Entradas etiquetadas como ‘terremotos’

¿Superluna? No esperen nada espectacular

Será mejor dejarlo claro antes de que se lleven la decepción por ustedes mismos: sí, la luna llena de la noche del domingo al lunes será la más grande desde enero de 1948, y no volverá a estar tan cerca de nosotros hasta noviembre de 2034.

Pero si esperan un espectáculo sobrecogedor como en esas fotografías tomadas con teleobjetivo que muestran gigantescos discos lunares, desengáñense: esta noche la Luna estará a 348.400 kilómetros de nosotros, y la diferencia de estos especialmente cercanos perigeos (máximo acercamiento orbital) es como máximo de unos 160 kilómetros, una minucia en comparación con el abismo que nos separa.

Haciendo una grosera conversión de distancias, imaginen que están sentados en el sofá de casa viendo la tele exactamente a tres metros de distancia. Ahora acérquense al televisor 1,38 milímetros. ¿Lo ven más grande? Solo los ojos muy bien entrenados notarán la diferencia a simple vista.

Imagen de Pixabay.

Imagen de Pixabay.

Dicho todo esto, siempre es una buena ocasión para mirar al cielo y renovar nuestra sorpresa por las maravillas que nos presenta cada noche sin que habitualmente prestemos demasiada atención. Pásmense ante la luna, aunque no sea súper.

¿Pero por qué entonces hablan de «Superluna»? Eso pregúntenselo al astrólogo Richard Nolle. Repito: astrólogo. No astrónomo. Según cuentan por ahí diversas fuentes y confirma él mismo en su web, fue Nolle, astrólogo profesional certificado, quien en 1979 acuñó el término Superluna para la revista Dell Horoscope; cuyo último número, por cierto, nos ofrece una mirada a los tres planetas exteriores para entender «las tendencias en las finanzas globales, los avances tecnológicos, las crisis ideológicas y la geopolítica explosiva».

Con este solemne acto de invención de palabras digno de Matías Martí, Nolle pretendía advertirnos de las «grandes tormentas, terremotos y erupciones volcánicas» causadas por estos perigeos lunares. Pero ¿hay algo de verdad en todo ello? Mareas más fuertes, seguro. En cuanto a lo demás, ha sido objeto de discusión durante largo tiempo.

Precisamente un estudio publicado en septiembre en Nature Geoscience correlacionaba datos sobre estrés mareal y seísmos, para concluir que «los grandes terremotos son más probables durante períodos de elevado estrés mareal», añadiendo que «la probabilidad de que una diminuta grieta en la roca se expanda a una ruptura gigantesca aumenta con los niveles de estrés mareal». Pero cuidado: los propios autores reconocían que «aún falta una clara relación causal entre los pequeños terremotos y la fase de estrés mareal». En resumen, los autores no defienden que el abrazo gravitatorio de la luna provoque los temblores, sino que aquellos que tienen lugar coincidiendo con mareas más intensas (todos los días se producen terremotos) tienen mayor probabilidad de alcanzar niveles catastróficos.

Claro que, si hay que atribuirle a alguien la autoría original de todo esto, desde aquí reclamo la primicia para el maestro Fogerty, quien 10 años antes que Nolle ya nos advertía sobre el influjo de la luna en los terremotos, tormentas y huracanes.

Terremoto: España (ahora ya sí) tiene un sistema de alerta de tsunamis (y hay riesgo)

Para comenzar, aquí va un recordatorio que continuaré repitiendo todas las veces que haga falta: olvídense del señor Richter. Lo ocurrido la pasada madrugada en el mar de Alborán ha sido un terremoto DE MAGNITUD 6,3. Hasta ahí. No sigan. Punto. Final.

Efectos del terremoto en Melilla. Imagen de Francisco García Guerrero / EFE.

Efectos del terremoto en Melilla. Imagen de Francisco García Guerrero / EFE.

