Entradas etiquetadas como ‘Curiosity’

No, no hemos contaminado Marte (pero lo haremos)

"Selfie" del 'Curiosity' tomada en febrero de 2013 en la llanura John Klein, Marte. La imagen es un mosaico de recortes de múltiples tomas (motivo por el cual no aparece el brazo de la cámara). NASA/JPL-Caltech/MSSS.

“Selfie” del ‘Curiosity’ tomada en febrero de 2013 en la llanura John Klein, Marte. La imagen es un mosaico de recortes de múltiples tomas (motivo por el cual no aparece el brazo de la cámara). NASA/JPL-Caltech/MSSS.

Hace un par de días saltó a los medios la noticia de que el robot Curiosity, residente en Marte desde 2012, ha contaminado nuestro barrio vecino enviando allí microbios terrestres sin pretenderlo. La noticia se ha propagado como una gripe virulenta y parece haber encontrado hueco hasta en la hoja parroquial de Vladivostok. Merece la pena desmenuzar más finamente este asunto para situarlo en sus justos términos, especialmente porque días atrás traté aquí la dificultad que entraña explorar otros mundos sin contaminarlos con microbios procedentes de la Tierra que viajen agazapados en las sondas espaciales, sobrevivan a la travesía interplanetaria y puedan cuajar en entornos potencialmente habitables, como el marciano.

Para empezar, hay que detallar la fuente de la que procede la información: al contrario de lo que rebota por ahí de pantalla en pantalla, no se basa en un estudio científico publicado en Nature, sino en una noticia periodística divulgada en la web de esta revista a raíz de varias comunicaciones presentadas en la 114ª reunión anual de la Sociedad Estadounidense de Microbiología (ASM), celebrada esta semana en Boston. Por supuesto, esto último no resta ninguna credibilidad a los datos, presentados en la convención por investigadores de solvencia y tratados con todo el rigor y la profesionalidad por la periodista de ciencia Jyoti Madhusoodanan. Pero no es un estudio publicado en Nature, y hay diferencias importantes: en primer lugar, las comunicaciones presentadas a congresos suelen resumir el trabajo de los investigadores en crudo. Las convenciones sirven de línea caliente a los resultados científicos que aún no se han elaborado formalmente para su presentación a un journal (revista especializada) y que, por tanto, aún no han atravesado el exigente filtro de la revisión por pares. Por este motivo siempre es esencial que la información sobre ciencia detalle sus fuentes, en especial si se trata de resultados aún sin publicar (algo frecuente en este blog y que siempre se vocea claramente para quien quiera escucharlo).

Pero asumiendo que los resultados sean intachables, aún queda otra piedra en el zapato: si los investigadores enviaran estos datos para tratar de presentarlos en Nature, posiblemente no se cuestionarían sus estándares científicos; en cambio, me da en la nariz que los editores de una revista tan exclusiva como la británica preguntarían: “So what?“. Y es que los resultados no aportan ninguna novedad, nada que no se supiera ya sobradamente. De hecho, los mismos investigadores han presentado en el congreso datos similares relativos a anteriores misiones a Marte, incluidas las sondas Viking enviadas en 1976, y que no hacen sino confirmar lo que ya entonces se comprobó y es de dominio público: las naves espaciales que se posan en otros planetas lo hacen bastante limpitas, pero nunca estériles. Llevamos enviando microbios a Marte desde 1971, cuando las soviéticas Mars 2 y 3 tocaron por primera vez el suelo marciano, respectivamente destazándose contra él y besándolo suavemente.

Aunque los artefactos con destino al espacio se ensamblan en las llamadas salas blancas y sus piezas se someten a tratamientos de esterilización, esto no implica que queden libres de todo polvo y paja microbiológicos, algo que en la práctica es casi imposible. Los protocolos establecen un nivel máximo de carga microbiana tolerable, que en el caso de la NASA y tratándose de mundos potencialmente habitables, como Marte, es de 300.000 células viables en toda la superficie de la nave. Esta población microbiana es insignificante comparada con los millones de microorganismos que contiene un solo gramo de suelo terrestre; pero al fin y al cabo, es una población microbiana.

