BLOGS
Ciencias mixtas Ciencias mixtas

Los secretos de las ciencias para
los que también son de letras

Archivo de diciembre, 2016

Esta noche las campanadas llegarán un segundo más tarde… en Canarias

Quienes esta noche estén pendientes de la hora en su móvil podrán asistir a una rareza: un segundo de regalo, que dejará el reloj durante un breve suspenso en los 59 minutos y 60 segundos antes de comenzar una nueva hora.

Reloj de la Puerta del Sol (Madrid). Imagen de Albeins / WIkipedia.

Reloj de la Puerta del Sol (Madrid). Imagen de Albeins / WIkipedia.

Pero cuidado: esto no sucederá con las campanadas del reloj de la Puerta del Sol. El llamado segundo intercalar se introduce de forma simultánea en todos los relojes del mundo. Y dado que hay que elegir un momento concreto común para todo el planeta, se hace a las 23:59:59 del 31 de diciembre según el Tiempo Universal Coordinado (UTC).

En España, solo Canarias se ciñe a la hora UTC; en el resto del territorio seguimos el horario UTC+1. Esto implica que en el archipiélago el segundo intercalar se introducirá justo con el comienzo del año nuevo, pero los demás veremos ese instante de más cuando nuestros relojes marquen las 00:59:59 del 1 de enero, es decir, pasada la primera hora del primer día de 2017. En ese momento, el reloj pasará a marcar 00:59:60.

Para la mayoría de nosotros esta corrección, que hasta ahora se ha introducido un total de 26 veces, no es más que una curiosidad. Pero para algunos es un quebradero de cabeza: el segundo de más debe insertarse forzadamente en los servidores que controlan el tiempo en internet, que se rigen por relojes atómicos muy precisos pero desconectados del “tiempo real”, si por tiempo real entendemos el día solar verdadero. La Tierra no tarda exactamente los 86.400 segundos contenidos en 24 horas en dar una vuelta a su eje, sino una fracción de segundo más.

Lo peor de todo es que esta fracción de diferencia no es fija, sino que varía por las irregularidades de la naturaleza. Estos segundos siempre se insertan el 30 de junio y el 31 de diciembre, pero no todos los 30 de junio ni todos los 31 de diciembre. El organismo encargado, el Servicio Internacional de Rotación de la Tierra y Sistemas de Referencia, va dictaminando los segundos intercalares en función de las observaciones de la diferencia entre el tiempo del reloj atómico, UTC, y el tiempo real de la Tierra, que se conoce como Horario Universal (la versión moderna de la hora de Greenwich).

Algo parecido ocurre con el día de más de los años bisiestos, como también lo ha sido 2016. El 29 de febrero se introduce de forma regular para compensar también la diferencia entre la duración del año en nuestros relojes y el año real, el que tarda la Tierra en recorrer una órbita completa en torno al Sol. Pero en el caso del año bisiesto se sigue una programación regular, y además introducir un día completo según el calendario local en cada lugar de la Tierra no provoca perturbaciones.

En cambio, el segundo intercalar no tiene programación regular. Cuando se introdujo este sistema, en 1972, el mundo no dependía tanto de los sistemas electrónicos como hoy. Todos los relojes de nuestros dispositivos se regulan por sistemas en internet que a su vez dependen de esos servidores maestros encargados de guardar el tiempo siguiendo el tictac de los relojes atómicos. Pero no todos los sistemas aceptan de buen grado repetir un segundo, por lo que esta corrección puede tirar abajo redes informáticas vitales.

Posiblemente en el futuro el segundo intercalar se sustituya por una corrección periódica regular, como se hace con el año bisiesto. Pero de momento, esta noche tendremos un segundo más para felicitarnos el año nuevo. Que lo disfruten.

Star Wars, psicopatología en una galaxia muy, muy lejana

Imagino que hay que tener el sesgo mental de quien dedica la mayor parte de su tiempo a las cosas de la ciencia para apreciar esta paradoja: ¿cómo una saga de películas empeñada en desgranar una tan meticulosa coherencia argumental puede caer al mismo tiempo en una tan monstruosa incoherencia con la realidad?

Kylo Ren en Star Wars Episodio VII. Imagen de 20th Century Fox.

Kylo Ren en Star Wars Episodio VII. Imagen de 20th Century Fox.

Ya, ya. Que sí, que todos conocemos el propósito declarado de George Lucas desde el comienzo de la serie en ignorar deliberadamente y por completo las leyes científicas. Pero veámoslo de este modo: no son “las leyes científicas”. Es simplemente la realidad; pero como la del espacio es una realidad que no experimentamos a diario, lo etiquetamos como “las leyes científicas” y lo dejamos aparte, como una preocupación de empollones puntillosos.

Dicho de otro modo: imaginemos que, en una película, una persona cae al vacío desde el piso 65 y queda ilesa, sacudiéndose el polvo de la camisa al levantarse del suelo. No lo admitiríamos ni en una de James Bond. Nadie piensa en leyes científicas, sino en un simple absurdo argumental. Pero lo que está en juego es la gravedad, la misma que en Star Wars sí nos parece lícito saltarse a la torera constantemente sin que nadie se mese los cabellos.

Y sabiendo todo esto, no dejamos de mirar y remirar la ciencia o la anticiencia de la saga, con mucho más de lo segundo que de lo primero. En una entrevista publicada hace unos años por la Agencia Sinc y firmada por Marta Palomo, el escritor, editor y profesor de la Universitat Politècnica de Catalunya Miquel Barceló ponía como ejemplo la secuencia del Halcón Milenario en el campo de asteroides en El imperio contraataca, que contiene 14 errores científicos en menos de dos minutos.

Como otros periodistas de ciencia, yo también he escrito al menos un par de reportajes sobre la ciencia y anticiencia de Star Wars, aquí y aquí, además de comentar aquí el año pasado, con el estreno de El despertar de la Fuerza, cómo un intento de enredar el guión en una jerigonza científica a propósito de los cascos de los Stormtroopers había salido como tiro por la culata.

Y es que a pesar de todo, Star Wars nos encanta. En contra de lo que podría parecer, no solo la ciencia ficción sesuda y rigurosa inspira a los científicos, sino que también se dejan seducir por el universo de Lucas: en este artículo, la ingeniera de la NASA Holly Griffith contaba cómo fue la figura de la princesa Leia la que inspiró su elección profesional. Los profesores de ciencias, desde la enseñanza secundaria a la universidad, encuentran en sus episodios una manera amena y divulgativa de ilustrar principios científicos.

Pero cuando se habla de la ciencia de Star Wars, siempre se piensa en física e ingeniería. Y sin embargo, no solo físicos e ingenieros han recurrido a la saga en sus publicaciones profesionales. Con el triste adiós a Carrie Fisher y el estreno de la (magnífica, para mi gusto) Rogue One, he reunido esta pequeña lista de cinco estudios o artículos que tiran del material de Star Wars en un contexto más insospechado, el de la psicología y la psiquiatría.

1. Star Wars como mito: ¿una cuarta esperanza? (Psychoanalytic Review, 1987)

En 1987, con la primera trilogía de Star Wars ya completada y sin la segunda aún en el horizonte, los psicólogos Lucia Villela-Minnerly y Richard Markin publicaban un artículo en el que interpretaban la historia de Star Wars como una versión del mito de Edipo.

2. ¿Sufre Anakin Skywalker un trastorno límite de la personalidad? (Psychiatry Research, 2011)

Psiquiatras del Hospital de la Universidad de Toulouse (Francia) defienden que Anakin Skywalker/Darth Vader cumple seis de los nueve criterios de diagnóstico de trastorno límite de la personalidad. “Presenta impulsividad y dificultades para controlar su ira, alternando entre idealización y devaluación (de sus mentores Jedis). Con un miedo permanente a perder a su mujer, hace esfuerzos frenéticos para evitar su abandono y va tan lejos como para traicionar a sus antiguos compañeros Jedis”. Los autores sugieren que este ejemplo puede servir para explicar los síntomas de este trastorno, y que este rasgo de Anakin “puede en parte explicar el éxito comercial de estas películas entre los adolescentes”.

