La ciencia se acerca cada vez más a los embriones de laboratorio

En plena pandemia, el panorama no es el más propicio para que se abran paso hasta los medios otros avances científicos no relacionados con la crisis que nos ha cambiado la vida. Pero mientras, la ciencia sigue. En algunos casos surgen hallazgos que perdurarán entre los grandes hitos científicos del año. Y cuando coinciden en el tiempo varios estudios que alcanzan metas importantes en paralelo hacia un mismo terreno inexplorado, es algo más: es un síntoma de que un campo científico está llegando a su madurez productiva. Es como cuando los cerezos del Jerte estallan en flor todos a la vez; es la anticipación de que meses después habrá una cosecha abundante.

El campo en cuestión es el del desarrollo embrionario del ser humano. Dominar este conocimiento significa saber cómo y por qué se producen errores en la fertilización, la implantación y el crecimiento del embrión; errores que no solo pueden resultar en infertilidad, abortos espontáneos o enfermedades genéticas graves o letales (como las llamadas enfermedades raras), sino también en alteraciones capaces de afectar a la salud de las personas a lo largo de toda su vida. Y obviamente, saber qué es lo que funciona mal es el camino para lograr evitarlo. Otra línea en la cual estas investigaciones son esenciales es para comprobar la seguridad de los fármacos en los embriones en gestación, lo que evitaría casos trágicos como los provocados por la talidomida, que causaba malformaciones en los fetos.

El problema con la investigación del desarrollo embrionario es que se mueve en un terreno éticamente muy delicado. Necesitamos esa ciencia, pero debemos encontrar el modo de obtenerla sin quebrantar ciertas barreras éticas mayoritariamente aceptadas. Que, sean cuales sean, en cualquier caso nunca serán aceptables para todos los sectores de la sociedad. Por ejemplo, la Iglesia católica se opone a la fertilización in vitro por varias razones, una de ellas que el procedimiento genera embriones que van a congelarse para después, en muchos casos, acabar destruyéndose.

Algunos de estos embriones, previa donación voluntaria, se destinan a la investigación, y es difícil pensar en algún campo de avances en la salud humana que no se haya beneficiado de estas investigaciones, del cáncer a las enfermedades neurodegenerativas, de los trasplantes a las vacunas contra múltiples enfermedades infecciosas, incluyendo la COVID-19 (para la cual se han empleado también líneas celulares inmortalizadas de uso común en los laboratorios, obtenidas hace décadas originalmente a partir de células embrionarias). Pero por motivos religiosos, algunos países ponen trabas a la investigación con células embrionarias.

El estándar ético internacional recomienda no dejar progresar los embriones más allá de los 14 días, cuando empieza a producirse la gastrulación. Sin embargo, para muchos investigadores este límite es excesivamente corto, ya que impide estudiar infinidad de procesos clave del desarrollo embrionario. En mayo se espera una actualización por parte de la Sociedad Internacional de Investigación en Células Madre. No olvidemos que estos 14 días suponen un límite enormemente más restrictivo que el de varias semanas que en muchos países se aplica a la interrupción voluntaria del embarazo.

Como posible futura alternativa al uso de células de origen embrionario, en las últimas décadas ha progresado la obtención de células madre a partir de células adultas –no de personas adultas, que no necesariamente es lo mismo–, normalmente células de la piel (de forma más general, células somáticas). Se trata de desprogramarlas para devolverlas a su estado pluripotencial; algo así como borrar toda la memoria de un ordenador para restaurar la configuración de fábrica y obtener de nuevo un ordenador virgen.

Los sectores que se oponen al uso de células embrionarias aplaudieron el desarrollo de este tipo de células, cuyo nombre completo es células madre pluripotentes inducidas (iPSC), basándose en dos ideas: que suponen una alternativa al uso de embriones y que en todo caso no pueden obtenerse a partir de ellas verdaderos embriones viables.

Solo que esto no es exactamente así. Con respecto a lo primero, y al menos en el estado actual de la ciencia, debe aclararse que las iPSC son más bien una vía adicional que alternativa. Y se entiende fácilmente con un ejemplo sencillo: si uno pretende fabricar una cerveza a imitación de la Mahou, se necesita constantemente consumir mucha Mahou para determinar hasta qué punto lo que uno está fabricando se parece, desde su composición química hasta sus propiedades al paladar.

Y en cuanto a lo segundo, llegamos ahora a lo nuevo. La semana pasada, la revista Nature publicaba dos estudios, dirigidos respectivamente por la Universidad de Texas y la Universidad Monash de Australia, en los que se describe la obtención de algo muy parecido a blastocistos, o embriones tempranos, a partir de iPSC humanas.

Blastoides obtenidos por los investigadores de la Universidad Monash. Imagen de Monash University.

Blastoides obtenidos por los investigadores de la Universidad Monash. Imagen de Monash University.

