Ciencias mixtas Ciencias mixtas

Los secretos de las ciencias para
los que también son de letras

Entradas etiquetadas como ‘solanina’

Las patatas contienen toxinas, nicotina y colesterol

Quien comience a leer estas líneas atraído por el chocante título posiblemente piense: a) que se trata de un gancho (lo que suele llamarse click-bait) con algún significado metafórico pero sin nada real detrás; b) que la afirmación del título se refiere a alguna clase de engendro transgénico creado por científicos malvados para enriquecerse a costa de envenenar a la población; o c) que se trata de alguna oscura venganza personal mía contra los productores de patatas, que algo me habrán hecho.

Pero no, no y no. Más detalles: a) Quien pase por este blog de vez en cuando sabrá que aquí solo se despacha ciencia rigurosa, salvo cuando se opina sobre un asunto opinable. b) Las patatas a las que se refiere el título son las de toda la vida, las que todos tenemos en la despensa; de hecho y como explicaré al final, hay un curioso caso que ilustra el delirio de los argumentos esgrimidos por los activistas antitransgénicos. c) No puedo demostrar que no es así, por lo que tendrán que confiar en mi palabra.

Las patatas podridas contienen solanina. Imagen de pixabay.

Las patatas podridas contienen solanina. Imagen de pixabay.

La historia que vengo a contar tiene un final no del todo feliz, sino que termina con una incómoda incertidumbre. Pero comencemos por el principio. Como ya expliqué recientemente a propósito del moho y la penicilina, esa idea de que nada en las especies comestibles puede ser malo para nosotros tiene tanto fundamento como la de que nada en las no comestibles puede ser bueno para nosotros; o sea, ninguno, dado que a las plantas no las ha colocado nadie en el mundo para servirnos como alimento. De hecho, si una planta tiene un propósito, es sobrevivir, es decir, evitar que la devoremos (y sin que pueda hablarse de un propósito, sí es el motor que impulsa la evolución de las especies).

Esta podría ser la razón de la existencia de ciertas toxinas en las plantas, a falta de una función metabólica conocida. Es el caso de los glucoalcaloides, un tipo de compuestos presentes en las plantas solanáceas, que entre otras muchas incluyen la patata, el tomate, la berenjena, el pimiento y el tabaco. Varios de los glucoalcaloides son tóxicos para muchas especies, por lo que se les supone una función protectora para la planta contra el apetito de quienes pretenden comérsela. Estas sustancias son una clase específica de los alcaloides, un grupo más amplio al que pertenecen compuestos tan conocidos como la morfina, la cocaína, la cafeína o la nicotina.

Y aquí aparece la primera curiosidad: la nicotina no solo está presente en el tabaco, sino también en otras solanáceas (y otras plantas, como por ejemplo el té). Ciertos estudios han analizado el contenido en nicotina de estos vegetales, encontrando que está presente en proporciones similares en tomates, patatas, pimientos o berenjenas, aunque lógicamente en cantidades cientos de miles de veces menores que en el tabaco. Según uno de estos estudios, la ingesta de nicotina en una dieta normal puede alcanzar los 2,25 microgramos al día, mientras que un solo cigarrillo aporta alrededor de un miligramo (1.000 microgramos).

Entre los glucoalcaloides se encuentran la solanina y la chaconina, dos toxinas presentes en muchas solanáceas, con la patata como ejemplo más típico y probablemente mejor estudiado. Estos compuestos se originan a partir del colesterol y…

Pero, un momento: ¿del colesterol? ¿En las plantas? ¿No habíamos quedado en que las plantas carecen por completo de esta grasa animal, precisamente porque es… una grasa animal?

A ello responden los bioquímicos de la Universidad Estatal de Ohio (EEUU) E. J. Behrman y Venkat Gopalan en su trabajo publicado en 2005: “El hecho es que el colesterol está muy extendido en el reino vegetal, aunque otros esteroles relacionados, como el β-sitosterol, generalmente aparecen en cantidades mayores”.

Lo cierto es que quienes nos dedicamos a escribir sobre estos temas solemos ventilar de un plumazo la cuestión afirmando que las plantas no contienen colesterol. Pero en realidad es una sobresimplificación, y como se encarga de recordarnos una revisión publicada en 2016, “la cantidad de colesterol fabricada por las plantas no es despreciable”. Según Behrman y Gopalan, el colesterol está presente tanto en las membranas celulares vegetales como en los lípidos de las hojas. Pero como en el caso de la nicotina, es minoritario con respecto a la fuente principal de esta grasa, el alimento animal: en las plantas alcanza unos 50 miligramos por kilo de grasa, mientras que en los animales es unas 100 veces mayor, de 5 gramos o más por kilo.

