interior de la arquea hasta su superficie, y según se iban fusionando con la membrana exterior de la arquea, la composición de esta fue transformándose poco a poco, dejando de ser una membrana de arquea y convirtiéndose en una membrana de bacteria, como la nuestra.

«Nuestra propuesta apenas requiere innovaciones o procesos evolutivos excepcionales o únicos, tanto en el ancestro mitocondrial como en la arquea hospedadora, para originar una función básica de retículo endoplásmico con un flujo de vesículas dirigido hacia el exterior», escriben los autores.

Este es un potente argumento a favor de la hipótesis, ya que a menudo la dificultad a la hora de explicar los procesos evolutivos es unir los puntos de manera que el desarrollo de la trama resulte creíble, sin saltos bruscos como en las malas películas donde aparece un personaje nuevo diez minutos antes del final para que todo cuadre. El artículo de Bill es de los que logran explicar la serie de la evolución de manera que logremos entender cómo hemos llegado hasta aquí desde las temporadas anteriores, esas que nos perdimos y que nunca llegaremos a ver.

No se asuste, pero usted y yo somos opistocontos

¿Imaginan que a los niños en el colegio les enseñaran que Moscú es la capital de la Unión Soviética, que Alemania está dividida en dos y que el presidente del gobierno se llama Felipe González? Pues esto es lo que está ocurriendo en la enseñanza de las Ciencias Naturales: están ignorando lo sucedido en los últimos 30 años.

Siempre he sido un defensor del gasto en los libros de texto, en contra de cierta corriente extendida. A los hijos de algunos de esos padres que protestan por el coste de culturizar a sus niños los he visto luciendo la camiseta oficial de su equipo de fútbol, esas que cuestan el equivalente a cuatro o cinco libros. Es cierto que tal vez podrían encontrarse fórmulas para abaratar los precios de los libros. Pero más que nunca ahora, en esta época en que se asume el precio de los soportes y se cree en cambio que los contenidos son gratis, alguien tiene que insistir en que generar la chicha con la que rellenar las páginas –ya sean de átomos o bits– y actualizarla regularmente requiere la dedicación de especialistas que también tienen derecho a vivir de su trabajo.

Todo esto, claro, si efectivamente se actualizan. Si no, nada de lo dicho tiene sentido.

Mi hijo mayor ya empieza a estudiar contenidos de cierta enjundia. Pero cuando me recitó la clasificación de los seres vivos que le están enseñando en la asignatura de Ciencias Naturales, descubrí que este año he pagado por un libro que no se ha actualizado desde hace décadas. Reviso el texto, Ciencias de la Naturaleza de 5º de Primaria, de Edelvives, y leo lo siguiente:

Los seres vivos se clasifican en cinco grandes grupos denominados Reinos: Reino Animales, Reino Plantas, Reino Hongos, Reino Protistas y Reino Moneras.

Es decir, exactamente lo mismo que me enseñaron a mí a su edad hace varias décadas, con la diferencia de que entonces se creía correcto. Hoy se sabe con absoluta certeza que esta clasificación es rematadamente errónea. Y aunque las actuales sean solo provisionales y aún estén sujetas a profundos cambios, esto no es motivo para seguir impartiendo un esquema que niega no solo lo investigado y publicado durante más de un cuarto de siglo, sino también el propio fundamento científico actual de la clasificación de los seres vivos.

En tiempos de Linneo, el genio sueco que en el siglo XVIII inventó la clasificación jerárquica de los seres vivos y la nomenclatura binomial (género y especie), los científicos no tenían otro modo de organizar el batiburrillo de la naturaleza sino fijándose en el mayor o menor parecido de los rasgos físicos apreciables a simple vista. Pero es evidente que este método era solo una aproximación sujeta a catastróficos errores.

Por poner una analogía, mi hijo pequeño tiene un amiguito que es físicamente bastante parecido a él. Un Linneo genealogista los habría agrupado a ambos en la misma familia. Pero me consta que a ese niño no lo parió mi mujer, y puedo prometer y prometo que no conozco a su madre absolutamente de nada. Agrupar a los seres humanos correctamente en sus árboles familiares requiere conocer su línea genealógica.

Colección de especímenes biológicos. Imagen de Wikipedia.

Colección de especímenes biológicos. Imagen de Wikipedia.

Lo mismo se aplica a las especies. Los primeros biólogos evolutivos convirtieron la taxonomía de la naturaleza en algo mucho más profundo que un inmenso armario repleto de cajoncitos; clasificar a los seres vivos es conocer sus relaciones de parentesco. Es decir, que la taxonomía es reconstruir la historia de la vida en la Tierra.

A comienzos de la segunda mitad del siglo XX, el desarrollo de la biología molecular empezó a facilitar la posibilidad de conocer estos parentescos comparando no ya los rasgos físicos de los organismos, sino lo que determina esos caracteres y guarda la información transmitida de generación en generación: el material genético. Hasta entonces los seres vivos se clasificaban en los cinco reinos clásicos que aún hoy aparecen en el libro de Edelvives. Pero entonces, todo comenzó a cambiar.

En 1977, un tipo inmensamente brillante llamado Carl Woese descubrió que algunas de las que hasta entonces se creían bacterias (Reino Moneras, según la clasificación antigua) eran en realidad otra cosa muy distinta; tanto como las plantas se diferencian de los animales. Woese y su colaborador George Fox llamaron a este grupo arqueobacterias, hoy arqueas. Por entonces ya se agrupaba a los seres vivos en categorías superiores a los Reinos, y los dos autores definieron tres grandes líneas: bacterias, arqueas y eucariotas. Así, el antiguo Reino Moneras quedaba roto en dos grupos situados al mismo nivel que la categoría madre de los otros cuatro reinos clásicos.

En 1990, el propio Woese definió un nombre para estos grandes grupos: dominio. Los organismos quedaban así clasificados en tres dominios: Bacterias, Arqueas y Eucariotas. Por debajo de estos figurarían los reinos, pero las cosas se fueron complicando aún más al descubrirse que, en realidad, los cuatro reinos clásicos comprendidos en los Eucariotas eran completamente artificiales. En concreto, los Protistas o protozoos se habían englobado en el mismo saco por su carácter unicelular; pero al estudiar su material genético se reveló que aquello era un cajón de sastre con bichos de muy diferente catadura, más relacionados evolutivamente con otros grupos como plantas o animales que entre sí.

Árbol filogenético de los Eucariotas, según una clasificación de 2005 hoy anticuada. Los animales (Metazoa) aparecen hacia abajo a la izquierda. Imagen de Wikipedia.

Árbol filogenético de los Eucariotas, según una clasificación de 2005 hoy anticuada. Los animales (Metazoa) aparecen hacia abajo a la izquierda. Imagen de Wikipedia.

