Entradas etiquetadas como ‘Brote de Rayos Gamma’

Las ondas gravitacionales, un nuevo color en la paleta de los astrónomos

Las ondas gravitacionales se han convertido en el Titanic de la ciencia. No por el naufragio, sino por la película: en 1997 era casi inútil que ninguna otra producción aspirara a llevarse un premio de cualquier categoría en la que tuviera que competir contra la cinta de James Cameron. Como conté ayer, los descubridores (o más bien confirmadores) de las ondas gravitacionales se han llevado este mes el Nobel y el Princesa de Asturias, pero anteriormente ya habían caído en sus redes otros premios de primera fila como el Kavli de Astrofísica y el Breakthrough Prize, ambos económicamente muy jugosos.

Pero el Princesa, entregado este viernes a tres máximos responsables del hallazgo y simbólicamente a más de mil investigadores de la colaboración LIGO, ha caído por suerte en la misma semana en que la detección de las ondas gravitacionales ha comenzado a hacer realidad la promesa de convertirse en un nuevo color de la paleta astronómica.

El pasado lunes se anunciaba la quinta detección de este tipo de arrugas en la alfombra del espacio-tiempo que sostiene el universo, pero con una novedad que comienza a explicar por qué este método de observación abre una nueva era para la astronomía.

Mientras que los cuatro eventos anteriores se produjeron por la fusión de pares de agujeros negros, en este último caso, ocurrido el pasado 17 de agosto, ha sido la colisión de dos estrellas de neutrones, que se cuentan entre los objetos más densos del cosmos. Las estrellas de neutrones se forman cuando una estrella supermasiva explota en una supernova y sufre un colapso gravitatorio que comprime el material estelar hasta reducir su tamaño a unos pocos kilómetros, a pesar de que su masa excede en varias veces la del Sol.

Ilustración de la colisión entre dos estrellas de neutrones. Imagen de NSF/LIGO/Sonoma State University/A. Simonnet.

Ilustración de la colisión entre dos estrellas de neutrones. Imagen de NSF/LIGO/Sonoma State University/A. Simonnet.

El resultado es un objeto extremadamente denso, una especie de pelota de núcleos atómicos comprimidos con electrones fluyendo entre los huecos. Suele decirse que, si pudiéramos acercarnos a una estrella de neutrones y recoger una cucharadita de su superficie (por supuesto, algo imposible en la práctica), esa cantidad de material pesaría mil millones de toneladas.

Durante años los científicos han teorizado que la fusión de dos estrellas de neutrones es uno de los procesos responsables de los llamados Brotes de Rayos Gamma (BRG), lo cual equivale a decir que son las explosiones más potentes del universo. Un BRG puede liberar en unos segundos más energía que nuestro Sol a lo largo de toda su existencia. Son fenómenos raros, y por suerte se han detectado en otras galaxias, a miles de millones de años luz de nosotros. Pero en realidad, el hecho de que no nos haya caído ninguno en las cercanías no es casualidad, sino causalidad: muchos científicos piensan que si hubiera ocurrido, sencillamente no estaríamos aquí.

Imagen de la galaxia NGC 4993 tomada desde el observatorio de La Silla, en Chile. Imagen de ESO/S. Smartt & T.-W. Chen.

Imagen de la galaxia NGC 4993 tomada desde el observatorio de La Silla, en Chile. Imagen de ESO/S. Smartt & T.-W. Chen.

Pues bien, lo que tiene de única la nueva onda gravitacional detectada no es solo el fenómeno que la ha originado, sino que además también ha podido recogerse el BRG producido por la fusión de las dos estrellas, así como el rastro de luz de todo ello, lo que ha sido descrito por los astrofísicos como el principio de la era de la astronomía multimensajero.