Es cierto que el problema se agranda cuando, además, los protocolos de esterilización no se respetan. En 2011 se divulgó la noticia de que el ensamblaje del Curiosity violó los llamados procedimientos de protección planetaria. Según publicó entonces Space.com, el problema fue una caja estéril que contenía tres piezas de un taladro y que solo debía abrirse en destino para que el brazo del robot las montara en la cabeza perforadora. Por razones que la información no detallaba, alguien abrió la caja y montó una de las piezas en su ubicación definitiva sin que la NASA fuera advertida de ello hasta que ya era demasiado tarde. La responsable de protección planetaria en la agencia estadounidense, Catharine Conley, restó importancia al incidente, asegurando que el Curiosity viajó “más limpio” que ningún otro robot enviado a Marte desde el programa Viking. Además, resaltó Conley, el diseño de esta misión tuvo en cuenta que el lugar de aterrizaje no albergara hielo al menos hasta un metro de profundidad bajo el suelo, para minimizar el riesgo de contaminación por la perforadora.

Para controlar la carga microbiana de las sondas, los científicos muestrean las superficies del aparato y de la sala de ensamblaje con bastoncillos de algodón, que después se llevan al laboratorio para cultivar los microorganismos presentes e identificarlos por su ADN. Los trabajos presentados en el congreso de la ASM son el resultado de la colaboración entre varias instituciones de EE. UU. dirigidas por la Universidad de Idaho y el Grupo de Biotecnología y Protección Planetaria del Laboratorio de Propulsión a Chorro de la NASA, que llevan años analizando la carga biológica de las sondas espaciales. En el caso del Curiosity, se identificaron 377 especies de bacterias, la mayoría relacionadas con el género Bacillus, muchas de las cuales tienen la capacidad de enquistarse en esporas para resistir condiciones adversas. Los resultados, resumidos en dos comunicaciones (una y dos), indican que 19 de las especies identificadas son capaces de crecer sin oxígeno aprovechando sustratos existentes en Marte, como el perclorato y el sulfato. Las bacterias fueron sometidas a condiciones de desecación, radiación ultravioleta C, alta salinidad y bajas temperaturas. El 11% fueron capaces de soportar múltiples condiciones extremas. “El estudio ayudará a estimar si los microorganismos terrestres suponen un riesgo de contaminación que podría interferir en una futura detección de vida y en las misiones de retorno de muestras”, escriben los investigadores en su presentación.

Los científicos presentan también nuevos trabajos que analizan la carga microbiana de misiones anteriores, como los rovers gemelos Opportunity y Spirit y las sondas Viking (estudios uno y dos).  Los resultados fueron parecidos, con 318 microbios identificados en las muestras de los rovers, en su mayoría Bacillus, y una presencia importante de estafilococos, que no forman esporas. De un total de seis misiones a Marte que cubren los últimos 40 años, los investigadores han reunido una colección de 3.500 cepas, de las cuales han identificado 1.322. El 60% corresponden a Bacillus y otros formadoras de esporas, y el 40% restante a Staphylococcus y otras especies no esporulantes. Los investigadores aclaran que todos estos resultados confirman los estudios más rudimentarios practicados con las muestras de las Viking en la época de su lanzamiento, cuando aún no se habían desarrollado las técnicas de secuenciación genómica. Por último, tampoco difieren sustancialmente de lo que anteriormente ya se había demostrado para el caso de Phoenix, el robot estático que analizó exitosamente un entorno cercano al polo norte marciano en 2008. En algunos casos se descubren nuevas especies bacterianas, como el Paenibacillus phoenicis, nombrado en recuerdo de Phoenix.

Con todo lo anterior, quizá ya estemos en condiciones de responder a la pregunta: ¿hemos contaminado Marte? No cabe duda de que ciertos microbios pueden sobrevivir a los viajes espaciales. Los estudios llevados a cabo en la Estación Espacial Internacional que reseñé recientemente demostraban que algunas esporas de Bacillus pueden resisitir un año y medio en el espacio. En cuanto a Marte, es un planeta habitable, pero solo para ciertas formas de vida que en la Tierra consideramos extremófilas, capaces de sobrevivir en entornos invivibles para el resto: sequedad, alcalinidad, temperaturas gélidas, radiaciones letales y una presión atmosférica en torno a los 8 milibares, frente a los más de mil en la Tierra. Hace cuatro años, un equipo de científicos de la Universidad de Florida demostró que la humilde Escherichia coli, una familiar bacteria intestinal y el microbio más utilizado en los laboratorios de todo el mundo, es capaz de sobrevivir en una cámara de simulación de condiciones marcianas durante al menos una semana. Pero una cosa es sobrevivir y otra crecer y multiplicarse, y esto último debería producirse para que podamos hablar de una verdadera contaminación. Y aún no se ha demostrado que se reúnan todos los factores necesarios para ello.

