Entradas etiquetadas como ‘física’

El cosmos celebra a Einstein y Alicia con un gato de Cheshire relativista

Es una pena que el centenario de la relatividad general de Einstein, celebrado esta semana, haya eclipsado parcialmente otro aniversario: este jueves, 26 de noviembre, se cumplía el sesquicentenario (siglo y medio) del debut en las librerías de Alicia en el País de las Maravillas.

El gato de Cheshire, en la versión de Disney. Imagen de WIkipedia.

El gato de Cheshire, en la versión de Disney. Imagen de WIkipedia.

El libro de Lewis Carroll (junto con su continuación, A través del espejo) no solo es uno de los pocos cuentos infantiles que probablemente conoce todo espécimen humano que ha tenido la suerte de una infancia con cuentos; además es quizá uno de los más imaginativos e inspirados, sobre todo para haber sido escrito en una época en la que el género aún no acababa de escapar del corsé de la princesa suspirante y de las moralejas ejemplares.

Personalmente siempre me intrigó aquella historia plagada de situaciones surrealistas, personajes delirantes y diálogos con tan exceso o ausencia de lógica que, y no es broma, obligatoriamente debían llamar la atención del mismísimo Wittgenstein, gran admirador del cuento. Años después supe que los peculiares recursos narrativos de Carroll, de nombre real Charles Dodgson, se debían a su formación como matemático, la profesión que le dio de comer; por supuesto, hasta que los libros de Alicia se convirtieron en best-sellers. Pero ni siquiera entonces abandonó su puesto de profesor en el Christ Church College de Oxford.

Sobre las referencias matemáticas escondidas en la trama de Alicia, y la controversia sobre si realmente son tales, ya he escrito en otro lugar. Pero la disciplina científica que cultivó Dodgson no es la única que de una manera u otra se ha relacionado con Alicia. Claro que sugerir una posible inspiración del autor en, por ejemplo, principios físicos, no dejaría de ser una salvaje especulación sin fundamento.

Y sin embargo, no cabe duda de que en Alicia la realidad es relativa, ya que el tiempo y el espacio son volubles: en el episodio de la fiesta del té, el Sombrerero Loco y sus dos acompañantes están anclados en las 6 de la tarde porque el cuarto componente del grupo, el Tiempo, les abandonó. La Reina Blanca le cuenta a Alicia que la memoria corre en doble sentido, mientras que la Reina Roja le descubre que en su país suceden varios días a la vez, y que es necesario correr muy aprisa para quedarse en el mismo lugar.

Tal vez por todo esto, Alicia ha servido como referencia a muchos físicos para explicar fenómenos naturales. Algunos autores han recordado la caída libre de Alicia a través de la madriguera del Conejo Blanco a propósito de la idea similar que inspiró a Einstein, sustituyendo a la niña por un pintor que trabajaba en una fachada. Otros han empleado la carrera de la Reina Roja como ilustración de la imposibilidad de viajar más rápido que la luz.

Alicia y Einstein se funden en una imagen que la NASA ha publicado esta semana y que condensa los dos aniversarios que celebramos. En Alicia, el Gato de Cheshire desaparecía dejando colgada en el aire su sonrisa fosforescente. La formación que aparece en la foto es el grupo de galaxias Cheshire Cat, formado por la fusión de dos conjuntos más pequeños.

En la vista capturada por el telescopio espacial Hubble, los ojos corresponden a grandes galaxias que están curvando la luz de otras cuatro más externas y lejanas, las que forman la sonrisa y el contorno, debido a un efecto llamado lente gravitatoria y que Einstein predijo en 1915 en su relatividad general. Esta curvatura de la luz fue confirmada cuatro años después en fotografías astronómicas tomadas durante un eclipse de Sol que permitía estudiar las estrellas visualmente próximas a la masa solar sin que su brillo las ocultara.

En la imagen de la NASA, el resplandor violeta es la emisión de rayos X tomada por el observatorio Chandra, y que revela la presencia de gas caliente en la colisión entre ambos grupos. Dentro de unos 1.000 millones de años, estiman los científicos, los dos ojos se fundirán en uno, quedando una sola masa ciclópea. Entonces, como en Alicia, la expresión del Gato de Cheshire se desvanecerá.

Grupo de galaxias Cheshire Cat. Imagen de NASA/CXC/UA/J.Irwin et al/STScI.

Grupo de galaxias Cheshire Cat. Imagen de NASA/CXC/UA/J.Irwin et al/STScI.

Einstein: cien años no es nada (según el punto de vista del observador)

Hoy parece curioso que Einstein no considerara la relatividad una idea revolucionaria, adjetivo que reservaba solo para su trabajo sobre el efecto fotoeléctrico; gracias al cual, por cierto, recibió el Nobel en 1921. Estas reflexiones de Einstein las detallaba Abraham Pais en su libro El Señor es sutil: La ciencia y la vida de Albert Einstein, que muchos físicos consideran la mejor biografía científica del alemán.

Albert Einstein en 1921. Imagen de F. Schmutzer / Wikipedia.

Albert Einstein en 1921. Imagen de F. Schmutzer / Wikipedia.

Einstein supo que su descubrimiento de que la luz venía en pequeños paquetes de energía, o cuantos, que más adelante se denominarían fotones, y que por tanto la luz se propagaba como una onda, pero que interaccionaba con la materia como una partícula, era un descubrimiento esencial para la teoría cuántica que empezaba a tomar forma a principios del siglo XX. En cambio la relatividad, tanto la especial como la general, fue en palabras de Pais una «transición ordenada». Einstein quitó importancia a su hallazgo, presentándolo como una «consecuencia directa» y una «terminación natural» del trabajo previo de otros científicos como Faraday, Maxwell y Lorentz.

Evidentemente, el juicio de Einstein era demasiado modesto, teniendo en cuenta que su teoría es hoy uno de los dos pilares de la física moderna, junto con la mecánica cuántica. Pero sí es cierto que quizá el público en general, el que naturalmente conoce de sobra el nombre de Einstein, posiblemente ignora los de Faraday, Maxwell y Lorentz, así como otros que han sido fundamentales en el desarrollo moderno de otras disciplinas científicas. Y es que si Einstein fue tan popular como para haberse convertido en un icono, o en un meme, tal vez esto ha sido hasta cierto punto independiente del verdadero peso científico de sus aportaciones.

[TRIVIAL: ¿Cuánto sabes sobre Einstein?]

Esto interesará especialmente a los periodistas: Einstein fue posiblemente (a su pesar) el primer científico mediático de la historia, o el primer caso de un científico convertido en famoso (en cursiva, en el sentido de los famosos del ¡Hola!, no de los de Nature) gracias a, o por culpa de, la prensa. Esta idea, que no es mía ni es nueva, queda profusamente desarrollada en la reciente obra del alemán Jürgen Neffe Einstein: A Biography, lamentablemente no traducida al castellano.

Primera página del manuscrito de Einstein explicando la teoría general de la relatividad (1915). Imagen de Wikipedia.

Primera página del manuscrito de Einstein explicando la teoría general de la relatividad (1915). Imagen de Wikipedia.

Neffe inicia su relato el día en que la vida de Einstein cambió para siempre, el 7 de noviembre de 1919. Aquella mañana el periódico The Times dio cuenta de un experimento que demostraba por primera vez la teoría de la relatividad general de Einstein, gracias a las fotografías que un equipo de astrónomos británicos había tomado de un eclipse de sol y que confirmaban la curvatura de la luz de las estrellas debida a la masa solar, como el físico había predicho. El Times calificó la relatividad como una «revolución de la ciencia» y «uno de los pronunciamientos más trascendentales, si no el más trascendental, del pensamiento humano».

Esta euforia del diario londinense apenas tuvo eco en España o Francia, pero en los países anglosajones provocó una reacción en cadena. Según Neffe, la prensa de Gran Bretaña y Estados Unidos de inmediato se subió con entusiasmo al carro de la revolución científica abanderada por aquel físico alemán que ya gozaba de gran prestigio entre sus colegas, pero que hasta entonces era un perfecto desconocido para el público. «Albert Einstein renació como leyenda y mito, ídolo e icono de toda una era», escribe Neffe.

Y todo ello, a pesar de que pocos se hacían la menor idea sobre qué demonios decía aquella teoría revolucionaria. Según Neffe, el diario The New York Times advertía a sus lectores de que «nadie se molestara en tratar de comprender la nueva teoría», porque «solo doce hombres sabios eran capaces de entenderla».