Imaginemos una tormenta de las normales en la Tierra. Cuando cae un rayo, lo detectamos de dos maneras distintas, por la luz (el relámpago) y el sonido (el trueno). Los astrofísicos hacen algo parecido con los fenómenos astronómicos, registrándolos a través de sus diferentes emisiones.

Ahora la detección de ondas gravitacionales se ha unido a ese repertorio de ojos y oídos del que disponen los científicos. La colisión de las dos estrellas de neutrones en la galaxia NGC 4993, a 130 millones de años luz, fue registrada por los tres detectores de ondas gravitacionales (dos de LIGO y el de Virgo), por los telescopios espaciales de rayos gamma Fermi e INTEGRAL, y por una multitud de telescopios terrestres en la banda óptica, en la de rayos X y en la de ondas de radio. Todo esto convierte la GW170817 (GW de Gravitational Wave) en el primer fenómeno astronómico observado de tantas maneras distintas.

Los puntos marcan todos los observatorios en la Tierra y en el espacio que registraron la fusión entre dos estrellas de neutrones. Imagen de Abbott et al. 2017.

Los puntos marcan todos los observatorios en la Tierra y en el espacio que registraron la fusión entre dos estrellas de neutrones. Imagen de Abbott et al. 2017.

Pero si les parece que la colisión de dos estrellas a más de 1.200 trillones de kilómetros es algo muy ajeno a ustedes, sepan que tal vez lleven el producto de un fenómeno como este en el dedo, alrededor del cuello o en los lóbulos de las orejas: los astrofísicos pensaban que explosiones tan energéticas como esta son la fragua donde se crean los elementos más pesados del universo, por ejemplo el oro, la plata, el platino o el uranio. En el GW170817, la lectura de las emisiones permitió confirmar que la colisión de las dos estrellas creó una masa de oro similar a la de la Tierra. Una buena pepita; eso sí, habría que juntarla átomo a átomo.

¿Somos el resultado de un bombardeo de radiación extraterrestre?

A nadie se le escapa que la radiación hace daño. Su efecto perjudicial se debe a que rompe la doble hélice de ADN, lo que desemboca en la muerte de la célula –de ahí la pérdida de pelo– o bien en reparaciones erróneas que pueden introducir mutaciones y con ello causar peligrosos desastres celulares, como el cáncer. Sin embargo, desde el punto de vista no de un individuo, sino de la población, la radiación y las mutaciones que provoca pueden ofrecer el sustrato sobre el que actúa la selección natural, acelerando la aparición de nuevas especies. Un ejemplo es la obtención de bacterias intestinales inmunes a la radiación que comentábamos aquí hace unas semanas. Aquellas Escherichia coli ultrarresistentes bien podrían considerarse una nueva especie, aunque no suele aplicarse este criterio cuando se trata de una evolución forzada en el laboratorio.

Ilustración del Brote de Rayos Gamma GRB 080319B, detectado en 2008, con dos rayos en direcciones opuestas. NASA.

Ilustración del Brote de Rayos Gamma GRB 080319B, detectado en 2008, con dos rayos en direcciones opuestas. NASA.

No es habitual que todos los organismos terrestres se vean sometidos a una alta dosis de radiación de forma global y repentina. Pero tampoco es impensable. Ciertas estrellas pueden sufrir una gran explosión que dispara chorros de radiación intensa a través del cosmos. Estos fenómenos, conocidos como Brotes de Rayos Gamma (BRG), se han observado con cierta periodicidad en el universo. Y si por casualidad la Tierra se encuentra justo en la trayectoria de un rayo potente, temblad, terrícolas. Se ha propuesto que los BRG pueden haber causado alguna de las cinco extinciones masivas de la historia de nuestro planeta, como la acaecida entre el Ordovícico y el Silúrico hace 440 millones de años, la segunda más devastadora de las cinco.

