Archivo de la categoría ‘Ciencias de la Tierra’

¿Cómo influyen los bosques en el clima?

Por J. Julio Camarero (CSIC)*

Seguramente has apreciado alguna vez cómo el clima afecta a los bosques cuando, tras una sequía, una nevada, una helada o una fuerte ola de calor, algunas especies de árboles y arbustos pierden vigor, crecen menos o incluso mueren. Quizá vienen a tu memoria las fuertes olas de calor del verano del 2022, la tormenta de nieve Filomena al inicio del 2021 o las sequías de los años 1994-1995, 2005 y 2016-2017. Los árboles toleran unos márgenes limitados de temperatura y humedad del suelo y del aire, por lo que pueden morir si se superan esos umbrales vitales como consecuencia de fenómenos climáticos extremos. Pero podemos darle la vuelta a la pregunta y plantearnos si la interacción clima-bosque sucede en los dos sentidos: ¿pueden los bosques cambiar el clima? Pues bien: la respuesta a este interrogante es afirmativa. Sabemos que los bosques pueden modificar (amortiguar o amplificar) los efectos del clima sobre la biosfera y que esas modificaciones cambian según las escalas espaciales y temporales a las que se observe esta interacción.

Nimbosilva o bosque mesófilo de montaña en la Reserva de la Biosfera El Triunfo, México. / Luis Felipe Rivera Lezama (mynaturephoto.com)

Los árboles almacenan grandes cantidades de agua y de carbono en sus tejidos, sobre todo en la madera, y conducen y transpiran mucha agua hacia la atmósfera. Esto explica que se hayan observado caídas en el caudal de los ríos en respuesta a los aumentos de la cobertura forestal a nivel de cuenca. Existen datos de este proceso en el Pirineo donde, como en el resto de la península, se ha producido un abandono del uso tradicional del territorio (cultivos, pastos, bosques) desde los años 60 del siglo pasado, cuando la mayoría de la población española emigró a núcleos urbanos. Ese abandono ha favorecido la expansión de la vegetación leñosa y propiciado que bosques y matorrales ocupen más territorio y retengan más agua, la llamada ‘agua verde’, a costa de reducir el caudal de los ríos, la llamada ‘agua azul’.

Hayedo y río (Cataluña). / Luis Felipe Rivera Lezama (mynaturephoto.com)

Pero tampoco podemos ignorar que al aumentar las temperaturas la vegetación transpira más y se evapora más agua. Ese aumento de temperaturas incrementa también la demanda de agua por parte de grandes usuarios como la agricultura, a veces centrada en cultivos que requieren mucha agua, y esto contribuye a que los caudales de los ríos y el nivel freático de los acuíferos desciendan. Por tanto, a escalas locales se ha comprobado cómo la reforestación conduce a un menor caudal de los ríos. Sin embargo, la historia cambia bastante a escalas espaciales más grandes.

Según la teoría de la bomba biótica, los bosques condensan la humedad y con ello impulsan los vientos y por tanto la distribución de la humedad en el planeta. (1) Si talamos los bosques tropicales, el mecanismo de la bomba biótica se altera y las precipitaciones se trasladan a la costa y en zonas tropicales (2). Según esta teoría los bosques extensos y diversos permiten captar y generar precipitación tierra adentro, especialmente cerca de la costa (3). / Irene Cuesta (CSIC)

Bomba biótica y bosques tropicales

A escalas regionales y continentales, gracias a un mecanismo llamado bomba biótica, la evapotranspiración de los bosques aumenta los flujos de humedad atrayendo más aire húmedo. Esta teoría defiende que los bosques atraen más precipitaciones desde el océano, tierra adentro, mientras generen suficiente humedad a nivel local. Fueron Anastassia Makarieva y Víctor Gorshkov, del Instituto de Física Nuclear de San Petersburgo (Rusia), quienes propusieron la hipótesis de la bomba biótica en 2006. Además, sugerían reforestar algunas zonas para hacerlas más húmedas aumentando así la precipitación y el caudal de los ríos. La bomba biótica explica en gran medida la existencia de las elevadas precipitaciones y los grandes bosques en las cuencas tropicales más extensas, como las de los ríos Amazonas y Congo. Por tanto, nos alerta sobre la posible relación no lineal entre deforestación y desertificación ya que, según esta teoría, una región o un continente que cruzara un determinado umbral de deforestación podría pasar muy rápidamente de condiciones húmedas a secas.

Bosque nublado en Cundinamarca, Colombia. / Juan Felipe Ramírez (Pexels.com)

También se observan grandes diferencias en la relación clima-bosque entre los distintos biomas forestales. Los bosques tropicales pueden mitigar más el calentamiento climático mediante el enfriamiento por evaporación que los bosques templados o boreales. Además, los bosques templados tienen una gran capacidad de captar dióxido de carbono de la atmósfera, reduciendo en parte el calentamiento climático causado por el efecto invernadero. Sin embargo, si el calentamiento climático favorece la expansión de bosques boreales en las regiones árticas favoreciendo su crecimiento y reproducción, la pérdida de superficie helada disminuirá el albedo (el porcentaje de radiación solar que cualquier superficie refleja), ya que los bosques reflejan menos radiación que la nieve y, en consecuencia, aumentarán las temperaturas en esas regiones frías. Además, gran parte del carbono terrestre se almacena en suelos y turberas de zonas frías, que podrían liberarlo si aumentan las temperaturas, con el consiguiente impacto sobre el efecto invernadero, generando más calentamiento a escala global.

Nubes sobre bosque templado en el Bosque Nacional Tongass, Alaska. / Luis Felipe Rivera Lezama (mynaturephoto.com)

A nivel global, nuestro conocimiento de las interacciones entre atmósfera y biosfera proviene de modelos, pero nos faltan aún muchos datos para mejorar esas simulaciones y saber cómo interaccionan el clima y los bosques con los ciclos del carbono y del agua. Por ejemplo, no sabemos cómo los bosques boreales y tropicales responden a la sequía y al calentamiento climático en términos de crecimiento y retención de carbono. Necesitamos más investigación para mejorar esas predicciones en el contexto actual de calentamiento rápido.

Picogordo amarillo (‘Pheucticus chrysopeplus’) y bromelias bajo la lluvia, nimbosilva o bosque nuboso Reserva de la Biosfera El Triunfo, México. / Luis Felipe Rivera Lezama (mynaturephoto.com)

Todos los papeles que juegan los bosques como reguladores del clima a escalas locales, regionales y continentales, pueden verse comprometidos si la deforestación aumenta en algunas zonas, especialmente los bosques tropicales, o si extremos climáticos como las sequías reducen el crecimiento de los árboles y los hacen más vulnerables causando su muerte, como observamos en la cuenca Mediterránea y en bosques de todos los continentes.