En un artículo anterior, con ocasión del seísmo de Ossa de Montiel (Albacete) en febrero de 2015, ya expliqué algo sobre las diferentes maneras de medir los seísmos, pero quédense con esta idea esencial: la escala de Richter (también llamada Magnitud Local o ML) es, en palabras del Servicio Geológico de EEUU (USGS), «un método anticuado que ya no se utiliza». Y aunque se utilizara, no tiene grados; la manera correcta sería «magnitud X en la escala de Richter» (incluso hablar de escala es inapropiado, dado que no existe un máximo). El terremoto de Alhucemas (esta es la ubicación de referencia que toma el USGS en su información sobre el temblor) ha sido de magnitud de momento (MW) 6,3; o simplemente, de magnitud 6,3. Fácil, ¿no?

Ahora bien, la pregunta es: ¿qué diferencia hay? Y la respuesta es: depende. Hasta un cierto nivel, la escala ML de Richter y la de magnitud de momento MW son equivalentes. La escala de Richter dejó de utilizarse porque para temblores mayores de 6,5 subestima la energía liberada por el seísmo, en mayor medida cuanto más fuerte. Es decir, que en cierto modo se satura por encima de 6,5. A una magnitud de 6,3 estamos cerca del límite; pero aunque en este caso el error no fuera considerable, el hecho es que la información oficial del Instituto Geográfico Nacional sobre este último terremoto se ha medido, y por tanto facilitado a los medios, en la escala de magnitud de momento MW, y es así como debe publicarse y decirse.

Otra cosa es la intensidad. Este es un parámetro que corresponde a cómo lo sentimos y qué tipo de daños provoca; es decir, que no tiene un valor absoluto para cada seísmo, sino que varía en función del lugar. Como es lógico, en general es mayor cuanto más cerca del epicentro, aunque también influyen otros factores. En nuestro caso, la intensidad se mide por la Escala Macrosísmica Europea 1998, o EMS-98, que comienza en I (no sentido) y asciende hasta XII (completamente devastador). El de anoche alcanzó una intensidad máxima de V (fuerte) en Melilla, IV (ampliamente observado) sobre todo en localidades costeras de Málaga y Granada, y descendió hacia el norte hasta una intensidad de II (apenas sentido) en lugares tan alejados como Madrid.

Respecto a la causa del terremoto, es la misma de ocasiones anteriores, responsable también de los grandes seísmos de las últimas décadas en Turquía o Italia: vivimos sobre un pequeño anillo de fuego, la confluencia entre las placas tectónicas Euroasiática y Africana, que viene del Atlántico, pasa por el estrecho de Gibraltar y recorre el Mediterráneo. Los mayores seísmos registrados con instrumentos en esta confluencia fueron el de la isla griega de Citera en 1903, de magnitud 8,2, y el de Rodas en 1926, con 7,8. Por suerte, en la Península Ibérica nos hemos librado hasta ahora de los temblores más violentos, exceptuando el terremoto de Lisboa de 1755, al que se le calcula una magnitud de 8,0.

Esquema de las placas tectónicas terrestres. Imagen de Wikipedia.

Esquema de las placas tectónicas terrestres. Imagen de Wikipedia.

En el caso de Lisboa, a las sacudidas de la tierra se unió un segundo azote catastrófico, un tsunami que arrasó la ciudad y las localidades costeras. Y no ha sido el único caso en el que un terremoto en nuestra zona de riesgo ha levantado olas devastadoras. De hecho, el seísmo más letal documentado en la historia de Europa, el de 1908 en la ciudad siciliana de Messina, unió a su magnitud de 7,2 un tsunami con olas de 12 metros que multiplicó la destrucción. El 91% de las estructuras de la ciudad se desplomaron, cobrándose un coste en vidas de entre 60.000 y 120.000.