Pero eso sí, queda claro que el contenido en colesterol de los vegetales que comemos no es cero, aunque la regulación permita a los distribuidores de estos productos etiquetarlos como si lo fuera. Behrman y Gopalan resumían en una tabla el contenido medio en colesterol de varios aceites vegetales: el más bajo en esta grasa es, cómo no, el de oliva, con entre 0,5 y 2 miligramos por kilo, mientras que en el extremo contrario aparecen el aceite de maíz, con 55 mg/kg, o el de soja, con 29.

Pero hablábamos de la solanina y la chaconina. La presencia de estas toxinas en la patata no es ni mucho menos una novedad recién descubierta. De hecho, si alguna vez se han preguntado por qué sus abuelas retiraban los llamados ojos de la patata (los brotes), la razón es esta: esos puntos metabólicamente activos son lugares donde se producen solanina y chaconina en mayor medida. Los tallos y las hojas de la patata contienen también bastante toxina, por lo que en general no es una buena idea prepararse una infusión o una ensalada con estas partes.

En el tubérculo, la parte que nos comemos, la cantidad de solanina y chaconina es menor, pero ambas están presentes, sobre todo en la piel y en la zona superficial. Y pueden estarlo aún más, dado que la patata cruda está compuesta por células aún vivas. Esto es lo que ocurre cuando la patata envejece: es entonces cuando comienza a producir más toxina y puede convertirse en un alimento realmente peligroso, motivo por el cual se desaconseja vivamente consumir patatas cuando empiezan a volverse de color verde. Lo que envenena no es el verde, que corresponde a la inofensiva clorofila, pero la producción de este compuesto en el tubérculo se asocia también a la fabricación de la toxina. Por este motivo se recomienda conservar las patatas en un lugar oscuro, ya que la luz induce la producción de clorofila.

Patatas estropeadas (por su color verde), con alto contenido en solanina. Imagen de Rasbak / Wikipedia.

Patatas estropeadas (por su color verde), con alto contenido en solanina. Imagen de Rasbak / Wikipedia.

¿Y por qué la patata expuesta a la luz tiende a producir más toxina?, tal vez se pregunten. Posiblemente estemos ante otro de esos maravillosos mecanismos surgidos de la evolución: una patata que sobresale de la tierra, y que por tanto ve la luz, es un bocado apetitoso para cualquier animal. ¿Qué hace la patata entonces para evitar ser comida? Producir veneno. Así, la clorofila actúa como un sensor de luz para decirle a la patata que debe protegerse elaborando más toxina. Cuidado, las patatas golpeadas o dañadas también tienden a producir más solanina, lo que probablemente sea otro mecanismo de defensa contra los animales que desentierran los tubérculos.

Hay muchos casos descritos de envenenamiento por patatas. Históricamente se han asociado sobre todo a las hambrunas; cuando no había otra cosa que comer, se consumían las patatas pochas, lo que ocasionaba intoxicaciones e incluso muertes. Los síntomas digestivos pueden confundirse con una gastroenteritis bacteriana, pero además la toxina actúa sobre el sistema nervioso central interfiriendo con la comunicacion neuronal, por lo que puede causar alucinaciones, parálisis, convulsiones y otros trastornos neurológicos, incluso el coma.

Los casos más recientes descritos de intoxicaciones masivas por esta causa se dieron en colegios donde se utilizaron partidas de patatas viejas. En 1979, 78 niños de una escuela londinense y algunos monitores cayeron enfermos en lo que en un primer momento se pensó que era una intoxicación bacteriana, hasta que se identificó al culpable: un saco de patatas pochas. En 1983, otros 61 niños de un colegio en Canadá resultaron también intoxicados por solanina en las patatas. En ambos casos todos los enfermos se recuperaron; por suerte los envenenamientos por solanina ya no suelen ser letales, pero los expertos apuntan que posiblemente sean más frecuentes de lo que se cree, ya que en muchos casos pueden confundirse con la típica gastroenteritis cuando los efectos son leves y no hay síntomas neurológicos.