Resumiendo y por no extenderme, una clasificación tentativa actual divide a los Eucariotas en cinco divisiones; serían los auténticos reinos, aunque suele evitarse esta denominación para no inducir a confusión. Estos cinco grupos son Archaeplastida, SAR (Stramenopiles-Alveolata-Rhizaria), Amoebozoa, Excavata y Opisthokonta. Las plantas pertenecen a Archaeplastida, mientras que los animales y los hongos estamos incluidos en Opisthokonta, junto con otros cercanos parientes nuestros unicelulares o coloniales. En los nuevos diagramas (como el que incluyo, aunque se trata de una versión ya anticuada con seis grupos en lugar de cinco) queda reflejado lo que realmente representamos en todo esto: somos una inapreciable subdivisión de una subdivisión de una subdivisión de una minúscula ramita; una curiosa anécdota biológica en un inmenso y complejo bosque de formas de vida.

Pero la cuestión taxonómica no está ni mucho menos cerrada: hay grupos que aún no encajan fácilmente en esta clasificación, y existen dudas sobre si estas cinco divisiones realmente se sitúan al mismo nivel. Además, los protozoos aún son un mundo por descubrir. Y por no hablar de que todo podría complicarse mucho más una vez que se vayan definiendo nítidamente las relaciones evolutivas; en concreto, algunos autores defienden que en realidad deberíamos pertenecer al dominio de las arqueas, de las que aparentemente descendemos.

Pero de esto ya hablaré otro día. Hoy la idea es esta: el hecho de que nuestro edificio taxonómico aún esté en construcción, y que sus letreros lleven palabrejas complicadas para un niño, no justifica que se siga enseñando un esquema obsoleto y desacreditado; sobre todo cuando al hacerlo se destruye el significado de esa clasificación, que es la reconstrucción de la historia evolutiva en la Tierra. Seguiré pagando los libros con gusto, mientras no me vendan pescado podrido.

El juego de la evolución tiene «nuevas reglas»

En 2005 dos genetistas y bioquímicas, Eva Jablonka y Marion J. Lamb, sacudieron el armazón de la biología con un libro titulado Evolution in Four Dimensions (Evolución en cuatro dimensiones), que en pocos años se ha convertido ya en una de las obras clásicas (léase imprescindibles) sobre el pensamiento evolutivo.

Lo que la israelí Jablonka y la británica Lamb proponían era una ampliación del enfoque de la evolución biológica a toda variación heredable de generación en generación, no solo a lo que una máquina secuenciadora de ADN puede leer. Con esta visión, la información genética estrictamente codificada en forma de A, G, T y C sería solo una de las dimensiones de la evolución, pero habría otras tres: los rasgos epigenéticos (ahora explico), los comportamientos sociales inculcados, y el pensamiento simbólico exclusivo de los humanos.

Los dos últimos podrían considerarse a simple vista como un viraje hacia la psicología evolutiva con escasa implicación en los mecanismos de variación de las especies, pero en realidad no es así: lo que Jablonka y Lamb argumentaban es que estas dos dimensiones son también biológicas, ya que los cuatro aspectos interactúan constantemente entre sí, de modo que la tradición social y la cultura también se ven influidas por los mecanismos genéticos y epigenéticos.

Nos queda explicar este último término. Lo epigenético es lo que está sobre lo genético. A finales del siglo pasado, se generalizó esta denominación para ciertos cambios químicos en la molécula de ADN que no son mutaciones, porque no afectan a la secuencia –CCGTACCGGT seguirá siendo CCGTACCGGT–, pero que sin embargo sí determinan la actividad de un gen, por ejemplo silenciándolo, es decir, volviéndolo invisible para la maquinaria encargada de hacer que los genes hagan lo que deben hacer. Imaginemos que borramos una palabra de un documento con típex; la palabra seguirá ahí, debajo de la franja blanca, pero no podremos leerla porque se ha vuelto invisible para nuestro mecanismo de lectura, la vista.

Los cambios epigenéticos pueden aparecer por estímulos de nuestro entorno, como los alimentos o los contaminantes ambientales. Y si afectan también al espermatozoide o al óvulo, nuestros hijos los heredarán. Es decir, que nuestra descendencia podría tener alterada la actividad de un gen debido a nuestra dieta; no solo la de la madre en gestación, como tradicionalmente se asumía, sino incluso la de la futura madre aún no gestante o la del futuro padre.

Retrato de Jean-Baptiste Lamarck por Charles Thévenin, 1802-3. Imagen de Wikipedia

Retrato de Jean-Baptiste Lamarck por Charles Thévenin, 1802-3. Imagen de Wikipedia

Esta posibilidad de transmitir a nuestros hijos ciertos rasgos que adquirimos durante nuestra vida, y que vienen determinados por lo que hacemos o dejamos de hacer, era un concepto que formaba parte de la teoría de la evolución definida por el francés Jean-Baptiste Lamarck, anterior a Darwin. Pero cuando Darwin llegó a la conclusión de que las variaciones heredables se producían al azar (aún no se conocían los genes, ni por tanto las mutaciones), y que el hecho de que prendieran o no en la especie se debía a la selección natural, las ideas de Lamarck quedaron abandonadas.

Con el descubrimiento de la epigenética, algunos biólogos han rescatado la visión de Lamarck, mientras que para otros este es un camino que lleva a la confusión. Al fin y al cabo, es sorprendente lo poco que se comprende la evolución entre el público en general. A menudo se escuchan expresiones como «adaptarse o morir», «la naturaleza se perfecciona», la «lucha por la supervivencia» o la «supervivencia del más fuerte»; ninguna de ellas es darwiniana. Las dos primeras son más bien lamarckianas. Y las dos últimas, si acaso, norrisianas, de Chuck.

Entre los supuestamente neolamarckistas está Jablonka, la coautora del libro al que me he referido, y a quien le he preguntado hasta qué punto el enfoque que proponen ella y Lamb sugiere que deberíamos sacar a Lamarck del rincón de los castigos e incorporar sus ideas en una nueva visión de la evolución. La respuesta de la bióloga es que no trata de defender que la mutación al azar deje de ser el principal mecanismo que dirige la evolución a largo plazo: «El hecho de que los mecanismos lamarckianos puedan haber evolucionado por selección natural de mutaciones al azar les niega un lugar central en la evolución una vez que existen», reconoce. «No cuestionamos la noción de lo aleatorio», añade.

Pero Jablonka sí piensa que la evolución ha cambiado; la evolución también evoluciona, y su postura es que en adelante hay nuevas reglas: «Puedes pensar en un juego cuyas reglas evolucionan; las nuevas reglas ahora dirigen, o son parte de lo que dirige, el juego de la evolución».

En resumen, quédense con esta idea: aunque el darwinismo puro quedó superado hace ya décadas debido a sus limitaciones, muchas de las cuales el propio Darwin reconoció en su obra, la variación aleatoria y la selección natural continúan siendo los principales motores de la evolución para la mayoría de los científicos. Pero otros mecanismos se han ido añadiendo con el tiempo, y hoy incluso algunas ideas descartadas hace más de un siglo tienen cabida en el estudio del problema central de la biología teórica.

Este es el bicho que vive en nuestras caras… desde que somos humanos

Les presento a Demodex folliculorum, un ser que vive en los poros y los folículos pilosos de la cara de ustedes, la mía y la del 100% de los humanos adultos. Lo siento, modelos que aparecéis en los anuncios de la tele proclamando jovialmente lo limpias que os sentís tras (presuntamente) eliminar vuestras toxinas bebiendo nosequé. En vuestras cejas, pestañas, frente, pómulos, orejas, nariz, y prefiero no continuar hacia más abajo, viven estos diminutos y adorables animalitos de ocho patas con garras, primitos de las arañas. Y no hay bebida que os libre de ellos.

