BLOGS
Ciencias mixtas Ciencias mixtas

Los secretos de las ciencias para
los que también son de letras

Entradas etiquetadas como ‘genes’

La cara es el espejo de los genes, pero ¿cómo se produce ese reflejo?

La cara es el espejo del alma, dice un viejo refrán. El problema es que lo mismo decía la frenología, una ciencia muy popular en la primera mitad del siglo XIX que asociaba rasgos de personalidad con la forma del cráneo, de modo que era posible, por ejemplo, descubrir las tendencias criminales en la cara de alguien. Evidentemente esto no funciona así, y es que la frenología no era una ciencia, sino una pseudociencia. En realidad, la cara no es el espejo del alma: creo que todos conocemos a algún que otro cabrón cuyo rostro podría coronar la efigie de un angelito en cualquier friso catedralicio.

Si de algo es espejo la cara, es de nuestros genes. Es una obviedad, pero nos parecemos a nuestros padres, y nuestros hijos se nos parecen, debido a esa herencia que se transmite sin pasar por Hacienda ni pagar impuestos, la genética. Es otra obviedad, pero si no somos idénticos a nuestro padre o a nuestra madre es porque no somos clones, sino que procedemos en un 50% de papá y en el otro 50% de mamá. ¿Y por qué entonces no somos idénticos a nuestros hermanos?, tal vez se pregunten.

Imagen de Max Pixel / CC.

Imagen de Max Pixel / CC.

La respuesta está en dos mecanismos. En primer lugar, nuestros hermanos y nosotros recibimos ese reparto genético de nuestros progenitores al 50/50, pero esto significa que no recibimos el otro 50% de cada uno de ellos, y por tanto significa también que mi 50% de mi madre no tiene por qué ser el mismo 50% que el de mi hermano. Por ejemplo, tanto mi hermano como yo recibimos un cromosoma 5 de mi madre y otro de mi padre. Pero dado que mi madre tiene dos cromosomas 5, que ella a su vez heredó respectivamente de su padre y de su madre, mis abuelos maternos, tal vez el que yo he recibido procede de mi abuelo, mientras que a mi hermano le ha tocado el de mi abuela.

El segundo mecanismo complica aún más las cosas. Los espermatozoides y los óvulos son las células que solo tienen ese 50% del equipamiento genético total de quien los produce. Pero en realidad ese 50% que tiene, por ejemplo, el óvulo de una mujer, tampoco es una copia idéntica de un 50% de su genoma, debido a algo llamado recombinación genética.

Cuando se produce el óvulo, como hemos dicho llevará únicamente un cromosoma 5, ya sea el paterno o el materno. Imaginemos que ambos son bolas en un bombo de lotería y que elegimos una de ellas al azar. Pues bien, esta comparación no sirve, porque en realidad las dos bolas se intercambian pedazos entre sí antes de que una de ellas salga por el pitorro del bombo (disculpen mi desconocimiento del lenguaje técnico de los bombos de lotería).

En su lugar, nos sirve mejor el ejemplo de las cartas: los cromosomas 5 paterno y materno son dos barajas que se mezclan entre sí y luego vuelven a separarse en dos mazos para elegir solo uno de ellos. Así, los genes se barajan, de modo que el cromosoma 5 que recibo de mi madre no es idéntico a ninguno de los que ella recibió de su padre ni de su madre, sino una combinación de ambos, una nueva versión, un remix; una recombinación.

En realidad la historia tampoco acaba aquí, porque además existen mutaciones espontáneas, es decir, cambios que surgen porque sí (o por fallos en la maquinaria de los genes, o vaya usted a saber por qué). Y por último, existe además la epigenética, que es como un topping en los genes: el helado (gen) es el mismo, pero se le pueden echar encima virutas de chocolate o trocitos de cacahuete, y el sabor final cambia. La ración que recibimos de papá o mamá puede venir ya con esos toppings, pero también creamos los nuestros propios dependiendo de los factores ambientales a los que estamos expuestos.

Si dejamos de lado estos dos últimos efectos, la mutación espontánea y la epigenética (no es que carezcan de importancia, pero dejarlos de lado es una forma de facilitar y simplificar la aproximación teórica), hay un caso en el que sí existen dos personas clónicas entre sí, y es el de los gemelos idénticos.

Los astronautas gemelos Mark y Scott Kelly han servido para estudios genéticos sobre la influencia de las condiciones del espacio. Imagen de NASA.

Los astronautas gemelos Mark y Scott Kelly han servido para estudios genéticos sobre la influencia de las condiciones del espacio. Imagen de NASA.