Esto no implica que no existan microbios terrestres capaces de prender y medrar en Marte: también en la reunión de la ASM, otro grupo de investigadores de la Universidad de Arkansas ha propuesto en dos estudios (uno y dos) que los metanógenos, microbios del grupo de las arqueas muy comunes en la Tierra, que viven sin oxígeno, producen gas metano e incluyen especies extremófilas, pueden crecer en condiciones que simulan el ambiente de Marte. “Los metanógenos podrían habitar el subsuelo de Marte”, concluyen los investigadores. Pero dadas las condiciones de vida que requieren estos microorganismos, para ellos sería más letal el paso por la sala blanca que el cómodo entorno marciano.

Aun así, parece que es una simple cuestión de tiempo. El Tratado del Espacio Exterior (OST), un acuerdo de adhesión voluntaria que regula el marco ético de actuación más allá de la órbita terrestre, establece que los países serán responsables de cualquier perjuicio y que deberán evitar toda “contaminación dañina”. Pero el OST es un instrumento de Naciones Unidas que vincula a los estados, y a corto plazo la primera misión tripulada que podría alcanzar el planeta vecino y contaminarlo irremisiblemente no es una iniciativa pública sino privada, la del controvertido proyecto Mars One; la organización que la promueve no está en absoluto obligada por el OST.

Por otra parte, falta definir qué entendemos por contaminación dañina. A modo de ejemplo, suele plantearse la hipótesis de que en un futuro se detecte algún signo de vida en muestras marcianas. La NASA planea lanzar en 2020 una sonda robótica destinada a recoger material de Marte que sería transportado a la Tierra por misiones posteriores aún sin concretar. De producirse una contaminación, los científicos podrían encontrar microbios en las rocas marcianas que en realidad no fueran nativos del planeta vecino, sino emigrantes terrícolas de vuelta en casa. La situación es análoga a lo que sucede cuando se detectan indicios de microorganismos en meteoritos caídos en la Tierra. Hasta ahora, ha sido fácil determinar que se trataba de contaminaciones terrestres, salvo en los casos de restos inconcluyentes como los presuntos microfósiles del meteorito marciano ALH84001. Pero incluso suponiendo que la evolución hubiera seguido caminos tan paralelos en la Tierra y Marte que fuera imposible discernir entre microbios locales y visitantes, la conclusión final es que estamos ante un dilema de prioridades: ¿preferiremos abrir Marte a la experiencia humana y aceptar la inevitable contaminación, o mantener sus condiciones prístinas sin pisarlo jamás y convertirlo en el santuario natural más restrictivo del universo, donde ni siquiera los científicos que lo estudien tengan permitido el acceso? Vamos, que ni el Monte de El Pardo

Lo más difícil no es llegar a Marte, sino parar

Recientemente tuve ocasión de charlar con Juanjo Díaz Guerra, uno de los 39 candidatos españoles preseleccionados en primera ronda para el asentamiento que la organización Mars One pretende fundar en Marte. Juanjo me produjo la impresión de ser exactamente el tipo que querría allí arriba si yo fuera Bas Lansdorp: alguien con cimientos científicos –geógrafo y climatólogo–, pero también con el carácter resuelto y decidido de quien parece capaz de comerse Marte con patatas y sus dos lunas de postre. Juanjo tiene las ideas claras y no le asusta la certeza de que moriría sin ver de nuevo su planeta natal. Pese a todo, cuando le pregunté si tenía miedo, yo no me refería a la vida en Marte, sino al viaje. Aquí no vale el verso de Cavafis

Viajar a Marte no es empresa fácil. Solo un tercio de las misiones emprendidas hasta ahora ha cumplido sus objetivos. Incluso con el avanzado estado de la tecnología actual, hace poco más de dos años la misión rusa Fobos-Grunt, que debía cosechar muestras de una de las lunas de Marte y traerlas de vuelta, no logró escapar de la órbita terrestre y se precipitó al océano. Pero incluso si el largo camino hacia la Ítaca extraterrestre se cubre sin desgracias, una vez allí queda pendiente un grandioso desafío: aterrizar sin añadir un cráter más a la geografía marciana. Y lograr esto es infinitamente más arduo en Marte que en la Tierra.

