Entradas etiquetadas como ‘inteligencia vegetal’

Las plantas no sienten dolor, pero sí son sensibles al daño

Ayer les hablé de cómo investigaciones recientes han descubierto que las plantas poseen sentidos como la vista, el oído, el olfato y el tacto, además de capacidades de comunicación, cooperación, aprendizaje por asociación, memoria, reconocimiento de especie o toma de decisiones; y que los investigadores han llegado a resumir todas estas sorprendentes habilidades como un comportamiento inteligente equiparable al de muchos animales simples. Olviden aquello de “como un vegetal”: los vegetales no son “como un vegetal”.

Les decía también que todas estas investigaciones se encuadran informalmente bajo el nombre de neurobiología vegetal, una denominación que no gusta a todos y que parece científicamente chirriante, dado que no existen neuronas en las plantas. Pero como verán unas cuantas líneas más abajo, si no tienen neuronas, en cambio sí poseen muchos de los mecanismos que permiten a las neuronas comportarse como tales. Así que, al menos mientras no se acuñe un nombre específico para los circuitos que actúan casi como neuronas en las plantas, lo de neurobiología vegetal cada vez suena menos inapropiado.

Esta neurobiología vegetal es “una revolución científica”, en opinión del filósofo Paco Calvo, uno de los expertos que estudian las proyecciones de esta nueva disciplina más allá de la ciencia; por ejemplo, sus implicaciones sociales. Porque si las plantas son seres sensibles, ¿cómo afecta esto a nuestra relación con ellas?

Evidentemente, nadie en su sano uso de razón sugiere que dejemos de comer vegetales; pero sí que tal vez debería replantearse la visión de las plantas como seres prácticamente inertes que podemos arrancar, talar, podar, dejar morir o pisotear a voluntad de forma arbitraria y sin una razón para ello. Antes incluso de muchos de estos descubrimientos recientes, la Constitución de Suiza ya reconocía la “dignidad de los seres vivos” con una mención a la protección de las plantas. Para el desarrollo de este artículo, el Comité Federal de Ética en Biotecnología No Humana dictaminó que es “moralmente inaceptable causar daño arbitrario a las plantas”; por ejemplo, “la decapitación de flores silvestres junto a la carretera sin un motivo racional”.

La nervadura de una hoja. Imagen de Jon Sullivan / Wikipedia.

La nervadura de una hoja. Imagen de Jon Sullivan / Wikipedia.

Lo cual nos lleva a una interesante pregunta: ¿pueden las plantas sentir dolor? Pero la respuesta es inmediata: el dolor es una sensación sensorial y emocional de malestar que actúa como mecanismo de defensa y como señal de alarma para que nos apartemos del estímulo doloroso, y que actúa a través de receptores específicos llamados nociceptores. Por lo tanto, la propia definición del dolor está cortada a medida de los animales con un cierto nivel de complejidad neuronal (vertebrados y algunos invertebrados); es un concepto zoocéntrico que no tiene sentido aplicar a otros seres vivos, sobre todo a aquellos que, como las plantas, carecen de nociceptores.

Pero a continuación vienen los matices: un caballo no puede comprender un chiste. Y sin embargo, que no podamos hablar del sentido del humor de un caballo no significa que estos animales no posean muchos de los mecanismos cerebrales que en nuestro caso están asociados a la risa. Y del mismo modo, las plantas son también sensibles al daño, a través de ciertas respuestas celulares que tienen algunos aspectos en común con los procesos neuronales de los animales.

Un experimento reciente ha mostrado cómo funcionan estos mecanismos, y los resultados son un argumento más para defender que en las plantas sí puede hablarse de neurobiología. Investigadores de EEUU y Japón han examinado cuál es el proceso de una respuesta ya conocida anteriormente en las plantas: si se induce un daño en un lugar, por ejemplo en una hoja, se genera una respuesta eléctrica que se propaga por toda la planta.

Esta señal se transmite a una velocidad mucho menor que en nuestras neuronas; nuestros impulsos eléctricos corren por los nervios hasta a 120 metros por segundo, mientras que en las plantas la reacción avanza a solo un milímetro por segundo. Ya decíamos ayer que las plantas tienen otro ritmo. Pero para su medida del tiempo, es una velocidad de vértigo.

Para investigar cómo se genera y se propaga esta señal, los científicos crearon una planta transgénica que produce una proteína fluorescente sensible al calcio. De este modo, cuando aumenta la cantidad de calcio en las células, la proteína se ilumina. El motivo de centrarse en el calcio fue pura coherencia biológica: este elemento actúa como señal en innumerables procesos celulares, y gracias a su carga eléctrica es también uno de los responsables de los impulsos que corren por nuestras neuronas.