3. La ilusión de la introducción de Star Wars (i-Perception, 2015)

El psicólogo Arthur Shapiro, de la Universidad Americana de Washington (EEUU), ha creado una versión alternativa de la famosa Ilusión de la Torre Inclinada. Esta última, descubierta por investigadores de la Universidad McGill de Canadá y distinguida en 2007 con el premio a la mejor ilusión del año, consiste en que el ojo ve distinta inclinación en dos imágenes idénticas de la Torre de Pisa situadas lado a lado. Shapiro demuestra una ilusión óptica similar con los famosos textos volantes que aparecen al comienzo de todas las películas de Star Wars.

Ilusión de la Torre Inclinada. Imagen de Kingdom, Yoonessi & Gheorghiu.

Ilusión de la Torre Inclinada. Imagen de Kingdom, Yoonessi & Gheorghiu.

La ilusión de la introducción de Star Wars. Imagen de Shapiro / i-Perception.

La ilusión de la introducción de Star Wars. Imagen de Shapiro / i-Perception.

4. Psicopatología en una galaxia muy, muy lejana (Academic Psychiatry, 2015, artículos uno y dos)

En diciembre de 2015, los psiquiatras Susan Hatters-Friedman (Universidad de Auckland, Nueva Zelanda) y Ryan Hall (Universidad de Florida Central, EEUU) analizaban en dos artículos consecutivos lo que definían como “un vasto conjunto” de psicopatologías en los personajes de Star Wars, tanto en los buenos como en los malos. En el Lado Oscuro destacaban la presencia de “rasgos de personalidad límite y narcisista, psicopatía, trastorno por estrés postraumático, riesgo de violencia hacia la pareja, fases de desarrollo y, por supuesto, conflictos edípicos”. Pero los héroes también tienen lo suyo: “histrionismo, trastorno obsesivo-compulsivo y rasgos de personalidad dependiente, trastornos psiquiátricos perinatales, esquizofrenia prodrómica, seudodemencia, lesiones del lóbulo frontal, juego patológico e incluso fingimiento de enfermedad”.

5. ¿Puede Kylo Ren redimirse? Nuevas posibles lecciones de Star Wars Episodio VII (Academic Psychiatry, 2016)

Anthony Guerrero (Universidad de Hawái, EEUU) y Maria Jasmin Jamora (Fundación de la Piel y el Cáncer, Manila, Filipinas) se preguntan si en episodios sucesivos habrá posibilidad de redención para el villano Kylo Ren después de matar a su padre Han Solo, tal como Darth Vader logró redimirse en El retorno del Jedi. Los dos expertos reflexionan sobre el caso como ejemplo para psiquiatras y educadores a la hora de afrontar el tratamiento de personas que hayan caído en el Lado Oscuro, sobre todo aquellas que cometen actos de violencia contra su propia familia. Sin embargo, hay un problema: en el artículo, publicado el pasado agosto, los autores sugerían que un factor crucial para la redención de Kylo Ren podía ser su madre. Pero por desgracia, Leia ya no podrá estar presente en el Episodio IX.

Haga sus propios copos de nieve, e ilumine su árbol con peces eléctricos

Ya que el anticiclón no parece dispuesto a soltarnos y a falta de Navidades blancas, ¿qué tal aprovechar las vacaciones para fabricar sus propios copos de nieve en casa?

Copo de nieve fotografiado al microscopio. Imagen de Kenneth Libbrecht.

Copo de nieve fotografiado al microscopio. Imagen de Kenneth Libbrecht.

El físico de Caltech (EEUU) Kenneth G. Libbrecht es probablemente el mayor experto mundial en cristales de hielo: los crea, los estudia y los fotografía para comprender cómo se forman y en qué medida sus simétricas formas caprichosas dependen de factores como el grado de humedad, la presión o las variaciones sutiles de temperatura. Sus hermosas imágenes están libres de Photoshop; son fotomicrografías reales de copos sabiamente iluminados para que la luz se descomponga en los colores del arco iris.

Y por cierto, hasta tal punto las condiciones de crecimiento del cristal determinan su forma que Libbrecht ha desmontado el viejo mito según el cual no existen dos copos de nieve iguales: utilizando condiciones idénticas, el físico ha logrado crear cristales que son auténticos gemelos idénticos. Y no solo de dos en dos, sino hasta en grupos de varios.

En su web, Libbrecht detalla paso a paso una receta para crear copos de nieve en casa, que resumo aquí. Estos son los materiales necesarios:

Esquema del aparato para crear copos de nieve. Imagen de Kenneth Libbrecht.

Esquema del aparato para crear copos de nieve. Imagen de Kenneth Libbrecht.

  • Una botella pequeña de plástico (con tapón)
  • Tres vasos de poliestireno
  • Una esponja pequeña de 1 cm de grosor
  • Hilo de náilon
  • Aguja de coser
  • Cuatro alfileres
  • Un clip
  • Toallas de papel
  • Cinta adhesiva
  • Unos cinco kilos de hielo seco (puede comprarse por ejemplo aquí)

Primero, se corta el fondo de la botella de plástico a 1 cm de la base. En este fondo se encaja una esponja circular, que se fija clavando cuatro alfileres en los laterales. La esponja y el fondo de la botella se perforan en su centro con una aguja en la que se ha enhebrado el hilo de náilon. Este se fija al exterior de la base con cinta adhesiva, y en el otro extremo se ata el clip para que sirva de peso. La longitud total del hilo debe ser tal que, al volver a colocar el fondo a la botella y ponerla boca abajo, el clip quede dentro de la botella sin llegar al borde del cuello.

Todo este tinglado de la botella, una vez mojada la esponja con agua del grifo, se introduce en los vasos de poliestireno rellenos de hielo seco machacado, como muestra la figura, y se cubre con toallas de papel alrededor de la botella. Con los materiales que Libbrecht utiliza, el vaso que rodea la botella debe agujerearse por la base, pero el físico aclara que esta disposición es solo una sugerencia.

Copos de nieve creados en el experimento. Imagen de Kenneth Libbrecht.

Copos de nieve creados en el experimento. Imagen de Kenneth Libbrecht.

Lo importante es que en la botella se creen dos zonas, templada y húmeda arriba, fría y seca abajo. El agua de la esponja supersatura el aire de vapor, que difunde pasivamente hacia abajo (el aparato se llama cámara de difusión). Al encontrar la zona fría, comienza a cristalizar en torno a un sitio de nucleación, suministrado por las irregularidades del hilo, y a los pocos minutos comenzarán a aparecer los cristales como los de la foto.

Según explica Libbrecht, esto mismo sucede en la atmósfera cuando el aire cálido y húmedo encuentra aire frío. Según la temperatura de este sea mayor o menor de 0 ºC , se forma lluvia o nieve. Cada gota de lluvia o copo de nieve lleva en su interior alguna partícula de polvo que sirve para la nucleación.

Obtener fotografías como las de Libbrecht es algo mucho más complicado, ya que esto requiere un microscopio en frío. Pero los cristales de nieve que se forman pueden verse a simple vista o con una lupa.

Otra sugerencia para Navidad es controlar las luces del árbol mediante peces eléctricos, para quienes tengan acuario y sean además un poco frikis. La propuesta viene del Laboratorio de Peces Eléctricos dirigido por Jason Gallant en la Universidad Estatal de Michigan (EEUU).