Patata con brotes. Imagen de Mathias Karlsson / Wikipedia.

Patata con brotes. Imagen de Mathias Karlsson / Wikipedia.

Obviamente, sería perfecto que pudiéramos comer patatas libres de solanina. Al fin y al cabo, con nosotros no la necesitan porque no van obtener ninguna ventaja de ella. ¿Podríamos obtener estas variedades? En algún caso ha sucedido justo lo contrario. En 1967 se lanzó al mercado en EEUU una nueva variedad de patata llamada lenape que era resistente al tizón o mildiu, una de las principales plagas de este cultivo. Sin embargo, tres años después tuvo que retirarse del mercado porque sus niveles de glucoalcaloides eran peligrosamente altos.

Lo esperpéntico del caso fue que posteriormente el caso de la patata lenape ha sido citado por activistas antitransgénicos para apoyar su oposición a la biotecnología agrícola. Lo cual es absolutamente ridículo, teniendo en cuenta que la lenape no fue obtenida por ingeniería genética (que aún no existía en 1967), sino por métodos tradicionales, cruzando una variedad comercial con otra silvestre peruana. Al parecer, en este caso la carga genética de ambas variantes se había sumado para producir una mayor dosis de la toxina.

Los resultados de los cruces naturales son impredecibles, algo que no ocurre con los cultivos transgénicos, donde se introducen (o se quitan) específicamente los genes deseados. De hecho, precisamente este mes un equipo de investigadores japoneses ha publicado la obtención de la primera patata completamente libre de solanina gracias a la eliminación de uno de los genes implicados en su síntesis por medio de la herramienta de edición genómica CRISPR/Cas9.

Claro que cabría pensar que esto no es realmente necesario, ya que podemos confiar en que las patatas en buen estado que comemos habitualmente no llevan cantidades de solanina que puedan provocarnos un envenenamiento agudo. Y es cierto. Pero ¿qué hay de los posibles efectos a largo plazo?

En tres palabras: no se sabe.

Comencé diciendo que el final de esta página iba a ser inquietante. En 2004, un artículo publicado por investigadores ucranianos y franceses se preguntaba: “¿Verdadera seguridad o falsa sensación de seguridad?”. “Los glucoalcaloides de la patata, sobre todo la solanina y la chaconina, son extremadamente tóxicos para humanos y animales, y este problema no debería seguir siendo ignorado, ya que podría convertirse en una seria amenaza para la salud”, escribían. En particular, los autores resaltaban que el límite máximo establecido de 200 mg/kg es seguro para evitar una intoxicación, pero que en cambio no se sabe si una exposición a largo plazo a bajos niveles de estas toxinas podría tener efectos genotóxicos (del tipo de los que provocan cáncer) o nocivos para los embriones en gestación.

Por qué no comemos el moho, si tiene penicilina (los errores de la quimiofobia)

Cuando al pan le crece moho, lo tiramos. No comemos pan mohoso porque, además de su aspecto francamente nauseabundo, sabemos que puede ser dañino para nosotros. Pero paradójicamente, el moho produce el fármaco más valioso de toda la historia de la medicina, el principal responsable de que vivamos muchos más años que nuestros tatarabuelos y de que nuestros hijos, en la inmensa mayoría de los casos, puedan llegar a adultos.

No, no es ninguno de los remedios de la medicina tradicional china, sino la penicilina; que, por otra parte, el médico nos receta en pastillas fabricadas industrialmente por una compañía farmacéutica, en lugar de prescribirnos que preparemos un bocadillo y esperemos seis meses para comérnoslo.

Pan mohoso. Imagen de Henry Mühlpfordt / Wikipedia.

Pan mohoso. Imagen de Henry Mühlpfordt / Wikipedia.

¿Cómo pueden entenderse todos estos sinsentidos? Es decir, si –como todo el mundo sabe– lo bueno y sano es lo natural, todo lo natural y nada más que lo natural, ¿cómo puede hacernos daño comer un organismo que produce algo tan beneficioso? ¿Deberíamos comernos el pan mohoso en lugar de tirarlo? ¿Penicilina gratis? ¿Y cómo puede ser natural, ya no digamos bueno, algo que se toma en pastillas, si –como todo el mundo sabe– las compañías farmacéuticas y sus sicarios, los médicos, viven de vendernos química para hacernos enfermar y que así consumamos más química?