Unos breves antecedentes: esas iPSC, las células desprogramadas, pueden entonces reprogramarse de nuevo para obtener, por ejemplo, células de músculo, de hígado o de cerebro. Pero si se alcanza una desprogramación aún mayor, es posible obtener células capaces de originar cualquier tipo de tejido, tal como lo hacen las embrionarias. Llevado esto al extremo, a partir de esas iPSC tal vez podrían llegar a obtenerse todos los tejidos de un organismo, y por tanto ese organismo completo. Esto supondría convertir las iPSC en un verdadero embrión.

Anteriormente se había logrado en ratones obtener blastoides, estructuras muy parecidas a los blastocistos pero que no llegan a poder generar embriones viables. Pero si los ratones sirven en el laboratorio como versiones simplificadas de los humanos, en muchos casos la diferencia de complejidad entre ellos y nosotros es tan grande que es muy complicado saltar ese abismo.

En la investigación con células humanas, hasta ahora se había conseguido generar alguna de las capas embrionarias (los distintos tipos de células del embrión más temprano que luego darán lugar a distintos sistemas del organismo), o estructuras completas cada vez más parecidas a embriones. En 2017, investigadores de la Universidad de Michigan obtuvieron modelos pseudoembrionarios de la fase posterior a la implantación en el útero, empleando tanto iPSC como células embrionarias. Dos años después el mismo grupo presentó un procedimiento mejorado que generaba estructuras un poco más parecidas a los embriones reales.

En 2020 un estudio en Nature codirigido por el español Alfonso Martínez-Arias, de la Universidad de Cambridge, describió el uso de células madre embrionarias humanas para obtener gastruloides, estructuras que simulan los procesos que tienen lugar en los embriones humanos a partir de las tres semanas de gestación. Conviene aclarar que estos gastruloides (al igual que los pseudoembriones de Michigan) no son embriones viables: desarrollan ciertos componentes primitivos de tejido cardiaco y nervioso, pero no pueden generar un organismo completo ni un cerebro. En el laboratorio estos gastruloides se forman solo en 72 horas, y no sobreviven más de cuatro días.

Estos estudios anteriores conseguían reproducir ciertas características de fases algo más avanzadas del desarrollo embrionario, en la gastrulación y la implantación. Pero la mayor caja negra de estos procesos se encuentra en las etapas anteriores, las más iniciales, desde la fecundación a la formación del blastocisto. Esto es lo que aportan los dos nuevos estudios: a partir de iPSC obtenidas de células de la piel (el estudio australiano, por cierto dirigido por el argentino José María Polo) o empleando tanto iPSC de la piel como células embrionarias (el de Texas), los investigadores han obtenido el modelo más completo hasta ahora en fase más temprana del desarrollo embrionario humano, equivalente a la primera semana de gestación, antes de la implantación en el útero.

Pero al comienzo hablaba de una explosión de este campo científico, y es que los dos estudios publicados ahora en Nature no son los únicos: también este mes, otros dos grupos (uno y dos) han colgado resultados similares en el servidor de prepublicaciones bioRxiv. Estos estudios aún están a la espera de revisión y publicación, pero dan idea de cómo numerosos equipos de investigadores están conquistando hitos similares que ponen ahora el listón del progreso actual de la ciencia en la obtención de blastoides humanos.

Como en los casos anteriores, tampoco en estos estudios se obtienen embriones viables capaces de originar un ser humano completo. Pero aquí viene la aclaración que conviene tener en cuenta: cuanto más se asemejen estos blastoides a los blastocistos reales, más provechosa será la ciencia que pueda obtenerse de ellos, y por tanto el objetivo de los investigadores es lograr lo más parecido a un embrión. Si los blastoides no son blastocistos, no es porque se actúe sobre ellos para impedirlo, sino simplemente porque aún no se conoce lo suficiente qué les falta para serlo. Dicho de otro modo, el hecho de que estos blastoides no sean embriones no es algo deliberado, sino un defecto; una barrera científica que aún no se ha superado.

Aquí es donde se entra en un terreno ético espinoso: frente a la visión simplista (poco informada) de los sectores de inspiración religiosa, que condenan el uso de células embrionarias y aplauden el de las iPSC, en cambio el verdadero escollo ético no se encuentra en el origen de estas células, sino en su destino. Los nuevos estudios ofrecen los modelos más tempranos y completos hasta ahora del desarrollo embrionario, pero aún tienen limitaciones: la eficiencia de su obtención es muy baja, y los blastoides poseen algunos tipos celulares que no se corresponden con los de un blastocisto. Sin embargo, estos defectos van a ir limándose con futuras investigaciones, y es probable que en algún momento futuro se logre obtener embriones viables a partir de células madre, sin importar si son embrionarias o iPSC.

Esto no quiere decir que el objetivo de los investigadores sea obtener embriones viables en el laboratorio; quiere decir que intentan obtener algo lo más parecido posible para progresar en el conocimiento científico y obtener el máximo rendimiento de su aplicación a la salud humana. Y que, en ese camino, es posible que en algún momento un blastoide y un blastocisto sean prácticamente indistinguibles.