Y dado que no estamos a salvo de un riesgo semejante en el futuro, es un buen momento para recuperar un comunicado que el Ilustre Colegio Oficial de Geólogos (ICOG) publicaba el pasado 17 de septiembre: «en España no tenemos un sistema de alerta de tsunamis como existe en el Pacífico», decía el ICOG. Los geólogos recuerdan que ya hemos sufrido anteriormente esta amenaza: «el terremoto de Lisboa de 1755 originó un maremoto que causó más de mil muertos en las costas de Huelva y Cádiz». Y terminan: «tras el terremoto de Lorca, en mayo de 2011, el Colegio de Geólogos implementó un decálogo para la prevención del riesgo sísmico en España, donde, entre otras medidas, se proponía actualizar la norma sismorresistente en España. Aún no se ha hecho nada».

Esperemos que no llegue el día en que la venda tenga que ponerse sobre una herida ya abierta.

Actualización (30/01/2016): España ya sí cuenta con un sistema de alerta de tsunamis, plenamente operativo desde el 1 de enero de 2015. Más información aquí.

Cosas que nos enseña el terremoto de ayer (descanse en paz, señor Richter)

Al entrar hoy en la web del Instituto Geográfico Nacional en busca de información oficial sobre el terremoto de ayer, confiaba en encontrar en la página principal una nota de prensa a toda pantalla. Nada de eso; en su lugar, se me aparece la típica web ministerial diseñada para los de dentro, no para los de fuera.

Por esos avatares extraños de la vida, que en mi caso darían para llenar más de un folletín, en una época pasada trabajé durante una temporada en usabilidad de páginas web. Mis jefes de entonces, los que verdaderamente entendían del tema, insistían en que el diseño de una página web debe plantearse pensando qué buscará el usuario, y no el director general. Un magnífico ejemplo de usabilidad suelen ofrecerlo las webs de muchas agencias y organismos de EE. UU., orientadas al usuario y primando la difusión sobre la información corporativa, que no interesa a nadie (¿en cuántas webs de ayuntamientos españoles el primer enlace que se encuentra es «el alcalde»?). Esto es España; y tras uno de los terremotos más intensos de los últimos años, la página principal del IGN no incluye mención alguna, limitándose a presentarnos un bonito muestrario de enlaces ilustrados.

No pretendo hacer demasiada sangre con esto, pero un síntoma de lo que acabo de explicar suele descubrirse al pinchar en el enlace a las FAQ (preguntas frecuentes) de una web. Se supone que esta sección está concebida para dar respuesta a aquellas cuestiones que los visitantes de la web formulan más o menudo, o formularían en caso de formular alguna. Cuando uno pincha en las FAQ de la web del IGN, la primera pregunta con la que uno se topa es la siguiente: «¿Es lo mismo IGN que CNIG?». ¡No! ¿En serio?

Por supuesto, y una vez se llega a la sección sobre sismología, ahí están todos los datos técnicos, tal como se espera de los profesionales cualificados que trabajan en el IGN. Pero una vez más, sin un comunicado que acerque la información al público. Hasta donde he podido saber, la única nota de prensa mencionada por los medios fue difundida por un órgano político, la Delegación del Gobierno en Castilla-La Mancha (nota de prensa que, por cierto, tampoco está disponible en internet).

Es justo añadir que el IGN tuitea la información sísmica, pero sus tuits no están pensados para que los lea el terrícola medio. Juzguen ustedes: «SISMO 23/02/2015 16:16:31GMT lat=39.04 lon=-2.65 Depth=14km 5.4mL NE OSSA DE MONTIEL.AB CALCULO PROVISIONAL SIN INTERVENCION HUMANA». Lo único claro es que en la elaboración de este tuit no ha habido intervención humana. El Instituto también publica información en su Facebook con un enlace directo a la página del terremoto, pero una vez más, la información no es útil ni digerible para la población ni para los medios.