A diferencia de los mellizos, que proceden de dos pares distintos de espermatozoide/óvulo y por tanto solo se parecen entre sí lo mismo que dos hermanos cualesquiera, los gemelos idénticos o monocigóticos proceden de un solo par espermatozoide/óvulo, un único huevo fecundado que se divide en dos embriones separados, ambos con exactamente la misma información genética. Este es el motivo por el que los gemelos son un recurso tan valioso para los estudios que tratan de relacionar genotipos (genes) con fenotipos (rasgos observables): son un experimento natural que permite estimar si un fenotipo concreto deriva exclusivamente de los genes o si también está influido por el ambiente, en función de que los gemelos se hayan criado juntos o no. Y si es lo primero, facilita llegar a saber cuáles son los genes implicados.

Respecto a esto último, no se fíen de todo lo que lean u oigan. Aunque coloquialmente todos, y me incluyo, tendemos a decir cosas como “este no tiene el gen de la simpatía”, lo cierto es que relacionar genes con rasgos es algo extremadamente complicado. Lo único que producen los genes son proteínas, no simpatía, instinto asesino ni habilidad para el bádminton.

Solo en unos pocos casos se ha podido correlacionar directamente un rasgo con un gen concreto como causa y efecto. Un ejemplo, y no es coña, es si el cerumen de los oídos es seco o húmedo. Ciertas enfermedades genéticas también siguen este patrón que se denomina herencia mendeliana. Pero la inmensa mayoría de los rasgos dependen de muchos genes, sin contar la influencia ambiental, y hallar relaciones con variantes génicas concretas requiere estudiar poblaciones muy grandes, obtener sus genomas, y procesar enormes volúmenes de datos con algoritmos sofisticados en ordenadores muy potentes. Estos estudios se conocen como Genome-Wide Association Studies (GWAS), o estudios de asociación en genomas completos.

Y volvemos al caso de la cara. El de los rasgos faciales es un buen ejemplo. Todos conocemos familias a cuyos miembros los sacaron del mismo molde, pero también casos contrarios en los que cada uno parece, nunca mejor dicho, de su padre o de su madre. Uno de los deportes no olímpicos más populares es sacar parecidos a cada bebé recién nacido, algo en lo que participa hasta el frutero de la esquina. Pero ¿cuáles son los genes que determinan esos parecidos familiares?

Es un caso muy difícil para los detectives genéticos; no solo porque probablemente sean muchos los genes implicados, sino porque además es difícil cuantificar lo que llamamos el parecido. Cuando Harry Potter creció, se convirtió en Frodo. Me confieso prácticamente incapaz de diferenciar por separado al tipo que hace de Capitán América del de Guardianes de la galaxia y Jurassic World. Incluso confundo a Natalie Portman con Keira Nightley, aunque probablemente sea un problema solo mío. En cambio, y como ya conté aquí, puedo distinguir fácilmente a Brian May de Isaac Newton porque del segundo solo tenemos pinturas al óleo y, además, está muerto. Pero ¿en qué parámetros concretos medibles se basan estos parecidos?

Imagen de Pixabay / CC.

Imagen de Pixabay / CC.

Por suerte, hoy la tecnología viene a echar una mano. Utilizando sistemas de imagen y algoritmos de procesamiento, es posible cuantificar los parámetros de los rostros tomando puntos y distancias en, por ejemplo, la punta de la nariz o las comisuras de los ojos. Esto es lo que ha hecho ahora un equipo de investigadores de las Universidades de Oxford y Surrey dirigido por Walter Bodmer, un genetista de largo prestigio. Los científicos han procesado de esta manera casi 3.500 caras de personas británicas, asiáticas y gemelos. Tras obtener sus parámetros faciales y sus genomas, han metido todos los datos en un sistema para hacer un GWAS, y de todo ello han podido identificar tres variantes de genes que influyen en los rasgos de la cara.

Según el estudio, publicado en la revista PNAS, dos de esos genes están ligados a los perfiles faciales en las mujeres, mientras que el tercero aparece vinculado a la forma de los ojos (es decir, a la forma de la parte de la cara que rodea los ojos) tanto en mujeres como en hombres. Así, ya tenemos nuevas pistas sobre cómo nuestros genes nos dan el aspecto que tenemos.

Pero como he dicho arriba, cuidado con hablar del “gen de la nariz respingona”: insisto, los genes solo producen proteínas, y son complejas interacciones bioquímicas posteriores las que llevan al rasgo. En concreto, una de las variantes identificadas por los investigadores produce una proteína implicada en la síntesis de esteroides, lo que da una idea que del gen al rasgo hay un largo trecho.