A continuación, los investigadores sometieron a estas plantas a una agresión, como la mordedura de una oruga o un corte en una hoja. Y esto fue lo que vieron:

En los vídeos se observa, en tiempo acelerado, cómo la mordedura de la oruga o un daño en una parte distante de la planta producen una señal de calcio que se propaga a través de los nervios de las hojas. Estos nervios normalmente sirven a la planta para transportar agua y nutrientes; pero como se ve, también actúan de manera parecida a nuestros propios nervios, propagando una señal eléctrica mediada por el movimiento de iones de calcio.

De hecho, aquí no acaban las semejanzas entre este peculiar sistema nervioso de las plantas y el nuestro. Los investigadores se preguntaron entonces cuál era la señal primaria, la molécula que inicia esta propagación eléctrica a través del calcio. Y una vez más optaron por una hipótesis plausible: en nuestras neuronas, la señal de calcio viene disparada por el glutamato, un neurotransmisor que actúa comunicando unas neuronas con otras.

Investigaciones anteriores ya habían demostrado que las plantas también producen glutamato y que esta molécula participa en la transmisión de las señales eléctricas. Y al repetir el experimento con plantas modificadas que tienen bloqueada la acción del glutamato, los investigadores descubrieron que en este caso no hay oleada luminosa; no hay calcio ni señal eléctrica. Es más, cuando los investigadores ponían simplemente una gotita de glutamato sobre una hoja de una planta normal, observaban esto:

Es decir, que el glutamato por sí solo es capaz de imitar la señal que el daño induce en las plantas, lo que también delata la responsabilidad de este neurotransmisor (una denominación que quizá debería cambiarse) en la respuesta de los vegetales a una agresión.

Finalmente, ¿para qué le sirve a la planta esta alerta de daños que se extiende por todo su organismo? Al fin y al cabo, no puede quitarse la oruga de encima de un manotazo. Sin embargo, hay otras cosas que sí puede hacer: la señal de calcio pone en marcha mecanismos hormonales que llevan a la producción de sustancias químicas tóxicas para los insectos.

Pero eso no es todo. Aún más pasmosa es la acción de otras sustancias que las plantas producen en respuesta a las agresiones. ¿Saben ese olor a césped recién cortado? Varios estudios han demostrado que se debe a un cóctel de sustancias volátiles cuya función es actuar como atrayente de avispas; no de cualquier tipo de avispa, sino de ciertas especies parasitarias que acostumbran a poner sus huevos dentro del cuerpo de insectos herbívoros como las orugas, los depredadores de las plantas. Así, el olor a hierba cortada es en realidad una llamada de auxilio de las plantas para pedir ayuda a sus aliados.

La ‘inteligencia’ de las plantas y mi glicina rebelde

Imaginemos un ser vivo que no muere aunque se le mutilen prácticamente todas las partes de su cuerpo. Que es capaz de responder creando partes nuevas asimétricas y en las que sus funciones están distribuidas en una arquitectura modular, de modo que carece de órganos vitales visibles como nuestro cerebro o nuestro corazón. Que es capaz de enterrar su única parte más esencial para protegerse y desaparecer de la vista, pero siendo al mismo tiempo muy perceptivo sobre el mundo que le rodea. Que se alimenta de radiación estelar y se reproduce gracias al viento. Que es capaz de clonarse. Y que, además, su reloj transcurre tan despacio para nuestra medida del tiempo que a nuestra vista se camufla como un objeto inanimado.

No es una especie alienígena imaginaria. Son las plantas. En buena medida, el reino vegetal es como una forma de vida alternativa a nosotros, los animales; como un experimento de la naturaleza empleando casi las opciones opuestas a las nuestras. Naturalmente, ellas y nosotros procedemos de un antepasado único común, y en el fondo somos muy parecidos si nos fijamos en los mecanismos celulares y moleculares básicos. De hecho, compartimos con las plantas más o menos la mitad de nuestros genes (más con un plátano, por ejemplo, que con un pepino).

(Nota: como ya expliqué aquí en otra ocasión a propósito de lo que suele decirse sobre el 99% de semejanza genética entre humanos y chimpancés, este tipo de datos hay que explicarlos bien para entender qué significan, o se cometen atrocidades: si con nuestros hijos compartimos el 50% de nuestro ADN, ¿cómo es que con los chimpancés compartimos un 99%? Evidentemente, no hablamos de lo mismo en ambos casos).