Pinos rodenos o resineros (‘Pinus pinaster’) muertos en un bosque situado cerca de Miedes de Aragón (Zaragoza) tras la sequía de 2016-2017. En primer plano, las encinas (‘Quercus ilex’), árboles más bajos, apenas mostraron daños en sus copas. / Michele Colangelo

* J. Julio Camarero es investigador en el Instituto Pirenaico de Ecología (IPE) del CSIC.

**Ciencia para llevar agradece especialmente al fotógrafo Luis F. Rivera Lezama por su generosa colaboración con las imágenes que acompañan al texto.

¿Qué vemos al contemplar un paisaje?

Por Fernando Valladares* y Mar Gulis (CSIC)

“Verdes montañas” o “campos de cultivo” son expresiones con las que a menudo describimos el paisaje que configura el «campo», un campo que visitamos en nuestros recorridos cotidianos o viajes vacacionales. Apreciamos bosques y plantaciones, pero ¿podemos leer algo más sobre lo que estamos viendo? ¿Qué árboles pueblan esos bosques? ¿Son bosques complejos autóctonos o plantaciones productivas de un solo tipo de árbol? ¿Cuánto tiempo llevan ahí? ¿Qué había antes de las amplias extensiones de regadío? ¿Afectan las redes de autopistas y carreteras a la flora y fauna? Veamos algunos apuntes para entender el paisaje a través de los ojos de la ecología.

Paisaje en Alcubilla de las Peñas, Soria, España (2015). / Diego Delso

El paisaje, como la vida, no es estático: ha ido cambiando a medida que se han modificado la demografía, los hábitos y nuestra interacción con el medio. Claro, que no todas las civilizaciones se han relacionado de la misma manera con su entorno. Algunas culturas en diferentes regiones del globo aún conviven de manera más o menos sostenible con sus territorios. A pesar de ello, se puede decir que, a día de hoy, existen muy pocos ecosistemas sobre la superficie terrestre que no hayan sido modificados. La extensión de un modelo social y económico basado en la extracción desmedida y concentrada de recursos naturales, sumada al alto crecimiento de la población humana, han hecho que hoy podamos afirmar que más del 45% de la superficie terrestre ya está profundamente alterada por el ser humano.

Granja solar. / Anonim Zero, Pexels

Un poco de historia: mucho más que domesticación de especies

Año 7.000 antes de Cristo. En el Levante mediterráneo ya se cosechan los ocho cultivos neolíticos fundadores: farro, trigo escanda, cebada, guisantes, lentejas, yero, garbanzos y lino. Hacia el este, en el interior, entre los ríos Tigris y Éufrates, los pueblos de la antigua Mesopotamia crían cerdos para obtener alimento y pastorean ovejas y cabras en la estación húmeda de invierno. El arroz está domesticado en China. En la actual Nueva Guinea se cultivan la caña de azúcar y verduras de raíz, y en los Andes la papa, los frijoles y la coca, mientras se cría ganado de llamas, alpacas y cuyes. Se trata de la revolución neolítica, que comenzó hace unos 13.000 años: la sedentarización y el surgimiento de las ciudades hecho posible por la agricultura y la ganadería, la domesticación de animales y plantas. Fue el inicio de lo que hoy se conoce como Antropoceno. Desde entonces hasta ahora, el impacto de los seres humanos en el planeta no ha hecho más que aumentar y extenderse a ritmo creciente.

Los paisajes primigenios, los que había antes de la revolución neolítica, se transformaron en ‘paisajes históricos’. En ellos, remanentes muy simplificados de vegetación natural se mantuvieron como manchas forestales de poblaciones de árboles con estructuras muy alteradas, como consecuencia de la explotación de la madera y otros recursos que ofrecen estos hábitats.

Restos del sistema de terrazas agrícolas circulares incas en Moray, Perú, siglos XV-XVI. / McKay Savage (Worldhistory.org)

El caso de la península ibérica

En el territorio peninsular, esos remanentes de vegetación natural coexistían con ecosistemas seminaturales, como los prados de siega. En el interior, se intercalaban zonas en las que la acumulación de agua permitía hábitats con mayores recursos para el ganado con hábitats más degradados, como los campos de cultivo extensivos de secano. La pérdida de especies y el colapso de muchos ecosistemas debió de ser algo generalizado. Los grandes herbívoros y carnívoros fueron los primeros en extinguirse, pero de la mano debieron perderse muchas especies de todo tipo de grupos biológicos que no han dejado su rastro en el registro fósil. Emergieron nuevos paisajes que poco tenían que ver con los que existían durante nuestra época nómada de cazadores recolectores.

‘Cosechadores’, óleo de Pieter Bruegel ‘el viejo’, 1565 / Google Art Project

Afortunadamente, algunos procesos funcionales y evolutivos de aquellos hábitats primigenios se mantuvieron gracias a que los cambios introducidos podían mimetizar procesos que habían existido hasta entonces. Por ejemplo: el pastoreo recordaba la presión de los grandes herbívoros; el manejo del fuego mantenía cierta estructura y dinámica ecológica a la que las especies y sus interacciones se fueron adaptando; el arado de tierras podía recordar a ciertas perturbaciones naturales que dejaban los suelos expuestos para ser nuevamente colonizados por la vida. Todo ello permitió mantener, pese a todo, tasas elevadas de diversidad y buena parte de la funcionalidad ecosistémica de estos paisajes y hábitats; es decir, los procesos biológicos, geoquímicos y físicos que tienen lugar los ecosistemas y que producen un servicio al conjunto. La potencia de la naturaleza para sobreponerse a los impactos es siempre asombrosa.

Con el tiempo y la expansión del modelo mercantilista, surgieron las minas y explotaciones industriales con sus huellas físicas, químicas y biológicas en el paisaje y en los ciclos de la materia y de la energía. Estos ciclos son como una suerte de metabolismo planetario que se apoya en equilibrios dinámicos, donde todo se transforma, pero el conjunto permanece estable. En esta movilización juega un papel vital la biosfera.

Imagen: Pxhere.com

De la superproducción a la escasez

El impacto mayor sobre la biosfera y la alteración de estos ciclos llegó con la agricultura intensiva. Se pasó de una agricultura que eliminaba hábitats, pero mantenía buena parte de las funciones ecosistémicas, a otra que conlleva altos niveles de contaminación, agotamiento de recursos y graves problemas para nuestra salud y la de los ecosistemas.