Y esto es solo el principio: según escriben los investigadores en el estudio, “utilizando métodos como los descritos, en el futuro podrán encontrarse muchos más efectos específicos y relativamente grandes de variantes genéticas en los rasgos faciales humanos”.

Una conclusión interesante del estudio es algo que ya podíamos intuir, pero que es necesario demostrar. Según Bodmer, “los gemelos idénticos criados juntos o por separado muestran parecidos faciales asombrosos, lo que sugiere que el control de los rasgos faciales humanos es mayoritariamente genético”. En otras palabras, que con más estudios de este tipo, en el futuro tal vez sea posible hacer un retrato robot de una persona conociendo solo sus genes, lo cual sería de inmensa utilidad para el trabajo de la policía científica. Sin contar que algún día las madres recién paridas no solo recibirán en el hospital la visita de los fotógrafos de bebés, sino también la del morfogenetista: sepa qué aspecto tendrá su bebé con 40 años…

Por qué NO nos parecemos más a nuestros padres

Gemelas en la película de Stanley Kubrick 'El resplandor' (1980). Imagen de Warner Bros.

Gemelas en la película de Stanley Kubrick ‘El resplandor’ (1980). Imagen de Warner Bros.

Cada vez que nace un bebé se repite la misma escena. Los familiares desfilan ante el nuevo y pequeño organismo humano despiezándolo figuradamente en un pastiche de elementos de distinto origen: la nariz es de su padre, las orejas de su madre, los ojos de su abuelo, y esos hoyuelos son típicos de los Martínez. Sabemos que nos parecemos en mayor o menor medida a nuestro padre, a nuestra madre y a sus familias respectivas, y tenemos también una idea de por qué no somos copias exactas de ninguno de nuestros antecesores; somos una sociedad genética participada al 50% por cada uno de nuestros dos accionistas.

Además, la transmisión de esos genes no se produce siempre en paquetes intactos y completos como quien hereda una biblioteca, sino que existe un proceso por el que los libros intercambian páginas entre ellos, dando lugar a nuevas obras. En el caso de los cromosomas, este barajado genético se llama recombinación, y origina nuevas piezas de información que no estaban presentes en ninguno de los padres. Este es un mecanismo que nos hace únicos, algo que se refleja también en nuestro aspecto diferenciado de los demás: como suele decir mi madre, todos iguales, con dos ojos, nariz y boca, y sin embargo todos distintos.

Alguno quizá pensará que a estas alturas deberíamos tener perfectamente calibrado cómo los distintos genes influyen en nuestros rasgos o nuestras enfermedades. Ojalá fuera así. No cabe duda de que el logro de secuenciar el genoma humano, o mejor dicho los genomas humanos, ha sido un avance clave para asociar más fácilmente ciertos caracteres a determinados genes. El problema es que la mayoría de nuestros rasgos no responden a lo que se conoce como herencia mendeliana, la que se comporta a grandes rasgos como un código más o menos binario con variaciones deterministas. La gran mayoría de lo que somos depende de complejas influencias mutuas entre distintos genes, interacciones que son difíciles de desentrañar y que aún prometen siglos de investigación por delante.

En ocasiones, los investigadores pueden llegar a descubrir algunas asociaciones de diferentes rasgos comparando genes y fenotipos de personas concretas. Pero aunque ya se han secuenciado más de 200.000 genomas humanos, aún no hay suficientes datos como para tener la seguridad de que los resultados son estadísticamente significativos. Un equipo de científicos de la Universidad de Harvard y el Instituto Tecnológico de Massachusetts ha elaborado un nuevo modelo matemático que trata de aprovechar el volumen de datos disponible hoy para establecer correlaciones entre distintos rasgos genéticos y enfermedades, un tipo de estudio que en el futuro podría servir para estimar, por ejemplo, el riesgo de padecer una determinada dolencia a partir de ciertos caracteres físicos o de personalidad.

Según escriben los investigadores en su estudio, disponible en la web de prepublicaciones bioRxiv, el estudio de 25 rasgos ha encontrado una correlación significativa entre la anorexia nerviosa y la esquizofrenia, o entre tastornos de la alimentación y desórdenes psicóticos. Las conclusiones vienen respaldadas por el hecho de que el modelo muestra correlaciones ya conocidas, como lípidos en plasma y enfermedad cardiovascular o diabetes tipo 2 y obesidad, o el efecto protector de la esquizofrenia sobre la artritis reumatoide. Los resultados muestran una ausencia de asociación entre alzhéimer y enfermedades psiquiátricas, lo que para los investigadores sugiere que se trata de bases genéticas distintas. El estudio es un interesante punto de partida para otros análisis futuros que podrían hallar relaciones hasta ahora insospechadas entre distintos rasgos genéticos.