Pero en la superficie, las plantas son biológicamente tan raras a nuestros ojos que durante siglos las hemos incomprendido. Había un episodio de Star Trek titulado El parpadeo de un ojo, en el que los tripulantes de la Enterprise se topaban con una raza alienígena de vida tan acelerada que los humanos apenas podían verlos. Para los scalosianos, éramos tan lentos que ni siquiera parecíamos auténticos seres vivos, motivo por el cual decidían emplear a los ocupantes de la nave como una especie de banco genético.

Del mismo modo, los humanos hemos contemplado a las plantas como seres pasivos y casi inertes, que ni sienten ni padecen. Por supuesto, sabemos que están vivas, que desempeñan funciones imprescindibles en los ecosistemas y que sin ellas no sería posible el resto de la vida terrestre, que descansa sobre ellas como escalón básico de la pirámide trófica. Pero en general, eso han sido para nosotros: alimento fresco que además decora el paisaje.

Jardín botánico en la Universidad de Friburgo. Imagen de pictures Jettcom / Wikipedia.

Jardín botánico en la Universidad de Friburgo. Imagen de pictures Jettcom / Wikipedia.

Todo esto comenzó a cambiar gracias a un puñado de investigadores que se atrevieron a preguntarse lo que nadie más osaba, y a diseñar experimentos arriesgados, como dejar caer plantas desde pequeñas alturas para medir sus reacciones. Y empezaron a aparecer resultados sorprendentes. O quizá deberíamos decir “investigadoras”; aunque hoy son varios los grupos que trabajan en esta línea, fueron mujeres como Heidi Appel, Monica Gagliano o Susan Dudley quienes comenzaron a abrir brecha en lo que hoy suele llamarse neurobiología vegetal, topándose al principio (como por otra parte debe ser) con el escepticismo de la comunidad científica.

Pero… ¿neurobiología vegetal? ¿No es esto un sinsentido tan grande como hablar del “bueno de Trump” o la “medicina homeopática”? Bueno, en cierto modo lo es. Para Gagliano, hablar de neurobiología en el caso de las plantas es “zoocéntrico”. Desde luego, es incuestionable que las plantas carecen de neuronas. Pero hasta ahora los científicos no se han puesto de acuerdo en un término mejor para designar a un conjunto de procesos físicos, químicos y biológicos responsables de funciones que hasta hace unos años eran insospechadas en las plantas, y que son análogas a las que en los animales desempeñan las neuronas: cognición, comunicación, percepción, aprendizaje, memoria, toma de decisiones o incluso inteligencia.

Sí, todo esto existe en las plantas. Diversas investigaciones (repasé algunas de ellas aquí y aquí) han demostrado que las plantas, por supuesto, ven la luz, pero también a sus vecinas gracias al resol infrarrojo de la fotosíntesis, y que tienen un reloj interno que sincronizan de vez en cuando con el sol; sienten el tacto, respondiendo con cambios en sus genes; saben diferenciar entre arriba y abajo; se comunican entre sí oliendo señales químicas; oyen los mordiscos de las orugas y reaccionan produciendo sustancias defensivas, advirtiendo con ellas a otras plantas; escuchan el ruido de las tuberías para buscar el agua (no solo siguen la humedad, sino también el sonido); recuerdan experiencias pasadas, aprenden por asociación de estímulos como los perros de Pavlov, pueden ser anestesiadas, reconocen a sus parientes y los ayudan…

Y lo más importante, todos estos procesos no generan respuestas automáticas programadas, sino que les sirven para tomar decisiones complejas en función de los estímulos externos. Con todo ello, los científicos están aceptando la idea de que las plantas muestran un “comportamiento inteligente” similar al de ciertos animales. Algunos incluso ya no tienen reparos en hablar de la “inteligencia de las plantas”.

Una oruga comiendo hojas de una planta. Imagen de pixabay.

Una oruga comiendo hojas de una planta. Imagen de pixabay.

Tengo una curiosa experiencia personal reciente que me trajo a la memoria todas estas asombrosas capacidades de las plantas. En la entrada de mi casa hay un pequeño arco de hierro que quería cubrir con los tallos de una glicina (Wisteria). Así que el pasado verano enrollé los brotes alrededor del arco. Pero a medida que crecían, observé que no seguían abrazando el arco de hierro, sino que en su lugar estaban tendiéndose hacia las ramas de un madroño que crece junto a la glicina. Volví a enrollar los tallos, y a los pocos días descubrí de nuevo lo mismo: la glicina crecía en línea recta sin curvarse, apartándose del arco y buscando el madroño. Y así, una y otra vez; solo logré que los tallos por fin cubrieran el arco enrollándolos a mano.