Este lunes leí un estupendo reportaje en El País de mi colega y amigo Manuel Ansede sobre la visita de Einstein a España en 1923. Conozco a Manolo y su afición por las historias de berlanguismo científico, aquellas que marcan el contraste de los avances de la modernidad occidental con la España cañí. Aunque es dudoso que el sueco medio tuviera (o incluso tenga ahora) un mejor conocimiento de ello que el español de a pie, lo cierto es que las reacciones en la sociedad y en la prensa españolas durante aquellas dos semanas «surrealistas» ilustran perfectamente cuál era la idea general sobre el trabajo de Einstein; o más bien la falta de ella.

El libro en el que se basa el reportaje de Manolo, Einstein y los españoles: ciencia y sociedad en la España de entreguerras, de Thomas F. Glick, incluye también una anécdota que plasma cuál fue y es la comprensión (errónea, anticipo) que ha quedado a pie de calle de lo que Einstein aportó a la ciencia. Como en toda anécdota, hay varias versiones, pero me quedo con la que parece más fiel a la realidad, la que aparece en la tesis doctoral del filólogo Samuel Michael Weis Bauer, leída en la Universidad Autónoma de Barcelona en 2012.

La anécdota tiene como protagonista al dibujante y humorista Antonio de Lara Gavilán (1896-1978), más conocido como Tono. En 1931, Tono viajó a Estados Unidos para probar suerte en Hollywood, y allí conoció a Charlie Chaplin, pero también a Einstein. Cito las palabras de Tono según la tesis de Weis:

A Einstein lo conocí poco después, y en casa de Charlot. Era un hombre sencillo y con gran sentido del humor… Estuve más de una hora charlando con él, a pesar de que yo no sabía inglés ni alemán, ni él sabía español ni francés… Cuando Neville y López Rubio me preguntaron de qué habíamos hablado, les respondí, naturalmente: “Le he dicho que todo es relativo”.

Y aquí está el problema. Igual que ya desde tiempos de Darwin algunos tergiversaron interesadamente la «supervivencia del más apto» para convertirla en un equivocado «solo los fuertes sobreviven» que fue la raíz del darwinismo social, también hay un einstenismo social basado en algo que Einstein jamás dijo y que, de hecho, está muy lejos de sus teorías: «todo es relativo». La frase aparece citada, atribuyéndola a Einstein, casi en cualquier artículo en el que venga a cuento, normalmente para favorecer las tesis del articulista.

Ahora que se celebra el centenario de la teoría de la relatividad general (1915), muchos medios ya han aprovechado para explicar algunos de sus aspectos, el tejido del espacio-tiempo, su curvatura, la luz que se dobla, el principio de equivalencia entre gravedad y aceleración… No veo necesario insistir en todo esto. Pero sí hay algo que creo conveniente destacar: la teoría de la relatividad no dice que todo es relativo. Sino más bien lo contrario.

Desde Galileo (o incluso antes, pero ya hablaré de esto otro día) se consideraba que el tiempo y el espacio eran absolutos, y que la definición física de la naturaleza dependía del observador: un hombre caminando hacia la proa sobre la cubierta de un barco en movimiento tenía en realidad una velocidad igual a la suya sumada a la de la nave. Había un marco de referencia preferido sobre otro, el del muelle frente al del propio barco. Einstein le dio la vuelta a esto al postular que era al contrario: las leyes físicas son invariantes, inmutables, y es la realidad la que se deforma, por lo que el espacio y el tiempo no son absolutos. Una nave en movimiento rápido acorta su longitud, su masa se hace infinita al aproximarse a la velocidad de la luz, y el reloj corre de distinta manera dentro y fuera de ella.

De hecho, cuentan que Einstein se refería a su teoría como Invariententheorie, o «teoría de los invariantes», y que fue Max Planck quien eligió el nombre que ha perdurado. Precisamente Einstein venía a decir que las leyes físicas eran las mismas en cualquier lugar del universo, en cualquier instante y a cualquier velocidad, que no había un marco de referencia privilegiado sobre otro, y que las mismas ecuaciones debían servir en todas las situaciones posibles de un observador. Sin embargo, triunfó el nombre que hace alusión al hecho de que, como consecuencia de esto, el espacio y el tiempo son relativos.

Ortega y Gasset (primero por la izquierda) con Einstein (cuarto por la izquierda) en Toledo, en 1923.

Ortega y Gasset (primero por la izquierda) con Einstein (cuarto por la izquierda) en Toledo, en 1923.

Volviendo a la visita de Einstein a España en 1923, hubo alguien ajeno a la física que comprendió perfectamente este sentido que subyacía a la teoría del alemán. Claro que no era un cualquiera: Ortega y Gasset se entrevistó con Einstein, lo presentó en su conferencia en la Residencia de Estudiantes de Madrid, tradujo sus palabras del alemán al castellano y al día siguiente acompañó al físico y a su mujer en una visita a Toledo. La visión de Ortega sobre la relatividad quedó explicada en su ensayo El sentido histórico de la teoría de Einstein, en el que escribía:

¿Cómo la teoría de Einstein, que, según oímos, trastorna todo el clásico edificio de la mecánica, destaca en su nombre propio, como su mayor característica, la relatividad? Este es el multiforme equívoco que conviene ante todo deshacer. El relativismo de Einstein es estrictamente inverso al de Galileo y Newton. Para éstos las determinaciones empíricas de duración, colocación y movimiento son relativas porque creen en la existencia de un espacio, un tiempo y un movimiento absolutos.

[…]

La más trivial tergiversación que puede sufrir la nueva mecánica es que se la interprete como un engendro más del viejo relativismo filosófico que precisamente viene ella a decapitar. Para el viejo relativismo, nuestro conocimiento es relativo, porque lo que aspiramos a conocer (la realidad tempo-espacial) es absoluto y no lo conseguimos. Para la física de Einstein nuestro conocimiento es absoluto; la realidad es la relativa.

Así que ya lo saben: la próxima vez que oigan o lean eso de «como dijo Einstein, todo es relativo», no se dejen engatusar.

Para terminar, ¿qué tal un poco de música? ’39, de Queen, compuesta por el eminente músico y astrofísico Brian May, es una canción que retrata el efecto de la dilatación del tiempo según la teoría de la relatividad. ’39 es un tema de inspiración country-folk, como aquellos que recitaban los largos peregrinajes de los colonos irlandeses a través del océano con la esperanza de hallar en América su tierra prometida. Y esto es precisamente lo que relata ’39, pero con un giro: en este caso, los pioneros viajan al espacio en busca del nuevo mundo. Un año después regresan con buenas noticias, solo para descubrir que en la Tierra ha transcurrido tanto tiempo que apenas queda ya nada de lo que conocieron. La versión que traigo es post-Mercury; pertenece al doble álbum en directo Live in Ukraine (2009), grabado en septiembre de 2008 en Járkov (Ucrania). ’39 es un himno evocador y emocionante, de esos que se cantan a grito ronco con un brazo alrededor del hombro de un amigo y el otro haciendo bailar una pinta de cerveza. Espero que lo disfruten.

El breve instante en que estamos aquí, y tal vez solos

Quizá hayan oído que estamos de aniversario. Este miércoles se cumplen cien años desde que Einstein culminó su presentación de la teoría general de la relatividad a la Academia Prusiana de Ciencias. Mañana contaré alguna cosa sobre Einstein y su trabajo, pero hoy quiero aprovechar la ocasión para traer aquí otro asunto que guarda cierta relación con uno de los conceptos einstenianos, el distinto transcurrir del tiempo según la situación del observador.

Muchas fuentes atribuyen a Einstein una cita sobre la relatividad, comparándola con la distinta percepción del tiempo según que uno lo pase con una «mujer hermosa», suele decir la frase, o bien sentado sobre un fogón ardiente. Internet convierte en verdad que Fulano dijo X, y ya puede Fulano abandonar su pretensión de que jamás lo hizo. Pero aún queda alguna fuente rigurosa por ahí, como el blog Quote Investigator (QI), que rastrea los orígenes de presuntas citas. En este caso, QI llegó a la conclusión de que no hay ninguna prueba de la veracidad de la cita, pero concede que tal vez Einstein pudo dar esta explicación a su secretaria, Helen Dukas, quien le hacía de escudo frente a los molestos requerimientos de la prensa y el público, y que ella pudo transmitir esta idea a los medios.