Gallant aclara que los peces realmente no alimentan la iluminación del árbol, sino que controlan el parpadeo de las luces. Es decir, que el montaje es una manera navideña y original de comprobar cómo los peces eléctricos africanos Gymnarchus, según el científico fáciles de encontrar en las tiendas de acuarios, navegan y se comunican con impulsos eléctricos; cada vez que el pez emite un pulso, el árbol se ilumina.

Pez eléctrico africano Gymnarchus. Imagen de Wikipedia.

Pez eléctrico africano Gymnarchus. Imagen de Wikipedia.

Para poner en práctica la idea de Gallant se necesita algo de material electrónico, pero también ciertos conocimientos de informática para programar una plataforma Arduino. La lista de los componentes necesarios y el código para programar el sistema se detallan en el blog de Gallant. Feliz navidad y felices experimentos.

Pasen y vean la dolorosísima picadura de la hormiga bala

Algo tienen los animales peligrosos o venenosos que nos repelen y al mismo tiempo nos atraen; como cuando los niños se tapan los ojos para no ver una secuencia de una película que les atemoriza, pero dejando una rendija entre los dedos para no perderse detalle.

La parasitología, con sus escabrosos relatos de repugnantes colonizaciones corporales, es una de las ramas más morbosas de la biología. Y cuando se trata no de parásitos, sino de criaturas picadoras o mordedoras, nos encanta saber cuál duele más, cuál es más venenosa, cuál es más letal, en cuánto tiempo puede matar.

Probablemente más de uno sentiría curiosidad por saber qué se siente, cómo de dolorosa es la picadura de tal bicho, pero la mayoría preferiríamos limitarnos a imaginarlo. Al menos, hasta que llegue el cine 5D o 6D (que ya no sé cuál “D” tocaría) en el que un espectador pueda, si le apetece una experiencia realmente fuerte, pasar por las mismas sensaciones que los personajes de la pantalla, aunque sea por un segundito. Quién sabe, no descarten que algún día lleguemos a verlo.

Pero mientras tanto, hay quienes se ofrecen a sentirlo por nosotros. Hace algo más de dos años les conté aquí el loable esfuerzo en pro de la ciencia de Michael Smith, entonces candidato a doctor por la Universidad de Cornell (EEUU). Durante su trabajo de tesis en sociobiología de las abejas y tras recibir múltiples picaduras accidentales, decidió emprender un estudio paralelo lo más riguroso posible sobre el nivel comparativo de dolor de los aguijonazos en diferentes partes del cuerpo. Ganaron las fosas nasales, el labio superior y el cuerpo del pene; al releer ahora aquel artículo, he recordado que olvidé preguntarle por qué no había incluido el glande, mucho más sensible.

Este morbo nuestro lo explotan bien los documentales de naturaleza en los que ha proliferado la figura al estilo Frank de la Jungla, el tipo que, con más o menos conocimiento de la naturaleza y más o menos sentido de teatralidad especiado con ciertas dosis de exhibicionismo, se pone deliberadamente en grave riesgo ante distintas criaturas de la naturaleza para solaz de quienes lo contemplan desde la seguridad del sofá.

Entre ellos está Coyote Peterson, de quien nada sé, excepto que hace un programa llamado Brave Wilderness y que se ha propuesto experimentar las picaduras de insectos más dolorosas del universo. ¿Y cuáles son las picaduras de insectos más dolorosas del universo?

En esto contamos con la ayuda inapreciable de Justin Orvel Schmidt, entomólogo estadounidense que en 1983 comenzó a clasificar, basándose en su experiencia personal, el dolor infligido por las diferentes especies de himenópteros (hormigas, abejas y avispas) que le han picado a lo largo de su carrera.

Este trabajo hoy se conoce como Índice Schmidt de dolor de las picaduras, pero conviene aclarar que no es una escala científica: la valoración de Schmidt es subjetiva y se basa en picaduras en condiciones no controladas, a diferencia del estudio de su casi homónimo Smith. Aun así, el índice tiene su gracia, al ir acompañado por coloridas descripciones propias de un catador de vinos, que Schmidt reúne en su libro The Sting of the Wild; por ejemplo, en el caso de la picadura de la avispa roja del papel (Polistes canadensis), “cáustica y ardiente, con un regusto final característicamente amargo. Como verter un vaso de ácido clorhídrico en un corte hecho con un papel”.

Según Schmidt, hay tres himenópteros (cuatro, según otras versiones) que alcanzan el nivel 4, el más alto de su índice: las avispas del papel del género Synoeca, la avispa cazatarántulas (un avispón del género Pepsis) y, sobre todo, la hormiga bala o isula (Paraponera clavata), un bicho de tres centímetros que alcanza un 4+ y cuya picadura el entomólogo describe así: “dolor puro, intenso, brillante. Como caminar sobre carbones encendidos con un clavo oxidado de ocho centímetros hincado en el talón”.

Una hormiga bala (Paraponera clavata). Imagen de Wikipedia.

Una hormiga bala (Paraponera clavata). Imagen de Wikipedia.

Pero cuidado, leerán por ahí que la de la hormiga bala es la picadura de insecto más dolorosa del mundo, o incluso que es el peor dolor posible. No creo que Schmidt haya afirmado jamás tal cosa: su índice solo incluye himenópteros, dejando fuera otros insectos (aquí he hablado de la mosca negra, que en diferido hace bastante más pupa que una avispa), otros bichos no insectos (como arañas o escorpiones), otros animales no bichos (por ejemplo, serpientes) y, por supuesto, toda clase de dolores de otro tipo.

Pero vamos al grano. Gracias al trabajo de Schmidt y de otros entomólogos no tan mediáticos (y a la película Ant-Man, donde la mencionaban), la gigantesca hormiga bala ha sido elevada al trono del dolor supremo. Conocida por diferentes nombres en los distintos países donde habita, en las selvas tropicales de Centro y Suramérica, el apelativo de “bala” le viene de alguien que comparó el dolor de su picadura al de un disparo. Lo cual me hace compadecerme del pobre desgraciado al que le haya tocado en suerte recibir un balazo y ser picado por este bicho. Peor aún, el nombre de hormiga 24 horas que se le otorga en algún país no se debe a que atienda también por las noches, sino a que el sufrimiento extremo provocado por su aguijonazo puede prolongarse durante un día entero.

Y así llegamos al vídeo de Coyote Peterson. Si quieren saltarse los trozos aburridos, en los primeros tres minutos este naturalista con ciertas maneras de vendedor de Galería del Coleccionista nos ofrece flashbacks de sus anteriores picaduras. Luego emprende una búsqueda por la selva costarricense en pos de la hormiga bala, hasta que hacia el minuto 12 llegamos a la parte más jugosa.

Peterson no es el único ni el primero que ha decidido someterse voluntariamente a esta tortura. Les explico: la tribu Sateré-Mawé, en la Amazonia brasileña, practica un cruel rito de paso a la edad adulta consistente en obligar a los niños a que se calcen una especie de manoplas tejidas en las que se inmovilizan hasta 300 hormigas bala, previamente anestesiadas con un brebaje. Cuando las hormigas se despiertan, furiosas por encontrarse presas de la cintura en la urdimbre del guante, comienzan a lanzar aguijonazos. Entonces el niño debe ponerse las manoplas y aguantarlas en sus manos durante diez larguísimos minutos. Y lo peor, no será considerado un verdadero hombre hasta que sufra este ritual un total de 20 veces.

Que se sepa, nadie hasta ahora ha promovido una campaña en contra de esta brutalidad contra la infancia. Y el ritual parece legítimo: he comprobado que se describe en artículos académicos como este, este y este. Pero naturalmente, esto da ocasión para asegurar éxito de audiencia a programas como este del dúo australiano Hamish & Andy, en el que uno de ellos (el “menos hombre” de los dos, a juicio del jefe de la tribu) acepta pasar por la tortura de los guantes.