Un 'Demodex folliculorum'. Imagen de California Academy of Sciences.

Un ‘Demodex folliculorum’. Imagen de California Academy of Sciences.

Somos auténticos ecosistemas andantes. En nuestro cuerpo habitan diez veces más bacterias que células nuestras. Tal vez solemos pensar que, cuando uno de nosotros muere, nuestros restos mortales se convierten en pasto de infinidad de criaturas. Pero lo cierto es que ya somos un universo en miniatura mientras estamos vivos. Lo que sucede más bien es que, cuando morimos, esa pacífica sociedad de miles de millones de seres que hasta entonces vivían tranquilamente a sus cosas dentro de nosotros se ve de repente invadida por inmensas hordas de bárbaros agresivos que exterminarán su pequeño mundo tal como lo conocían. En lo que se refiere a nuestros microbios, el llamado microbioma humano es un campo de la biología que está en pleno auge, y que cada vez está demostrando más relevancia en determinar lo que realmente somos, no solo a nivel fisiológico, sino incluso psicológico.

Últimamente he estado trabajando bastante sobre el tema de la simbiosis. Muchos biólogos piensan que ya no puede considerarse la evolución tomando cada especie aislada, por ejemplo los humanos, sino que a efectos evolutivos debe pensarse en el todo formado por un organismo y todos los que le acompañan en su viaje, lo que se conoce como el holosimbionte. Cada uno de nosotros es un holosimbionte compuesto por el yo biológico más todo el resto de organismos que llevamos encima y dentro. Qué bonita manera de aplicar a la biología aquella famosa idea de Ortega: «yo soy yo y mi circunstancia».

Regresando a nuestro amigo el Demodex folliculorum, es uno de los dos ácaros que viven en los orificios de nuestra piel, junto con su primo D. brevis, que prefiere las glándulas sebáceas. La biología no los considera simbiontes, ya que por el momento no se conoce que nos aporten ningún beneficio. Tampoco lo contrario, salvo en casos de infestación grave, y por ello los clasificamos como comensales.

El gusano espacial que trataba de tragarse el 'Halcón Milenario' en 'El imperio contraataca'. Imagen de 20th Century Fox.

El gusano espacial que trataba de tragarse el ‘Halcón Milenario’ en ‘El imperio contraataca’. Imagen de 20th Century Fox.

Pero si traigo aquí a este animalito precisamente hoy, día del estreno de El despertar de la Fuerza, no es por el parecido razonable entre el gusanito que vive en las cuevas de nuestra piel y el gusanazo que vivía en la caverna de un asteroide en El imperio contraataca. El motivo es que el Demodex es el protagonista de un estudio recién publicado en la revista PNAS y que nos descubre una fascinante conclusión sobre hasta qué punto nuestro destino y el de nuestros inquilinos están vinculados.

Científicos de la Academia de Ciencias de California y otras instituciones (incluyendo a una investigadora de la Universidad de Vigo, Iria Fernández-Silva) tomaron muestras de la cara de 70 personas en distintos lugares del mundo, bien arrastrando por la frente la parte curvada de una horquilla, o bien raspando la piel de la mejilla o del exterior de la nariz con una espátula. Lo primero que comprobaron al analizar las muestras fue que absolutamente todos los sujetos llevaban el Demodex en su piel, confirmando lo que otro estudio del mismo equipo ya mostró el año pasado: todos los humanos mayores de 18 años compartimos este inquilino.

Curiosamente, de las personas que tenían 18 años en el momento del estudio, el Demodex estaba presente solo en el 70% de los casos, indicando que lo adquirimos a lo largo del tiempo. ¿Y de quién? Pues según los análisis de ADN mitocondrial practicados por los investigadores, no de cualquiera a quien saludamos con un par de besos, sino de nuestra gente más próxima: del mismo modo que nosotros y nuestros familiares más cercanos compartimos ADN, también nuestros Demodex y los de nuestros familiares más cercanos comparten su ADN.

Un 'Demodex folliculorum'. Imagen de California Academy of Sciences.

Un ‘Demodex folliculorum’. Imagen de California Academy of Sciences.

Según la directora del estudio, Michelle Trautwein, «el continente de donde procede la ascendencia de una persona tiende a predecir los tipos de ácaros de sus caras». Pásmense: los investigadores descubrieron que algunas personas afroamericanas cuyas familias llevan varias generaciones viviendo en EEUU aún llevan Demodex africanos. «Es alucinante que solo estemos empezando a descubrir cómo nosotros y los ácaros de nuestro cuerpo compartimos profundamente la misma historia», dice Trautwein.

Pero aún más, el estudio de ADN ha permitido a Trautwein y sus colaboradores rastrear la evolución de los Demodex a lo largo del tiempo y su dispersión por el mundo en sus hospedadores humanos. Y resulta que estos animalitos reflejan en su evolución genética la famosa hipótesis llamada Out of Africa, según la cual los humanos modernos surgieron en África y desde allí emigraron hasta colonizar el mundo originando poblaciones distintas. Sin embargo, cuando nosotros aparecimos, los Demodex ya estaban allí: el ADN sugiere que su especie es anterior a la nuestra, pero es posible incluso que su linaje se remonte a más de 3 millones de años atrás, lo que indicaría que nos han acompañado desde el nacimiento del género Homo.

Así que el minúsculo Demodex, que normalmente no nos molesta demasiado, se merece un pequeño homenaje. Hoy rompo mi línea habitual: que entre Sinatra. I’ve got you under my skin (te llevo bajo mi piel).

¿Cómo estiró el cuello la jirafa?

Siete vértebras cervicales. Esta es la ley que usted debe respetar si desea ser un mamífero. A menos que sea un perezoso; no de los que se quedan hasta el mediodía en la cama, sino de los que tienen dos o tres dedos y viven en el trópico americano.

Jirafa masái en el Parque Nacional de Nairobi (Kenya). Imagen de Javier Yanes.

Jirafa masái en el Parque Nacional de Nairobi (Kenya). Imagen de Javier Yanes.

El elegante y flexible cuello de los cisnes esconde una cadena de 22 a 25 vértebras cervicales. Entre los animales que llevamos una columna vertebral a nuestras espaldas existe una gran variedad de opciones respecto al número de huesos cervicales.

Pero no en los mamíferos.

Solo manatíes (seis), perezosos de dos dedos (Choloepus, de cinco a siete) y de tres dedos (Bradypus, ocho o nueve) se permiten el lujo de rebelarse contra lo que para el resto es una ley obligatoria: siete vértebras cervicales. Dejando de lado las glándulas mamarias, más o menos evidentes según la especie, desde el delfín a la jirafa y desde Danny de Vito a Audrey Hepburn, el de las siete vértebras cervicales es uno de los pocos rasgos comunes y exclusivos de (casi) todos los mamíferos.