No, no es una caricatura. En el planeta Tierra del siglo XXI hay infinidad de seres humanos que piensan de este modo. No hay más que encender el televisor en un canal al azar (no importa cuándo, todos estarán en el intermedio) para escuchar, en casi cualquier anuncio de productos de alimentación o incluso de cuidado personal, una invariable coletilla: “sin conservantes”; ignorando que los conservantes no estropean los alimentos ni los hacen tóxicos, sino que al contrario, los preservan en su estado óptimo y aumentan la seguridad alimentaria, por lo que los hacen más sanos. Y por lo que, como también conté aquí, una corriente entre los científicos de la alimentación está comenzando a oponerse a esta tonta moda. Pero cuando tantas marcas se han lanzado en plancha a firmar sus anuncios con la coletilla, es porque saben que mejora sus opciones de venta, lo cual es suficiente evidencia para calcular que el conocimiento informado no es lo más viral hoy en día.

Ayer me ocupé de desmontar el peligroso bulo de que el consumo de ciertas frutas y hortalizas basta para mantenerse a salvo de la gripe, difundido en internet por los (más bien poco, al parecer) responsables de un mercado español. Como ya expliqué, teniendo en cuenta que cada año esta enfermedad causa posiblemente más de medio millón de muertes en todo el mundo, y que se ceba sobre todo en los más débiles, es un problema que permite cero frivolidades; especialmente cuando estas se presentan con el caradurismo de aprovechar el tirón de una campaña de vacunación en la que una legión de profesionales comprometen su esfuerzo en el empeño de salvar vidas.

Evidentemente y aunque no fuera de forma explícita, deliberada o no, lo publicado por el mercado apelaba a la quimiofobia y al pensamiento New Age, a la idea errónea de que existen dos mundos separados, el natural y el químico, e incluso a aquella cumbre del pensamiento plano e intoxicado coronada por esa suma sacerdotisa de las pseudociencias llamada Gwyneth Paltrow: “nada que sea natural puede ser malo para ti”.

Creo que, en todo este batiburrillo de superstición y desinformación, el ejemplo de la penicilina y algún otro son útiles para derramar algo de luz ante los pasos de quien aún esté dispuesto a reconducirse hacia la senda del argumento racional y el conocimiento científico, porque estos casos ilustran perfectamente todos los puntos en los que el pensamiento quimiófobo anda tan desnortado.

Para comenzar, aquello de la gran botica de la madre naturaleza, tan sabia ella, es una idea muy bonita, pero sin ningún fundamento. Eso sí, entronca bastante con la idea del diseño inteligente defendida por los creacionistas bíblicos (concretamente con lo que en el mundo creacionista se conoce como “creación especial”): si la naturaleza hubiera sido creada al servicio del ser humano tal cual es en su forma actual, sería un detalle casi obligado que el responsable de todo ello hubiera provisto entre sus recursos los medios para curarnos de nuestros males.

Al menos, quien siga pensando así en el siglo XXI debería saber que ni siquiera Santo Tomás de Aquino en el siglo XIII entendía ya la naturaleza de esta manera (era aristotélico, y por tanto creía en una noción primitiva de evolución). Hoy sabemos de sobra que solo somos una parte más de la naturaleza, que no es sabia ni tonta. Solo es química, toda ella. Y en consecuencia, hace lo que hace la química: reaccionar.

Cuando se ponen en contacto unos compuestos químicos con otros, suelen reaccionar. Como la Tierra es un ecosistema cerrado, los nutrientes que necesitamos y otros compuestos que pueden beneficiarnos se encuentran en otros organismos. Pero también otros compuestos que nos matan. Para la naturaleza, la diferencia entre ambos casos es solo una reacción química distinta, como mejorar la fosforilación oxidativa de la mitocondria o detenerla. Incluso una misma sustancia puede beneficiarnos o matarnos dependiendo de la dosis. El mejor ejemplo: el agua. Sí, también se puede morir por beber demasiada agua.

De ello se deduce que realmente no existen plantas medicinales, sino plantas con ciertos compuestos químicos medicinales. Dado que la naturaleza no ha sido diseñada, los compuestos beneficiosos o perjudiciales para nosotros no están organizados en dos equipos distintos de plantas, las buenas y las malas. Lo cual implica que cualquier alimento natural que consumimos habitualmente podría contener también toxinas dañinas para nosotros.