Y será entonces cuando haya que resolver este difícil dilema: no avanzar ni un paso más allá de lo que permitan los estándares éticos mayoritariamente aceptados, pero ni un paso menos de lo que permita exprimir toda esa ciencia para conseguir el mayor beneficio de la humanidad.

Hoy puede parecernos casi imposible que toda la sociedad llegue a un acuerdo sobre dónde está ese límite. Pero, en realidad, ya hemos pasado antes por todo esto: durante siglos el examen interno de los cadáveres humanos se consideraba inmoral. Es bien conocido que también hubo objeciones en sus inicios (y todavía hoy por parte de ciertas confesiones religiosas) a los trasplantes de órganos y las transfusiones de sangre, pero quizá no tanto que lo mismo sucedió con la anestesia: cuando esta comenzó a utilizarse en las operaciones quirúrgicas a mediados del siglo XIX, hubo oposición por motivos religiosos. El presidente de la Asociación Dental de EEUU, William Henry Atkinson, escribió: ¡Ojalá no existiera la anestesia! Pienso que a los hombres no se les debería privar de pasar por lo que Dios les ha destinado a soportar!“.

Otro tanto ocurrió con las vacunas: cuando a comienzos del siglo XVIII comenzó a variolizarse a la población de Boston –un procedimiento anterior a la vacunación–, la mentalidad puritana de Nueva Inglaterra condenó el procedimiento como una interferencia en la voluntad de Dios de decidir quién debía enfermar o morir.

Es más: tampoco la investigación sobre el desarrollo embrionario es la única que en el futuro próximo va a desafiar nuestros límites éticos. Otro campo de investigación en pleno crecimiento es el de los organoides, minúsculas simulaciones de órganos reales obtenidas a partir de células madre. Los progresos son cada vez más impresionantes: este mes, investigadores de la Universidad de Utrecht (Países Bajos) han descrito en la revista Cell Stem Cell la creación de organoides de glándulas lacrimales, y han conseguido literalmente hacer que lloren.

Quizá este caso no parezca conflictivo. Pero cuando se trata de organoides cerebrales, minicerebros del tamaño de la punta de un bolígrafo, las cosas cambian: según el investigador Thomas Hartung, que trabaja en estas tecnologías, la actividad neuronal de estos minicerebros equivale a “una forma primitiva de pensamiento”. Por el momento se trata de algo puramente mecánico. Pero ¿en qué momento dejaría de serlo para convertirse en algo más? Aunque estas sean fronteras científicas aún lejanas, si en algún momento hemos de llegar a ellas, convendría hacerlo con nuestros deberes hechos como sociedad.

Escribe aquí tu comentario





    Normas para comentar en 20minutos.es

    • Antes de enviar su comentario lee atentamente las normas para comentar en 20minutos.es.
    • Esta es la opinión de los internautas, no la de 20minutos.es.
    • No está permitido verter comentarios contrarios a las leyes españolas o injuriantes.
    • Nos reservamos el derecho a eliminar los comentarios que consideremos fuera de tema.
    • Por favor, céntrate en el tema.
    • Algunos blogs tienen moderación previa, ten paciencia si no ves tu comentario.

    Información sobre el tratamiento de sus datos personales

    En cumplimiento de lo dispuesto en el Reglamento (UE) 2016/679 del Parlamento Europeo y del Consejo de 27 de abril de 2016 relativo a la protección de las personas físicas en lo que respecta al tratamiento de datos personales y a la libre circulación de estos datos, y Ley Orgánica 3/2018, de 5 de diciembre, de Protección de Datos Personales y garantía de los derechos digitales le informamos que los datos de carácter personal que nos facilite en este formulario de contacto serán tratados de forma confidencial y quedarán incorporados a la correspondiente actividad de tratamiento titularidad de 20 MINUTOS EDITORA, S.L, con la única finalidad de gestionar los comentarios aportados al blog por Ud. Asimismo, de prestar su consentimiento le enviaremos comunicaciones comerciales electrónicas de productos y servicios propios o de terceros.

    No está permitido escribir comentarios por menores de 14 años. Si detectamos el envío de comentario de un usuario menor de esta edad será suprimido, así como sus datos personales.

    Algunos datos personales pueden ser objeto de tratamiento a través de la instalación de cookies y de tecnologías de tracking, así como a través de su acceso a esta web desde sus canales en redes sociales. Le rogamos consulte para una más detallada información nuestra Política de Privacidad y nuestra Política de Cookies.

    Los datos personales se conservarán indefinidamente hasta que solicite su supresión.

    Puede ejercer sus derechos de acceso, rectificación, supresión y portabilidad de sus datos, de limitación y oposición a su tratamiento, así como a no ser objeto de decisiones basadas únicamente en el tratamiento automatizado de sus datos, cuando procedan, ante el responsable citado en la dirección dpo@henneo.com

    Le informamos igualmente que puede presentar una reclamación ante la Agencia Española de Protección de Datos, si no está satisfecho con en el ejercicio de sus derechos.