Fotograma del vídeo de Business Insider.

Fotograma del vídeo de Business Insider.

Bien, a lo que iba. Obviamente, Einstein sabía mejor que nadie que la relatividad no trata de la percepción subjetiva del tiempo, sino que este transcurre de hecho de forma diferente en distintos sistemas. Pero si hablamos de esa impresión del correr del reloj, hoy les hablo de un vídeo que les ayudará a situar el tiempo en su justa perspectiva. Concretamente, el breve instante que ocupamos los humanos en todo esto.

Les hablo, porque lamentablemente no puedo insertarlo aquí, ya que el formato en su página original no lo permite. El medio que lo ha creado, Business Insider, suele colgar después sus vídeos en YouTube, pero aún no lo ha hecho con este. Se trata de un vídeo que muestra la historia de la Tierra como si fuera la distancia en línea recta de un viaje desde Los Ángeles hasta Nueva York. Las 2.450 millas (3.943 kilómetros) que separan ambas ciudades son los 4.540 millones de años de edad de esta roca mojada. El hecho de relacionar espacio y tiempo se convierte así también en un homenaje a Einstein, aunque no creo que fuera el propósito de sus autores.

A lo largo del viaje encontramos en qué momentos/puntos kilométricos van ocurriendo los distintos acontecimientos de la historia del planeta. Y por si les interesa, los humanos modernos aparecemos ya una vez que hemos llegado a Manhattan, a 570 pies (174 metros) del destino final. Toda nuestra historia registrada como especie ocupa solo los últimos 15,7 pies, menos de 5 metros. Desde la Segunda Guerra Mundial hemos recorrido 2,6 pulgadas, 6,6 centímetros. Pueden encontrar el vídeo aquí.

No es el primer ejercicio de este tipo que sitúa en perspectiva nuestra ínfima existencia como especie en la larga historia de la Tierra, pero quizá la analogía de las distancias nos facilita la imagen mental, ya que resulta muy fácil hacerse una idea sobre qué representan 174 metros, o 6 centímetros, en el recorrido total entre ambas ciudades.

Entre las muchas reacciones y reflexiones que el vídeo puede inspirar a cada cual, yo me quedo con una, la relativa a la vida alienígena. Recientemente escribí un reportaje dando voz a los científicos que sostienen la hipótesis pesimista de nuestra posible soledad en el universo. La idea es impopular, pero es tan científicamente argumentable como la contraria, aunque el público general tienda a descartarla bajo el sesgo geocéntrico. En realidad no tenemos ecuaciones que nos predigan de una manera solvente cuáles son las posibilidades reales de vida en otros lugares del universo; las únicas disponibles, como la famosa Ecuación de Drake, son puramente especulativas.

El caso es que ciertos físicos y filósofos de la ciencia tratan de parametrizar las variables implicadas con el fin de acercarse a una conclusión más fundamentada. La buena noticia (para quien le parezca tal, como a mí) es que algunos de ellos dan casi por segura la existencia de otras civilizaciones. La mala es que ahora han desplazado el foco tradicional, que solo se fijaba en el momento presente, a la historia completa del universo, o incluso a todo su pasado y todo su futuro. Me encantaría ver un vídeo como el de Business Insider, pero que mostrara toda la vida del universo, desde el Big Bang hace 13.800 millones de años, hasta que muera la última estrella del universo dentro de unos 100 billones de años. ¿Imaginan a cuánto quedaría reducida la presencia del ser humano?

No imaginen; ya se lo digo yo. Si las cuentas no me fallan, 7,9 milímetros. Más o menos la longitud de una mosca. Eso es lo que la existencia del ser humano representa en toda la trayectoria del universo desde el Big Bang (Los Ángeles) hasta que se agote el combustible de la última estrella (Nueva York). Con la salvedad, claro, de que nuestra extinción no es algo hoy previsible, pero sería muy optimista confiar en que aún estemos por aquí dentro de millones de años.

Así, si existiera al menos otra civilización tecnológica a lo largo de toda la vida del universo, un supuesto que algunos autores dan por estadísticamente muy probable, imaginen las posibilidades de que la suya y la nuestra coincidamos en algún momento de nuestra historia; es decir, que dos moscas situadas al azar entre Los Ángeles y Nueva York solapen al menos parcialmente. No imaginen; ya se lo digo yo: empleando una fórmula de probabilidad de intervalos solapantes, el resultado es más o menos de 0,000000004; o dicho de otro modo, de una posibilidad entre 250 millones.

No pretendo que estos cálculos sean impecables, y por supuesto que deberían tenerse en cuenta muchos otros factores. Pero estas cuentas de servilleta de bar (o más pomposamente, problema de Fermi) nos dan una aproximación útil de la que podemos concluir esto: si suponemos que el universo alumbra en toda su historia otra civilización inteligente además de la nuestra, la posibilidad de que coincidamos en el tiempo ellos y nosotros es de una entre 250 millones. Un poquito desolador, ¿no?

Salvando las distancias en física cuántica (II)

He aquí un motivo por el que algunos físicos aún no creen que los experimentos de entrelazamiento cuántico, como el de Hanson que mencioné ayer, demuestren la acción a distancia entre partículas: las mediciones sobre estas se llevan a cabo solo unos nanosegundos después de que ambas se hayan separado. Esto, sostienen los críticos, podría dar pie a que recuerden esa programación previa, ese guión que ambas estarían interpretando según lo acordado.

Así pues, lo único que un investigador puede hacer es tratar de fijar condiciones experimentales restrictivas en exceso, de una forma que convenza incluso a los más escépticos; como si un mago actuara desnudo para demostrar fehacientemente que no lleva nada escondido en la ropa. Para muchos físicos, la prueba de Hanson llega a este nivel, y por tanto basta para certificar oficialmente el nacimiento de la acción a distancia. Pero no para todos.

Ilustración artística del cuásar ULAS J1120+0641, el más distante conocido hasta ahora. Imagen de ESO/M. Kornmesser vía Wikipedia.

Ilustración artística del cuásar ULAS J1120+0641, el más distante conocido hasta ahora. Imagen de ESO/M. Kornmesser vía Wikipedia.

Con el fin de zanjar el debate, el físico del Instituto Tecnológico de Massachusetts David Kaiser se propone llevar a cabo lo que considera el experimento definitivo: medir dos fotones procedentes de estrellas distantes del universo, dos partículas que han estado separadas durante miles de millones de años. Es del todo imposible, argumenta Kaiser, creer razonablemente que las partículas puedan mantener ninguna clase de coordinación a través de toda la historia del universo. Si funciona, quienes aún creen que la acción a distancia es magia, ese efecto «spooky» o truculento que decía Einstein, deberán aceptar que se trata de ciencia real.

Sin embargo, Hanson no está de acuerdo en que el experimento de Kaiser vaya a demostrar nada que el suyo no haya probado ya. Otro de los críticos de la acción a distancia, el australiano Michael Hall, aducía que es difícil, incluso en un caso como el de Kaiser, asegurar una total independencia de las mediciones, ya que podría existir un sesgo provocado por algún tipo de correlación que se nos escapa entre los aparatos y aquello que miden, las partículas. «Por ejemplo, no todos los fotones detectados podrían proceder de las fuentes cósmicas a las que apuntan los telescopios; algunos vendrán de luz extraviada», me escribía Hall en un correo electrónico. Además, proseguía Hall, «debería tener que asumirse que no se ha actuado de ninguna manera sobre los fotones a través de una causa común en el pasado relativamente reciente de los dos detectores utilizados».

Hanson está de acuerdo en esto último: por mucho que los emisores de las partículas, las estrellas, estén separados en el espacio por miles de millones de años luz, y en el tiempo por miles de millones de años, los detectores no lo van a estar: ambos, y por tanto las partículas al medirlas, estarán aquí, en la Tierra. Con lo cual, razona el físico holandés, y puestos a ponernos escrupulosos, el experimento de Kaiser tampoco descartaría una posible relación causal entre los medidores y los sistemas medidos. «Ningún experimento puede probar que los ajustes de las mediciones fueron elegidos al azar, y ningún experimento puede probar que los ajustes están determinados por la luz estelar de una galaxia distante», dice Hanson.