Y es que pocas cosas son menos sostenibles que la agricultura actual. No sólo por su elevada huella ambiental en forma de ecosistemas eutrofizados, es decir, con un exceso de nutrientes que provoca su colapso, y de emisiones colosales de gases de efecto invernadero, sino también por su necesidad de recursos que ya son limitantes como el fósforo, esencial para los fertilizantes y cuya provisión no se puede asegurar, o el agua de riego, cada día más escasa en cada vez más regiones del planeta. Además, se calcula que sin la ruptura metabólica global que supuso la agricultura del siglo XX, en lugar de ser actualmente casi ocho mil millones de personas en el planeta, apenas llegaríamos a cuatro, es decir, la mitad.

Imagen satélite de El Ejido y sus alrededores (Almería), con capturas de 2015. / Google Earth

Por otra parte, durante estos últimos 100 años el territorio no solo ha visto crecer exponencialmente y a ritmo vertiginoso la población mundial y el consumo de recursos naturales, también las ciudades, las carreteras y las autopistas, y por ende la reducción a mínimos nunca antes conocidos del espacio disponible para la vida silvestre.

Pero este ritmo no se da de la misma manera en todas las partes del globo. En los países desarrollados vivimos sobrecargando los ecosistemas, pero externalizamos las consecuencias a los países sin recursos. Es decir, utilizamos los recursos de otros para mantener nuestras demandas de recursos naturales.

Pocas veces nos paramos a ver todos estos procesos en el paisaje que visitamos o vemos a través de la ventanilla del coche. Vivimos tiempos que requieren reflexión y recuperar otros modos de relacionarnos con las demás especies y con el entorno. Si lo hacemos, seremos los primeros en beneficiarnos.

* Fernando Valladares es investigador del CSIC en el Museo Nacional de Ciencias Naturales (MNCN-CSIC) y autor, entre otros muchos títulos, del libro La salud planetaria, de la colección ¿Qué sabemos de? (CSIC-Catarata).

Una efeméride por día: descubre el Calendario científico escolar 2024

Por Mar Gulis (CSIC)

¿Te imaginas el mundo sin neveras, lavadoras, bolígrafos o, lo que es peor aún, sin café? Que hoy vivamos con estas cosas ha sido posible gracias al avance de la ciencia y del conocimiento, y concretamente a que el 16 de mayo de 1884 el inventor y empresario Angelo Moriondo patentara la primera máquina moderna de café expreso; el 11 de noviembre de 1930 Albert Einstein y Leó Szilárd obtuvieran la patente US1781541 por su invento: un refrigerador; y el 29 de septiembre de 1899 naciera el inventor László Bíró, que dio lugar a numerosos utensilios, como una máquina de lavar la ropa, un perfumero y el bolígrafo.

Portada del Calendario científico escolar 2024

El Calendario científico escolar es utilizado anualmente por más de 800.000 personas.

Un total de 366 efemérides como estas las encontrarás en el Calendario científico escolar 2024, año bisiesto, que ofrece conmemoraciones científicas diarias y que ya está disponible para su descarga gratuita en 11 idiomas diferentes. El nuevo calendario viene cargado de aniversarios tan relevantes como el del 29 de febrero, Día Europeo de las Enfermedades Raras, celebrado por primera vez en 2008, con el objetivo de concienciar sobre las enfermedades que, por su carácter excepcional, son invisibles para gran parte de la población. O como la del 1 de noviembre de 1755, fecha grabada en la historia portuguesa, cuando tuvo lugar el Gran Terremoto de Lisboa. La búsqueda de una explicación científica del mismo reunió un importante equipo de especialistas y sentó las bases de la sismología moderna.

La iniciativa de crear un calendario de efemérides científicas parte del Instituto de Ganadería de Montaña (CSIC-Universidad de León), y recibió el pasado año el I Premio CSIC de Divulgación Científica y Ciencia Ciudadana en la categoría de Obra Unitaria, por su “originalidad, participación colaborativa, impacto en la sociedad, accesibilidad, sostenibilidad, variedad de formatos, y su capacidad de conjugar la historia de la ciencia con la actualidad investigadora”. Con este impulso, el proyecto ha desarrollado el calendario por quinto año consecutivo, ha lanzado una nueva web y ha dado un vuelco lúdico a la guía didáctica, incorporando actividades de gamificación, como el juego de la oca.

La oca de la ciencia del Calendario científico escolar 2024

La quinta edición de esta iniciativa se acompaña de una guía didáctica con actividades lúdicas, como el juego de la oca.

Además, el calendario 2024 mantiene el recurso de las efemérides en lectura fácil para alumnado con problemas en la competencia lectoescritora y el formato accesible para personas con discapacidad visual.

En esta ocasión, el calendario dedica los espacios a pie de mes a publicaciones periódicas. Entre las 12 seleccionadas se encuentran el Diario del Jardín Botánico, las revistas IAA Información y actualidad astronómica y NaturalMente, y el Boletín CC2, al que debes suscribirte si quieres estar al tanto de las novedades en cultura científica del CSIC.

Viajes en el tiempo

El Calendario científico escolar 2024 nos lleva atrás en el tiempo hasta el año 1076, concretamente al 31 de marzo, cuando nació el alfaquí Abu Bakr Ibn al-Arabi, quien escribió numerosas obras con las que difundió los conocimientos jurídicos de oriente en su tiempo. Pero también nos traslada al futuro próximo, al 28 de julio de 2024, Día Mundial de la Hepatitis, que busca sensibilizar sobre las hepatitis víricas, que inflaman el hígado y causan enfermedades hepáticas graves y cáncer de hígado.

Y entre medias, nos encontramos con los hermanos Lumière en la París de 1895 presentando al público su invento llamado cinematógrafo; con Marie y Pierre Curie en su laboratorio el 21 de diciembre de 1898 descubriendo un nuevo elemento químico: el radio; con el astrónomo Edwin Hubble anunciando la existencia de otras galaxias distintas a la Vía Láctea en 1924; o incluso con nosotros y nosotras mismas en 2001 abriendo por primera vez Wikipedia.

¿A qué esperas para descubrir el resto de efemérides científicas del calendario 2024? También puedes seguirlas diariamente a través de la cuenta de X @CalCientifico.

Descubre las 10 mejores imágenes científicas de 2023 con FOTCIENCIA20

Por Mar Gulis (CSIC)

El corte transversal de una cáscara de huevo, la eclosión de un gecko terrestre malgache fotografiada con un smartphone o un ovillo de gusanos parásitos anisakis son algunas de las imágenes más destacadas del año en la iniciativa FOTCIENCIA, que cumple con esta su 20ª edición recopilando fotografías científicas gracias a la participación ciudadana.