Pero ¿por qué? Cuando existe una característica tan conservada entre los muy diferentes descendientes de un abuelo común, los biólogos evolutivos suelen ver en ello la pistola humeante de un rasgo VIP, uno tan esencial que ha navegado a través de la evolución sin sufrir ninguna perturbación, como un ministro atraviesa los controles de los aeropuertos sin que nadie le despeine. Pero dado que la extraña atracción de los humanos hacia este número (días de la semana, mares, colores o enanitos) no parece suficiente justificación para necesitar siete vértebras y no seis u ocho, debía de haber algo más.

Ese algo más reside en lo que se llama pleiotropía, término de origen griego que viene a significar algo así como «varias respuestas». Los genes pleiotrópicos son aquellos que controlan varios rasgos o funciones aparentemente no relacionados entre sí. El número de vértebras cervicales depende de unos genes llamados Hox que son esenciales para desarrollar el plan general anatómico del cuerpo en el eje cabeza-cola. En genética del desarrollo, decir Hox es hablar de una de las cajas fuertes del genoma, un reducto inviolable que protege algunos de nuestros genes más esenciales.

Se entiende entonces que las mutaciones en los genes Hox son fatales: producen defectos en el desarrollo y en el sistema nervioso, así como cánceres muy tempranos. Los errores en los Hox alteran el número de vértebras cervicales, pero esto de por sí no sería necesariamente letal si no fuese por el resto de daños que provocan estas mutaciones. Los datos indican que hasta el 7,5% de todos los embriones humanos llevan un número equivocado de vértebras cervicales, y por tanto mutaciones en los Hox. Muchos de ellos mueren antes de nacer; los defectos en los Hox son los responsables de un buen número de abortos espontáneos cuando hay anomalías anatómicas. El resto suelen fallecer antes de alcanzar la edad reproductiva.

La coautora del nuevo estudio Melinda Danowitz sostiene una vértebra de jirafa. Imagen de NYIT.

La coautora del nuevo estudio Melinda Danowitz sostiene una vértebra de jirafa. Imagen de NYIT.

¿Qué hay de los perezosos y los manatíes? Las investigaciones apuntan que estos animales parecen evitar los perjuicios de la rebeldía cervical gracias a su lento metabolismo, que por ejemplo les protege del desarrollo rápido de cánceres agresivos. Curiosamente, y si la hipótesis es correcta, la lentitud de estos animales es precisamente lo que los mantiene vivos: live fast, die young.

Con todo lo anterior, el caso de la jirafa resulta asombroso. Frente a la enorme flexibilidad del cuello del cisne, quien haya visto una jirafa bebiendo agua de una charca ha podido comprobar lo complicado que es acercar la cabeza al suelo bajo la tiranía de las siete vértebras. La solución de la jirafa para tener un cuello largo sin violar la ley fue alargar sus vértebras, pero a costa de una rigidez que la obliga a despatarrarse aparatosamente para poder beber. La pregunta entonces es: ¿qué necesidad había de un cuello tan largo?

La respuesta es que, en el fondo, nadie lo sabe con absoluta certeza. Se supone, y siempre se ha supuesto, que el cuello de rascacielos ha proporcionado a la jirafa el acceso a un estante del supermercado natural al que nadie más llega desde el suelo; estos animales se alimentan de las hojas de las copas de las acacias, y la evolución los ha dotado además de una lengua dura para evitar los pinchazos de las espinas de estos árboles. Otra teoría atribuye el largo cuello de las jirafas a una ventaja en el combate con fines reproductivos. Pero sea cual sea el motivo, y a pesar de que la prueba del éxito evolutivo siempre la tenemos en la mera existencia del animal en cuestión, el cómo y el porqué del cuello de la jirafa continúa siendo materia de especulación.

Un nuevo estudio viene a aportar algo de claridad al cómo. Un equipo de investigadores de la Facultad de Medicina Osteopática del Instituto Tecnológico de Nueva York ha estudiado la tercera vértebra cervical (C3) en 71 especímenes de dos especies actuales y nueve extintas de la familia de las jirafas. Comparando todos estos huesos, los científicos han podido trazar la evolución de este hueso desde el Canthumeryx, el primer jiráfido que vivió hace 16 millones de años, hasta las jirafas actuales.

Ilustración del 'Samotherium', el primer jiráfido. Imagen de Apokryltaros / Wikipedia.

Ilustración del ‘Samotherium’. Imagen de Apokryltaros / Wikipedia.

Los resultados del estudio, publicado en la revista Royal Society Open Science, muestran que el primer antepasado de las jirafas ya tenía un cuello ligeramente largo, pero el verdadero estirón comenzó hace unos siete millones de años en una especie extinguida llamada Samotherium. Curiosamente, este animal solo elongó la porción de la vértebra más próxima a la cabeza. El crecimiento de la parte trasera, la que mira hacia el cuerpo, no se produjo hasta hace un millón de años, ayer mismo en el reloj evolutivo. Las jirafas actuales son los representantes más cuellilargos de la familia porque son los únicos que han adoptado las dos fases del alargamiento vertebral. De hecho, el único primo hoy vivo de la jirafa, el okapi de África central, sufrió un acortamiento después de la primera etapa.

Así pues, dos especies de la misma familia, okapi y jirafa, siguieron caminos evolutivos divergentes. Curiosamente, el primero vive en selvas donde existe abundante alimento vegetal a todas las alturas, mientras que la segunda habita en las sabanas donde predominan la hierba y los árboles dispersos, y donde un cuello largo sí puede representar una ventaja entre las grandes poblaciones de herbívoros que compiten por el sustento. Y también curiosamente, son las dos únicas especies supervivientes de lo que antes fue una gran familia. Está claro que la evolución no da puntadas sin hilo.

¿Y si la vida surgió en el desierto?

Si algo sabemos con certeza de cómo comenzó la vida en este planeta, es que fue en el mar.

¿O no?

Imagen de Olearys / Flickr / CC.

Imagen de Olearys / Flickr / CC.

Las reacciones químicas de la vida tienen lugar en el agua. Las células son pequeños botijos cerrados que mantienen en su interior un diminuto océano portátil en el que transcurren todos los procesos bioquímicos. Pero antes de que surgiera la primera célula, no había una barrera que confinara el medio acuoso. Por lo tanto, toda la química previa a los primeros sistemas vivos debía desarrollarse directamente sobre mojado. El agua con compuestos precursores disueltos es lo que se conoce como la sopa orgánica primordial, el lugar donde nació la vida.

Algunos científicos piensan que este lugar pudo ser similar a las actuales fumarolas hidrotermales marinas, también llamadas chimeneas negras. Se trata de fisuras en el lecho marino situadas en zonas volcánicas, normalmente a gran profundidad, por las que se filtra agua caliente con abundantes minerales disueltos, sobre todo sales de azufre. La alta temperatura y la riqueza de nutrientes concentran pequeños ecosistemas en las fumarolas, incluyendo bacterias y arqueas primitivas que viven en ausencia de oxígeno, en un entorno muy parecido al de la Tierra prebiótica.