Y de hecho, ocurre. El caso más conocido es la amigdalina, un compuesto presente en miles de plantas pero sobre todo en las pepitas de manzanas y peras, las almendras amargas y los huesos de melocotones, cerezas, ciruelas, albaricoques, nectarinas y otras frutas. Tras su ingestión, o también cuando entra en contacto con las enzimas de la pulpa, la amigdalina se transforma nada menos que en cianuro. Y mientras que las semillas de manzanas y peras son pequeñas, por lo que haría falta comer cientos para notar algún efecto, en cambio unos pocos huesos de fruta pueden ser letales.

Un hueso de melocotón abierto. La amigdalina está en la semilla. Imagen de An.ha / Wikipedia.

Un hueso de melocotón abierto. La amigdalina está en la semilla. Imagen de An.ha / Wikipedia.

Un estudio de 2013 calculó que 30 huesos de albaricoque o 50 almendras amargas son letales para un adulto. Pero el año pasado un británico fue internado de urgencia tras ingerir solo tres huesos de cereza, y un estadounidense siguió el mismo camino tras comprar en una boutique de alimentos naturales una bolsa de semillas secas de albaricoque y comerse unas 40, antes de leer en el dorso que no debían consumirse más de dos o tres al día por riesgo de envenenamiento agudo. Eso sí, el producto estaba etiquetado como superalimento orgánico.

Otra toxina es la solanina, presente en patatas, tomates o berenjenas. Las cantidades que llevan no suelen ser nocivas, pero sí pueden serlo en piezas estropeadas, sobre todo en las patatas que empiezan a volverse verdes. Este es también el motivo por el que conviene cortar los brotes (ojos), ya que son sitios metabólicamente activos donde también se produce la toxina. Aunque el envenenamiento por solanina no suele ser mortal, hay casos documentados de intoxicaciones masivas en colegios por haber aprovechado una partida de patatas del año anterior que debería haberse desechado.

Las patatas podridas contienen solanina. Imagen de pixabay.

Las patatas podridas contienen solanina. Imagen de pixabay.

También puede suceder lo contrario, y es que una especie no comestible contenga un compuesto beneficioso. Así llegamos a la penicilina. Por supuesto que comer pan mohoso no es en absoluto una buena idea, aunque según los expertos los típicos mohos blancos o verdeazulados no son los peores, sino los marrones o negros, que suelen contener toxinas peligrosas. Pero la diferencia entre un moho inofensivo o beneficioso y otro dañino es tan escasa como la que separa al Penicillium camemberti y el Penicillium roqueforti, que los comemos en el queso, del Penicillium chrysogenum (antes notatum), que produce penicilina, y de otras especies que producen micotoxinas como la patulina, típica de los mohos en las manzanas podridas.

Así pues, ¿cómo podemos asegurarnos de quedarnos con lo bueno apartando lo malo? La respuesta: aislando los compuestos que nos interesan de los alimentos naturales. Y así nace la farmacología. Pero después, con el progreso de la ciencia, se encuentra la manera de fabricar muchos de estos compuestos a voluntad y en masa sin necesidad de procesar penosamente inmensas cantidades de productos naturales para después tirar todo lo que sobra. Aún más, se encuentra incluso el modo de mejorar estos compuestos de origen natural para acentuar sus propiedades beneficiosas y reducir sus efectos adversos.

Y así tenemos no ya la penicilina, sino un amplio repertorio de antibióticos para distintos usos. Y tenemos la morfina, originalmente extraída de la adormidera. Y la aspirina, o ácido acetilsalicílico, obtenida mediante una reacción que mejora las propiedades de un compuesto extraído del sauce y empleado como remedio durante milenios. Y el paracetamol, encontrado como un producto del propio cuerpo humano, en la orina de pacientes que habían tomado otro medicamento.

Mohos 'Penicillium commune' (oscuro) y 'Penicillium chrysogenum' (claro). Imagen de Convallaria majalis / Wikipedia.

Mohos ‘Penicillium commune’ (oscuro) y ‘Penicillium chrysogenum’ (claro). Imagen de Convallaria majalis / Wikipedia.

Hoy hemos avanzado un paso más, o muchos pasos más. Conocemos la estructura química de los compuestos y de las moléculas con las que interaccionan en el organismo, y gracias a ello pueden diseñarse nuevos fármacos perfeccionados y optimizados como se diseña un coche de carreras, un mueble de Ikea o un nuevo modelo de smartphone. Y esto es, en definitiva, lo que muchos llaman química; la capacidad del ser humano de mejorar las propiedades de las sustancias naturales.