Todos conocemos esas llameantes reentradas de las naves espaciales en la atmósfera terrestre, que en 2003 causaron la trágica desintegración del transbordador Columbia debido a un desperfecto en su coraza térmica. Y sin embargo, el hecho de que el aire no esté vacío, sino lleno de aire, es un gran aliado que permite a los astronautas frenar su vertiginosa caída para sobrevivir al impacto con el duro planeta.

Pensemos en la Estación Espacial Internacional (ISS), en la baja órbita terrestre. La sensación plácida de aparente ingravidez es solo una ilusión: la ISS está muy bien sujeta por la gravedad terrestre, que la mantiene en caída libre a una velocidad media de unos 27.700 kilómetros por hora. Cuando uno de los autobuses espaciales acoplados a ella quiere regresar, como las Soyuz rusas o los ya difuntos transbordadores de la NASA, basta un desacoplamiento y un ligero apretón al freno para que la pérdida de velocidad la arrastre a una órbita más baja, una que acaba cortando la superficie terrestre gracias al concurso del brutal rozamiento con la atmósfera.

Las naves necesitan además otros sistemas que ayudan a aminorar su marcha, como los paracaídas. En 1967, en plena carrera espacial, la primera Soyuz soviética sufrió un defecto en su sistema de paracaídas. Cuando la cápsula se estrelló contra el suelo viajaba a solo 140 kilómetros por hora, pero suficiente para matar a su único tripulante, el cosmonauta Vladimir Komarov.

El problema con Marte es que, a distintas reglas, el juego cambia. La presión atmosférica media en el planeta vecino es unas 167 veces menor que en la Tierra. El aire, casi todo dióxido de carbono, es tan tenue que el rozamiento y los paracaídas son insuficientes, lo que ha terminado con algunas sondas reventadas contra la roca marciana. El sistema utilizado en algunas de las misiones más recientes ha consistido en combinar los paracaídas con airbags que envolvían el aparato por completo para que rebotara una y otra vez contra el suelo hasta su parada completa. En palabras de Tommaso Rivellini, ingeniero del sistema de descenso y aterrizaje de la misión Mars Science Laboratory, “no es la caída lo que te mata, sino el aterrizaje”. La MSL, más conocida por el nombre de su rover, Curiosity, ha sido la última misión que ha tocado suelo con éxito. Rivellini y sus colaboradores diseñaron un sofisticadísimo sistema de descenso y aterrizaje en tres fases que se muestra en este vídeo:

(Embedded video from NASA Jet Propulsion Laboratory California Institute of Technology)

La nave se aproximó a Marte a más de 20.000 kilómetros por hora. Cuando el paracaídas se abrió tras la entrada en la atmósfera, la velocidad del aparato aún era supersónica, de unos 1.600 km/h. Aunque el paracaídas especialmente diseñado logró ralentizar el descenso, se requería la ayuda de retrocohetes. Por último, la tercera fase, llamada grúa aérea, evitaba que las turbulencias atmosféricas provocadas por los cohetes al acercarse al suelo inyectaran el polvo en todos los recovecos de la sonda, un inconveniente que no existía en la Luna por su total ausencia de atmósfera. Por increíble que parezca, el sistema de descenso funcionó a la perfección, y transcurridos los “siete minutos de terror” en los que no existió contacto con la nave, el Curiosity llamó a casa.

Claro que, una cosa es posar un cochecito de 900 kilos, y otra muy diferente hacer lo mismo con cargas de 40 a 80 toneladas. Algunos expertos estiman que, con la tecnología actual, el Curiosity marcó el tope de peso que hoy se puede hacer aterrizar en Marte. Para Robert Braun, antiguo ingeniero de la NASA y hoy en el Instituto Tecnológico de Georgia, con una vida dedicada a la tecnología de exploración planetaria, el reto se resume en “hacer aterrizar una casa de dos pisos, y quizá hacerlo junto a otra que se ha posicionado previamente con combustible y suministros”. Para Braun no se trata simplemente de un cambio de escala, sino que la tecnología deberá ser radicalmente nueva. Se barajan sistemas de paracaídas rígidos inflables y retrocohetes supersónicos, además de trayectorias de aerocaptura que describan una primera vuelta a gran altitud para reducir velocidad antes de la entrada, pero aún queda mucho camino por recorrer en los laboratorios de la Tierra antes de que una nave tripulada pueda fajarse contra la atmósfera marciana y acabar de una pieza.