La ventaja de las fumarolas es que crean un ambiente local muy apto para que se dieran las condiciones iniciales de la vida, algo que difícilmente pudo ocurrir en un mar abierto donde los compuestos están demasiado dispersos. Con el paso de los años, los científicos han ido abandonando la idea de que la vida pudo surgir en el agua libre, ya que la baja concentración de las moléculas haría muy improbable que llegaran a producirse las reacciones necesarias; hace falta un ambiente más íntimo, o una fase sólida a la que agarrarse. El propio Darwin ya habló de un «pequeño estanque caliente», y algunos expertos han llegado a proponer incluso que la vida pudo comenzar en el diminuto resto de agua que cabe entre dos laminillas de mica, ese mineral que forma lentejuelas en el granito.

Esto, en lo que se refiere al dónde. Pero ¿cómo? Ayer mencioné el experimento de Miller-Urey. En 1952, Stanley Miller y Harold Urey, entonces en la Universidad de Chicago, construyeron un sistema cerrado en el que introdujeron una fuente simple de carbono, otra de nitrógeno y gas hidrógeno, todo ello en un medio acuoso con una fuente de calor. Al más puro estilo de Victor Frankenstein, aplicaron chispazos a la disolución para simular las tormentas eléctricas de la Tierra primigenia. Gracias a este aporte de energía, el sistema de Miller y Urey generó espontáneamente una gran cantidad de aminoácidos, los bloques que forman las proteínas; tantos que un análisis reciente de las muestras guardadas entonces detectó más de los que en su día habían encontrado los investigadores.

El chispazo de Frankenstein es un elemento problemático. Como expliqué ayer, y en aplicación de la Segunda Ley de la Termodinámica, la física de la naturaleza fluye hacia los estados de mínima energía, no al contrario. En presencia de oxígeno, los compuestos de carbono de los que estamos hechos se queman espontáneamente, desprendiendo calor y produciendo dióxido de carbono (CO2) y agua como residuos finales. Para que la reacción discurra en sentido contrario, por ejemplo para fabricar glucosa a partir de agua y CO2, es necesario aportar energía, que se almacena en los enlaces químicos de la molécula. El chispazo de Miller y Urey lo conseguía; pero por mucho que la Tierra primitiva fuera una especie de Mordor, confiar en los rayos para ejecutar billones de reacciones de ensayo y error es quizá demasiado arriesgado. ¿Sería posible encontrar otra fórmula en la que se aminoraran las barreras energéticas a superar?

De momento, ahí lo dejamos. Pasamos ahora al qué. Para disparar el comienzo de la vida en la Tierra y mucho antes de la primera célula, fue necesario que en primer lugar aparecieran moléculas capaces de copiarse y almacenar información. Lo primero se logra a través de enzimas, que actúan como catalizadores para propiciar reacciones que de otro modo no se producirían, o lo harían muy lentamente. Para lo segundo se necesitan un código y un soporte químico capaz de alojarlo.

Respecto a esto último, hoy todos los organismos almacenamos nuestra información en forma de ADN, a excepción de algunos virus (si es que pueden calificarse como organismos) que emplean como material genético otro derivado llamado ARN. El ARN, que también empleamos todos los organismos para ciertos procesos biológicos, tiene una cualidad especial, y es que además de almacenar información genética puede actuar como enzima, algo que no se ha encontrado en la naturaleza para el ADN. Estos ARN con actividad catalítica se llaman ribozimas.

El descubrimiento de las ribozimas en 1982 indujo a muchos científicos a pensar que quizá la vida en la Tierra comenzó con el ARN, ya que tiene todo lo necesario, capacidad de codificar información y actividad catalítica que podría haber facilitado la autorreplicación. La vida no podría haber comenzado sin la catálisis, y en esta actividad biológica juega un papel imprescindible otro tipo de compuestos, las proteínas, que aportan la mayoría de las funciones enzimáticas y estructurales de los seres vivos. Las proteínas son cadenas de aminoácidos, como los generados por el experimento de Miller-Urey. Pero la unión de los aminoácidos en cadenas requiere un gran aporte de energía para la formación de sus enlaces, denominados peptídicos, y es difícil que esto se produzca de manera espontánea.

Ante todos estos requisitos e incógnitas, un equipo de investigadores del Centro para la Evolución Química y el Instituto Tecnológico de Georgia (EE. UU.) ha creado un modelo que avanza un gran paso en la demostración de la abiogénesis. Los científicos mezclaron dos tipos de moléculas orgánicas, aminoácidos e hidroxiácidos. Estos últimos, que también se presumen presentes en la Tierra primitiva, se diferencian de los aminoácidos en el grupo químico que llevan pegado a su radical ácido, y son muy utilizados en cosmética; muchas cremas llevan alfa-hidroxiácidos, o AHA, por sus (siempre presuntas) propiedades beneficiosas para la piel.

Los investigadores sometieron esta mezcla heterogénea a varios ciclos sucesivos de humedad y secado por calor, con una temperatura máxima que no superaba los 65 ºC. Con este proceso simularon algo que podría haber sucedido en la Tierra primitiva: charcos ricos en materia orgánica que se secaban al sol y se hidrataban de nuevo con la lluvia. Después de solo 20 repeticiones, los científicos observaron que surgían espontáneamente cadenas de hasta 14 unidades de aminoácidos e hidroxiácidos, conocidas con el nombre de depsipéptidos.

Los hidroxiácidos se unen con un tipo de enlace llamado éster, formando lo que se llama un poliéster. Un ejemplo de poliéster es, evidentemente, el poliéster, la conocida fibra textil. Esta es sintética y no biodegradable, pero existen otros poliésteres que se forman y se degradan en la naturaleza. Los científicos ya habían observado antes que estos poliésteres se forman espontáneamente con los ciclos de secado e hidratación. El enlace éster requiere menos energía que el enlace peptídico; basta con un aumento moderado de temperatura para activar su formación. Y una vez logrados los ésteres, la barrera de energía hacia los péptidos, más estables, es mucho menor. «Permitimos la formación de enlaces peptídicos porque los enlaces éster reducen la barrera energética que debe superarse», apunta el codirector del estudio, Nicholas Hud.

Así, una vez que se forman poliésteres, se van rompiendo y reformando, creándose depsipéptidos y finalmente péptidos; todo ello a temperaturas compatibles con la vida y sin necesidad de catalizadores externos. Según el estudio, publicado en la revista Angewandte Chemie International Edition, el proceso podría haber tenido lugar incluso en el desierto, donde el rocío puede formar minúsculas acumulaciones de agua que se secan al sol durante el día y se rehidratan por la noche.

Así, tenemos la demostración de que en la Tierra temprana pudieron formarse péptidos, o pequeñas proteínas. El siguiente paso lo detalla el coautor del estudio Ramanarayanan Krishnamurthy: “Si este proceso se repitiera muchas veces, podrías crecer un péptido que podría adquirir una propiedad catalítica, porque habría alcanzado un cierto tamaño y podría plegarse de una determinada manera. El sistema podría comenzar a desarrollar ciertas características y propiedades emergentes que podrían ayudarle a autopropagarse”.

