Entradas etiquetadas como ‘bridgmanita’

La Tierra oculta otro océano Pacífico en su interior

Un simple vistazo a cualquier dibujo o maqueta del Sistema Solar nos deja algo claro: no sabemos si la Tierra es un lugar privilegiado en el universo, pero no podemos negar que es diferente a sus vecinos planetarios. Y lo que más llama la atención a primera vista es el agua. Aunque ya expliqué aquí que, si la roca mojada fuera del tamaño de una pelota, en toda esa aparente masa de agua apenas podríamos hundir el bisel de la uña, no cabe duda de que este medio acuoso diferencia a nuestro planeta, hasta tal punto que sin él no viviríamos. Pero ¿de dónde viene toda esa agua? Geólogos y científicos planetarios se han formulado esta pregunta durante décadas, sin que hasta el momento se haya llegado a una conclusión definitiva.

El cometa 67P/Churyumov-Gerasimenko fotografiado desde el módulo 'Phila' de la sonda 'Rosetta'. Imagen de ESA / Rosetta / Philae / CIVA.

El cometa 67P/Churyumov-Gerasimenko fotografiado desde el módulo ‘Phila’ de la sonda ‘Rosetta’. Imagen de ESA / Rosetta / Philae / CIVA.

Dado que resultaría improbable que a la Tierra le hubiera tocado el Gordo de la humedad durante la formación del Sistema Solar, y que además esa agua no se hubiera volatilizado cuando el planeta era una naciente bola de fuego, los científicos especulan que los océanos podrían haber llegado posteriormente en cómodas dosis, a bordo de cometas y asteroides. Analizar esta posibilidad es precisamente uno de los objetivos de la misión Rosetta de la Agencia Europea del Espacio (ESA), que el pasado 12 de noviembre fue el centro de atención de los medios cuando su módulo Philae se posó sobre el cometa 67P/Churyumov-Gerasimenko; una proeza técnica que hoy le ha valido a Rosetta el premio de la revista Science al Breakthrough of the Year 2014, el avance científico más importante del año que termina.

Sin embargo, los resultados ya cosechados por Rosetta apuntan a que no fueron objetos como el cometa Chury los que llevaron el agua a la Tierra primitiva. El instrumento ROSINA de la sonda ha determinado que la composición del agua de Chury es significativamente diferente de la de los océanos terrestres desde el punto de vista isotópico. El agua siempre es H20, pero no todas las “H” son iguales. Algunos átomos de hidrógeno tienen un neutrón de más, lo que no afecta a su carga eléctrica, pero sí a su masa. Un neutrón de más es más peso, por lo que el agua formada por este tipo de hidrógeno, alias deuterio, se conoce como agua pesada.

Así pues, la idea es sencilla: los océanos de la Tierra tienen una proporción determinada de deuterio frente a hidrógeno, o ratio D/H. Para saber si un tipo concreto de objeto espacial pudo contribuir a la formación de los océanos terrestres, se mide su D/H y se comprueba si coincide con el terrestre. Se sabe que hay una coincidencia en el caso de los asteroides del cinturón principal situado entre Marte y Júpiter. Pero dado que estos cuerpos no suelen transportar grandes cantidades de agua, los científicos suelen inclinarse más bien por las esponjas del espacio, los cometas.

En el caso de Chury, se ha descubierto que este cometa posee un ratio D/H que triplica el terrestre, como describieron los científicos de Rosetta la semana pasada en la revista Science. Esto no descarta que el agua de la Tierra pudiera proceder en parte de cometas; de hecho, otro de estos cuerpos, el 103P/Hartley 2, sí presenta un ratio compatible con el terrestre. Pero lo que sí se puede afirmar, en palabras de Kathrin Altwegg, investigadora principal de ROSINA, es que el hallazgo “rebate la idea de que los cometas de la familia Júpiter [como Chury] contienen solamente agua similar a la de los océanos terrestres”. Altwegg añade que sus resultados “añaden peso a los modelos que ponen más énfasis en los asteroides como el principal mecanismo de transporte de los océanos de la Tierra”.

Pero en medio de este debate sobre el origen del agua terrestre, una interesante hipótesis acaba de abrirse camino esta semana desde el Congreso de Otoño de la Unión Geofísica de EE. UU., que concluye mañana en San Francisco. Allí, los investigadores de la Universidad Estatal de Ohio Wendy Panero y Jeffrey Pigott han defendido que el origen del agua terrestre es, posiblemente y en gran parte, la propia Tierra. Nuestro planeta, según Panero y Piggott, oculta en su interior una cantidad de agua equivalente al océano Pacífico, y esta circula hacia la superficie y regresa al interior de un modo similar a como la corteza terrestre se recicla creándose y destruyéndose en los bordes de las placas tectónicas.

Relieve del fondo Atlántico. La cicatriz roja es la Dorsal Atlántica, una franja donde la corteza terrestre se crea separando progresivamente las costas de América de las de África y Europa. Imagen de NOAA / Rapture 2018 / Wikipedia.

Relieve del fondo Atlántico. La cicatriz roja es la Dorsal Atlántica, una franja donde la corteza terrestre se crea separando progresivamente las costas de América de las de África y Europa. Imagen de NOAA / Rapture 2018 / Wikipedia.

Los dos científicos se dedican a estudiar la composición del manto terrestre simulando sus infernales condiciones de presión y temperatura en el laboratorio. Recientemente hablé aquí de la bridgmanita, el mineral más abundante de la Tierra que solo se encuentra en el manto interno, a más de 65o kilómetros de la superficie, y cuyo nombre procede del padre de los experimentos de física a alta presión, el estadounidense Percy Williams Bridgman. Los trabajos de este físico fueron la base para la creación de la celda de yunque de diamante, un aparato que permite comprimir muestras microscópicas a millones de atmósferas.