Claro que no se puede reprochar a Hamish el resistir las manoplas durante solo unos segundos. Pero comparen su aguante con el de este miembro de los Sateré-Mawé que se somete por primera vez a su rito de paso, según filmó National Geographic:

También sorprende el estoicismo de este Frank de la Jungla británico, el naturalista televisivo Steve Backshall:

Pero además de dar ocasión a los Sateré-Mawé para aparecer en los documentales a costa de otro blanquito más que quiere hacerse el machote, la hormiga bala puede ser un fructífero recurso para la ciencia, como ocurre con otros venenos. La poneratoxina, el ingrediente principal del veneno de este insecto, es un potente compuesto neurotóxico paralizante descrito por primera vez en 1990.

Desde el punto de vista biológico es sorprendente cómo un simple péptido (o probablemente varios, según se ha descubierto este año) de solo 25 aminoácidos puede provocar tal caos en el sistema nervioso interfiriendo en las sinapsis neuronales y las uniones neuromusculares. Curiosamente, este último efecto se revertía en un experimento utilizando otra toxina mítica, la tetrodotoxina, la conocida como “toxina zombi” del pez globo.

Actualmente los científicos estudian la ponerotoxina como un posible insecticida biológico, utilizándola para armar a un virus que infecta a los insectos. Aunque como ya imaginarán, aún deberá recorrerse un largo camino para demostrar que esta estrategia es segura y no causa un estropicio para otras especies o el ser humano. También se ha tanteado su uso como posible analgésico.

Les dejo con este último vídeo, en el que la bióloga Corrie Moreau, del Museo Field de Historia Natural de Chicago, ordeña una hormiga bala para extraerle el veneno.

Cuidado con el radón, el monstruo que vive en el sótano

Como en los cuentos de Lovecraft, la amenaza llega desde el submundo. Si usted vive en la franja occidental de la Península que desciende desde Galicia hasta el Sistema Central, esto le interesa. Sepa que tal vez se encuentre en una zona de alta exposición al radón, un gas radiactivo que aparece en el ambiente durante la desintegración del uranio-238 atrapado en el suelo y en las rocas, y que está presente de forma natural en pequeñísima proporción en el aire que respiramos.

Con el radón sucede como con los virus: la percepción pública tiende a desplazarse fácilmente del cero al infinito sin término medio. La mayoría de la gente no conoce el problema de este gas, pero a veces ocurre que quienes se enteran de ello pasan de inmediato al extremo del pánico.

Lo cierto es que el radón es un problema de salud pública reconocido por la Organización Mundial de la Salud, que mantiene un proyecto internacional al respecto. Pero como recordaba el pasado 7 de noviembre (Día Europeo del Radón) el experto del Ilustre Colegio Oficial de Geólogos (ICOG) Luis S. Quindós Poncela, que dirige el Grupo Radón en la Cátedra de Física Médica de la Universidad de Cantabria, lo prioritario es presentar el problema a los poderes públicos y a los ciudadanos para facilitar la información primero, y la actuación después.

El problema con el radón no es que estemos potencialmente expuestos a una fuente de radiación externa, como cuando nos hacemos una radiografía, sino que estamos potencialmente expuestos a contaminación radiactiva: cuando respiramos, introducimos el radón en nuestros pulmones, y así llevamos la fuente de radiación con nosotros. Y si bien el propio gas se desintegra en unos propios días, al hacerlo origina otros compuestos también radiactivos que nos someten a una exposición más prolongada. Esta radiación sostenida puede provocar mutaciones en el ADN cuya consecuencia más fatal es el cáncer.

El radón se filtra al aire desde el suelo, por lo que el riesgo es mayor cuanto más permeable es el terreno bajo nuestros pies. Según Quindós Poncela, las arcillas contienen una concentración de uranio apreciable, pero “su elevada impermeabilidad hace que la cantidad de radón que alcanza la superficie sea muy pequeña”. En cambio el granito es más poroso y suele formar paisajes muy rotos, como ocurre en la Sierra de Guadarrama, y es en este tipo de suelos donde “el radón se desplaza más fácilmente y puede alcanzar la superficie del suelo en mayor proporción”, añade el experto.

Vías de entrada del radón en una casa. Imagen de la Universidad de Cantabria.

Vías de entrada del radón en una casa. Imagen de la Universidad de Cantabria.

Dado que el radón surge desde lo profundo, las zonas de mayor riesgo en las viviendas son los sótanos y plantas bajas. Suele decirse que a partir del segundo piso ya no existe riesgo, pero no siempre es así: Quindós Poncela advierte de que el suelo no es la única fuente del gas. Los materiales de construcción, si se han extraído de una zona con presencia de uranio, también pueden desprender radón. Además el gas se disuelve en el agua, lo que añade otro factor de riesgo en viviendas que reciban el suministro de un pozo.

Curiosamente, la eficiencia energética de las viviendas actuales es un factor que juega en contra de la seguridad contra el radón. Según Quindós Poncela, la construcción de casas cada vez más herméticas no favorece la eliminación del gas: “Mientras que una vivienda antigua renueva el aire de su interior unas tres veces por hora, una moderna necesita dos horas para llevar a cabo dicha renovación. Este hecho favorece la presencia y acumulación de radón en el interior de las casas”, dice.

En los años 90 se emprendió una campaña de medición de radón en viviendas en toda España, gracias a la cual hoy tenemos el mapa de riesgo publicado por el Consejo de Seguridad Nuclear y que pego a continuación. Pero para Quindós Poncela, las 9.000 mediciones tomadas todavía son insuficientes. Y no solo hace falta una mayor vigilancia: el ICOG reclama a las autoridades “que se apliquen cuanto antes medidas constructivas frente al radón (diseño de cimentaciones, ventilación pasiva, análisis de materiales de construcción, etc.), incluyéndolas en el Código Técnico de la Edificación, y mejorando además la definición de las zonas de riesgo en nuestro país”.

Mapa de riesgo del radón en España. Imagen del Consejo de Seguridad Nuclear.

Mapa de riesgo del radón en España. Imagen del Consejo de Seguridad Nuclear.

En cuanto a las zonas de riesgo, un caso particular estudiado por el Grupo Radón de Quindós Poncela es el de Torrelodones, el pueblo de la sierra madrileña donde vivo, y donde el granito aflora del suelo en cada recodo del paisaje.

Las medidas tomadas en Torrelodones muestran una amplia variación de los niveles de radón, pero en casi todos los casos se mantienen bastante por debajo de los 200 becquerelios por metro cúbico (Bq/m³). En este rango, los expertos recomiendan simplemente “incrementar la ventilación natural de la vivienda para conseguir concentraciones tan bajas como sea posible”.

Solo en una ubicación la medida llega a los 266 Bq/m³, y es en la zona de Colonia Varela; si lo conocen, a la espalda del centro comercial Espacio Torrelodones. Pero incluso en este lugar no hay motivo para la alarma: por debajo de 400 Bq/m³ no se considera necesario aplicar medidas de remedio, sino solo aumentar la ventilación, especialmente en sótanos y plantas a ras de suelo.

Es de esperar que la insistencia de los expertos y la divulgación del problema del radón facilite una mayor vigilancia y una ampliación de las mediciones. Pero si viven en una zona propensa a este riesgo y quieren quedarse más tranquilos, ustedes mismos pueden medir el nivel de radón en su casa: la web del Grupo Radón ofrece un kit, con dos detectores y sus instrucciones, por 80 euros más IVA y gastos de envío.

En Bulgaria sacuden la cabeza para asentir, y otros 98 datos sobre países

Créanme, si sienten alguna curiosidad por el mundo que nos rodea y comparten la adicción por el viaje, les merece la pena emplear 15 minutos y pico de su precioso tiempo dejando que este vídeo les presente 98 datos curiosos de otros tantos países (el resto llegará en una segunda entrega). Es un trabajo de Wendover Productions, al parecer una pequeña productora personal que hace un magnífico trabajo mostrándonos cómo funciona el mundo. Y aún mejor, con subtítulos en castellano.