En resumen, queda superado el obstáculo del que hablaba en el artículo anterior: la aparición de un sistema bioquímico con capacidad de autopropagación es energéticamente posible, y compatible con la Segunda Ley de la Termodinámica. Es evidente que, incluso desde la posible formación espontánea de enzimas y ARN catalítico hasta el nacimiento de la primera célula primitiva, queda aún un largo camino por recorrer. Pero otros investigadores han aportado también grandes avances en estas etapas, como la generación espontánea de membranas protocelulares a partir de ciertos lípidos. Resumiendo aún más: la abiogénesis es posible.

Pero en el fondo siempre nos quedará una pregunta incómoda.

¿Por qué solo una vez?

Mientras confiamos en encontrar vida en algún otro planeta de condiciones habitables, ignoramos a veces el hecho de que, a lo largo de 4.500 millones de años de historia de la Tierra, la abiogénesis solo ha ocurrido aquí UNA vez. O por lo menos, no tenemos absolutamente ningún indicio para sospechar otra cosa.

Concluimos así regresando a una vieja pregunta: ¿es la vida algo extremadamente improbable, como defendía Fred Hoyle? ¿Somos el producto de una casi imposible carambola de fenómenos raros? Por desgracia, no es descabellado pensar que quizá no haya nadie más en el universo.

¿Es la aparición de la vida incompatible con las leyes de la física?

Voy a despedir temporalmente este blog hasta después de las vacaciones con dos historias que superficialmente no tienen ninguna relación entre sí, pero que en el fondo ilustran una misma y vieja pregunta: ¿cómo surge la vida a partir de la no-vida, o lo complejo a partir de lo simple? Hoy explico el contexto, al que seguirán las dos historias en los próximos días.

Recreación de la Tierra temprana. Imagen de NASA's Goddard Space Flight Center Conceptual Image Lab.

Recreación de la Tierra temprana. Imagen de NASA’s Goddard Space Flight Center Conceptual Image Lab.

Tal vez a muchos sorprenda que el término Big Bang, que designa la teoría cosmológica prevalente hoy, lo inventó alguien que no creía en él. En 1949, el astrónomo británico Fred Hoyle lo pronunció durante una entrevista para la BBC con una intención casi paródica. Fallecido en 2001, Hoyle fue un tipo siempre polémico a causa de muchas de sus visiones, que desafiaban las teorías científicas más aceptadas.

Uno de los campos en los que Hoyle sostuvo una opinión heterodoxa fue el origen de la vida en la Tierra. El astrónomo fue uno de los principales proponentes de la panspermia, la idea de que la biología fue sembrada en este planeta por la colisión de objetos espaciales. Hoyle consideraba imposible que la vida hubiera nacido espontáneamente a partir de la no-vida, lo que se conoce como abiogénesis. Según sus cálculos, la posibilidad de que por puro azar surgiera el conjunto mínimo de enzimas para poner en funcionamiento la célula más simple era de una entre 10 elevado a 40.000 (uno dividido entre un uno seguido de 40.000 ceros). En una de sus frases más famosas, Hoyle dijo que la probabilidad de aparición de una célula a partir de sus componentes químicos básicos era similar a la de que un tornado atraviese el patio de una chatarrería y ensamble un Boeing 747 a partir de la chatarra.

Lo cierto es que las dudas de Hoyle tenían algo de fundamento. En el siglo XIX se acuñó un término llamado entropía, cuyo significado se expresó en una de las leyes fundamentales de la naturaleza, la Segunda Ley de la Termodinámica. La entropía ha recibido distintas definiciones a lo largo del tiempo. Popularmente se entiende como el grado de desorden de un sistema, una traducción lógica de su significado físico. En una de sus acepciones, la entropía mide la cantidad de energía inútil disipada en forma de calor por un sistema, por ejemplo una máquina.

La Segunda Ley afirma que la entropía de un sistema aislado siempre aumenta. El universo, como sistema aislado, camina en una dirección temporal, que es la misma que lo dirige hacia su máximo nivel de entropía. La Segunda Ley es el motivo, por ejemplo, de que una máquina de movimiento perpetuo sea algo incompatible con la física. Y también es la razón por la cual es imposible emplear el agua como combustible; el agua no puede quemarse porque ya está quemada: es hidrógeno oxidado, un residuo biológico final.

Desde que se definió por primera vez la entropía, surgió la pregunta sobre cómo aplicar el concepto a los sistemas biológicos, un tipo particular de máquinas. En 1875, el físico Ludwig Boltzmann hizo notar que la lucha de los organismos biológicos por la vida es en realidad una lucha por la «entropía negativa», es decir, la generación de un nivel superior de orden, gracias a la disponibilidad de la energía que se transfiere desde el Sol a la Tierra, desde un cuerpo caliente a otro frío. El también físico Erwin Schrödinger, el del famoso gato, definió una paradoja que hoy se conoce por su nombre: la Segunda Ley de la Termodinámica dicta que los sistemas aislados aumentan su grado de desorden; y sin embargo, los sistemas vivos logran justo lo contrario, acrecentar su nivel de organización. Tanto si nos fijamos en los organismos individuales como en la abiogénesis o en la evolución biológica, todo parece transcurrir en sentido contrario al que se esperaría según la Segunda Ley. ¿Cómo es posible?

La respuesta es muy obvia, pero no sus implicaciones; tanto no lo son que el asunto de la entropía en los sistemas biológicos ha mantenido ocupados a los biofísicos durante más de un siglo. En cuanto a la respuesta obvia, está claro que la vida no es un sistema aislado; solo hay que añadir el entorno y el Sol como fuente de energía para que el balance total de entropía sea positivo, como dicta la ley. Como ya entrevió Boltzmann y explicó Schrödinger, los organismos se alimentan de «entropía negativa», un concepto que luego fue reemplazado por el de energía libre; una planta cosecha la energía solar para construir, por ejemplo, moléculas de glucosa. Pero para conseguir un mayor grado de orden interno, todo organismo aumenta el desorden de su entorno, en forma de materia desorganizada (residuos) y disipación de energía no aprovechable (calor).

Con todo, algo es innegable, y es que la síntesis de una molécula de glucosa es un proceso termodinámicamente antinatural, ya que requiere saltar una barrera energética para que las cosas funcionen en sentido contrario a como lo harían de acuerdo estrictamente a las leyes de la física. Sin embargo, la experiencia nos muestra que esto sucede todos los días a nuestro alrededor y de forma natural en los sistemas biológicos, y los científicos lo han construido, deconstruido, replicado, experimentado y medido.

Pero ¿qué ocurre con la abiogénesis?

El problema de la abiogénesis es que no estábamos ahí para observar cómo se producía. Y desde luego, esto no es una obviedad. Nunca jamás llegaremos a conocer con certeza cómo y dónde surgió la vida en nuestro planeta. Pero experimentalmente podemos simular las condiciones de la Tierra prebiótica y sentarnos a observar si ocurre algo similar a lo que pudo suceder hace unos 4.000 millones de años.