Esta iniciativa del Consejo Superior de Investigaciones Científicas (CSIC) y la Fundación Española para la Ciencia y la Tecnología (FECYT) ha dado a conocer las mejores fotografías del año 2023. El pelo del estambre de una flor (Erodium moschatum), la simetría del brócoli o tres muestras de epidermis de flor de caléndula captadas por estudiantes de secundaria son otros de los fenómenos retratados en las imágenes seleccionadas de entre más de 475 fotografías. Un comité multidisciplinar formado por 13 profesionales de la ciencia, la microscopía, las artes visuales o la divulgación científica, entre otras especialidades, ha sido el encargado de seleccionar estas imágenes que han sido galardonadas por su belleza, impacto y capacidad para reflejar y describir hechos científicos.

De izquierda a derecha: “Cubismo plutónico”, “Polinización y la agricultura”, “Un ovillo de gusanos parásitos Anisakis extraídos de pescado fresco”, “La sal de la muerte (celular)”, “Biomineralización”, “Un triángulo imposible”, “Biosensores”, “Eclosión en laboratorio”, “Recordando a Cajal para tratar la neurodegeneración” y “Revelación simétrica del brócoli”.

De izquierda a derecha: “Cubismo plutónico”, “Polinización y la agricultura”, “Un ovillo de gusanos parásitos Anisakis extraídos de pescado fresco”, “La sal de la muerte (celular)”, “Biomineralización”, “Un triángulo imposible”, “Biosensores”, “Eclosión en laboratorio”, “Recordando a Cajal para tratar la neurodegeneración” y “Revelación simétrica del brócoli”.

Estas 10 mejores imágenes, que puedes ver en el vídeo de más abajo, junto con una selección más amplia de fotografías, conformarán un catálogo y una exposición itinerante, disponible para su préstamo gratuito, que recorrerá museos, centros de investigación, universidades y espacios culturales de todo el país durante el próximo año.

En esta vigésima edición, a las modalidades de participación habituales –Micro, General, Alimentación y nutrición, Agricultura sostenible y La ciencia en el aula– se han sumado las modalidades especiales Año Cajal, Física de partículas y Sinergias (Arte, Ciencia, Tecnología y Sociedad, ACTS). La difícil captura nanométrica de un radical libre captado al microscopio de efecto túnel y la observación al microscopio de una roca ígnea plutónica de La Cabrera (Madrid) han sido las fotografías galardonadas por primera vez en estas dos últimas modalidades, respectivamente.

La modalidad Sinergias (Arte, Ciencia, Tecnología y Sociedad, ACTS) pretende mostrar trabajos conjuntos del ámbito científico y artístico con el objetivo de ampliar nuevos horizontes inter y transdisciplinarios entre las ciencias y las artes. Este año, una madre geóloga y su hijo estudiante de bellas artes han mostrado en una fotografía esta conexión con una imagen que resulta de un proceso de investigación donde ambos comparten microscopio en busca de colores e imágenes inspiradoras para futuros bocetos en otros soportes.

Como en la anterior edición, FOTCIENCIA contempla la modalidad especial Año Cajal para recoger imágenes que tengan que ver con las neurociencias, sumándose así a la celebración del Año Cajal, impulsado a nivel nacional. La inmunofluorescencia de una sección de cerebelo con dos células de Purkinje, que recuerda a los dibujos de Ramón y Cajal, quien ya describió su estructura, ha sido la imagen seleccionada en esta modalidad.

FOTCIENCIA es una iniciativa del CSIC y la FECYT que invita a que cualquier persona, se dedique o no a la investigación, plasme su visión de la ciencia y la tecnología a través de fotografías. Además, FOTCIENCIA20 cuenta con la colaboración de Fundación Jesús Serra, de GCO (Grupo Catalana Occidente) y, por primera vez, de Leica.

Más información, en este enlace.

Imágenes seleccionadas:

  • Modalidad General:
  1. Polinización y la agricultura / Eduardo Cires Rodríguez
  2. Eclosión en laboratorio / Fernando García Moreno
  • Modalidad Micro:
  1. Biosensores / Concepción Hernández Castillo, Lola Molina Fernández, Isabel María Sánchez Almazo
  2. Biomineralización / María Jesús Redrejo Rodríguez, Eberhardt Josué Friedrich Kernahan
  • Modalidad Año Cajal:
  1. Recordando a Cajal para tratar la neurodegeneración / Pablo González Téllez de Meneses
  • Modalidad Alimentación y nutrición:
  1. Un ovillo de gusanos parásitos Anisakis extraídos de pescado fresco / José Ramos Vivas
  • Modalidad Agricultura sostenible:
  1. Revelación simétrica del brócoli /Samuel Valdebenito Pérez, María Villarroel, Patricia Peñaloza
  • Modalidad La ciencia en el aula:
  1. La sal de la muerte (celular) / Hala Lach Hab El Keneksi, Rebeca Jiménez Uvidia, Chaimae El Idrissi Loukili
  • Modalidad Física de partículas:
  1. Un triángulo imposible / Alejandro Berdonces Layunta, Dimas García de Oteyza
  • Modalidad Sinergias (ACTS):
  1. Cubismo plutónico / Bruno Fernández Delvene, Graciela Delvene Ibarrola

Si pudieses cuidar una roca… ¿cuál sería?

Por Mar Gulis (CSIC)

El Parque Nacional de los Picos de Europa, el Parque Nacional de Sierra Nevada, las Hoces del Duratón en Segovia o La Pedriza en Madrid son mucho más que paisajes asombrosos: albergan Lugares de Interés Geológico que la ciencia reconoce como testigos vivos de la historia de nuestro planeta.

El Instituto Geológico y Minero de España (IGME-CSIC) consciente de esta invaluable riqueza geológica que atesoramos, lanzó en diciembre de 2017 un programa de ciencia ciudadana con el objetivo de conservar, proteger y llevar a cabo un seguimiento del estado de conservación de todos estos enclaves. La colaboración activa y la sinergia entre el público general y la comunidad científica son pilares fundamentales de esta iniciativa, que busca salvaguardar nuestro patrimonio para las generaciones futuras.

Badlands de las Bardenas Reales (Navarra), un laboratorio natural donde observar como determinados procesos geológicos externos están modelando su relieve. Autora: Ana Cabrera Ferrero (IGME-CSIC)

Badlands de las Bardenas Reales (Navarra), un laboratorio natural donde observar como determinados procesos geológicos externos están modelando su relieve. / Ana Cabrera Ferrero (IGME-CSIC)

‘Apadrina una Roca’, que lleva funcionando a nivel nacional desde el año 2017, busca involucrar a las personas que residen cerca de alguno de los más de 4.000 Lugares de Interés Geológico que existen en España. Una de ellas podrías ser tú si te comprometes a visitar ese lugar al menos una vez al año. De esta forma, no solo contribuirás a su conservación y al avance científico; también tendrás la oportunidad de aprender sobre el territorio que te rodea.