Según la teoría, la glicina debería obedecer mis órdenes y crecer enrollándose en la guía de hierro. Esta es una respuesta llamada tigmotropismo, que es otra consecuencia del sentido del tacto en algunas plantas. Cuando tocan una superficie, se producen ciertas reacciones en las células mediadas por hormonas vegetales como la auxina y el etileno, pero en las que también intervienen canales iónicos que modifican el potencial eléctrico de las membranas celulares (por cierto, lo mismo que ocurre en nuestras neuronas; va a ser que no es tan disparatado hablar de neurobiología vegetal).

Como resultado de estas reacciones, la cara del brote opuesta a la que está en contacto con la superficie crece más deprisa, lo que curva el tallo y lo hace enrollarse alrededor de la guía. Pero en el caso de mi glicina, se negaba a hacer lo que los libros dicen que debería hacer, como si otra influencia más potente estuviera inhibiendo el tigmotropismo. ¿Por qué parecía encaprichada en alcanzar el madroño? Y aún más, ¿cómo diablos sabía la glicina que el madroño estaba allí?

Evidentemente, no lo sé, y al fin y al cabo es una mera observación puntual sin ningún valor más allá de lo anecdótico. Pero hay algo también evidente: las plantas trepadoras como la glicina han evolucionado aprendiendo a trepar sobre otras plantas, no sobre arcos de hierro. Y entre las diferencias entre una planta y un arco de hierro, destaca una fundamental que he mencionado arriba: las plantas son capaces de segregar sustancias volátiles para comunicarse, algo que no hacen los arcos de hierro.

Flores de glicina (Wisteria). Imagen de pixabay.

Flores de glicina (Wisteria). Imagen de pixabay.

¿Sería así como mi glicina estaba detectando el madroño? No tengo la menor idea, y es una simple especulación. Todavía es mucho lo que no se conoce sobre las plantas, que guardan sus secretos en silencio; incluso el tigmotropismo aún no se comprende del todo. Pero a poco que nos molestemos en contemplarlas con algo de paciencia, como comenzaron a hacer esas científicas pioneras y otros investigadores, descubriremos que no son los seres pasivos e inertes que creíamos, sino casi alienígenas de extrañas costumbres en nuestro propio planeta.

Mañana contaré otro sorprendente experimento reciente que nos adentra un poco más en esa alucinante vida secreta de las plantas. Y que responde a una sugerente pregunta: ¿pueden las plantas sentir dolor? Si les interesa saber la respuesta, vuelvan a por más.

“La neurobiología vegetal es una revolución científica”

El filósofo Paco Calvo es una de las voces de mayor relevancia mundial en torno al pujante campo de la neurobiología vegetal, el área de estudio que en los últimos años ha revelado una forma propia de inteligencia en las plantas. Calvo dirige el Minimal Intelligence Lab de la Universidad de Murcia, que cuenta con el apoyo de la Fundación Séneca, la Agencia de Ciencia y Tecnología de la Región de Murcia. El filósofo es también miembro del comité científico asesor del Laboratorio Internacional de Neurobiología de Plantas, un grupo global de expertos con un enfoque multidisciplinar. Calvo acaba de publicar en la revista de filosofía Synthese un artículo titulado The philosophy of plant neurobiology: a manifesto.

Para dejar claro de qué ciencia estamos hablando, ¿cuál es la forma correcta de denominarla?

El filósofo Paco Calvo. Imagen cortesía de Alfonso Durán/AGM.

El filósofo Paco Calvo. Imagen cortesía de Alfonso Durán/AGM.

Hay respuestas para todos los gustos. Unos prefieren hablar de neurobiología vegetal, otros de señalización y conducta vegetal. Yo me quedo con “neurobiología vegetal”. En cualquier caso, sea cual sea la etiqueta que le pongamos, lo importante es entender que no podemos trabajar en un marco reduccionista o monodisciplinario. Las disciplinas integrantes son la biología vegetal celular y molecular, la fisiología vegetal, la bioquímica, la biología evolutiva y del desarrollo, la ecología vegetal, y, tal y como propongo en el artículo, la filosofía de la neurobiología vegetal.

Pero no todo el mundo parece dispuesto a aceptar esta denominación. ¿Por qué algunos se oponen?