A lo largo del siglo XX y lo que llevamos del XXI, innumerables experimentos se han acercado a la demostración de cómo la vida puede surgir a partir de la no-vida; en particular, el experimento de Miller-Urey, en 1952, fue crucial para demostrar que la abiogénesis era naturalmente posible. El argumento de Hoyle sobre el tornado y el 747 se desmonta por el hecho de que todos los pasos, tanto en los organismos individuales como en la evolución biológica, son casi infinitesimales; es decir, que toda complejidad es reducible a la suma de incrementos diminutos. Y si es así para la aparición de todas las innovaciones evolutivas (incluyendo casos clásicos como el ojo), también lo es para la abiogénesis: la vida fue el producto final de una serie increíblemente extensa de pequeños procesos que a su vez se dieron en innumerables formas de ensayo y error, de las cuales la mayoría fueron errores. La Tierra tuvo tiempo de sobra para eso.

Ahora bien, es cierto que continúa siendo imprescindible superar una barrera energética para mover las cosas en sentido contrario a lo que la física haría por sí sola; así pues, cualquier intento de explicar el origen de la vida debe cumplir este requisito. Mañana contaré la primera de las historias de este cierre de temporada, un fascinante experimento que no solo sostiene la posibilidad de la abiogénesis, sino que sitúa el origen de la vida en un ambiente completamente insospechado: el desierto.

Tonterías que se dicen: todos los embriones humanos empiezan siendo femeninos

En 1866, un científico alemán llamado Ernst Haeckel formuló una teoría llamada Ley de la Recapitulación, que aún hoy se estudia en los cursos de biología de instituto y universidad. Haeckel había emprendido estudios comparativos de embriones cuando descubrió con entusiasmo que Charles Darwin se apoyaba en la embriología para explicar la evolución de las especies. El alemán había observado que los embriones humanos tempranos mostraban estructuras similares a las que aparecen en otras especies en la edad adulta, como hendiduras que recuerdan a las branquias y que se asemejan a los faringotremas, órganos de filtración de unos animales marinos llamados tunicados.

Un feto humano. Imagen de Ivon19 / Wikipedia.

Un feto humano. Imagen de Ivon19 / Wikipedia.

Así, Haeckel llegó a la conclusión de que, durante las primeras etapas de su desarrollo embrionario, los organismos «recapitulaban» sus pasos evolutivos; es decir, que por ejemplo los embriones humanos y de los reptiles iban recordando en su desarrollo la evolución desde las especies más primitivas a los peces, de ellos a los anfibios y luego a los reptiles. Estos se detenían ahí, mientras que los humanos continuaban progresando a mamíferos, monos y finalmente a lo que somos. Haeckel condensó su teoría en una frase brillante, casi un genial eslogan publicitario con enorme gancho: «la ontogenia recapitula la filogenia», siendo la ontogenia el desarrollo de un individuo y la filogenia su origen evolutivo.

Por desgracia para Haeckel, y aunque su teoría tiene algo de cierto, en general ha sido ampliamente desacreditada. Sin contar la utilización política de sus ideas por el nazismo, la parte cierta es que los embriones se parecen en sus primeras fases; en algunos casos la similitud es solo aparente (estructuras parecidas de orígenes distintos que dan lugar a órganos diferentes), pero incluso cuando hay semejanzas embriológicas reales, un embrión nunca es una versión de un organismo adulto de otra especie. Los embriones humanos son siempre humanos; nunca son reptiles ni monos, aunque en una etapa concreta tengan cola.

Cuento todo esto porque, después de la lección que nos dio el caso de Haeckel, me deja perplejo una afirmación que he visto repetida una y otra vez en infinidad de medios, y que parece haber calado en la calle: que todos los embriones humanos comienzan siendo femeninos por defecto, y que solo se convierten en machos cuando entra en acción el cromosoma Y; y que, de no ocurrir esto último, los embriones continuarían su desarrollo como hembras normales.

No tengo la menor idea de cuál es la fuente original de esta tontería. Tampoco puedo esclarecer las razones por las que ha triunfado en la calle, aunque tengo mi sospecha: afirmar que todos los embriones humanos son mujeres por defecto, y que algunos derivan hacia hombres solo debido a una interferencia genética posterior, suena a eso que algunos llaman buenrollismo. Nunca dejen que la realidad les estropee una buena leyenda, sobre todo si es ideológicamente empowering.

Pero a ver, y con todos mis respetos: no. Ni los embriones humanos son nunca reptiles, ni todos los embriones humanos son al principio hembras. En primer lugar, hay que recordar que la determinación del sexo en los humanos –hablo desde el punto de vista estrictamente biológico: sexo, no género– es cien por cien genética. En ciertas especies, como en algunos peces, caimanes o tortugas, las condiciones ambientales como la temperatura de incubación influyen a la hora de determinar el sexo de los individuos. Otros animales, como algunos peces –incluyendo a Nemo– y moluscos, practican el hermafroditismo secuencial, pudiendo cambiar de sexo a lo largo de sus vidas. En esto se basó Michael Crichton para explicar el origen de los dinosaurios machos en su Parque Jurásico. Y aún hay otros sistemas más extraños para determinar el sexo de los individuos. Pero no en el Homo sapiens: un embrión humano es macho (XY) o hembra (XX) desde el mismo momento de la concepción. Punto.

Algunas fuentes que mencionan el falso mito hablan de que primero entra en acción el cromosoma femenino X, y solo luego, si acaso, se activa el masculino Y. Es necesario explicar que en la especie humana no existe un «cromosoma femenino». Las hembras no son tales porque tengan más X, sino porque carecen del cromosoma masculino Y. De hecho, ambos sexos tienen la misma cantidad de X activo: en las células de las mujeres se produce un mecanismo llamado compensación de dosis, mediante el cual se inactiva uno de los dos cromosomas X para que no haya un exceso de producción por parte de sus genes. Es decir, que hombres y mujeres tienen la misma cantidad de genes expresados del cromosoma X (en realidad hay genes del X inactivo que continúan funcionando, muchos de ellos también presentes en el Y). El X que se inactiva en las células femeninas, y que puede ser aleatoriamente de origen paterno o materno, es visible al microscopio como una región densa en el núcleo llamada corpúsculo de Barr, un clásico de las prácticas de biología en institutos y universidades.

De lo anterior queda claro que el cromosoma X no es una especie de baluarte de los genes femeninos. La biología humana es más compleja. Ambos sexos necesitan el X, pero muchos de los caracteres que marcan el dimorfismo sexual en los humanos, aquellos que biológicamente nos diferencian, no residen en los cromosomas sexuales sino en alguno de los otros 22 pares, los llamados autosomas, que se heredan igual del padre y de la madre tanto en embriones masculinos como femeninos. Y por favor, basta de proferir barbaridades como «el gen de la testosterona». Los genes solo producen proteínas, y ni la testosterona ni otras hormonas sexuales lo son: la testosterona no tiene gen; la fabrica la maquinaria celular a partir del colesterol.

Pero volvamos al embrión, y rescatemos lo poco que hay de cierto en el mito: hasta aproximadamente las siete semanas de gestación, cuando se activa un gen del cromosoma Y llamado SRY, no comienza el desarrollo de los genitales masculinos. Ni de los femeninos: durante este período, los embriones tampoco son fenotípicamente hembras; si acaso, podríamos decir que son potencialmente hermafroditas. Antes de la activación del SRY, todo embrión posee dos estructuras diferentes llamadas conductos mesonéfricos y paramesonéfricos. Los primeros darán lugar a los genitales internos masculinos, y los segundos a los femeninos. En función de que aparezca SRY o no, unos progresarán, mientras que los otros se reabsorberán hasta desaparecer. Pero ambos están presentes en todos los embriones; no hay un “proyecto femenino” que se trunque a causa del cromosoma Y.