Panero y Pigott han empleado este aparato para simular los minerales del manto y comprobar, con ayuda de modelos de simulación informatizada, si estas rocas pueden contener una cantidad apreciable de hidrógeno atrapada en su interior. De ser así, este podría reaccionar con el oxígeno presente en los minerales y formar agua. En otras palabras, los investigadores han estudiado si el manto terrestre contiene agua descompuesta que pueda recomponerse y circular hacia la superficie.

Los científicos han descubierto que la bridgmanita apenas contiene hidrógeno. Sin embargo este elemento sí está presente de forma notable en la ringwoodita, otro mineral que abunda en la zona de transición entre el manto superior y el inferior, así como en el granate, presente en el manto inferior. Según Panero y Pigott, estos minerales actúan como almacenes de agua en las profundidades de la Tierra, conteniendo una reserva equivalente a la mitad de todos los océanos, o similar al Pacífico. Esta agua, proponen los científicos, circula a través de la zona de transición entre el manto superior y el inferior, y asciende a la superficie junto con las rocas gracias a las corrientes de convección del manto, que no solo serían responsables de la tectónica de placas, sino también de regular la cantidad de agua de los océanos.

¿Cuál es el mineral más abundante de la Tierra?

Parece una pregunta del Trivial, pero la respuesta no es trivial. Es el mineral más abundante de la Tierra, ocupando alrededor de un 38% del volumen de esta roca mojada. Y, sin embargo, nadie lo ha tenido jamás en sus manos. Hasta tal punto es esquivo que hasta ahora ni siquiera tenía nombre oficial. Por fin lo tiene, gracias a un estudio publicado esta semana en la revista Science: presentamos la bridgmanita, mineral nombrado en honor del estadounidense Percy Williams Bridgman (1882-1961), Nobel en 1946 por sus experimentos de física a alta presión.

Una rebanada fina del meteorito Tenham L6 donde se muestra la localización de la bridgmanita. Tschauner et al., Science.

Una rebanada fina del meteorito Tenham L6 donde se muestra la localización de la bridgmanita. Tschauner et al., Science.

El motivo de que la bridgmanita hasta ahora no tuviera denominación formal es que el organismo encargado de aprobar los nombres de los minerales, la Asociación Mineralógica Internacional, requiere que para aceptar a un nuevo miembro en la familia se caracterice en detalle un espécimen hallado en la naturaleza. Y el motivo de que esto no haya podido hacerse antes con la bridgmanita es que este mineral no se encuentra precisamente al alcance de la mano: solo se encuentra en el manto inferior de la Tierra, entre 650 y 2.600 kilómetros por debajo de nuestros pies. Como es fácil imaginar, no es sencillo que materiales situados a esta profundidad lleguen hasta nosotros, con la excepción de los diamantes. Pero ya se sabe: un diamante es para siempre. La bridgmanita, no. Y al pasar de las monstruosas presiones del manto interno a la atmosférica de la superficie, su estructura se pierde.

Hace más de un siglo, Bridgman inventó una prensa capaz de lograr presiones de hasta 100.000 atmósferas, un avance revolucionario para su época. Durante el resto de su vida, el físico trató de emplear su ingenio para fabricar diamantes, con nulo éxito. Pero los geólogos pronto aplicaron su invención para simular las condiciones del interior de la Tierra, lo que catapultó el progreso de las geociencias. Desde los años 60 del siglo pasado, los estudios teóricos y experimentales comenzaron a proponer que el manto profundo terrestre está formado esencialmente por un silicato de magnesio-hierro –(Mg,Fe)SiO3– de alta densidad con una estructura cristalina determinada que se conoce como perovskita. Este mineral podría representar hasta un 93% del volumen del manto inferior.

El mineral, conocido informalmente como perovskita silicato, se ha simulado en el laboratorio, pero no existe en la superficie terrestre con su estructura intacta. La única fuente accesible de este material son los meteoritos procedentes del cinturón de asteroides entre Marte y Júpiter, donde los choques a alta velocidad someten a estos cuerpos a presiones y temperaturas similares a las del interior de la Tierra, y donde la estructura puede estabilizarse y quedar congelada con el rápido paso a condiciones más suaves. Pero los intentos anteriores que habían logrado identificar minúsculas vetas de bridgmanita en meteoritos por microscopía electrónica fracasaron cuando los procedimientos de análisis destruyeron la estructura sin lograr caracterizarla con la suficiente precisión.

Por fin, un equipo de investigadores de EE. UU. ha conseguido analizar la estructura de la bridgmanita presente en un fragmento de un meteorito llamado Tenham L6 que cayó en Australia en 1879 y del que, por cierto, cualquiera que lo desee puede hacerse con un pedazo por el módico precio de 600 dólares, unos 480 euros. Gracias a una técnica de rayos X que no daña la estructura del mineral, los científicos han logrado describirlo detalladamente.

Según el estudio encabezado por Oliver Tschauner, de la Universidad de Nevada, “el descubrimiento concluye medio siglo de esfuerzos por encontrar, identificar y caracterizar un espécimen natural de este importante mineral”. En un comentario adjunto al estudio, el geólogo Thomas Sharp, de la Universidad Estatal de Arizona, escribe: “Nuevas investigaciones de los efectos del choque en meteoritos y rocas terrestres proporcionarán muchos más ejemplos naturales de minerales del interior profundo de la Tierra o de otros cuerpos planetarios”.