Pero mientras avanzamos nuevos pasos, lamentablemente al mismo tiempo estamos retrocediendo otros. Como ya conté aquí, la moda del “sin conservantes” ha llevado a muchos fabricantes de alimentos a eliminar los nitratos. Pero como estos compuestos son necesarios para evitar que la bacteria Clostridium botulinum crezca en los alimentos y los consumidores mueran de botulismo, los añaden en forma de jugo de apio, un producto natural que les permite pegar en sus productos la etiqueta “sin conservantes”. Los nitratos son exactamente los mismos; con la diferencia de que la cantidad de nitrato purificado es la necesaria y exacta para evitar la contaminación, mientras que en el zumo de apio es variable, lo que pone en riesgo la seguridad de los alimentos.

Esta es verdaderamente la gran paradoja de la naturaleza. No el moho, la manzana o la patata, sino los seres humanos; una especie que renuncia voluntariamente al progreso que tanto le ha costado conseguir… hasta que la química tiene que acudir al rescate para salvarle la vida.

Y estas son las plantas más temibles si eres humano (incluyendo la patata)

Por suerte para nosotros, no existen plantas carnívoras lo suficientemente grandes como para devorar a un ser humano. En la edad de oro de las exploraciones geográficas, en los siglos XVIII y XIX, circularon leyendas sobre árboles y arbustos que atrapaban grandes presas y a los que los indígenas ofrecían víctimas humanas como sacrificio ritual. Algunas de estas historias perduraron como ciertas durante décadas, hasta que alguien se tomó la molestia de indagar en las fuentes originales y descubrió que se trataba solo de fantasías pergeñadas para vender periódicos o revistas a un público ávido de relatos de aventuras. Hoy estos vegetales mitológicos tienen su propio hábitat, pero solo en la fértil imaginación humana, junto al yeti y el monstruo del lago Ness.

Pese a todo, sabemos con certeza que aún queda mucho por descubrir en las selvas más tupidas y remotas, sobre todo en lugares como Borneo, Nueva Guinea o la Amazonia. Incluso de cuando en cuando salta a los medios alguna historia que nos devuelve aquella emoción de la exploración que se diluyó en la sopa global del turismo de masas. En 2009 se describió una nueva especie de planta carnívora que figura entre las mayores conocidas y que fue descubierta en el monte Victoria, en Filipinas, por una expedición organizada a raíz del relato de dos misioneros que nueve años antes habían intentado escalar la montaña. Los misioneros se extraviaron y a punto estuvieron de no contarlo, pero a los 13 días fueron rescatados e informaron de la observación de una planta carnívora inusualmente grande. Los científicos la llamaron Nepenthes attenboroughii en honor al naturalista inglés David Attenborough.

Pero el hecho de que las mayores plantas carnívoras conocidas, del tamaño aproximado de un balón de rugby, solo puedan aspirar como máximo a llevarse al buche una rata o un sapo en lugar de un suculento Homo sapiens, no significa que el mundo vegetal sea inofensivo para los humanos. Quien más, quien menos, ha oído hablar de plantas venenosas; lo que tal vez no sea tan popular es que están más a mano de lo que muchos sospecharían. Y que, en algunos casos, tenerlas tan a mano puede entrañar un grave riesgo.

Acónito. ¡Cuidado, no tocar! Imagen de Tobe Deprez / Wikipedia.

Acónito. ¡Cuidado, no tocar! Imagen de Tobe Deprez / Wikipedia.

He aquí otra historia, y esta no es leyenda sino hecho: el pasado septiembre, un jardinero británico llamado Nathan Greenaway falleció en el hospital debido a un fallo multiorgánico sin que los médicos pudieran entonces comprender cuál era el origen de su mal. Se supo después que Greenaway trabajaba en la propiedad de un millonario surafricano afincado en Inglaterra llamado Christopher Ogilvie Thompson, y que la causa probable de su muerte fue el contacto con el acónito, una planta que puede matar si se toca sin guantes.