Para solventar este inconveniente, Hall apuntaba una propuesta: «Sería interesante tener un experimento en el que los propios detectores estuvieran separados por una gran distancia; la distancia Tierra-Luna sería un buen comienzo, ¡si alguna vez conseguimos llevar astronautas ahí arriba de nuevo! Marte sería aún mejor». Pero aunque Hall y Hanson coincidan en la objeción a la propuesta de Kaiser, no lo hacen en sus consecuencias. Para el holandés, la conclusión es que es imposible llevar más allá la finura y la pulcritud de los experimentos de acción a distancia, ni siquiera llevando un detector a Marte: «Uno puede hacer el experimento de forma diferente, pero no será mejor que lo que ya hemos hecho; no queda ninguna fisura que pueda cerrarse experimentalmente».

Lo que subyace a toda esta discusión, opina Hanson, es que algunos de los críticos no están discutiendo posibles deficiencias experimentales, sino la interpretación del propio teorema de Bell, explicado en bruto en mi artículo de ayer y que inspira los experimentos de entrelazamiento cuántico que ponen a prueba la acción a distancia. «Esta es una discusión teórica completamente independiente de nuestro experimento», precisa Hanson. «Uno puede eliminar cualquiera de los muchos supuestos subyacentes en la derivación de la desigualdad de Bell». «Pero estoy bastante seguro de que nadie podría diseñar un escenario que los abordara en ningún otro experimento», prosigue, y concluye: «Nuestro experimento cierra todas las fisuras que pueden cerrarse; el resto no pueden distinguirse experimentalmente, y por tanto son parte intrínseca de las teorías».

Dicho de otro modo: tal vez algunos físicos jamás acepten ninguna demostración empírica del teorema de Bell porque piensan que es indemostrable, o bien porque en el fondo piensan que es incorrecto. Y tal vez es comprensible que exista un cierto horror vacui, un miedo al vacío que el reconocimiento de la acción a distancia abriría en nuestro entendimiento de la física de la naturaleza y que no sería inmediato rellenar, dado que la actual formulación de la mecánica cuántica impide la posibilidad de su existencia.

Uno de los defensores de la acción a distancia, el estadounidense John Cramer, que está tratando de poner a prueba la comunicación no local entre partículas, me hacía notar que el problema parte del hecho de que esta prohibición no es algo que se haya demostrado, sino que se dio por sentado desde el principio y se integró en la definición de las reglas del juego: «Hay pruebas de que los creadores originales de la actual formulación utilizaron la imposibilidad de la señalización no local como directriz, y la incorporaron en el formalismo», decía. «Si se hiciera una reformulación más imparcial de la mecánica cuántica eliminando este sesgo intrínseco, podría proporcionarnos una indicación de cómo se podría llevar a efecto la señalización no local».

En realidad la solución teórica a lo anterior ya podría existir. Algunos físicos han mostrado que ciertas modificaciones a la mecánica cuántica actual (técnicamente se llama no-linealidad) permitirían que la comunicación superluminal –más rápida que la luz– encaje, pero hasta ahora ningún experimento ha demostrado que este enfoque sea válido. Claro que para los partidarios del modelo actual es al revés: dado que la comunicación superluminal no existe, la modificación propuesta no puede ser correcta, y por lo tanto nunca se demostrará. Las apuestas están abiertas.

Salvando las distancias en física cuántica (I)

El entrelazamiento cuántico es uno de los argumentos más palpitantes que se están ventilando hoy en el mundo de la ciencia, quizá lo más parecido a una revolución científica que tenemos ahora en ciernes y a la vista. No por la novedad del problema, pero sí por un cada vez más firme vislumbre de una solución que refuta al gran Einstein, como repasé hace unos días en un reportaje.

¿Acción a distancia? Imagen de Wikipedia.

¿Acción a distancia? Imagen de Wikipedia.

El hecho de que dos partículas cuánticas distanciadas puedan comportarse como un ballet sincronizado a ciegas, aparentemente comunicándose entre ellas por un mecanismo instantáneo, es decir, más rápido que la luz, es un fenómeno que ya hizo a Einstein rascarse su alborotada mata de pelo.

Precisamente porque nada puede, o podía, viajar más aprisa que la luz, el alemán no se lo creía: aquello no era ciencia, sino algo spooky, que viene a significar truculento o siniestro. Al fin y al cabo, precisamente él había construido la relatividad general, demostrando que la gravedad no actuaba a distancia, sino a través de un campo.

Nada puede actuar a distancia, pensaba Einstein, por lo que debía de existir un secreto solo conocido y compartido por las propias partículas, un conjunto de «variables ocultas» desconocidas e inaccesibles para la mecánica cuántica y que funcionaban cuando las partículas estaban juntas antes de separarse, y no a distancia. En otras palabras: las partículas conspiraban entre ellas de manera que ya sabían lo que harían después, sin que hubiera ninguna comunicación. Claro que no es fácil imaginar cómo podrían ponerse de acuerdo previamente para que una dijera «ay» exactamente cuando los investigadores pincharan a la otra; de ahí que fueran variables ocultas.

El de la posible acción a distancia fue uno de los problemas más erizados de la física durante gran parte del siglo XX; al menos, para quienes veían ahí un problema. Claro que a partir de 1964 ya nadie pudo mirar para otro lado: aquel año John Bell demostró que toda posible teoría de variables locales se quedaba corta a la hora de sostener lo que la mecánica cuántica podía hacer. Estas desigualdades comenzaron a convertirse en objeto de experimentación a partir de los años 70, y no han dejado de serlo hasta hoy.

Mientras los experimentos, uno detrás de otro, han ido cimentando la idea de que la acción a distancia parece ser real, no todos los físicos se han dejado convencer con la misma facilidad. El problema reside en que no es fácil demostrar que absolutamente todos los parámetros del experimento se están poniendo a prueba y no se han dado por hecho previamente.

Por poner un ejemplo sencillo, los ensayos clínicos escrupulosamente diseñados requieren un doble ciego: ni los médicos ni los pacientes saben quién está tomando la medicación y a quién se le ha administrado solo un placebo. Pero ¿quién ha hecho la selección? ¿Cómo la ha hecho? ¿Se puede asegurar al cien por cien que la distribución ha sido de verdad aleatoria y que nadie está enterado de qué paciente está tomando qué? ¿O puede haber existido algún sesgo o pequeña trampa, aunque sea involuntaria? Todo el que quisiera ponerse excesivamente tiquismiquis (qué gran palabra) a la hora de criticar un ensayo clínico podría cuestionar si el doble ciego realmente lo fue, o si algo de lo que los investigadores dicen o creen demostrar estaba en realidad ya determinado por las condiciones de partida del estudio.

En el caso de los experimentos sobre las desigualdades de Bell, estos resquicios han sido difíciles de rellenar. Pero para muchos físicos, el reciente estudio dirigido por Ronald Hanson, de la Universidad Tecnológica de Delft (Holanda), ha terminado por taparlos definitivamente. Hanson separó las partículas por más de un kilómetro y añadió una especie de venda más a los ojos de los aparatos para garantizar que las mediciones no se entendían entre ellas a espaldas de los investigadores, casi blindando la fidelidad de las observaciones.

El resultado, publicado en Nature, ha terminado de convencer a muchos de que nuestro universo, y con él, todo lo que conocemos, emplea de forma intensiva y rutinaria un «truculento» mecanismo de influjo a distancia que nosotros no podemos emplear para comunicarnos, pero sí las partículas subatómicas. ¿Es o no es una revolución? Lo realmente revolucionario no consiste en hacerle un Nelson a Einstein, que sería algo bastante feo e irreverente, sino en cambiar la idea que tenemos sobre cómo funciona la naturaleza.

Sin embargo, el experimento de Hanson aún no ha convencido a todos. Como Hanson se ha ocupado de recalcarme, y con toda la razón, ninguna de las críticas presenta objeción a su diseño experimental ni a sus resultados; todos los físicos a los que consulté los consideran impecables. Pero de cara a su interpretación, hay quienes piensan que aún queda una grieta por tapar antes de asegurar que no queda ninguna posible gotera. La explicación, mañana.

