BLOGS
Ciencias mixtas Ciencias mixtas

Los secretos de las ciencias para
los que también son de letras

Los Nobel de Física y Química premian los chips prodigiosos

Si no fuera porque no es así como funciona, se diría que los comités de los Nobel de Física y Química de este 2016 se han puesto de acuerdo para premiar un mismo campo, las nanocosas del nanomundo. Dirán ustedes que gran parte del trabajo de la física, la química y la biología consiste precisamente en indagar en todo aquello que no podemos ver a simple vista, y no se equivocarán. Si fuera posible miniaturizarnos –esta semana volví a ver aquella divertida película de Dante y Spielberg, El chip prodigioso–, la naturaleza no tendría misterios para nosotros. No habría nada que investigar; bastaría con abrir los ojos y ver qué pasa.

Fotograma de la película 'El chip prodigioso' (1987). Imagen de Warner Bros.

Fotograma de la película ‘El chip prodigioso’ (1987). Imagen de Warner Bros.

Pero dentro de todo ello, hay un área transversal de la ciencia que se dedica específicamente a explorar cómo es el paisaje a esa escala diminuta, cómo son sus montañas, valles y costas, y a fabricar aparatos que puedan desenvolverse en ese entorno de lo diminuto del mismo modo que lo hace un rover en Marte. No es un minimundo ni micromundo, ya que el prefijo “micro” comprende los tamaños en el rango de la célula y sus partes. La unidad de medida allí es el nanómetro, la millonésima de milímetro, y desde ahí hacia abajo. En algún momento, los científicos comenzaron a referirse a ese mundo añadiéndole un “nano”: nanotecnología, nanoingeniería, nanociencias.

Nuestro mundo tiene sus formas, lo que llamamos el relieve topográfico. Esas formas pueden cambiar a lo largo del tiempo debido a fuerzas de la naturaleza, pero siguiendo ciertas reglas: cuando en una montaña se ha horadado una cueva, un derrumbamiento podrá hacerla desaparecer, pero la montaña no puede deshoradarse y volver a quedar como estaba. Y un río no puede correr sobre la cumbre de una montaña.

Hay una rama de las matemáticas que estudia las formas, o topos, y cómo pueden transformarse unas en otras a través de transiciones permitidas: por ejemplo, se puede deformar, pero no cortar y pegar. Una hoja de papel puede convertirse en una silla de montar, pero no en una bola. La topología se aplica a áreas de las matemáticas como el álgebra y la geometría, pero también a la física.

El funcionamiento de la materia está relacionado con su estructura. Por ejemplo, un metal conduce la electricidad porque permite el libre movimiento de los electrones. Algunos físicos exploran las fronteras de ese nanomundo, los límites exóticos de la materia donde aparecen propiedades inusuales; por ejemplo, los semiconductores o los superconductores. Como los paisajes, esa materia tiene sus formas y sus reglas, lugares inaccesibles por donde un río no puede discurrir, o un electrón no puede moverse. De la aplicación de la topología a estas formas exóticas de la materia y a sus cambios (como de sólido a líquido) pueden aprovecharse algunas de esas propiedades raras. La capacidad de manipular y controlar a voluntad la conductividad de un material es la base de toda la tecnología electrónica que utilizamos hoy.

El Nobel de Física 2016 ha premiado a los británicos (los tres trabajando en EEUU) David Thouless, Michael Kosterlitz y Duncan Haldane por haber sentado en los años 70 y 80 las bases de esa topología de la materia exótica y de sus transiciones de fase. Por cierto que el padre de Kosterlitz, Hans, bioquímico, se quedó a un paso del Nobel como uno de los descubridores de las endorfinas.