Enclaves con valor científico, educativo y turístico

Pero, ¿qué hace que un Lugar sea de Interés Geológico (LIG)? Los espacios que reciben este nombre han sido identificados por la comunidad científica como fundamentales para interpretar el pasado de la Tierra y su evolución. Estos enclaves facilitan el entendimiento de los procesos geológicos actuales y ofrecen una gran oportunidad para mejorar el desarrollo socioeconómico de las zonas rurales.

La denominación reconoce el valor científico, educativo, cultural y/o turístico de un lugar, pero no es una figura de protección. Por eso resulta conveniente llevar a cabo programas como ‘Apadrina una roca’, que sirvan para intensificar y mejorar su conservación, conocimiento y vigilancia.

Si te animas, tendrás la oportunidad de ser padrino o madrina de las rocas en uno o varios de estos enclaves. Puedes elegir entre una enorme variedad de espacios. Entre la diversidad de lugares, encontrarás afloramientos geológicos que albergan rocas, minerales, fósiles y suelos de interés, pero también formas del terreno, estructuras tectónicas e incluso meteoritos de gran importancia científica. Todos estos espacios pueden verse afectados por la acción humana.

Conocer el origen de estos enclaves, los agentes que han intervenido en su formación o el tiempo que ha sido necesario para formarlos, así como las amenazas y los impactos que pueden sufrir, nos dará las herramientas necesarias para entender cómo proteger y cuidar este patrimonio geológico.

¿Dónde están estos espacios? España cuenta con un inventario oficial que localiza, identifica y valora los lugares geológicamente más relevantes del territorio. Lo elabora y mantiene el IGME-CSIC en colaboración con las comunidades autónomas y las universidades. A su vez, la información que proporcionan las personas que participan en la iniciativa alimenta su base de datos y permite actualizar el conocimiento sobre estos espacios recordándonos la importancia de mejorar y proteger el patrimonio geológico de España.

Señalética turística en las Bardenas Reales de Navarra. Informa sobre la regulación normativa en el Lugar de Interés Geológico (LIG). Autora: Ana Cabrera Ferrero (IGME-CSIC)

Señalética turística en las Bardenas Reales de Navarra. Informa sobre la regulación normativa en el Lugar de Interés Geológico (LIG). / Ana Cabrera Ferrero (IGME-CSIC)

¿Cómo participar?

Participar en ‘Apadrina una Roca’ es muy sencillo. Accede a la página web del Inventario Español de Lugares de Interés Geológico (IELIG), busca en el mapa, identifica un espacio y registrarte. No importa el motivo que te mueva a apadrinarlo: que esté cerca de tu pueblo, que lo hayas estudiado o que simplemente te guste.

Si aceptas ser padrino o madrina de una roca, adquirirás un compromiso mínimo que ayudará a su conservación. Por ejemplo, deberás informar de cualquier incidencia que descubras y suponga una amenaza para este espacio, que tendrás que visitar al menos una vez al año.

Además, podrás compartir tus dudas e intercambiar experiencias con el resto de participantes del proyecto. El apadrinamiento es un acto voluntario y gratuito. Solo es necesario que cuides y vigiles tu LIG.

¡Anímate a apadrinar una roca!

¿Cómo se originó el agua de la Tierra?

Por Javier Carmona (CSIC)*

Cerca del 70% de la superficie de nuestro planeta está cubierta por océanos, mares, ríos, glaciares… ¿Te has preguntado alguna vez de dónde ha salido toda esta cantidad de agua?

Sabemos que el agua líquida no estaba presente en los momentos iniciales de formación de la Tierra hace 4.500 millones de años, y lo sabemos precisamente porque el planeta estaba tan caliente que el agua solo podía existir en forma de vapor. Tuvieron que pasar 800 millones de años para que la superficie se enfriase lo suficiente como para poder contener agua líquida de forma estable. En ese momento, las lluvias procedentes de una primitiva atmósfera habrían comenzado a formar los primeros ríos y océanos.

Existen dos teorías que intentan explicar el origen del agua en nuestro planeta: una que dice que esta sustancia es de origen extraterrestre y otra que establece que proviene del interior del planeta.

La primera apunta a un tipo de meteoritos que de vez en cuando impactan en la superficie de la Tierra: las condritas carbonáceas. Estos meteoritos contienen agua o minerales alterados por ella, y su procedencia exterior al Sistema Solar sugiere que esta sustancia posiblemente es más abundante en el universo de lo que se creía.

Condrita carbonácea / Wikimedia Commons (H. Raab)

La teoría de que el agua procede del interior de nuestro planeta nos habla de la desgasificación de los volcanes. Sabemos que el vapor de agua es el gas más abundante en una erupción volcánica. Así pues, la atmósfera habría ido enriqueciéndose en este compuesto con el paso del tiempo, erupción tras erupción.

Posiblemente el origen del agua en la Tierra se deba a los dos mecanismos: el impacto indiscriminado de meteoritos en los estadios iniciales de la formación de nuestro planeta y la continua desgasificación a lo largo del tiempo por las erupciones volcánicas.

Un escudo protector llamado magnetosfera

Hoy sabemos que el agua no es una sustancia tan exótica fuera de la Tierra como se pensaba antes. Existe en la Luna, y en Marte llegó a formar océanos en un pasado remoto. Por tanto, lo que hace único a nuestro planeta no es la presencia de agua, sino la presencia de agua líquida en su superficie.

La distancia al Sol y la composición de la atmósfera de la Tierra permiten temperaturas en las que el agua permanece en forma líquida. Sin embargo, el campo magnético de nuestro planeta ha sido el responsable de que este agua se haya mantenido en la superficie durante miles de millones de años.

El escudo protector que genera, llamado magnetosfera, impide que la atmósfera y el océano sean arrastrados por el viento solar. En el caso de Marte, se cree que su menor tamaño provocó el debilitamiento y la desaparición de su campo magnético, lo que a su vez propició la pérdida de su atmósfera y, posteriormente, la de sus océanos.

¿Un planeta realmente único?

La Tierra no solo es el único planeta conocido con agua en su superficie, sino también el único que alberga vida. Fue precisamente un océano primitivo el lugar donde se originó la vida hace más de tres mil millones de años. Por eso, encontrar otros lugares del universo donde el agua se halle en estado líquido despierta un gran interés científico.