Cómo salir de un coche en caso de emergencia, y por qué

Imaginen la situación. El coche vuelca. Resultamos casi ilesos (si llevamos el cinturón de acuerdo a la legalidad vigente), con las tripas del revés, pero todo dentro de su caja; conscientes, pero desorientados. Debido al choque, el mecanismo de apertura de la puerta se ha quedado trabado. ¿Cómo salir del coche?

Imagen de Wikipedia.

Imagen de Wikipedia.

Fácil, si uno ha visto cualquiera de las miles de películas de Hollywood en las que se recrea un trance similar. Damos una patada al parabrisas, este se desprende de su marco, y salimos tranquilamente por el amplio hueco que deja. ¿No?

No crean todo lo que ven. El cine de acción está plagado de convenciones que se transmiten de una película a otra, probablemente porque sus directores y guionistas las han visto antes en otra película, pero que guardan escasa relación con cómo las cosas suceden realmente. Si alguna vez han tratado de abrir una puerta de una patada a lo Chuck Norris ya lo habrán podido comprobar. De esta curiosa falta de concordancia entre realidad y ficción en efectos cinematográficos naturalmente asumidos por todos se han ocupado algunos científicos y periodistas de ciencia, incluido un servidor.

Por ejemplo, todos damos por hecho que una colilla encendida arrojada sobre un charco de gasolina provocará un incendio, de consecuencias catastróficas si la escena acontece en una gasolinera. No les voy a animar aquí a que lo prueben por sí mismos, pero tampoco es necesario: el ingeniero y profesor Tom Rogers ya se ocupó de repetir el experimento con un total de 223 cigarrillos de 11 tipos diferentes, «sin que nunca se prendiera la gasolina», escribía en su web Insultingly Stupid Movie Physics (Física de cine insultantemente estúpida). Un cigarrillo puede llegar a prender los vapores, pero nunca la gasolina líquida.

Algo similar puede ocurrir con la patada en el parabrisas. Si logramos romperlo, abriremos un hueco del tamaño del pie. El parabrisas está formado por dos láminas de vidrio unidas por una película intermedia de plástico destinada a conservar su integridad estructural cuando se fractura, de manera que no nos rebane por la mitad en caso de accidente. Con la fuerza suficiente sería posible desprenderlo del marco, pero en el minuto posterior a un accidente es probable que nuestras fuerzas estén más bien mermadas.

Obviamente, la respuesta correcta es salir por la ventanilla. Pero cuidado: romperla también tiene su truco.

El porqué lo explica Destin Sandlin en el siguiente vídeo de su canal de YouTube, Smarter Every Day. Destin es uno de esos casos que demuestran que la red de vídeos preferida por todos no es solo un coto para coreanos con gafas de sol pretendiendo hacer como que cantan, y que ser un yutuber es perfectamente compatible con emplear el cerebro, además de algo de equipo profesional para producir vídeos de alta calidad que no se limitan a un tipo contando algo a la cámara, sino que incluyen experimentación recreativa. Destin utiliza cámaras de alta velocidad para revelar procesos que escapan a nuestra percepción; en este caso, cómo se rompe el vidrio.

En el vídeo, Destin explica la diferencia entre el vidrio del parabrisas y el de las ventanillas. Este último es vidrio templado, que típicamente estalla en mil pedazos cuando se rompe. Quién no ha heredado de sus padres o abuelos alguno de esos vasos Duralex que duran, duran y duran. Pero eso sí, cuando se rompen, varias generaciones continuarán sacando trocitos de debajo de los muebles.

La luna trasera de un coche, vista (abajo) con un filtro polarizador. Imagen de Etan J. Tal /Wikipedia.

La luna trasera de un coche, vista (abajo) con un filtro polarizador. Imagen de Etan J. Tal /Wikipedia.

El patrón de rotura del vidrio templado tiene como propósito evitar los fragmentos grandes que puedan cortarnos. Esto se consigue gracias al proceso de templado, consistente en enfriar rápidamente el vidrio después de moldearlo. El resultado de este enfriado rápido es que la parte exterior ejerce compresión sobre el interior, que a su vez empuja con fuerza de tensión. Si alguna vez han mirado la luna trasera de un coche con gafas de sol polarizadas, habrán observado que aparece un patrón de manchas regulares; son las variaciones en la tensión interna del vidrio, visibles a la luz polarizada.

Es este equilibrio el que otorga al vidrio templado su alta resistencia, como demuestra Destin al atizarle un martillazo sin lograr romperlo. Este tipo de material no se emplea para los parabrisas porque su rotura dejaría al conductor sin visibilidad, pero sí se utiliza para las ventanillas y la luna trasera.

Pero el vidrio templado tiene un secreto, y es que es mucho más resistente en el centro que en los bordes. Los márgenes se enfrían rápidamente, por lo que carecen de la resistencia del templado. No se pierdan lo que ocurre cuando Destin deja caer el vidrio acoplando una pequeña llave metálica al borde. Y naturalmente, cuando el vidrio se rompe, estalla en pedazos debido a que se liberan las tensiones internas. Así que ya lo saben: rompan la ventanilla para salir del coche, pero golpéenla en el borde.

Todo lo que siempre quisiste saber sobre la Teoría de Cuerdas

Recuerdo una ocasión en la que un físico le explicaba a un amigo: «La materia está formada por cuerdas que vibran de distinta manera». A lo que el amigo replicó: «Vale, eso lo entiendo. Ahora explícame la trompeta».

Este (mal) chiste refleja la (aparente) dificultad de explicar ciencias complejas, como la física, a un público no iniciado (pero interesado). La Teoría de Cuerdas, un modelo aún no probado que lo explicaría (casi) todo, suele citarse como ejemplo. Sin embargo, en mi sola opinión, como un no-físico que ha debido bregarse autodidácticamente unos ciertos conocimientos de esta disciplina a través de la dedicación al periodismo de ciencia, la física tiene otros campos cuyos mínimos fundamentos básicos resultan mucho más abstrusos. Qué decir del Principio Holográfico y la endemoniada Correspondencia Anti-de Sitter/Teoría Conforme de Campos (AdS/CFT), o incluso de ciertos aspectos enrevesados de la fotónica, sobre todo cuando suscitan interpretaciones raras de la cuántica como el Formalismo de Vector de Dos Estados.

La idea esencial, creo, está en la posibilidad de transmitir una imagen mental con la que cualquier persona sin conocimientos técnicos pueda quedarse. Por ejemplo, somos capaces de formarnos una imagen mental del magnetismo porque lo vemos a diario funcionando en la puerta de la nevera. Pero de no ser por nuestra experiencia, nos resultaría muy difícil comprender el campo magnético. En esta entrevista, Richard Feynman desarrollaba un prolijo circunloquio sobre la mujer que resbala en el hielo, el marido y el hospital, para acabar respondiendo al entrevistador: «No puedo explicarle esa atracción [magnética] en términos de ninguna otra cosa que le resulte familiar». «No voy a ser capaz de darle una respuesta a por qué los imanes se atraen unos a otros, excepto decirle que lo hacen».

También habría que añadir que los científicos, como los quarks, vienen en varios sabores. Los hay intensamente concernidos por la disposición o la voluntad de explicar la ciencia al público. Pero también existen los que, por motivos que ellos sabrán, prefieren sentirse parte de una especie de élite intelectual que guarda celosamente sus secretos.

La demostración de que sí es posible formarse una imagen mental de la Teoría de Cuerdas está en este vídeo (con subtítulos en castellano) de Brian Greene en una conferencia TED que pronunció hace diez años. Greene es, además de uno de los principales paladines de la Teoría de Cuerdas, un tipo dotado con esa especial facilidad para transmitir nociones complejas de forma accesible, algo que ha demostrado en sus varias obras destinadas al público en general. En esta charla responde a las preguntas que cualquier persona con curiosidad por la ciencia tal vez se ha hecho al respecto: ¿Qué es la Teoría de Cuerdas? ¿De dónde surge? ¿Qué demonios es eso de las cuerdas? ¿Dónde están? ¿Cómo son (si es que realmente existen)? ¿Por qué la teoría se considera plausible? ¿Por qué requiere la existencia de dimensiones espaciales adicionales? ¿Puede demostrarse?

Respecto a esto último, hay que tener en cuenta que Greene dio esta conferencia cuando el LHC aún estaba en construcción. La comprobación de los efectos que menciona aún no se ha logrado.