En contraste, es de aplaudir que la web del Colegio Oficial de Geólogos (ICOG) sí dedique el espacio central de su página principal a la información, con una nota de prensa sobre el terremoto de Ossa de Montiel en cabeza. Pero ¿es lógico que sea un colegio profesional el único canal técnico oficial? ¿Deberían informar los Colegios de Médicos sobre brotes epidémicos, o acaso alguien, y no solo yo, echa de menos un responsable público humano con ojos, nariz, boca y conocimientos técnicos, que comparezca en situaciones de posible alerta y además se ocupe de divulgar información usable y comprensible?

Sismógrafo en el Observatorio Weston de Massachusetts (EE. UU.). Imagen de Z22 / Wikipedia.

Sismógrafo en el Observatorio Weston de Massachusetts (EE. UU.). Imagen de Z22 / Wikipedia.

Otra cosa que debería enseñarnos el caso de ayer es que tanto las fuentes como los medios deberíamos ser más pulcros a la hora de especificar cómo de fuerte ha sido un seísmo. Entramos aquí en el famoso territorio Richter, al que ya me referí en un post anterior sobre el uso de parámetros y magnitudes científicas en los medios de comunicación. Si uno repasa las informaciones publicadas, el ICOG habla de «magnitud local de 5,4» y de «intensidad entre 3 y 4 en la escala Mercalli». El IGN cita una magnitud mbLg de 5,2. El Servicio Geológico de EE. UU. (United States Geological Survey, USGS), que vigila los temblores en todo el mundo, publica una magnitud de 5,0. Los medios se reparten entre «magnitud de 5,2» y «5,2 grados en la escala de Richter». ¿Qué significa todo este embrollo? ¿Cómo demonios se miden los terremotos?

En una ocasión, hace años, expresé esta preocupación en la reunión de redacción de un diario en el que trabajaba. Los rostros opacos del resto de los allí reunidos me dieron a entender claramente que mi inquietud les parecía una nimiedad indigna de merecer la más mínima de sus molestias. Y sin embargo, si estamos de acuerdo en que el periodismo debe velar por la información rigurosa, es esencial que en cuestiones de ciencia también sepamos transmitir adecuadamente una información que se ajuste a parámetros válidos, rigurosos, estandarizados y, sobre todo, comparables.

Un ejemplo: ¿alguien sabe qué es un grado centígrado? Según la Wikipedia, «es la unidad termométrica cuyo 0 se ubica 0,01 grados por debajo del punto triple del agua y su intensidad calórica equivale a la del kelvin». La cuestión es que lo realmente importante para la mayoría no es saberse la definición, sino el hecho de poder apreciar una magnitud en comparación con otras. Cuando el informador/a del tiempo dice que la temperatura en Tenerife es de 20 grados y en Burgos de -10, todo el mundo sabe interpretar esta información.

El problema con los terremotos es que existen diferentes maneras de medirlos. La magnitud es un parámetro intrínseco del seísmo, mientras que la intensidad a la que se refiere el ICOG se mide en términos de los daños que produce, por lo que es diferente según el lugar. Desde el punto de vista científico, lo que importa es la magnitud, un parámetro logarítmico en base 10; un seísmo de magnitud 5,0 tiene una amplitud diez veces superior a otro de magnitud 4,0, y libera 31 veces más energía.

Pero la complicación no acaba ahí: la magnitud puede medirse con distintas fórmulas. El dato del terremoto de Ossa de Montiel se ha expresado en magnitud mbLg. Sin embargo, y aquí vienen los matices, la culpa de la confusión no la tienen solamente algunos redactores mal informados. Conozco el caso de algún periodista meticuloso que ha preguntado al geólogo: «¿Esto es en la escala de Richter?». Y el geólogo, un poco perezoso en su explicación, se ha limitado a responder: «Bueno… da lo mismo. Sí, sí, en la escala de Richter».

El sismólogo Charles Richter (1900-1985), hacia 1970. Imagen de PD-USGOV / Wikipedia.