El acónito, llamado matalobos en algunos lugares, es una planta ranunculácea que crece en las praderas de montaña del hemisferio norte. Está formada por largos tallos rectos coronados por racimos de flores de color morado, azul, rosa, amarillo o blanco. Es la planta más venenosa de Europa; su toxina, la aconitina, puede matar incluso por contacto, ya que se absorbe a través de la piel. En algunos lugares de Asia se ha empleado tradicionalmente para envenenar puntas de flecha. El acónito ha sido popular en la mitología, la literatura y la historia: Cleopatra lo empleó para envenenar a su hermano, Ptolomeo XIV.

Sin embargo, el acónito no es el único peligro que podemos encontrarnos en el campo o en los jardines ornamentales; por suerte, la mayoría de las plantas tóxicas para nosotros solo lo son si las comemos. Dos ejemplos son la adelfa, casi omnipresente en España, y el tejo (Taxus baccata), común en el norte de la Península y en las sierras. También son venenosas las bayas negras de los aligustres (Ligustrum) que se utilizan para los setos. Otra especie que puede ser fatal para los humanos es la dulcamara (Solanum dulcamara), una trepadora de flores moradas con estambres amarillos que produce unas llamativas bayas rojas con el aspecto y el olor de diminutos tomates, lo que las hace especialmente peligrosas para los niños. Las hojas también son tóxicas.

La dulcamara es una solanácea, del mismo género que la patata, el tomate y la berenjena. De hecho, algunas de estas especies también producen la misma toxina, la solanina; en especial, la patata: “Las patatas son un elemento tan común en la dieta occidental que la mayoría de la gente se sorprende al saber que son el producto de una planta venenosa”, decía un artículo publicado al respecto en 1979 en la revista British Medical Journal.

Es ciertamente raro que las patatas maten, pero pueden provocar intoxicaciones graves, como sucedió en 1979 en un colegio de Gran Bretaña. La dosis letal media de la solanina es de unos 5 miligramos por kilo de peso; dado que la concentración media en la patata es de 0,075 miligramos por gramo de tubérculo, comer unos cinco kilos de patatas crudas y sin pelar puede ser mortal. Sin pelar, porque la mayoría se acumula en la piel o cerca de ella; y crudas, porque parte de la toxina se transfiere al aceite o al agua cuando se fríen o cuecen. Pero en algunos casos, como en las patatas enfermas, viejas o las que verdean por exposición a la luz, el nivel de toxina puede aumentar drásticamente. ¿Alguna vez se preguntaron por qué su abuela almacenaba las patatas en la oscuridad y les quitaba esos “ojos” que a veces les aparecen? Este es el motivo.

La familia de las solanáceas es especialmente pródiga en venenos: a ella pertenece también la belladona (Atropa belladonna), otro veneno clásico, así llamada porque las mujeres del Renacimiento se lo aplicaban en los ojos para dilatarse las pupilas con fines cosméticos. La toxina de la belladona es la atropina, mientras que el beleño (Hyoscyamus) produce la escopolamina, más conocida como burundanga. Otras plantas venenosas de esta familia son la Brugmansia o trompeta de ángel, llamada así por sus flores colgantes con forma de campana o trompeta; también el estramonio (Datura) y la famosa mandrágora.

Semillas de regaliz americano ('Abrus precatorius'). Letales. Imagen de USDA.

Semillas de regaliz americano (‘Abrus precatorius’). Letales. Imagen de USDA.

Pero fuera ya de las solanáceas, la lista de especies tóxicas prosigue: la cimífuga o hierba de San Cristóbal, la digital, muy utilizada en jardines; la famosa cicuta, la hierba de ballesteros o eléboro fétido, la nueza negra… Sin olvidar el ricino (Ricinus communis), cuya toxina, la ricina, es una de las más potentes que se conocen; o lo era, antes de que comenzaran a venderse clandestinamente las pulseras confeccionadas con semillas rojas y negras del regaliz americano (Abrus precatorius), capaces de matar a una persona con una dosis casi indetectable.

En resumen: si al campo se le aplicaran las normativas sanitarias habituales en las ciudades, no podríamos ni salir a pasear. Por fortuna, ahí fuera aún somos libres. Pero no está de más recordar las recomendaciones de los Institutos Nacionales de la Salud de Estados Unidos respecto a las plantas tóxicas: “No toque o coma ninguna planta con la que no esté familiarizado. Lávese las manos después de trabajar en el jardín o pasear por el campo”. Y sobre todo, añado, cuidado con los niños.