Ahora, la gran pregunta es: ¿qué sucede en el embrión si no entra en acción el cromosoma Y? Hay un único caso en el que el resultado será una niña sana, y es cuando el embrión tiene la dotación cromosómica normal de una hembra (XX); es decir, carece de Y. En otras situaciones, lo habitual es que el embrión muera. La propia naturaleza nos ha dado el resultado del experimento: los embriones 45,X, aquellos que accidentalmente poseen un solo cromosoma X y carecen del Y, mueren en un porcentaje estimado del 99%; de hecho, se cree que hasta un 15% de todos los abortos espontáneos tienen una dotación cromosómica 45,X. Uno de cada cien sobrevive y llega a término, pero no indemne: estos casos se conocen como síndrome de Turner. Fenotípicamente son mujeres, pero generalmente carecen de un aparato reproductor funcional y no adquieren los caracteres sexuales típicos de la pubertad, como el desarrollo de los pechos; además de sufrir otras anomalías que en su mayor parte no amenazan su vida, pero sí la complican.

Merece la pena añadir un último comentario: la presencia de pezones en los hombres se esgrime a veces como argumento para sostener que los embriones son femeninos por defecto. Es un error tan fundamental como postular lo contrario aduciendo que el clítoris, también sin función biológica esencial conocida, es un pene truncado. El desarrollo de los pezones viene determinado sobre todo por una proteína llamada PTHrP que ejerce una función dual, deteniendo su progresión en los embriones masculinos y promoviéndola en los femeninos. Simplemente es un rasgo común que en los humanos, al contrario que en otras especies (ratones), se conserva en ambos sexos; probablemente porque no ha existido una presión evolutiva contraria en los machos, ya que no son perjudiciales.

Además, los pezones son un carácter sexual secundario que no está gobernado por los cromosomas sexuales: en humanos, el gen de la PTHrP está ubicado en el cromosoma 12. Resumiendo, y explicándolo con una frase simple a lo Haeckel: la mujer hace las tetas, no al contrario.

¿Somos chimpancés en un 99% de nuestro ADN? Ni de lejos

El 1 de septiembre de 2005, un gran consorcio internacional de investigadores publicaba en la revista Nature el primer borrador del genoma del chimpancé, un logro muy esperado desde que cinco años antes se anunciara la primera versión del humano, completado en 2003.

Chimpancé ('Pan troglodytes'). Imagen de Frank Wouters / Wikipedia.

Chimpancé (‘Pan troglodytes’). Imagen de Frank Wouters / Wikipedia.

El genoma de nuestro pariente evolutivo vivo más próximo tenía un enorme interés científico, ya que prometía revelar algo de lo que nos hace específicamente humanos, además de ofrecer un dibujo más claro de la cronología evolutiva de dos especies estrechamente emparentadas. Pero entre la selva de datos y resultados que ofrecían el genoma del chimpancé y su comparación con el humano, una sola conclusión triunfó en los medios de todo el mundo, convirtiéndose en una muletilla repetida mil veces: los chimpancés son genéticamente idénticos a nosotros en un 99%.

Pero ¿es cierto?

La respuesta: sí… y no.

Desde el punto de vista de aquello que los científicos analizan al comparar genomas de diferentes especies, sí lo es. Pero si con ello imaginamos que podríamos colocar el texto completo del ADN de ambos genomas uno junto al otro y que solo encontraríamos diferencia en una letra de cada cien… En este caso, ni de lejos.

Imaginemos un Seat 600 de los antiguos y un Ferrari último modelo. ¿En qué medida se parecen? Alguien que entienda de coches, que no es mi caso, probablemente diría que en casi nada. Pero supongamos que nos olvidamos de todo lo que diferencia a ambos modelos y nos fijamos exclusivamente en aquello que comparten: como coches que son, ambos tienen asientos, volante, pedales, espejos retrovisores, palanca de cambios… Desde este punto de vista, ¿cuánto se parecen?

Algo similar es lo que sucede con los genomas de los chimpancés y los humanos. Si nos fijamos solo en aquello que tenemos en común, nos parecemos en un 99%. Pero ¿cómo de relevante es aquello que no tenemos en común?

Para empezar, ni siquiera tenemos el mismo número de cromosomas: 23 en los humanos, 24 en los chimpancés. En nuestro caso, llevamos uno menos porque en algún momento de nuestra evolución se produjo una fusión entre dos cromosomas ancestrales. Pero este no es ni mucho menos el único cambio a gran escala; nuestro genoma y el de los chimpancés se diferencian enormemente en toda la longitud de nuestras secuencias de ADN, con fragmentos eliminados, introducidos, copiados, fragmentados o cambiados de sitio. A la hora de establecer la comparación, ¿cómo cuenta cada uno de estos grandes fragmentos diferentes? ¿Como uno solo? ¿O según el número de bases (letras) de cada uno de estos segmentos distintos?

Para comparar dos genomas, los científicos se centran exclusivamente en aquellas secuencias que pueden alinearse para buscar similitudes. Es decir, en la presencia de asientos, pedales o retrovisores. En su estudio original, los científicos que secuenciaron el genoma del chimpancé no mencionaban ningún 99% de identidad entre ambas especies. En cambio, sí ofrecían otro dato: el 29% de las proteínas homólogas en el humano y en el chimpancé son idénticas.

Dicho de otro modo: de las proteínas que aparecen codificadas en el genoma de ambas especies y que derivan de la misma secuencia ancestral (se denominan ortólogas), más de dos terceras partes son algo diferentes; si bien es cierto que en general esta diferencia se reduce a un solo aminoácido (los eslabones individuales que forman las proteínas). Pero un cambio tan pequeño puede determinar que la proteína resultante actúe de forma distinta o incluso que no funcione en absoluto.

De lo anterior es de donde deriva el dato del 99%, ya que esta es la coincidencia si consideramos solo esas secuencias que pueden alinearse y contabilizamos cada cambio como una diferencia individual dentro de la longitud total. Pero para eso ha habido que dejar fuera 1.300 millones de letras o bases de ADN, ignorando el 18% del genoma del chimpancé y el 25% del nuestro. Con todo esto, llegamos a ese porcentaje mágico: 98,77% de identidad.

Así pues, decir que somos chimpancés en un 99% es una sobresimplificación de la realidad cuyo origen probablemente reside en una sobresimplificación de la información. Una nota de prensa difundida por los Institutos Nacionales de la Salud de EE. UU. con ocasión de la publicación del genoma del chimpancé decía lo siguiente: «La secuencia de ADN que puede compararse directamente entre los dos genomas es casi idéntica en un 99%». En otras palabras: los genomas de humanos y chimpancés son idénticos en un 99%… en las zonas en que son idénticos en un 99%. La nota original no marcaba en cursiva y negrita, como yo he hecho, una condición imprescindible que debe mencionarse para que la afirmación sea veraz, pero que probablemente estropea un buen titular.