El sismólogo Charles Richter (1900-1985), hacia 1970. Imagen de PD-USGOV / Wikipedia.

El geólogo no miente; un terremoto de magnitud mbLg 4,0 es también de magnitud 4,0 en la escala de Richter, también llamada magnitud local o ML. Pero el geólogo no se ha tomado la molestia de explicarle al periodista que no se le ocurra compararlo con otros temblores más potentes, como el de 9,1 que en 2004 causó el tsunami en el Índico, porque en este caso estará metiendo la pata: las escalas de Richter y mbLg dejan de ser equivalentes a magnitudes elevadas (según distintas fuentes, por encima de 6,5 o incluso de 5,0). Y tampoco le ha advertido de que no lo compare con seísmos de otros países, porque en muchos de ellos la escala de Richter pasó a mejor vida hace años; según el USGS, «es un método obsoleto que ya no se utiliza».

Pero incluso descontando la pereza del geólogo, el periodista machaca su propio error cuando añade de su cosecha y escribe «grados en la escala de Richter», dado que la escala de Richter no tiene grados (ni siquiera es una verdadera escala, ya que no tiene máximo). Los grados son propios de la intensidad, no de la magnitud. Por todo esto, sería conveniente que quienes trabajamos en los medios diéramos ya eterno descanso al señor Charles Richter, eminente sismólogo y apasionado nudista, y nos ciñéramos a hablar de «terremoto de magnitud X». Y una petición a los geólogos: por favor, no sean perezosos; tómense un minuto y expliquen.

Una última cosa: epi = arriba; hipo = abajo. El origen del terremoto en el subsuelo es el hipocentro. El epicentro es el punto correspondiente en la superficie. ¡No existe un epicentro a dos kilómetros de profundidad!

Lo imposible es lo cotidiano en la vida de un planeta

Aunque a nuestros ojos puedan parecer lo imposible, los cataclismos naturales llevan miles de millones de años moldeando la arcilla de este planeta. Para el pequeño accidente terrestre que es el ser humano, son inmensas tragedias que jamás se olvidarán. Pero para esta roca mojada no son más que retoques de cutis apenas perceptibles, como pinceladas del photoshop planetario. Incluso los mayores desastres, como el tsunami del Índico del que pronto se cumplirán diez años y que en pocos minutos arrastró más de 200.000 vidas, son para la Tierra como la ceniza que cae sobre el papel y que se barre con el canto de la mano.

Hace 180 años, un abogado y geólogo inglés llamado Charles Lyell concluyó de sus observaciones que la Tierra no se formó por una ráfaga súbita de grandes procesos catastróficos, sino por la acumulación de los mismos cambios constantes, casi inapreciables para el ojo humano, que hoy se suceden. Esta teoría del actualismo, que ya antes de Lyell había sido propuesta por el escocés James Hutton, fue a la geología lo que la evolución darwiniana a la biología. De hecho, Lyell fue amigo de Charles Darwin, y sus Principios de Geología, de los cuales se deducía que nunca existió un Diluvio Universal sino simples chaparrones frecuentes, fueron una de las principales inspiraciones para el padre de la evolución.

Entre estos fenómenos cotidianos y sigilosos no solo están la erosión del viento o el aluvión de los ríos, sino también los que a nuestros ojos son catástrofes extremas: terremotos, erupciones volcánicas, inundaciones, impactos de asteroides… En los países anglosajones, estos fenómenos aún se conocen en lenguaje legal como «actos de Dios», según el origen que durante siglos se les atribuía. Hoy conocemos sus causas, pero nuestra tecnología aún se queda corta a la hora de predecirlos. En 2012, seis científicos italianos fueron condenados a seis años de cárcel por el homicidio involuntario de 309 personas al no haber pronosticado adecuadamente el terremoto de L’Aquila en 2009, una muestra más de que las mayores fallas no son las geológicas, sino las existentes entre la ciencia y la sociedad. El día 10 de este mes, el tribunal de apelación ha revocado la sentencia, absolviendo a los científicos acusados.