De entre todos los datos presentados, hay uno que me ha llamado especialmente la atención, y es el que menciono en el título: según el vídeo, en Bulgaria mueven la cabeza de lado a lado para decir “sí” y de arriba abajo para decir “no”, justo al contrario de lo habitual por aquí. Confieso que jamás lo había oído, y eso que viajé a Bulgaria en una ocasión hace ya más de 20 años. Nadie me lo explicó, no noté nada raro y lógicamente tampoco se me ocurrió preguntar si allí los movimientos de cabeza se interpretaban igual que en mi país.

Imagen de Giphy.

Imagen de Giphy.

Pero una búsqueda en internet parece confirmarme que es cierto, a falta de preguntar a una amiga búlgara a la que veré esta semana. Según parece, es algo más sutil: mover la cabeza de lado a lado en efecto se utiliza para asentir, pero la negación es más bien un levantamiento de la cabeza que suele ir acompañado por otro de cejas y un rodar de ojos.

La pregunta podría ser por qué en Bulgaria lo hacen al revés que los demás, pero la verdadera pregunta es por qué distintas culturas coincidimos en esos gestos de asentir y negar sin habernos puesto de acuerdo.

En cuanto a lo primero, siempre hay una leyenda a mano para explicar este tipo de cosas: en tiempos del Imperio Otomano, los búlgaros revirtieron el significado de los movimientos de cabeza para confundir al invasor; lo cual, si fuera cierto, sería probablemente la más ineficaz rebelión pacífica de la historia.

Otra versión sugiere que, cuando los turcos apoyaban sus cimitarras en el cuello de los búlgaros para obligarles a confesar su cristianismo, estos movían la cabeza de arriba abajo para que la hoja les rebanara el cuello, y que aquello perduró como un gesto para decir no. Ya, ya, nada de esto tiene mucho sentido excepto para demonizar a los turcos, pero ¿qué país no inventa leyendas para afear a sus vecinos?

La pregunta verdaderamente profunda es la segunda. ¿Tiene algo de natural asociar ciertos movimientos de cabeza a un significado concreto?

Estas grandes pequeñas preguntas no pasaron inadvertidas a Darwin, que dedicó todo un libro a La expresión de las emociones en el hombre y los animales (1872). En este volumen, el padre de la evolución biológica contaba que en 1867 había hecho circular un formulario con una serie de preguntas entre diversos corresponsales, sobre todo misioneros en lugares remotos del planeta. Las preguntas indagaban sobre la forma de expresar las emociones en distintas culturas; por ejemplo, “¿se mueve la cabeza verticalmente en afirmación, y lateralmente en negación?”.

Darwin repasaba detalladamente las respuestas, que se volcaban en su mayoría hacia el uso de los mismos signos de cabeza en culturas muy diferentes. De ello concluía que estos gestos “probablemente tuvieron un comienzo natural”. Y lanzaba esta hipótesis:

Hasta cierto punto, estos signos son expresiones de nuestros sentimientos, ya que damos un movimiento vertical de aprobación con una sonrisa a nuestros niños cuando aprobamos su conducta, y sacudimos la cabeza lateralmente frunciendo el ceño cuando desaprobamos. Con los bebés, el primer acto de negación consiste en rehusar la comida; y repetidamente noté con mis propios bebés que lo hacían retirando la cabeza lateralmente del pecho, o de cualquier cosa ofrecida a ellos en una cuchara. Al aceptar la comida y llevársela a la boca, inclinan la cabeza hacia delante.

Pero no se lo pierdan: también hay al menos un estudio que analiza el caso particular de Bulgaria. En 2012 la psicóloga Elena Andonova, de la Nueva Universidad Búlgara de Sofía, y su colega Holly Taylor, de la Universidad Tufts en EEUU, decidieron investigar si hay alguna diferencia entre estadounidenses y búlgaros a la hora de traducir en sentimientos positivos o negativos el movimiento lateral o vertical de estímulos visuales (puntos luminosos) que les obligaba a mover la cabeza.

Según describían las dos investigadoras en la revista Cognitive Processing, sí encontraron una diferencia, pero no exactamente la que esperaban: los voluntarios búlgaros asociaban sentimientos positivos al movimiento lento de los puntos de colores, ya fuera vertical o lateral, mientras que en los estadounidenses el movimiento rápido resultaba más agradable. En resumen, no era la dirección de la cabeza, sino la velocidad, lo que establecía una distinción entre búlgaros y norteamericanos.

Curiosamente, a los estadounidenses el movimiento vertical de los puntos y la cabeza sí les hacía sentirse mejor, lo que concuerda con el sentido afirmativo del gesto en la cultura occidental; en cambio, esto no ocurría con el movimiento lateral en los búlgaros. Las psicólogas aportaban una hipótesis muy cabal:

Una posible explicación puede ser que los búlgaros tienen más exposición a la convención alternativa (mover la cabeza arriba y abajo para decir sí) a través de la cultura extranjera en los medios, mientras que los participantes de EEUU probablemente tienen menos familiaridad con culturas que expresan respuestas positivas mediante un movimiento lateral de cabeza.

Pero como escribían Andonova y Taylor, el suyo era un estudio pionero que debería tener continuidad en futuras investigaciones. Como mínimo, aunque sea para no seguir echando la culpa a los turcos.

Y el autor del artículo de ciencia más comentado de 2016 es… Barack Obama

El Almendro vuelve a casa por Navidad, y los balances del año comienzan a florecer en los medios como… como flores. La compañía Altmetric, que mide la repercusión de los estudios científicos y académicos en internet, ha publicado su Top 100 de 2016. Y la novedad, quizá no la sorpresa, es que el número uno, el artículo más comentado del año, se publicó el 2 de agosto (11 de julio en internet) en la revista The Journal of the American Medical Association (JAMA) y viene firmado por un solo autor, un tal Barack Obama.

Barack Obama. Imagen de Wikipedia.

Barack Obama. Imagen de Wikipedia.

Hasta este momento, el artículo ha aparecido en 315 noticias, 45 entradas de blogs, 8.943 tuits y 201 entradas de Facebook, entre otros medios y redes. A todos ellos hay que añadir uno más, este que están ustedes leyendo: 20 Minutos está en la lista de los medios recogidos por Altmetric. Y seguramente la noticia de que es el artículo de ciencia más comentado del año le dará a su vez un nuevo empujón.

Obviamente el artículo de Obama no es científico, sino político. Se titula United States Health Care Reform: Progress to Date and Next Steps (Reforma sanitaria de EEUU: progreso hasta la fecha y próximos pasos) y analiza lo que valora como un “cambio positivo” en el que ha sido uno de los grandes objetivos de su mandato, recomendando prioridades para el próximo gobierno; que, por entonces, en julio, ni él ni nadie podía imaginar que estaría presidido por un malo de peli mala como Donald Trump.

Pero lo que quiero comentar aquí no es la reforma del sistema sanitario en EEUU; no es el contenido, sino el continente. El artículo de Obama es una típica pieza de análisis y opinión en una revista científica, con su estructura canónica, su declaración de conflictos de intereses, sus 68 referencias bien citadas y enumeradas, su información sobre la identidad, titulación y afiliación del autor (Barack Obama, JD [doctor en leyes], presidente de Estados Unidos, The White House, 1600 Pennsylvania Ave NW, Washington, DC 20500), y su correo electrónico de contacto, que naturalmente no es el suyo propio sino el de prensa de la Casa Blanca.