Pero por si fuera poca la dificultad de predecir los rasgos y enfermedades a partir del genoma, las cosas se complican aún más cuando el resultado de nuestros genes no solo depende de la secuencia de ADN, sino además de otras modificaciones químicas que no dejan reflejo en el código de nuestros cromosomas. Esto es lo que se conoce como epigenoma, y en las últimas décadas ha pasado de ser un fenómeno casi anecdótico a revelar una enorme importancia en cómo nuestros genes fabrican lo que somos. Las modificaciones epigenéticas –literalmente, sobre la genética– pueden ser de varios tipos, como la alteración química de los genes por un proceso llamado metilación, o el control de la expresión de los genes por unas proteínas unidas al ADN llamadas histonas, o la regulación a través de pequeñas cadenas de ARN que se unen a los genes y los enmascaran.

La epigenética se ha convertido en un activo campo de estudio no solo porque ejerce un enorme poder sobre el control de los genes, sino además porque estas modificaciones, por ejemplo en el caso de la metilación, pueden surgir en cualquier momento de la vida de una célula por razones que aún no llegan a comprenderse del todo, pero que al menos en algunos casos pueden deberse a factores ambientales, como la alimentación o los hábitos de vida. Además, las modificaciones epigenéticas pueden transmitirse a la descendencia, por lo que pueden ser otro factor de aquello que nos diferencia de nuestros padres.

Un ejemplo de ello se ha publicado esta semana en la revista PNAS. El caso descrito por un equipo de investigadores de la Universidad de Virginia (EE. UU.) se refiere a la oxitocina, una molécula del sistema endocrino que actúa también como neurotransmisor y que suele conocerse popularmente como la “hormona del amor”: está presente en todo el proceso de la maternidad, contribuye a la afectividad y al refuerzo de los vínculos emocionales, y también desempeña un papel en el orgasmo. Se ha demostrado anteriormente que la oxitocina puede tener un efecto ansiolítico, y actualmente se investiga la función de esta hormona en desórdenes afectivos y sociales.

La oxitocina actúa a través de una molécula receptora codificada por un gen llamado OXTR. La metilación de este gen resulta en una menor presencia del receptor y por tanto en una atenuación de la acción de la hormona. Los científicos han estudiado la relación de esta modificación, medida en el ADN de la sangre, con la activación de regiones del cerebro, observada por técnicas de neuroimagen, y con las respuestas emocionales al contemplar expresiones faciales negativas, todo ello en una muestra de 98 individuos.

Los resultados muestran que, tal como los investigadores proponían, los voluntarios con menor metilación de OXTR, es decir, con mayor actividad de oxitocina, mostraban menores reacciones de miedo y ansiedad ante estímulos visuales. “Los individuos con menor metilación y que teóricamente tienen mayor acceso a la oxitocina endógena muestran una respuesta atenuada a los estímulos negativos”, escriben los científicos, añadiendo que estos sujetos tienen una menor probabilidad de desórdenes de percepción social.

Pero las implicaciones del estudio van más allá, confirmando la idea actual de que la epigenética puede ser una fuente esencial de esas variaciones que nos apartan de la herencia de nuestros padres: “Nuestros resultados se añaden a la importante y creciente literatura que implica la variabilidad epigenética como motor de la variabilidad individual en la conducta compleja”, concluyen los investigadores. “La epigenética probablemente tendrá un papel en aumento en nuestra comprensión de la relación entre genes y comportamiento, y puede expandir los modelos de susceptibilidad diferencial a los desórdenes psiquiátricos y del desarrollo”.

Ejemplos como este ilustran el avance hacia un estado de la técnica que hoy es ciencia-ficción: conociendo el genoma y el epigenoma de una persona no solo podríamos reconstruirla físicamente, sino incluso conocer los rasgos de su personalidad. La ciencia-ficción, como decía Ray Bradbury, es el arte de lo posible. Y esto es teóricamente posible, aunque los obstáculos técnicos aún son descomunales. Una tecnología semejante tendría aplicaciones enormemente beneficiosas, por ejemplo en criminología, si a partir de una muestra de ADN de sangre o piel se pudiera confeccionar un perfecto retrato robot de un criminal. Pero no cabe duda de que también abriría una puerta a otros usos menos deseables, comenzando por la eugenesia. La historia demuestra que, hasta ahora, ninguna puerta abierta por la tecnología ha vuelto a cerrarse, por lo que dependerá de nosotros el aprender a manejar lo que en el futuro tendremos entre las manos.