Sin embargo, y dado que la frontera entre extinción y especiación es delgada, algunos científicos juegan con la idea de que un BRG haya podido actuar como motor de la evolución biológica en alguna época de la historia de la Tierra. Y una candidata golosa es la llamada Explosión Cámbrica, un súbito acelerón en la aparición de nuevas especies que ocurrió hace unos 540 millones de años y que sacó del sombrero biológico la mayor parte de los grandes grupos de organismos llamados filos, como los artrópodos, los moluscos o los cordados, a los que pertenecemos. De hecho, la churrera de especies que representó la Explosión Cámbrica se ha denominado el «dilema de Darwin», ya que el propio padre de la evolución por selección natural escribió en El origen de las especies: «A la cuestión de por qué no encontramos ricos depósitos fosilíferos pertenecientes a estos períodos tempranos previos al sistema Cámbrico, no puedo dar una respuesta satisfactoria».

Los físicos Pisin Chen, de la Universidad Nacional de Taiwán y el Instituto Kavli de Astrofísica de Partículas y Cosmología de la Universidad de Stanford (EE. UU.), y Remo Ruffini, de la Universidad La Sapienza de Roma (Italia), han llevado esta hipótesis a la pizarra y han descubierto que las cuentas cuadran. Los autores han tomado como variable el radio mínimo dentro del cual es probable que la Tierra haya sufrido el impacto de al menos un BRG en sus casi 5.000 millones de años de historia, que resulta ser de unos 1.500 años luz.

Reconstrucción de un mar del Cámbrico. Ghedoghedo.

Reconstrucción de un mar del Cámbrico. Ghedoghedo.

Para calcular la dosis de radiación recibida por la Tierra en este supuesto, los investigadores han considerado la densidad atmosférica existente en aquella época. «Las pruebas indican que la atmósfera del Cámbrico contenía sobre todo nitrógeno con una densidad comparable al nivel presente, mientras que la abundancia del oxígeno era solo un pequeño porcentaje del valor actual», escriben los científicos en su estudio, disponible en arXiv.org y aún pendiente de publicación. Con este valor de densidad, Chen y Ruffini calculan que la radiación recibida en la Tierra pudo ser letal para las especies aéreas, pero no para las acuáticas. «Afortunadamente, la mayoría de los organismos en el Cámbrico vivían en aguas someras», escriben. «Los organismos marinos que vivían […] bajo la superficie pudieron sobrevivir al impacto sufriendo mutaciones inducidas en su ADN». Con todo ello, los autores concluyen que «un GRB es la única entre todas las fuentes propuestas, terrestres y extraterrestres, de extinciones masivas que puede proporcionar una explicación a esta génesis en masa».

Chen y Ruffini exploran también las consecuencias de su hipótesis en cuanto a la posibilidad de que en tiempos del Cámbrico pudiera existir vida fuera de la Tierra. «Esto puede tener implicaciones en la extinción de la vida en Marte, cuya atmósfera es mucho más tenue», reflexionan. Por otra parte, sugieren que la idea «impone restricciones» a la teoría de la panspermia, según la cual los microorganismos podrían viajar por el espacio a bordo de asteroides y sembrar la vida en otros planetas. «Los microorganismos primitivos sin protección transportados por rocas interestelares habrían podido quedar esterilizados tras su exposición a un BRG», pero «estas semillas de panspermia podrían haber evitado la destrucción si su velocidad de migración y colonización fuera más rápida que la tasa de BRG».

Con todo, no hay que perder de vista que se trata tan solo de un ejercicio de especulación teórica, aunque las ecuaciones de Chen y Ruffini encajen en la hipótesis como el pie de Cenicienta en el zapato. A su favor, los físicos alegan que «una posible prueba de este origen propuesto para la Explosión Cámbrica sería la abundancia anómala de ciertos isótopos en registros geológicos del período Cámbrico», un indicio que según los autores es coherente con su hipótesis. Pero aún deberá recorrerse un largo camino antes de poder afirmar que los terrícolas somos el resultado fortuito de un bombardeo de radiación extraterrestre.