Y siendo obvio que Obama no se lo ha guisado y comido solito, sino que le ha ayudado un equipo de expertos convenientemente citados en los agradecimientos, a lo que voy con todo esto es, y perdónenme el grito en mayúsculas:

¿IMAGINAN ALGO PARECIDO AQUÍ?

Por lo demás, la lista de los diez estudios y artículos científicos más comentados incluye algunas de las historias más importantes del año en este campo y que también han tenido cabida en este blog, como el descubrimiento de las ondas gravitacionales, la relación entre zika y microcefalia, el posible Planeta Nueve del Sistema Solar, la polémica sobre el azúcar y las grasas, o el nuevo atlas mundial de la contaminación lumínica.

Hay un dato que resulta curioso. La lista que sigue muestra el número de estudios del Top 100 de Altmetric en los que participan instituciones de cada país. He seleccionado los 20 países más potentes en ciencia por número de publicaciones según el ránking de SCImago que ya comenté aquí:

  1. Estados Unidos: 75
  2. China: 5
  3. Reino Unido: 33
  4. Alemania: 14
  5. Japón: 5
  6. Francia: 8
  7. Canadá: 6
  8. Italia: 5
  9. India: 3
  10. España: 4
  11. Australia: 12
  12. Corea del Sur: 2
  13. Rusia: 1
  14. Holanda: 5
  15. Brasil: 4
  16. Suiza: 6
  17. Taiwán: 1
  18. Suecia: 3
  19. Polonia: 4
  20. Turquía: 0

No olvidemos, el Top 100 de Altmetric no dice nada de la calidad de los estudios o de su relevancia para la ciencia, sino solo de cuánto se han comentado (con enlaces directos) en medios online, blogs y redes sociales; es un índice mediático, no científico. Los responsables de este Top 100 son (somos) los periodistas de ciencia, científicos presentes en blogs o redes y el público con interés en el campo.

La conclusión es que la ciencia anglosajona es infinitamente más mediática; su maquinaria de divulgación es la más potente, además de contar con la ventaja de su idioma, lingua franca de la ciencia. Destacan EEUU (primera potencia mundial en ciencia) con 75 estudios, Reino Unido con 33 y Australia con 12, además de Alemania con 14. China, segunda actualmente en número de publicaciones, solo participa en cinco estudios, uno más que España.

Casi todos los países de la lista participan en el estudio de descubrimiento de las ondas gravitacionales publicado en Physical Review Letters, un trabajo monstruo con la colaboración de más de 1.000 científicos de 133 instituciones. España colaboró a través del equipo de la Universitat de les Illes Balears.

Los otros tres estudios con participación española son: el hallazgo de Proxima Centauri b, el exoplaneta posiblemente habitable más cercano, en el sistema de Alfa Centauri, publicado en Nature; la revisión en Science que proponía denominar Antropoceno a la época geológica actual, en la que participaba el geólogo de la Universidad del País Vasco Alejandro Cearreta; y un estudio genético aparecido en Nature Communications que identificaba genes implicados en los rasgos del pelo de la cara y la cabeza en la población latinoamericana, con la participación del equipo del biólogo molecular de la Universidad de Oviedo Carlos López-Otín.

Ilustración de un posible paisaje en el exoplaneta Proxima Centauri b. Imagen de ESO/M. Kornmesser vía Wikipedia.

Ilustración de un posible paisaje en el exoplaneta Proxima Centauri b. Imagen de ESO/M. Kornmesser vía Wikipedia.

Pero sin duda el trabajo estrella de la ciencia española en este año que termina es el hallazgo de Proxima b, el exoplaneta más cercano a la Tierra jamás descubierto con posibilidades de contener agua líquida en su superficie, a solo 4,2 años luz. La investigación cuenta con la participación del Instituto de Astrofísica de Andalucía, pero además el principal responsable del estudio es catalán, Guillem Anglada-Escudé, de la Universidad Queen Mary de Londres.

Obviamente es más que probable que otros estudios del Top 100 de Altmetric cuenten con la participación de investigadores españoles trabajando en el extranjero; tenemos científicos de primer nivel, pero nos faltan centros de primer nivel que atraigan también a científicos extranjeros de primer nivel. Lo que cuenta a la hora de valorar la potencia científica de un país es la ubicación del centro en el que se ha gestado su trabajo, con independencia de que sus autores se llamen Pérez o Smith.

Gemínidas y cuadrántidas: más estrellas que en Belén, pero la luz las oculta

Para muchos, la lluvia de estrellas fugaces es algo tan ligado al verano como la playa, las sandalias y la sangría. Pero en realidad las perseidas, o lágrimas de San Lorenzo, no son la única ni la mayor lluvia de meteoros que podemos contemplar. Simplemente, en pleno agosto es más factible y agradable tumbarse al fresco de la noche junto a unas cervezas y a la persona que a uno le apetezca tener al lado. Sin embargo, en la época cercana a la Navidad tenemos otros dos fenómenos incluso más intensos. Si es que podemos llegar a verlos.

Del 7 al 17 de diciembre nos visita la lluvia de meteoros de las gemínidas, con su pico hoy día 14. Y con el cambio de año y hasta la noche de Reyes llegarán las cuadrántidas, con su máximo el día 3. Según me cuenta el físico italiano Fabio Falchi, “estas lluvias, debidas a partículas de polvo procedentes de dos pequeños asteroides –probablemente los núcleos de dos antiguos cometas–, están entre las más ricas, llegando a 120 meteoros por hora en su pico, con una media de dos estrellas fugaces por minuto”.

Lluvia de meteoros de las gemínidas. Imagen de Asim Patel / Wikipedia.

Lluvia de meteoros de las gemínidas. Imagen de Asim Patel / Wikipedia.

Pero el motivo por el que hoy traigo aquí a Falchi no es para que nos explique cómo se produce el fenómeno, sino por qué difícilmente vamos a lograr ver algo. Y no solo porque las nubes amenacen con ocultarnos la vista (que también), sino por una razón que queda aclarada en el nombre de la entidad a la que Falchi dedica el tiempo libre que le deja su trabajo como profesor, el Instituto de Ciencia y Tecnología de la Contaminación Lumínica de Italia (ISTIL).

Hoy las ciudades, al menos las de nuestro entorno, han conseguido dejar atrás una buena parte de aquel lastre que las convertía en insalubres y amontonadas jaulas de cemento. Las urbes actuales intentan abrir espacios a la naturaleza y atenuar su pulso frenético con más calles peatonales y zonas de esparcimiento. Pero como decía Willy Loman, el viajante de Arthur Miller, hay que partirse el cuello para ver una estrella. Desde el valle donde vivo no se ve Madrid, pero por las noches es fácil saber dónde está: no hay más que buscar la mancha luminosa que rebosa sobre la línea de la colina.

Falchi lleva años dedicado al estudio de la contaminación lumínica, un problema cada vez más acuciante que no solo dificulta el trabajo astronómico, sino que nos impide disfrutar de uno de los espectáculos naturales más hermosos. Fruto de su esfuerzo, en colaboración con otros investigadores, es el mayor y más completo atlas mundial del brillo del cielo nocturno, publicado el pasado junio en la revista Science Advances y que revelaba algunos datos descorazonadores, como que un tercio de la humanidad –un 60% de los europeos– ya no puede ver la senda de la Vía Láctea en el cielo, el Camino de Santiago.

Y lo que es peor, como conté hace unos meses en un reportaje, es que el problema va a peor: los expertos como Falchi advierten de que el cambio de las luminarias clásicas por luces LED blancas por motivos de consumo energético aumenta aún más la polución lumínica. Los astrónomos aconsejan en su lugar el empleo de luces LED de color ámbar.