La investigación espacial ha descubierto hielo en otros planetas y asteroides, pero la atención de quienes trabajan en la búsqueda de vida extraterrestre se ha centrado en algunas lunas heladas de Júpiter y Saturno. Europa y Encélado contienen un océano líquido bajo su superficie helada, que, junto a la presencia de volcanismo o zonas geotérmicas, podrían haber generado las condiciones idóneas para la presencia de vida.

Tal vez el futuro nos muestre que nuestro planeta es uno más de tantos otros donde hay agua líquida y vida.

 

* Javier Carmona es responsable de comunicación y cultura científica del Instituto de Geociencias (CSIC-UCM).

Alimentación agroecológica para enfriar el planeta

Por Daniel López García (CSIC)*

El sistema agroalimentario global está en el centro del actual cambio climático y de la pérdida de biodiversidad en el planeta. Emite un tercio de las emisiones de gases de efecto invernadero, consume el 80% del agua disponible y ocupa el 80% del suelo en nuestro territorio. Por otro lado, pensemos, por ejemplo, en las sequías e inundaciones provocadas por el cambio climático o en la disminución de la fertilidad y la capacidad de los suelos de retener agua y CO2 que trae consigo la pérdida de biodiversidad. Todo ello pone en riesgo la propia producción de alimentos.

Urge buscar soluciones y cambiar el modelo alimentario, pero, ¿hacia dónde? ¿Cómo puede alimentarse la humanidad sin hacer cada vez más difícil la vida en el planeta?

Los huertos comunitarios y familiares cumplen una importante labor en la soberanía alimentaria, recuperan el conocimiento de la naturaleza y los recursos naturales y facilitan comunidades resilientes frente a la crisis climática. / Rawpixel

Lo insostenible sale caro

Vivimos tiempos difíciles. La resaca de la crisis financiera de 2008 se ha solapado con los efectos del calentamiento global (incendios de sexta generación, sequías, inundaciones, etc.), el declive de los combustibles fósiles y otras emergencias, como la pandemia de COVID-19 o la guerra en Ucrania. Esta combinación de distintas crisis empeora nuestra calidad de vida, nos llena de miedo y nos empuja a una huida hacia adelante.

Una de las principales respuestas frente a estas crisis está siendo la suspensión temporal de algunas normativas ambientales y sociales, lo que incrementa los impactos negativos de nuestro modelo económico y productivo. En algunos discursos se opone sostenibilidad ecológica a sostenibilidad económica y se dice que las agriculturas sostenibles, como la agroecología, no pueden alimentar el mundo. Algunas voces plantean que hay que seguir apretando el acelerador con más tecnología, más escala y más inversión para dar de comer a una población creciente con producciones decrecientes. Es como el tren de los hermanos Marx, que iba siendo quemado para poder alimentar la caldera.

‘¿Cómo afecta la crisis climática a la agricultura y a la seguridad alimentaria?’. Infografía del informe ‘Producir alimentos sin agotar el planeta’, de la colección Ciencia para las Políticas Públicas (Science For Policy)* del CSIC. / Irene Cuesta (CSIC)

Sin embargo, presentar la viabilidad económica como opuesta a la sostenibilidad social y ecológica es falso, aunque se repita muchas veces. Los modelos de producción agraria de gran escala, con una agricultura altamente tecnificada, sin agricultores ni agricultoras, generan alimentos de baja calidad y con tóxicos, a menudo vinculados con dietas poco saludables. Además, consumen muchos recursos en forma de agua, nutrientes, energía y maquinaria, producen la pérdida de conocimientos para el manejo sostenible de la naturaleza, y desvinculan la actividad agraria de los territorios. Por el contrario, la agricultura familiar, que produce alimentos de calidad y fija empleo y población en el territorio, lleva décadas con una renta decreciente y cada vez está más endeudada y presionada hacia modelos altamente insostenibles y dependientes de los mercados globales.

Algo falla cuando los modelos de producción más nocivos son los más rentables. Alguien no está pagando sus facturas. Y entre todas las poblaciones del planeta pagamos el cambio climático o las enfermedades relacionadas con la alimentación, como la diabetes, las alergias o el cáncer.

Imagen del informe ‘Producir alimentos sin agotar el planeta’, de la colección Ciencia para las Políticas Públicas (Science For Policy)* del CSIC/ Irene Cuesta (CSIC)

Y lo sostenible cada vez cuesta menos

Sin embargo, los desórdenes climáticos y el alza en los precios de la energía y de los recursos minerales hacen que algunos costes ocultos de la comida barata se hagan cada vez más visibles. Vemos que, frente a la ‘comida basura’, rica en grasas saturadas, sal, azúcares, harinas refinadas y alimentos ultraprocesados, la alimentación fresca cada vez resulta más barata. Y eso que en 2030 tan solo el 29% de la producción agrícola mundial se destinará al consumo humano directo. El resto alimentará a la ganadería industrial (mucho menos eficiente en la producción de alimentos para los humanos que la agricultura) y a la industria agroalimentaria y de otro tipo.

La Organización de las Naciones Unidas (ONU) lleva décadas promoviendo dietas saludables sostenibles, con muy bajo peso de alimentos animales y procesados. El motivo es que una dieta basada en alimentos vegetales frescos y de temporada, que reduce los productos de origen animal y se limita a los de la ganadería extensiva, es más sostenible, más saludable, y también más barata.

Los alimentos ecológicos son más saludables porque carecen de fitosanitarios de síntesis. También son más sostenibles porque no usan fertilizantes químicos contaminantes ni semillas transgénicas y, a través de la fertilización orgánica, fijan carbono y nitrógeno, regeneran los suelos y amplifican y restauran la biodiversidad. También demandan menos agua, algo fundamental en el actual contexto de estrés hídrico.

Además, los alimentos ecológicos frescos y de temporada se pueden adquirir a precios asequibles al mismo tiempo que se remunera de forma adecuada el trabajo de la agricultura familiar ecológica. Si nos abastecemos directamente de los productores y productoras en mercados locales o en grupos de consumo o acudimos a pequeños comercios especializados, los precios se ajustan más y, en muchos casos, resultan más baratos que los alimentos procedentes de la agricultura industrial.

Finca de horticultura ecológica en Sartaguda, Navarra. / Daniel López

Más riqueza natural y social

Una buena alimentación es viable económicamente y posible en nuestros territorios si cambiamos la dieta y el tipo de alimentos, como demuestran estudios recientes. De hecho, la superficie de agricultura ecológica certificada (según el Reglamento EU 848/2018) en España alcanzaba 2,63 millones de hectáreas en 2021, lo que supone un 10,79% de la superficie agraria útil. Esto nos coloca como tercer país del mundo y primero de Europa.