Los neutrinos reciben un Nobel… y otro, y otro, y otro

Esta mañana hemos conocido el fallo de la Real Academia Sueca de las Ciencias sobre el Nobel de Física 2015, que ha galardonado al canadiense Arthur B. McDonald y al japonés Takaaki Kajita «por el descubrimiento de las oscilaciones de los neutrinos, que muestran que los neutrinos tienen masa».

Imagen de Jonathunder / Wikipedia.

Imagen de Jonathunder / Wikipedia.

El de los neutrinos parece ser uno de los campos de la física que más resuena en los medios e interesa al público, y eso que algunos de los descubrimientos más esenciales sobre estas partículas aún están por venir.

Quien primero postuló su existencia fue Wolfgang Pauli, premiado con el Nobel; no por esta especulación teórica, sino por su famoso Principio de Exclusión. Hacia 1930 Pauli estudiaba la desintegración beta, un tipo de radiación emitida por ciertos isótopos favoritos de los bioquímicos como el carbono-14, el fósforo-32 o el tritio (hidrógeno-3). Mientras que la gorda radiación alfa, la del uranio o el plutonio, está compuesta por grandes núcleos atómicos que no atraviesan ni una hoja de papel, la radiación beta es más penetrante por sus partículas pequeñas, electrones o positrones, clásicamente llamados partículas beta.

A diferencia de la alfa, con la radiación beta ocurría algo extraño, y es que su espectro de energía es continuo, sin saltos; algo incongruente con el hecho de que un electrón tiene una energía discreta. Para explicar cómo se rellenaban esos huecos entre los saltos que deberían observarse, Pauli propuso la existencia de una partícula sin carga eléctrica y con masa muy pequeña. Inicialmente Pauli llamó a este factor «neutrón», pero el nombre fue asignado simultáneamente a una partícula mucho más pesada del núcleo atómico. Se atribuye al físico italiano Edoardo Amaldi el haber acuñado el término «neutrino» casi como una italianización humorística de un neutrón más pequeño, y fue Enrico Fermi quien comenzó a popularizar este nombre.

La demostración de la existencia del neutrino tuvo que esperar 26 años, hasta 1956. Y la distinción del hallazgo con un premio Nobel aún debió esperar 39 años más, hasta 1995. Por entonces uno de sus dos autores, Clyde Cowan, ya había fallecido, por lo que el galardón fue para el otro, Frederick Reines. Sin embargo, otro Nobel para los neutrinos ya se había adelantado en 1988. Aquel año Leon Lederman, Melvin Schwartz y Jack Steinbergen recibieron el galardón por la demostración en 1962 de que existía más de un tipo de neutrino. Al neutrino electrónico o electrón neutrino descubierto por Cowan y Reines, los tres premiados en 1988 habían añadido un segundo «sabor», el muón neutrino o neutrino muónico, que en el campo teórico antes de su demostración había recibido el también humorístico nombre de «neutretto«. El tercer sabor, el tauónico, no llegaría hasta 2000.

Los neutrinos quedaron así caracterizados como partículas sin carga que prácticamente no interactúan con las demás y que por lo tanto atraviesan cualquier materia, incluidos nosotros, sin sufrir alteración. Lo cual implica también que son muy difíciles de detectar. Según el Modelo Estándar de la física de partículas, los neutrinos no debían tener masa. Pero algo comenzó a levantar la sospecha de que no era así.

Buscando un tema interesante al que dedicarse, Raymond Davis Jr. construyó algunos de los primeros rudimentarios detectores de neutrinos con el fin de pescar esta esquiva partícula. En los años 60, Davis situó un tanque lleno de tetracloroetileno, el líquido de las tintorerías, en el fondo de una mina de Dakota. Con este experimento el físico logró por primera vez detectar neutrinos solares, algo que le valdría el Nobel en 2002 junto con el japonés Masatoshi Koshiba, el primero que detectó neutrinos cósmicos procedentes de una supernova desde el detector japonés Kamiokande; tercer Nobel para los neutrinos.

Sin embargo, el experimento de Davis dejó un problema pendiente: el número de neutrinos detectados era mucho menor del previsto según los modelos solares, algo que después corroboraron otros detectores. La incógnita quedaría pendiente de resolución durante décadas; pero entretanto, el italiano Bruno Pontecorvo elaboró una teoría que finalmente llegaría a explicar el misterio de los neutrinos desaparecidos.

El Observatorio de Neutrinos Sudbury, en Canadá. Imagen de Minfang Yeh, Ph.D.

El Observatorio de Neutrinos Sudbury, en Canadá. Imagen de Minfang Yeh, Ph.D.

Pontecorvo propuso que los neutrinos podían mutar, oscilar entre distintos sabores durante su viaje por el espacio. Esto explicaría que escaparan a los detectores capaces de pescar solo neutrinos electrónicos, pero al mismo tiempo requería que los neutrinos tuvieran masa, distinta para cada uno de los sabores; algo que no estaba contemplado en el Modelo Estándar. La oscilación de los neutrinos comenzó a ganar peso entre los físicos, pero no fue demostrada hasta finales de los 90 y comienzos de este siglo gracias a dos experimentos, el Sudbury en Canadá, liderado por Arthur B. McDonald, y el SuperKamiokande en Japón, dirigido por Takaaki Kajita. En particular, el primero era capaz de detectar todos los tipos de neutrinos. Con ello llegó la demostración de que los neutrinos poseen masa, aunque aún no se sabe cuánto. El hallazgo les ha valido hoy a ambos el Nobel, el cuarto para los neutrinos.

Hasta aquí, la información. Ahora, la opinión. Dejando aparte la aparente afición de la Real Academia Sueca de las Ciencias por premiar todo lo que sepa a neutrino, hay una clásica objeción al formato de los Nobel que se pone de manifiesto en este caso: el modelo del científico solitario y autosuficiente hace décadas que pasó a mejor vida. Con la finalización del Proyecto Genoma Humano a comienzos del presente siglo, muchas voces autorizadas se alzaron reclamando un Nobel para este logro. El problema era: ¿para quién?

Los premios suecos sostienen una fórmula de distinción individual que resulta obsoleta en la compleja ciencia actual, colaborativa y multidisciplinar. Al igual que el Genoma Humano, el Sudbury y el SuperKamiokande son experimentos complejos en los que probablemente han participado cientos de científicos. Recordemos la demostración del bosón de Higgs en el LHC; el Nobel fue para Higgs y Englert, sus teóricos; no habría habido manera de encajar al equipo del LHC en el formato de los premios. Si un equipo de científicos demostrara la evaporación de un microagujero negro creado experimentalmente, Stephen Hawking podría por fin recibir su Nobel. La teoría aún puede ser individual; la experimentación nunca lo es.

E incluso en este supuesto, pueden cometerse injusticias: tal vez Pontecorvo no haya podido recibir el Nobel como teórico de la oscilación de los neutrinos por la sencilla razón de que falleció en 1993. Pero en 2002 hubo un nombre fundamental que se quedó fuera de los premios: John Bahcall, colaborador de Davis y autor del sostén teórico en el que se basó el diseño experimental que llevó a la detección de los neutrinos solares.

Por no recordar los casos en los que un coautor esencial de un trabajo también ha sido excluido; un ejemplo es Rosalind Franklin, la investigadora que produjo los cristales sobre los que se estudió la estructura del ADN. Es cierto que Franklin ya había fallecido de cáncer cuando sus colegas Watson, Crick y Wilkins recibieron el premio; pero cuando hace unos años la Academia Sueca publicó sus archivos, se descubrió que Franklin nunca llegó a estar nominada.

Cómo empaquetar varios metros de ADN sin un solo nudo

Cada célula de un organismo contiene su genoma completo. Sin necesidad de fijarnos en genomas mayores (que los hay, y posiblemente mucho mayores), quedémonos con los más de dos metros de ADN que contiene cada una de nuestras células. Por supuesto, esta longitud total no es continua, sino que está distribuida en 46 cromosomas; pero cada cromosoma sí consiste en una sola hebra de ADN, y todos ellos comparten el minúsculo espacio del núcleo de la célula, invisible a simple vista.

Cromosomas humanos en metafase. Imagen de Jane Ades, NHGRI / Wikipedia.

Cromosomas humanos en metafase. Imagen de Jane Ades, NHGRI / Wikipedia.