Según Falchi, hay varias razones que nos impiden disfrutar de las lluvias de meteoros en todo su esplendor. Por ejemplo, este año las gemínidas nos coinciden con una luna llena, algo que no ocurrirá en las cuadrántidas. Pero sobre todo, dice, “el mayor enemigo de las estrellas fugaces es la contaminación lumínica, presente todas las noches, todo el año”. “En las áreas contaminadas por la luz puedes perdértelas todas, o tener que esperar una hora para ver una sola” en lugar de docenas o cientos que podríamos ver bajo un cielo prístino. Y esto afecta a la mayoría de los habitantes de Europa.

Para quien tenga la posibilidad de desplazarse, Falchi y sus colaboradores del ISTIL, junto con la Administración Atmosférica y Oceánica y el Servicio de Parques Nacionales de EEUU, el centro alemán de geociencias GFZ y la Universidad israelí de Haifa, han preparado un mapa mundial interactivo en el podemos localizar las regiones cercanas de cielos más prístinos. “Busca las regiones de color negro, gris o azul, y ahí tendrás un cielo oscuro”, dice.

Y ya les adelanto la conclusión: España es uno de los países con mayor contaminación lumínica del mundo, pero donde el desigual reparto de la población permite que aún se abran algunos cielos relativamente limpios en ciertas áreas de Guadalajara-Cuenca-Teruel y Toledo-Ciudad Real-Extremadura. Y por supuesto, en zonas de Canarias: La Palma goza del cielo más oscuro de Europa occidental en el Roque de los Muchachos.

Contaminación lumínica en España. Las regiones más oscuras corresponden a cielos más limpios. Imagen del Atlas de Contaminación Lumínica de Falchi et al, tomada de http://cires.colorado.edu/artificial-sky.

Contaminación lumínica en España. Las regiones más oscuras corresponden a cielos más limpios. Imagen del Atlas de Contaminación Lumínica de Falchi et al, tomada de http://cires.colorado.edu/artificial-sky.

Falchi ha publicado también para el gran público una versión de divulgación del atlas (en inglés), The World Atlas of Light Pollution, disponible en Amazon; un buen regalo navideño para los aficionados a la astronomía. Dado que tanto él como sus colaboradores italianos han elaborado el atlas de forma desinteresada y sin financiación alguna, Falchi confía en que los fondos recaudados con la venta del libro le permitan proseguir con sus investigaciones tan necesarias sobre la contaminación lumínica.

“Seguir sin agencia espacial es perder cuatro años más”

Vía libre a ExoMars 2020, la segunda fase del gran proyecto europeo de exploración marciana. Esta fue la decisión tomada la semana pasada por el Consejo Ministerial de la Agencia Europea del Espacio (ESA), entidad participada por 22 países (y NO dependiente de la UE), entre ellos este en el que estoy ahora sentado.

Ignacio Arruego, ingeniero del INTA, junto a un modelo de Schiaparelli. Imagen de I. A.

Ignacio Arruego, ingeniero del INTA, junto a un modelo de Schiaparelli. Imagen de I. A.

Les pongo en antecedentes: en marzo de este año se lanzó la primera fase de ExoMars, un proyecto nacido de la colaboración entre la ESA y Roscosmos, la agencia espacial rusa. Este primer volumen constaba a su vez de dos fascículos: primero, la Trace Gas Orbiter (Orbitador de Gases Traza o TGO), un satélite destinado a estudiar los gases raros de la atmósfera marciana con especial atención al metano, posible signo de vida.

Segundo, Schiaparelli, un platillo volante de un par de metros que debía posarse en el polvo de Marte para catar el ambiente, pero que sobre todo debía servir de ensayo general para la segunda fase. Previsto para 2020, el segundo volumen de ExoMars pretende poner un vehículo rodante o rover en el suelo marciano.

Además de su carácter científico y tecnológico, la misión ExoMars tiene bastante de revancha histórica; porque hasta ahora el nuevo mundo marciano tiene un dueño exclusivo, Estados Unidos. Como ya he repasado aquí y en otros medios, las misiones de aterrizaje en Marte han tenido una tasa de éxito inusualmente baja en comparación con los proyectos a otros destinos, como la Luna o Venus, pero este premio de lotería no ha estado muy repartido: mientras la NASA ha dado en el clavo en la gran mayoría de sus intentos, Rusia y Europa han fracasado. La primera solo logró 14,5 segundos de transmisión con su sonda Mars 3 hace 45 años. Por su parte, Europa perdió en 2003 su Beagle 2, y el pasado octubre Schiaparelli se estampó contra su objetivo.

Uno de los afectados directamente por este reciente desastre es Ignacio Arruego, ingeniero del Instituto Nacional de Técnica Aeroespacial (INTA) responsable del equipo que desarrolló el Sensor de Irradiancia Solar (SIS). Este aparato, que debía medir la transparencia de la atmósfera de Marte (la luz del sol que llega a su superficie), formaba parte del instrumento principal de Schiaparelli, el DREAMS (Dust Characterisation, Risk Assessment, and Environment Analyser on the Martian Surface). El equipo del INTA participa también de forma destacada en la instrumentación del rover de ExoMars 2020.

Portada de 'El medallón de Santiago', novela de Ignacio Arruego.

Portada de ‘El medallón de Santiago’, novela de Ignacio Arruego.

Y por cierto, aprovecho la ocasión para contarles que, entre proyecto y proyecto, Arruego también encuentra algún rato para escribir. Su novela de debut, El medallón de Santiago, es una intriga con trasfondo histórico muy viajero que cuenta la investigación de sus dos protagonistas en busca de un antiguo y misterioso medallón que perteneció al apóstol Santiago.

Arruego me dice que está satisfecho con la decisión del Consejo Ministerial de la ESA de mantener la financiación de ExoMars. Pero no tanto con las palabras del ministro Luis de Guindos, que presidió la reunión debutando en este campo, tras asumir en el nuevo gobierno las competencias del sector espacial que antes recaían en Industria. Una carencia clásica de España es la falta de una agencia espacial, algo que tienen las principales potencias con actividades en este terreno. Según Arruego, las declaraciones de Guindos tras la reunión afirmando que España no necesita una agencia espacial han sentado muy mal en el sector. Esto es lo que me ha contado:

¿Por qué Guindos no quiere una agencia española del espacio?

Es gracioso, porque en cambio sí reconocía que hace falta coordinación entre todos los actores espaciales en España. Pues eso es precisamente, entre otras muchas cosas, lo que haría una agencia. Yo creo que siguen pensando que supondría un coste, y no se dan cuenta de que realmente existen ya todos los actores necesarios en España para hacer una agencia de verdad, ¡y por tanto una buena coordinación podría incluso disminuir gasto! Debería ser no un mero órgano gestor, sino una agencia con capacidad técnica y tecnológica, que defina y desarrolle programas propios tirando de la industria nacional, y estrategias internacionales y especialmente en la ESA; que aúne ingeniería de sistemas, I+D tecnológico y científico, la gestión económica, las relaciones con la ESA… En fin, una Agencia con mayúsculas.

Una pena. Lo considero otra oportunidad perdida por la falta de visión de nuestros políticos, sin duda mal asesorados. Otros cuatro años perdidos para que España termine de situarse en el mapa espacial internacional.

¿Hay nuevos datos sobre qué le ocurrió a Schiaparelli?

Como ya sabrás, se produjeron fundamentalmente dos eventos que provocaron la colisión: la suelta prematura del paracaídas y el corto encendido de los retrocohetes. Se ha especulado mucho sobre un fallo del altímetro radar, pero no parece estar allí el problema. Analizada la telemetría de la Unidad de Medida Inercial (IMU) que mide las aceleraciones de la nave durante el descenso, se observa que hay un breve lapso de tiempo (inferior a un segundo) en el que una de las medidas está saturada. Dado que el ordenador va calculando la orientación de la nave en base a las medidas acumuladas de esta IMU, durante el tiempo que ésta se satura no dispone de una información fidedigna. Ese dato de la IMU te permite saber cómo está orientada la nave respecto al suelo, y el radar te da la distancia al mismo según avanza la nave. Al estar equivocado el dato de la orientación, la nave llegó a obtener un valor que indicaba que la distancia real (en vertical) al suelo era negativa. Es decir, que había aterrizado. Y por eso cortó los retrocohetes.