Según el Ministerio de Agricultura, Pesca y Alimentación (MAPA), la superficie con certificación ecológica ha aumentado un 8% sólo en 2021 y el número de explotaciones agrarias ecológicas casi un 17%. Al mismo tiempo, entre 2010 y 2020 desaparecieron en España el 7,6% de las explotaciones agrarias en términos absolutos. Es decir, frente a un abandono generalizado de las explotaciones agrarias por falta de rentabilidad, la producción ecológica consiguió aumentar el número de agricultores y agricultoras de forma muy sensible.

Viñedo de producción ecológica, Navarra. / Daniel López

El gasto de los hogares en alimentos ecológicos también subió. En un contexto de contracción general del gasto, se incrementó en un 14,3% entre 2020 y 2021, llegando a suponer el 3,4% del gasto alimentario familiar.

Por otra parte, se estima que la producción ecológica es, en líneas generales, más rentable y genera más empleo por hectárea cultivada (entre un 40 y un 70%) que la agricultura convencional. Esto se explica en parte porque los alimentos ecológicos y producidos en iniciativas de pequeña escala requieren menos recursos insostenibles para su producción y se ajustan mejor a las condiciones locales y a los recursos disponibles. Además, la producción ecológica es más rentable a medio y largo plazo, pues ayuda a paliar las consecuencias del calentamiento global y a regenerar los recursos naturales.

Las lombrices de tierra son una indicación de la buena salud del suelo. / Flickr

Hacia sistemas alimentarios de base agroecológica

En el actual contexto de creciente escasez de recursos minerales, incluidos los combustibles fósiles, así como de agua, necesitamos impulsar un sistema alimentario menos consumidor y más regenerador de recursos naturales. Incluso a corto y medio plazo, saldrá más barato a toda la sociedad. Es la única manera de alimentarnos bien y a la vez enfriar el planeta y frenar la desaparición de explotaciones agrarias y empleo rural.

Por ello, la producción y el consumo de alimentos ecológicos ya han sido objeto de dos planes de acción en la Unión Europea. A su vez, la Estrategia ‘De la Granja a la Mesa’ y el Pacto Verde Europeo, aprobados en 2020, establecen como objetivo para 2030 alcanzar un 25% de superficie agraria útil en producción ecológica certificada, así como reducciones del 50% en el consumo de fertilizantes, pesticidas de síntesis y de antibióticos de uso en ganadería.

Las coberturas vegetales y la diversidad de plantas benefician la fertilidad y la salud del suelo y del huerto. / Flickr

Estos objetivos han de convertirse en compromisos legales para los estados miembros de la UE este otoño, durante la presidencia española del Consejo de la Unión Europea. La buena noticia es que ya tenemos decenas de miles de explotaciones agrarias ecológicas y estas nos muestran que el cambio es posible. Merecen el apoyo de la sociedad, y la sociedad se merece sus alimentos de calidad, sostenibles, saludables, generadores de resiliencia ecológica y justos.

* Daniel López García es investigador del CSIC en el Instituto de Economía, Geografía y Demografía (IEGD-CSIC).

* Puedes encontrar información relacionada en los informes Producir alimentos sin agotar el planeta y Nutrición sostenible y saludable, de la colección Ciencia para las Políticas Públicas (Science For Policy) del CSIC. Recientemente publicados, los informes están elaborados por equipos de investigadores e investigadoras del CSIC y tienen el objetivo de servir de puente entre los centros de investigación y los decisores políticos, a fin de contribuir a la definición de políticas públicas basadas en la evidencia científica. 

Insectos y otros artrópodos: más de un millón de especies imprescindibles para los ecosistemas

Por Jairo Robla Suárez (CSIC)*

A pesar de recibir el apodo de ‘bichos’, en ocasiones con cierto desprecio, la importancia y la repercusión que tienen los insectos y otros artrópodos para la vida en nuestro planeta son desconocidas para muchas personas. Estos organismos con exoesqueleto externo y apéndices articulados suponen más del 50% de toda la biomasa animal actual de nuestro planeta. Aunque actualmente su diversidad dista mucho de ser bien conocida, suman más de un millón las especies de artrópodos que podemos encontrar campando a sus anchas en absolutamente todos los ecosistemas que atesora nuestro cuerpo celeste. Son capaces de vivir en regiones desérticas que parecen propias de un relato sobre el infierno, en paisajes blancos helados por las temperaturas más frías, en las cortinas de intenso color verde de bosques, selvas o praderas, en cursos de agua y volcanes; pero también habitan en ambientes ruderales (muy alterados por el ser humano) y en nuestras propias casas, pueblan las zonas más altas del planeta y hasta ocupan el gran fondo azul. En todos estos ecosistemas hay artrópodos y en todos ellos realizan una función tremendamente importante y vital, aunque esta nos pase desapercibida.

Insecto de la subfamilia phaneropterinae / Luis F. Rivera Lezama ©RiveraLezama

Insecto ‘hoja’, de la subfamilia Phaneropterinae. / Luis F. Rivera Lezama ©RiveraLezama

Mucho más que polinizadores

La polinización es, sin duda, la misión estrella que se ha atribuido a una gran variedad de insectos voladores. No en vano, más del 90% de las plantas con flor que encontramos en todo el planeta necesitan de un agente animal, concretamente un insecto, para fructificar. Quizá nos acordemos más de ellos cuando compramos esas opulentas y brillantes frutas en nuestro mercado de confianza. Abejas, moscas, escarabajos, mariposas, avispas y un sinfín de pequeños organismos más trabajan día a día por transferir el polen entre las flores para continuar con el milagro de la vida vegetal. Todos ellos nos dan mucho sin pedir nada a cambio.

‘Mosca abejorro’, familia Bombyliidae. Sus larvas son predadoras de los huevos y larvas de otros insectos, tales como orugas, abejas y escarabajos. / Luis F. Rivera Lezama ©RiveraLezama

Pero, más allá de la polinización, podríamos decir que los artrópodos son sustento de todos los hábitats y que son muchas más las funciones que desempeñan. Por encima de las plantas, en las cadenas tróficas, están ellos. Sirven de recurso nutricional para todos aquellos animales que nos llaman más la atención, que nos parecen más bonitos o a los que, desde luego, nunca osaríamos llamar ‘bichos’ con tanto recelo. Si los insectos decidieran hoy ponerse en huelga y viajar a un planeta ignoto más allá de nuestro sistema solar, todas las especies animales, incluyendo los seres humanos, no tardaríamos en extinguirnos. Por lo tanto, es innegable pensar que el mundo actual está dominado por los artrópodos y que estos cargan sobre sus hombros el peso de la vida en nuestro planeta.