De entre todos los misterios de la biología, uno de los más asombrosos es la capacidad de la célula de empaquetar varios metros de ADN en un volumen tan ínfimo. La imagen más popular de los cromosomas como longanizas dobles unidas por el centro solo existe durante una etapa muy concreta del ciclo celular llamada metafase. Este es el máximo grado de condensación de los cromosomas cuando se va a producir la división de la célula, del mismo modo que empaquetamos nuestras pertenencias para una mudanza. Pero durante el resto del tiempo, los cromosomas están más o menos desempaquetados, porque la secuencia de ADN que contienen debe permanecer utilizable.

Imaginemos esas antiguas salas de códigos de la Segunda Guerra Mundial, con numerosas hileras de pupitres ocupados por descifradores que continuamente leían tiras de papel con caracteres impresos. El núcleo celular es algo parecido, pero esas larguísimas tiras de ADN deben conservarse perfectamente ordenadas, sin romperse ni anudarse.

Todo el que haya tenido que dedicar un rato a desembrollar cables puede imaginar lo que esto supone. Si el año anterior no tuvimos la precaución de guardar las luces de Navidad con un cierto orden, al abrir la caja encontraremos una maraña compacta plagada de nudos. Esto tiene un nombre en física: se conoce como glóbulo de equilibrio. Rescatando los conceptos de mínima energía y entropía que venimos manejando los últimos días, el glóbulo de equilibrio es una configuración de gran desorden (entropía elevada) y mínima energía, motivo por el que surge de forma natural.

Pero parece claro que un glóbulo de equilibrio no sería la configuración ideal para el ADN en la célula, dado que dificultaría enormemente el empaquetamiento reversible y la posibilidad de mantener la secuencia siempre disponible. Empaquetar el ADN en la célula es un proceso enormemente complicado en el que intervienen unas proteínas llamadas histonas. El complejo que forma el ADN con las histonas, como un collar de cuentas, se llama cromatina; esta se enrolla como uno de los antiguos cables de teléfono y luego se vuelve a enrollar para empaquetarse en los cromosomas de la metafase, listos para la mudanza.

Izquierda, un glóbulo de equilibrio. Derecha, un glóbulo fractal que forma territorios. Imagen de L. Mirny, Chromosome research.

Izquierda, un glóbulo de equilibrio. Derecha, un glóbulo fractal que forma territorios. Imagen de L. Mirny, Chromosome research.

Pero ¿qué tipo de forma física adopta la cromatina para permanecer utilizable? Algunos científicos piensan que su configuración es lo que se conoce como glóbulo fractal. El término fractal fue acuñado en 1975 por el matemático nacido en Polonia Benoit Mandelbrot. La geometría fractal consiste en formas que tienen la peculiaridad de repetir estructuras similares a gran escala y a pequeña escala; a primera vista parecen irregulares, pero en realidad siguen un patrón que puede describirse con algoritmos matemáticos. De forma limitada, la geometría fractal aparece también en la naturaleza: ejemplos clásicos son las hojas de los helechos y otros sistemas ramificados, como los bronquios pulmonares o los vasos sanguíneos.

Ejemplo de camino hamiltoniano en un dodecaedro. Imagen de Christoph Sommer / Wikipedia.

Ejemplo de camino hamiltoniano en un dodecaedro. Imagen de Christoph Sommer / Wikipedia.

El glóbulo fractal es una de estas estructuras. Su aspecto general es el de un bloque de noodles de los que se venden secos para meter en agua. Esta estructura tiene la peculiaridad de que consigue un empaquetamiento máximo en el mínimo espacio manteniendo lo que se llama un camino hamiltoniano; es decir, que si seguimos el hilo del ADN, nunca pasamos dos veces por el mismo punto, ya que la hebra nunca se cruza y, por tanto, no hay nudos. Es un caso de la denominada curva de Peano, que llena un plano sin cruces; su aspecto es parecido a los laberintos de las revistas de crucigramas, pero en una estructura regular que se repite a mayor escala: glóbulos de glóbulos de glóbulos. Este tipo de glóbulo sería coherente con el hecho observado de que, cuando la cromatina está desempaquetada, cada cromosoma mantiene una especie de territorio; en el glóbulo de equilibrio esto no sucedería, sino que todos estarían mezclados a lo largo y ancho del volumen que ocupa el núcleo celular.

El glóbulo fractal fue propuesto por primera vez en 1988 como un modelo teórico por el físico ruso Alexander Grosberg, hoy en la Universidad de Nueva York. En 2009, científicos de las Universidades de Harvard y Washington y del Instituto Tecnológico de Massachusetts publicaron en Science la primera prueba que apoyaba el modelo del glóbulo fractal.

Curva fractal de Peano. Imagen de António Miguel de Campos / Wikipedia.

Curva fractal de Peano. Imagen de António Miguel de Campos / Wikipedia.

Investigadores de la Universidad Estatal Lomonosov de Moscú han aportado una prueba más de que la cromatina puede formar glóbulos fractales y funcionar para sus cometidos celulares. Los científicos han logrado modelar una cadena de ADN de un cuarto de millón de unidades utilizando el supercomputador Lomonosov. Según su estudio, publicado en la revista Physical Review Letters, el glóbulo fractal ofrece una estructura muy estable que proporciona una dinámica más rápida que el glóbulo de equilibrio, lo que facilitaría la disponibilidad del ADN para su uso.

Una estructura de glóbulo fractal, como 'noodles' secos'. Imagen de L. Nazarov.

Una estructura de glóbulo fractal, como ‘noodles’ secos. Imagen de L. Nazarov.

Con todo esto queda ilustrado el inmenso grado de orden que existe dentro de una célula; tanto que algunos investigadores han propuesto que esta característica de los seres vivos, la capacidad de mantener un gran orden interno a costa de desordenar su entorno, podría servir para identificar formas de vida en otros planetas que sean muy diferentes a lo que conocemos aquí.

“Con independencia del tipo de forma de vida de que pudiera tratarse, todas deben tener en común el atributo de ser entidades que reducen su entropía interna a costa de la energía libre obtenida de su entorno”, escribían en 2013 los chilenos Armando Azua-Bustos y Cristian Vega-Martínez en la revista International Journal of Astrobiology. “Mostramos que tan solo usando análisis matemático fractal uno podría cuantificar rápidamente el grado de diferencia de entropía (y, por tanto, su complejidad estructural) de procesos vivos (en este caso, crecimientos de líquenes y patrones de crecimiento de plantas) como entidades distintas separadas de su entorno abiótico similar”. Los investigadores proponían que se incluyan estos criterios en la búsqueda de vida en otros lugares del Sistema Solar.

Así pues, esta serie sobre la entropía de los seres vivos nos lleva finalmente a que este concepto podría convertirse en un criterio clave para la búsqueda de vida alienígena. Pero si están a punto de marcharse de vacaciones, tal vez simplemente hayan descubierto que un equipaje bajo en entropía consumirá más energía libre para prepararlo, pero ocupará menos espacio y quedará más fácilmente utilizable.

¿Y si la vida surgió en el desierto?

Si algo sabemos con certeza de cómo comenzó la vida en este planeta, es que fue en el mar.

¿O no?

Imagen de Olearys / Flickr / CC.

Imagen de Olearys / Flickr / CC.

Las reacciones químicas de la vida tienen lugar en el agua. Las células son pequeños botijos cerrados que mantienen en su interior un diminuto océano portátil en el que transcurren todos los procesos bioquímicos. Pero antes de que surgiera la primera célula, no había una barrera que confinara el medio acuoso. Por lo tanto, toda la química previa a los primeros sistemas vivos debía desarrollarse directamente sobre mojado. El agua con compuestos precursores disueltos es lo que se conoce como la sopa orgánica primordial, el lugar donde nació la vida.

Algunos científicos piensan que este lugar pudo ser similar a las actuales fumarolas hidrotermales marinas, también llamadas chimeneas negras. Se trata de fisuras en el lecho marino situadas en zonas volcánicas, normalmente a gran profundidad, por las que se filtra agua caliente con abundantes minerales disueltos, sobre todo sales de azufre. La alta temperatura y la riqueza de nutrientes concentran pequeños ecosistemas en las fumarolas, incluyendo bacterias y arqueas primitivas que viven en ausencia de oxígeno, en un entorno muy parecido al de la Tierra prebiótica.