Hay una agria disputa por esta cuestión en la comunidad científica. ¿Por qué neurobiología vegetal? Bueno, fíjate hasta qué punto retrata nuestros complejos antropocéntricos que cuando en los años 70 se hablaba de neuroid conduction [conducción neuroide] para hacer referencia a la propagación de eventos eléctricos en las membranas de células no nerviosas y no musculares en especies no animales nadie puso el grito en el cielo. De hecho, las similitudes van mucho más allá: en las plantas encontramos también señalización eléctrica mediada por potenciales de acción, como en la bomba de sodio-potasio animal, pero con otros iones implicados. La similitud es tal que el perfil electrofisiológico que consta de las tres fases de depolarización-repolarización-hiperpolarización de los potenciales animales es virtualmente idéntico. Pero fíjate qué curioso, que ni siquiera en una obra de referencia en fisiología vegetal como es el Plant physiology de Taiz & Zeiger se hace mención alguna a los potenciales de acción vegetales.

Hoy sabemos también que las plantas emplean neurotransmisores, igual que nuestras neuronas.

En plantas encontramos serotonina, dopamina, glutamato, GABA, etc. Coge el caso de la sincronización de los relojes circadianos en animales y plantas (¡las plantas, por supuesto, también tienen jet-lag!). En plantas encontramos el rol equivalente de sincronización llevada a cabo por neuronas en el núcleo supraquiasmático. Las rutas vasculares de señalización en tejidos vegetales permiten a las células del ápice orquestar la sincronización de los relojes de la planta. Podríamos seguir y seguir con las similitudes neuronales planta-animal, pero la cuestión de fondo es otra. Va al corazón del problema kuhneano de la distinción entre Ciencia Normal y períodos de revolución. Desde la ciencia paradigmática nos resistimos a ver lo que para la neurobiología vegetal es elemental.

Entonces, ¿podemos hablar de inteligencia vegetal?

No me cabe la menor duda. Ahora bien, me resisto a dar definiciones encorsetadas. Basta que propongas una definición para que te lluevan cien contraejemplos, siempre, claro, obviando contraejemplos análogos en inteligencia animal que servirían de reductio ad absurdum de la estrategia de ridiculización de la inteligencia vegetal. Para mí es mejor hablar de competencias particulares que caen bajo el paraguas de conductas observables inteligentes: patrones de coordinación sensoriomotora, formas básicas de aprendizaje y memorización, toma de decisiones, resolución de problemas.

¿No estaremos fabricando otro concepto de inteligencia a medida para las plantas?

Podemos pensar en la inteligencia como el seguimiento de reglas explícitas y la manipulación de estados representacionales por parte del sujeto en su cabeza, y claro, esto cuesta encajarlo con la inteligencia vegetal: ¿dónde está la “cabeza”? ¿En qué puede consistir el seguimiento de reglas? Pero hay otra forma de abordar la inteligencia tanto animal como vegetal: el resultado emergente del modo en que un organismo se acopla a un entorno que es significativo sólo en la medida en que el organismo interactúa con elementos en su medio. Aquí sí encajan bien tanto animales como plantas.

¿Qué aporta la filosofía en este campo? ¿Es tan importante poner nombres?

Es fundamental. De hecho yo ahora mismo me encuentro en el proceso de escribir un libro sobre cognición vegetal (Plant Cognition: the next revolution) y me niego a sacrificar la expresión “cognición vegetal”. Creo que nos hacemos un flaco favor barriendo debajo de la alfombra lo que nos incomoda. ¿No es mejor aplicarnos el mismo rasero a nosotros mismos? Pero no es una cuestión de cabezonerías: aquí no estamos haciendo como que queremos negociar para formar gobierno. Se trata más bien de entender que si no cogemos el toro por los cuernos y nos acercamos al estudio de la inteligencia de esta otra manera no seremos ni tan siquiera capaces de hacer conjeturas o de lanzar hipótesis empíricas y testarlas experimentalmente. Los presupuestos teóricos son fundamentales.

¿No será problemático reconocer a los vegetales como seres inteligentes? ¿Tendremos que empezar a pensar en la dignidad de las plantas, como dice la Constitución de Suiza?

Creo que esto es algo que debemos plantearnos sin extremismos y sobre todo sin prisas. Vivimos tiempos acelerados en los que el titular de ayer ya es prehistoria. Debemos recuperar un espíritu darwiniano y trabajar con muuuucha caaaalma. Necesitamos recabar muchos más datos, tomarnos muy en serio la replicabilidad y el control experimental, y no lanzar las campanas al vuelo con titulares efectistas o grandilocuentes, pero de corto recorrido. Es un trabajo de la sociedad en su conjunto, con el asesoramiento de la comunidad científica, por supuesto, pero de todos los agentes implicados en la generación de conocimiento.