Litografía de la erupción del Krakatoa de 1883, creada en 1888. Imagen de Wikipedia.

Litografía de la erupción del Krakatoa de 1883, creada en 1888. Imagen de Wikipedia.

Pero sin duda, los menos sigilosos entre los sigilosos son los volcanes. Y el que menos, el Krakatoa. El 26 y 27 de agosto de 1883, este volcán indonesio sufrió una serie de colosales explosiones que volatilizaron la mayor parte de su isla y alteraron profundamente la geografía de otras cercanas. De la noche a la mañana, el archipiélago de Krakatoa quedó irreconocible. Pero esta no fue una explosión cualquiera: su potencia se calcula en unas 13.000 bombas de Hiroshima. El pasado septiembre, la revista de ciencia Nautilus publicaba un artículo en el que el periodista y físico Aatish Bhatia analizaba el ruido producido por la explosión del Krakatoa, el sonido de mayor volumen jamás escuchado en la historia escrita del planeta.

Bhatia señala que el estallido del volcán llegó a escucharse a casi 5.000 kilómetros de distancia, como de Dublín a Boston. El autor cita las palabras que el capitán del navío británico Norham Castle, a solo 65 kilómetros de la isla, escribió en su cuaderno de bitácora: «Las explosiones son tan violentas que han reventado los tímpanos a más de la mitad de mi tripulación. Mis últimos pensamientos están con mi querida esposa. Estoy convencido de que ha llegado el Día del Juicio Final». Basándose en los datos recogidos, Bhatia calcula que a 160 kilómetros de distancia del volcán el nivel de ruido fue de 172 decibelios, un volumen que el autor describe como «inimaginablemente alto»: el ruido junto a un motor de avión es de 150 decibelios, y cada 10 de aumento la percepción es que el volumen se duplica. De acuerdo a los registros de los barómetros en distintas ciudades del mundo, el autor estima que el sonido dio la vuelta al globo entre tres y cuatro veces a lo largo de unos cinco días.

Erupción del volcán Kilauea (Hawái) en 2009. Imagen de Javier Yanes.

Erupción del volcán Kilauea (Hawái) en 2009. Imagen de Javier Yanes.

Y aún hay que decir que esto no es nada si se compara con la explosión del supervolcán de Yellowstone acaecida hace 2,1 millones de años. Según datos publicados, esta erupción fue 2.500 veces mayor que la del Monte Santa Helena en 1980, la cual a su vez fue equivalente a 1.600 bombas de Hiroshima. Así que una sencilla cuenta con fines puramente recreativos arroja que la erupción de Yellowstone fue como cuatro millones de bombas atómicas. O, para el caso, más de 300 Krakatoas explotando al mismo tiempo y en el mismo lugar. La palabra inimaginable se queda corta para describirlo. Y en cuanto al sonido que esta explosión pudo producir, baste decir que los 220 decibelios de un cohete espacial al despegar son suficientes para fundir el hormigón, motivo por el cual los ingenieros deben situar sistemas de reducción de ruido para que este no destruya el propio cohete.

Para deleitarnos con la belleza letal de los volcanes, dejo aquí unos vídeos de la lava del Kilauea. Este volcán en la Isla Grande de Hawái lleva en erupción continua desde 1983. Cuando tuve la ocasión de contemplarlo, hace cinco años, la lava aún caía directamente al mar a través de un tubo subterráneo, ofreciendo imágenes apocalípticas como la que acompaña a este artículo. Pero recientemente la lava ha comenzado a fluir también hacia el interior de la isla, cortando carreteras y amenazando a las poblaciones cercanas. Lo que también ha dado ocasión de producir vídeos como estos, alguno de ellos con cierto ánimo de experimentación gamberra.