En ese nanopaisaje, a partir de los años 80 algunos investigadores empezaron a construir máquinas, sistemas formados por piezas que se mueven cuando se les aplica energía, del mismo modo que una batidora gira cuando se enchufa a la red eléctrica. Las piezas de estas máquinas son moléculas, diseñadas con una forma específica que les permite desempeñar la función deseada una vez que ocupan su lugar, tal como hacen los ingenieros industriales. La primera de estas piezas, obra del francés Jean-Pierre Sauvage en 1983, era una simple cadena de dos eslabones que permitía el movimiento libre.

La nanoingeniería de máquinas se inspira en la propia naturaleza. Unos años antes habían comenzado a descubrirse los primeros nanomotores (máquinas rotativas) naturales, comenzando por el flagelo que emplean algunas bacterias para propulsarse en el agua y que consiste en un mecanismo giratorio. En 1991, el escocés Fraser Stoddart logró construir un nanoanillo que podía girar y desplazarse alrededor de un eje. Ocho años después, el holandés Bernard Feringa construía el primer nanomotor, una especie de ventilador de una sola aspa.

Sauvage, Stoddart y Feringa han sido premiados con el Nobel de Química 2016. Desde entonces se han construido nuevas nanomáquinas, como nanoascensores o nanocarretillas. Algunas de ellas se inspiran en mecanismos previamente inventados por la naturaleza; por ejemplo, nuestros músculos funcionan gracias a una nanomáquina deslizante, un sistema similar al que también sirve para que nuestras células expulsen al exterior ciertas sustancias, como moléculas de defensa contra infecciones.

Nanocoche Nanobobcat, de la Universidad de Ohio. Imagen de OU.

Nanocoche Nanobobcat, de la Universidad de Ohio. Imagen de OU.

Se espera que en el futuro una de las principales aplicaciones de las nanomáquinas sea la medicina. Como en El chip prodigioso, pero con un Dennis Quaid molecular. También servirán para usos como construir nuevos sensores y sistemas de almacenamiento de energía. Por el momento, una de las ramas más sorprendentes de la nanoingeniería es la fabricación de nanocoches, máquinas capaces de desplazarse sobre una superficie utilizando una fuente de energía, por ejemplo la luz.

De hecho, este año se celebrará en Toulouse (Francia) la primera carrera mundial de nanocoches, como expliqué con detalle en un reportaje a finales del año pasado. Varios laboratorios del mundo han presentado sus prototipos de lo más variado, como una versión nanoscópica de Los autos locos. Estaba previsto que la carrera se celebrara el 14 y 15 de este mes, pero los organizadores han decidido posponerla para dejar algo más de tiempo a las nanoescuderías para que pongan a punto sus modelos, que deberán correr sobre una pista de oro en el vacío a -268 ºC.

3 comentarios

  1. Dice ser Antonio Larrosa

    Para mi, el acceso al estudio de ese nanomundo es el aceso a un mundo mágico incomprensible, aunque pienso que si estuvieramos inmersos en esa dimensión seguamente estariamos estudiando otros mundos aún más diminutos. vERDADERAMENTE LOS QUE MANEJAN ESAS CIENCIAS Y TÉCNICAS SON LOS SABIOS QUE MERECEN ALGO MÁ QUE EL PREMIO NOBEL.

    Clica sobre mi nombre

    08 Octubre 2016 | 17:56

  2. Dice ser Olga. Santisteban. Otegui

    Muy interesando y esclarecedor. Soy hermana y madre de cientificas e investigadoras..Que por cierto el Nobel de quimica. Holandes.. es el padre de un companera de m hija. En hora Buena a los premises. Y records a la direction de este periodico, un articulo Miro de semejante characteristics ( portadas de Nobel) que Les environment hace poco

    09 Octubre 2016 | 09:47

  3. Dice ser nestor

    Extraordinario adelanto en la ciencia y a que ésta con sus dudas es la mayor virtud del hombre al decir de C.Sagan
    lástima que en relación a las relaciones humanas, estamos en las antípodas.

    10 Octubre 2016 | 23:05

Los comentarios están cerrados.