BLOGS
Ciencias mixtas Ciencias mixtas

Los secretos de las ciencias para
los que también son de letras

Las ondas gravitacionales, un nuevo color en la paleta de los astrónomos

Las ondas gravitacionales se han convertido en el Titanic de la ciencia. No por el naufragio, sino por la película: en 1997 era casi inútil que ninguna otra producción aspirara a llevarse un premio de cualquier categoría en la que tuviera que competir contra la cinta de James Cameron. Como conté ayer, los descubridores (o más bien confirmadores) de las ondas gravitacionales se han llevado este mes el Nobel y el Princesa de Asturias, pero anteriormente ya habían caído en sus redes otros premios de primera fila como el Kavli de Astrofísica y el Breakthrough Prize, ambos económicamente muy jugosos.

Pero el Princesa, entregado este viernes a tres máximos responsables del hallazgo y simbólicamente a más de mil investigadores de la colaboración LIGO, ha caído por suerte en la misma semana en que la detección de las ondas gravitacionales ha comenzado a hacer realidad la promesa de convertirse en un nuevo color de la paleta astronómica.

El pasado lunes se anunciaba la quinta detección de este tipo de arrugas en la alfombra del espacio-tiempo que sostiene el universo, pero con una novedad que comienza a explicar por qué este método de observación abre una nueva era para la astronomía.

Mientras que los cuatro eventos anteriores se produjeron por la fusión de pares de agujeros negros, en este último caso, ocurrido el pasado 17 de agosto, ha sido la colisión de dos estrellas de neutrones, que se cuentan entre los objetos más densos del cosmos. Las estrellas de neutrones se forman cuando una estrella supermasiva explota en una supernova y sufre un colapso gravitatorio que comprime el material estelar hasta reducir su tamaño a unos pocos kilómetros, a pesar de que su masa excede en varias veces la del Sol.

Ilustración de la colisión entre dos estrellas de neutrones. Imagen de NSF/LIGO/Sonoma State University/A. Simonnet.

Ilustración de la colisión entre dos estrellas de neutrones. Imagen de NSF/LIGO/Sonoma State University/A. Simonnet.

El resultado es un objeto extremadamente denso, una especie de pelota de núcleos atómicos comprimidos con electrones fluyendo entre los huecos. Suele decirse que, si pudiéramos acercarnos a una estrella de neutrones y recoger una cucharadita de su superficie (por supuesto, algo imposible en la práctica), esa cantidad de material pesaría mil millones de toneladas.

Durante años los científicos han teorizado que la fusión de dos estrellas de neutrones es uno de los procesos responsables de los llamados Brotes de Rayos Gamma (BRG), lo cual equivale a decir que son las explosiones más potentes del universo. Un BRG puede liberar en unos segundos más energía que nuestro Sol a lo largo de toda su existencia. Son fenómenos raros, y por suerte se han detectado en otras galaxias, a miles de millones de años luz de nosotros. Pero en realidad, el hecho de que no nos haya caído ninguno en las cercanías no es casualidad, sino causalidad: muchos científicos piensan que si hubiera ocurrido, sencillamente no estaríamos aquí.

Imagen de la galaxia NGC 4993 tomada desde el observatorio de La Silla, en Chile. Imagen de ESO/S. Smartt & T.-W. Chen.

Imagen de la galaxia NGC 4993 tomada desde el observatorio de La Silla, en Chile. Imagen de ESO/S. Smartt & T.-W. Chen.

Pues bien, lo que tiene de única la nueva onda gravitacional detectada no es solo el fenómeno que la ha originado, sino que además también ha podido recogerse el BRG producido por la fusión de las dos estrellas, así como el rastro de luz de todo ello, lo que ha sido descrito por los astrofísicos como el principio de la era de la astronomía multimensajero.

Imaginemos una tormenta de las normales en la Tierra. Cuando cae un rayo, lo detectamos de dos maneras distintas, por la luz (el relámpago) y el sonido (el trueno). Los astrofísicos hacen algo parecido con los fenómenos astronómicos, registrándolos a través de sus diferentes emisiones.

Ahora la detección de ondas gravitacionales se ha unido a ese repertorio de ojos y oídos del que disponen los científicos. La colisión de las dos estrellas de neutrones en la galaxia NGC 4993, a 130 millones de años luz, fue registrada por los tres detectores de ondas gravitacionales (dos de LIGO y el de Virgo), por los telescopios espaciales de rayos gamma Fermi e INTEGRAL, y por una multitud de telescopios terrestres en la banda óptica, en la de rayos X y en la de ondas de radio. Todo esto convierte la GW170817 (GW de Gravitational Wave) en el primer fenómeno astronómico observado de tantas maneras distintas.

Los puntos marcan todos los observatorios en la Tierra y en el espacio que registraron la fusión entre dos estrellas de neutrones. Imagen de Abbott et al. 2017.

Los puntos marcan todos los observatorios en la Tierra y en el espacio que registraron la fusión entre dos estrellas de neutrones. Imagen de Abbott et al. 2017.

Pero si les parece que la colisión de dos estrellas a más de 1.200 trillones de kilómetros es algo muy ajeno a ustedes, sepan que tal vez lleven el producto de un fenómeno como este en el dedo, alrededor del cuello o en los lóbulos de las orejas: los astrofísicos pensaban que explosiones tan energéticas como esta son la fragua donde se crean los elementos más pesados del universo, por ejemplo el oro, la plata, el platino o el uranio. En el GW170817, la lectura de las emisiones permitió confirmar que la colisión de las dos estrellas creó una masa de oro similar a la de la Tierra. Una buena pepita; eso sí, habría que juntarla átomo a átomo.

Escribe aquí tu comentario






    Normas para comentar en 20minutos.es

    • Esta es la opinión de los internautas, no la de 20minutos.es.
    • No está permitido verter comentarios contrarios a las leyes españolas o injuriantes.
    • Nos reservamos el derecho a eliminar los comentarios que consideremos fuera de tema.
    • Por favor, céntrate en el tema.
    • Normas y protección de datos.