La ventaja de las fumarolas es que crean un ambiente local muy apto para que se dieran las condiciones iniciales de la vida, algo que difícilmente pudo ocurrir en un mar abierto donde los compuestos están demasiado dispersos. Con el paso de los años, los científicos han ido abandonando la idea de que la vida pudo surgir en el agua libre, ya que la baja concentración de las moléculas haría muy improbable que llegaran a producirse las reacciones necesarias; hace falta un ambiente más íntimo, o una fase sólida a la que agarrarse. El propio Darwin ya habló de un «pequeño estanque caliente», y algunos expertos han llegado a proponer incluso que la vida pudo comenzar en el diminuto resto de agua que cabe entre dos laminillas de mica, ese mineral que forma lentejuelas en el granito.

Esto, en lo que se refiere al dónde. Pero ¿cómo? Ayer mencioné el experimento de Miller-Urey. En 1952, Stanley Miller y Harold Urey, entonces en la Universidad de Chicago, construyeron un sistema cerrado en el que introdujeron una fuente simple de carbono, otra de nitrógeno y gas hidrógeno, todo ello en un medio acuoso con una fuente de calor. Al más puro estilo de Victor Frankenstein, aplicaron chispazos a la disolución para simular las tormentas eléctricas de la Tierra primigenia. Gracias a este aporte de energía, el sistema de Miller y Urey generó espontáneamente una gran cantidad de aminoácidos, los bloques que forman las proteínas; tantos que un análisis reciente de las muestras guardadas entonces detectó más de los que en su día habían encontrado los investigadores.

El chispazo de Frankenstein es un elemento problemático. Como expliqué ayer, y en aplicación de la Segunda Ley de la Termodinámica, la física de la naturaleza fluye hacia los estados de mínima energía, no al contrario. En presencia de oxígeno, los compuestos de carbono de los que estamos hechos se queman espontáneamente, desprendiendo calor y produciendo dióxido de carbono (CO2) y agua como residuos finales. Para que la reacción discurra en sentido contrario, por ejemplo para fabricar glucosa a partir de agua y CO2, es necesario aportar energía, que se almacena en los enlaces químicos de la molécula. El chispazo de Miller y Urey lo conseguía; pero por mucho que la Tierra primitiva fuera una especie de Mordor, confiar en los rayos para ejecutar billones de reacciones de ensayo y error es quizá demasiado arriesgado. ¿Sería posible encontrar otra fórmula en la que se aminoraran las barreras energéticas a superar?

De momento, ahí lo dejamos. Pasamos ahora al qué. Para disparar el comienzo de la vida en la Tierra y mucho antes de la primera célula, fue necesario que en primer lugar aparecieran moléculas capaces de copiarse y almacenar información. Lo primero se logra a través de enzimas, que actúan como catalizadores para propiciar reacciones que de otro modo no se producirían, o lo harían muy lentamente. Para lo segundo se necesitan un código y un soporte químico capaz de alojarlo.

Respecto a esto último, hoy todos los organismos almacenamos nuestra información en forma de ADN, a excepción de algunos virus (si es que pueden calificarse como organismos) que emplean como material genético otro derivado llamado ARN. El ARN, que también empleamos todos los organismos para ciertos procesos biológicos, tiene una cualidad especial, y es que además de almacenar información genética puede actuar como enzima, algo que no se ha encontrado en la naturaleza para el ADN. Estos ARN con actividad catalítica se llaman ribozimas.

El descubrimiento de las ribozimas en 1982 indujo a muchos científicos a pensar que quizá la vida en la Tierra comenzó con el ARN, ya que tiene todo lo necesario, capacidad de codificar información y actividad catalítica que podría haber facilitado la autorreplicación. La vida no podría haber comenzado sin la catálisis, y en esta actividad biológica juega un papel imprescindible otro tipo de compuestos, las proteínas, que aportan la mayoría de las funciones enzimáticas y estructurales de los seres vivos. Las proteínas son cadenas de aminoácidos, como los generados por el experimento de Miller-Urey. Pero la unión de los aminoácidos en cadenas requiere un gran aporte de energía para la formación de sus enlaces, denominados peptídicos, y es difícil que esto se produzca de manera espontánea.

Ante todos estos requisitos e incógnitas, un equipo de investigadores del Centro para la Evolución Química y el Instituto Tecnológico de Georgia (EE. UU.) ha creado un modelo que avanza un gran paso en la demostración de la abiogénesis. Los científicos mezclaron dos tipos de moléculas orgánicas, aminoácidos e hidroxiácidos. Estos últimos, que también se presumen presentes en la Tierra primitiva, se diferencian de los aminoácidos en el grupo químico que llevan pegado a su radical ácido, y son muy utilizados en cosmética; muchas cremas llevan alfa-hidroxiácidos, o AHA, por sus (siempre presuntas) propiedades beneficiosas para la piel.

Los investigadores sometieron esta mezcla heterogénea a varios ciclos sucesivos de humedad y secado por calor, con una temperatura máxima que no superaba los 65 ºC. Con este proceso simularon algo que podría haber sucedido en la Tierra primitiva: charcos ricos en materia orgánica que se secaban al sol y se hidrataban de nuevo con la lluvia. Después de solo 20 repeticiones, los científicos observaron que surgían espontáneamente cadenas de hasta 14 unidades de aminoácidos e hidroxiácidos, conocidas con el nombre de depsipéptidos.

Los hidroxiácidos se unen con un tipo de enlace llamado éster, formando lo que se llama un poliéster. Un ejemplo de poliéster es, evidentemente, el poliéster, la conocida fibra textil. Esta es sintética y no biodegradable, pero existen otros poliésteres que se forman y se degradan en la naturaleza. Los científicos ya habían observado antes que estos poliésteres se forman espontáneamente con los ciclos de secado e hidratación. El enlace éster requiere menos energía que el enlace peptídico; basta con un aumento moderado de temperatura para activar su formación. Y una vez logrados los ésteres, la barrera de energía hacia los péptidos, más estables, es mucho menor. «Permitimos la formación de enlaces peptídicos porque los enlaces éster reducen la barrera energética que debe superarse», apunta el codirector del estudio, Nicholas Hud.

Así, una vez que se forman poliésteres, se van rompiendo y reformando, creándose depsipéptidos y finalmente péptidos; todo ello a temperaturas compatibles con la vida y sin necesidad de catalizadores externos. Según el estudio, publicado en la revista Angewandte Chemie International Edition, el proceso podría haber tenido lugar incluso en el desierto, donde el rocío puede formar minúsculas acumulaciones de agua que se secan al sol durante el día y se rehidratan por la noche.

Así, tenemos la demostración de que en la Tierra temprana pudieron formarse péptidos, o pequeñas proteínas. El siguiente paso lo detalla el coautor del estudio Ramanarayanan Krishnamurthy: “Si este proceso se repitiera muchas veces, podrías crecer un péptido que podría adquirir una propiedad catalítica, porque habría alcanzado un cierto tamaño y podría plegarse de una determinada manera. El sistema podría comenzar a desarrollar ciertas características y propiedades emergentes que podrían ayudarle a autopropagarse”.

En resumen, queda superado el obstáculo del que hablaba en el artículo anterior: la aparición de un sistema bioquímico con capacidad de autopropagación es energéticamente posible, y compatible con la Segunda Ley de la Termodinámica. Es evidente que, incluso desde la posible formación espontánea de enzimas y ARN catalítico hasta el nacimiento de la primera célula primitiva, queda aún un largo camino por recorrer. Pero otros investigadores han aportado también grandes avances en estas etapas, como la generación espontánea de membranas protocelulares a partir de ciertos lípidos. Resumiendo aún más: la abiogénesis es posible.

Pero en el fondo siempre nos quedará una pregunta incómoda.

¿Por qué solo una vez?

Mientras confiamos en encontrar vida en algún otro planeta de condiciones habitables, ignoramos a veces el hecho de que, a lo largo de 4.500 millones de años de historia de la Tierra, la abiogénesis solo ha ocurrido aquí UNA vez. O por lo menos, no tenemos absolutamente ningún indicio para sospechar otra cosa.

Concluimos así regresando a una vieja pregunta: ¿es la vida algo extremadamente improbable, como defendía Fred Hoyle? ¿Somos el producto de una casi imposible carambola de fenómenos raros? Por desgracia, no es descabellado pensar que quizá no haya nadie más en el universo.