Otra cosa que hizo, y esto es curioso, fue encender DREAMS, la estación meteorológica que transportaba y en la que participaba el INTA. DREAMS no debía encenderse hasta después del aterrizaje, pero como el ordenador pensó que había aterrizado aún estando a unos tres kilómetros de altura, nos encendió. Hay unos 40 segundos de telemetría relativa al estado de DREAMS, que era cien por cien nominal. Podemos decir que hemos llegado a Marte, pero poco rato.

¿Se ha averiguado algo sobre cuál fue la causa de ese error de percepción de Schiaparelli?

Aún se desconoce, y dudo que llegue a conocerse con un 100% de seguridad. La nave sufría unas aceleraciones digamos que laterales mayores de lo esperado pero, ¿por qué? ¿Rachas de viento fuerte? ¿Un mal despliegue del paracaídas? Eso no sé si llegaremos a saberlo con seguridad.

ExoMars 2020 sigue adelante, pero ¿en qué afectará el fracaso de Schiaparelli desde el punto de vista técnico?

La ESA trata de ser positiva en su análisis del resultado de ExoMars 2016. La realidad es que TGO está funcionando de momento según lo esperado, lo cual es un gran éxito. Y Schiaparelli, por mucho que suene a excusa, es cierto que era un módulo de demostración con el objetivo de permitirnos aprender a aterrizar en Marte. De alguna manera ha cumplido su misión en ese sentido, pues como ves se ha aprendido mucho de la telemetría enviada durante el descenso. Se reforzarán los ensayos a los elementos críticos y se revisarán algunas secuencias de tomas de decisiones. Se ha aprendido, sin duda.

¿Y este aprendizaje ofrecerá más garantías de éxito a la próxima fase?

Sí, en 2020 deberíamos ser capaces de aterrizar con más garantías. No es trivial, aún así. No sólo porque nunca lo es (el conocimiento de la atmósfera de Marte sigue siendo muy incierto), sino porque la nueva misión es bastante más pesada (algo así como el triple si no recuerdo mal), requiere el uso de dos paracaídas (uno hipersónico y otro subsónico), etcétera. Hay diferencias. Pero hay que ser optimista y sobre todo trabajar duro en los elementos críticos y en sus ensayos. Creo que irá bien.

¿Cuál es tu predicción sobre el futuro de las misiones tripuladas?

Como sabes, hay dos grandes corrientes de pensamiento en torno a cómo ir a Marte. Una pasa por ir llevando todo lo que nos hace falta para volver. Empezando por el combustible para el despegue de vuelta. Se barajan naves muy grandes, a menudo con ensamblajes en órbita porque la capacidad de despegue de la Tierra no daría para lanzarlas de una vez.

La otra aproximación pasa por emplear naves más pequeñas, tripulaciones muy reducidas, y hacer uso intensivo de ciertos recursos existentes en Marte. Por ejemplo, es posible generar el combustible allí para un despegue desde Marte, llevando sólo una pequeñísima parte de sus componentes (hidrógeno, en concreto), y obteniendo carbono y oxígeno de la atmósfera de Marte, rica en CO2.

Yo creo que hasta la fecha siempre se ha hablado más de la primera aproximación. Yo a día de hoy soy más partidario de la segunda. Creo que es la más realista para un primer viaje tripulado, y que terminará imponiéndose. Probablemente la tecnología permita tenerla lista en unos 15 años desde que se decida ponerse con ello. Pero nadie se ha puesto seriamente aún. Existe la Iniciativa Mars Direct desde hace la tira, pero nunca ha sido el enfoque adoptado por las grandes agencias, ni parece que lo sea ahora por gente como Elon Musk. Creo que si hay un cambio de enfoque veremos humanos en Marte bastante antes de la mitad del siglo. Si no lo hay, ya veremos.

Cassini cose su órbita a los anillos de Saturno

El 15 de septiembre de 2017, la sonda de la NASA Cassini se zambullirá a muerte en la espesura gaseosa de Saturno. En sus diez veinte años de vida este aparato ha completado un periplo por el Sistema Solar que está ofreciendo a los científicos un asiento de primera fila en el planeta de los anillos. Su sonda acompañante Huygens, de la Agencia Europea del Espacio (ESA), se posó en 2005 en la luna Titán para enviar la foto más lejana jamás capturada por el ser humano desde la superficie de un mundo extraterrestre.

Pero antes de acabar espachurrado por la presión de Saturno, a Cassini aún le queda tarea. Los responsables de la misión están ejecutando una coreografía que les acercará como nunca antes a los anillos del planeta. A lo largo de este año han modificado la órbita de Cassini inclinándola respecto al ecuador y los anillos, para lograr que la sonda cruce este plano casi en vertical.

Desde el pasado 30 de noviembre y hasta el 22 de abril de 2017, Cassini recorrerá 20 órbitas casi lamiendo el borde externo del anillo F, el más exterior del sistema principal. Durante esta serie de vueltas, sus instrumentos probarán el polvo y el gas de la periferia del anillo, además de estudiar algunas de las lunas más desconocidas del planeta, como Pandora, Pan, Dafne y Atlas.

Los anillos de Saturno, nombrados alfabéticamente según su orden de descubrimiento. Imagen de NASA/JPL-Caltech/Space Science Institute.

Los anillos de Saturno, nombrados alfabéticamente según su orden de descubrimiento. Imagen de NASA/JPL-Caltech/Space Science Institute.

En los próximos meses, Cassini también podrá estudiar los anillos a contraluz del sol para estudiar irregularidades tales como impactos de asteroides, así como unas curiosas manchas con forma de hélice en el anillo A que revelan la probable presencia de diminutas nuevas lunas.

Una vez concluidas todas estas tareas pendientes, los ingenieros de Cassini tienen preparado un espectacular ale-hop para los últimos meses. El 22 de abril, finalizada la última de las órbitas rozando el anillo F, el paso de la sonda cerca de Titán modificará su trayectoria lo justo para que salte los anillos y se enhebre en el ojo de 2.400 kilómetros que separa a estos del planeta.

Como una aguja cosiendo los ojales de un botón, Cassini dará un total de 22 vueltas a través de esa estrecha brecha antes de precipitarse hacia Saturno y acabar aplastada por la presión de sus gases. Durante esa zambullida, aún tendrá tiempo de enviar datos sobre la composición de la atmósfera.

En gris, las órbitas de Cassini rozando el anillo F. En azul, las 22 órbitas previstas entre Saturno y sus anillos. La órbita final figura en color naranja. Imagen de NASA/JPL-Caltech.

En gris, las órbitas de Cassini rozando el anillo F. En azul, las 22 órbitas previstas entre Saturno y sus anillos. La órbita final figura en color naranja. Imagen de NASA/JPL-Caltech.

La NASA ya ha publicado las primeras imágenes enviadas por Cassini durante la primera de esas órbitas, por encima del polo norte de Saturno. En ellas se aprecia el famoso hexágono polar, un insólito dibujo formado por las nubes. Para hacerse una idea de las dimensiones, cada uno de los lados del hexágono es mayor que el diámetro de la Tierra.

El hexágono del polo norte de Saturno, fotografiado por la sonda Cassini. Cada una de las tomas corresponde a una longitud de onda diferente. Imagen de NASA/JPL-Caltech/Space Science Institute.

El hexágono del polo norte de Saturno, fotografiado por la sonda Cassini. Cada una de las tomas corresponde a una longitud de onda diferente. Imagen de NASA/JPL-Caltech/Space Science Institute.