Hormiga transportando un pétalo. Género ‘Acromyrmex’. / Luis F. Rivera Lezama ©RiveraLezama

Existen muchos insectos y otros artrópodos que participan en la dispersión de semillas. El hecho de que este bosque que hoy llega hasta aquí mañana llegue un poco más allá puede ser obra de pequeños artrópodos que ayudan a otros dispersores más clásicamente estudiados, como las aves. Conocidos son, por ejemplo, los casos de las hormigas, que, en su incesante colecta de semillas para alimentarse, acaban moviendo estos gérmenes de vida más allá de su planta madre, contribuyendo a que la vegetación se extienda cada vez más.

Detalle de escarabajo joya gema (México), género ‘Chrysina’. / Luis F. Rivera Lezama ©RiveraLezama

También realizan una función esencial por debajo del suelo que pisamos: junto a otros muchos organismos, son los principales aireadores, fertilizadores y preparadores del sustrato. Su actividad genera un suelo con unas condiciones óptimas para el crecimiento de los organismos vegetales. Mientras paseamos por un prado cualquiera en el que aparentemente no vemos nada más que hierbas, bajo nuestros pies se encuentra toda una comunidad subterránea que trabaja día y noche para que todo esté en equilibrio: milpiés, bichos bola, escarabajos, larvas de diferentes organismos y muchos más. Los artrópodos son artífices de este equilibrio gracias a que son los mayores expertos en reciclaje: ayudan en la transformación de los excrementos, cadáveres y restos de otros organismos, devuelven los nutrientes al sistema y los ponen a disposición del resto de organismos.

‘Chrysina quetzalcoatli’ (México). Como en el caso del escarabajo joya gema, sus larvas viven en troncos en descomposición. / Luis F. Rivera Lezama ©RiveraLezama

Además, controlan las poblaciones de otros artrópodos, plantas y de grandes vertebrados al evitar que se establezcan como plagas. Son incontables los artrópodos que viven como parásitos sobre la piel de otros animales o sobre los tejidos de otros vegetales. De esta manera son capaces de extraer de los ecosistemas a aquellos organismos peor adaptados y de evitar que las poblaciones de otros organismos se desmadren. Son como los jinetes del apocalipsis, buscando que todo aquello que les rodea funcione a la perfección.

Araña trampera, altos de Chiapas (México). / Luis F. Rivera Lezama ©RiveraLezama

Grandes benefactores para el equilibrio, amenazados 

Los artrópodos son unos de los organismos más importantes de nuestro mundo y, sin embargo, gran parte de lo que hacemos consigue afectarles. Hemos esquilmado la vegetación natural, tan necesaria para que obtengan refugio y alimento; les hemos bombardeado con pesticidas y otros químicos para alejarlos de nuestras tierras, aun cuando nos proporcionan más beneficios que perjuicios; hemos hecho lo posible por convertir nuestros campos en terrenos baldíos para los artrópodos, en los que encontrarse una mariposa es como buscar una aguja en un pajar; hemos desecado lagunas, urbanizado todas las zonas posibles, contaminado aguas e incluso llevado basura a cuevas y hasta las cimas más altas del Himalaya; hemos provocado la llegada de especies invasoras a prácticamente todos los puntos del planeta. Con todo ello, hoy muchos artrópodos tratan de sobrevivir a duras penas. Parece que les hemos declarado la guerra a estos organismos tan importantes para nuestro planeta y para nuestra propia supervivencia, a pesar de que guardan muchas de las claves que nos permitirían solucionar gran parte de los desafíos actuales. Y, sin embargo, durante todo el tiempo que llevan en la Tierra, estos animales de pequeño tamaño no han hecho más que dar beneficios sin pedir nada a cambio.

Conservar, proteger, cuidar y educar sobre los artrópodos es educar en el equilibrio de los ecosistemas, en el perfecto funcionamiento de las cosas. Y es que, ¿cómo no van a ser importantes más de un millón de especies para la vida en la Tierra y para nuestros ecosistemas?

Insecto ‘palo’, orden Phasmida o Phasmatodea. Entre los fásmidos se encuentran los insectos más pesados y los más grandes. / Luis F. Rivera Lezama ©RiveraLezama

*Jairo Robla Suárez es investigador en la Estación Biológica de Doñana (EBD-CSIC), donde estudia la restauración de comunidades vegetales sometidas a degradación en el entorno del Guadiamar, afectado por el desastre de Aznalcóllar en 1998. Es autor de La astucia de los insectos y otros artrópodos (ed. Guadalmazán).

**Ciencia para llevar agradece especialmente al fotógrafo Luis F. Rivera Lezama por su generosa colaboración con las imágenes que acompañan al texto.

Plancton: un mundo en una cucharadita de agua de mar

Por Albert Calbet (CSIC)*

En una pequeña cantidad de agua de mar como la que podemos recoger en la playa con una simple cuchara de café, podemos encontrar unos 50 millones de virus, 5 millones de bacterias, cientos de miles de pequeños flagelados unicelulares, ya sean fotosintéticos, consumidores, o una combinación de ambos, miles de algas microscópicas, unos cinco ciliados o dinoflagelados heterótrofos, y, con mucha suerte, algún pequeño crustáceo, como por ejemplo un copépodo. El plancton, conformado por este vasto acervo de seres diminutos, es fundamental para el funcionamiento de los ecosistemas marinos. Es el responsable de que haya vida en la Tierra, nos ha proporcionado, a escalas geológicas, una buena parte del oxígeno de nuestro planeta y sin él seguro que no comeríamos pescadito frito.

Calanus minor, especie de copépodo del mar Mediterráneo, sobre fondo negro.

Calanus minor. Especie de copépodo del mar Mediterráneo. Si bien en el Mediterráneo el género Calanus no es dominante, en mares más fríos y productivos, como el Mar del Norte o el Océano Ártico representan la mayoría de la biomasa de zooplancton y son claves para el mantenimiento de las pesquerías de la zona. / Imagen capturada al microscopio por Albert Calbet

Plancton: el motor de la vida marina

Todos estos seres que podemos encontrar en cualquier agua de mar están interconectados en una imbricada red trófica (el conjunto de cadenas alimentarias interconectadas) en la que no solo un organismo se come a otro, sino que, al hacerlo, ayuda a que se liberen los nutrientes acumulados en la materia viva y vuelvan a estar disponibles para que empiece de nuevo el ciclo de la vida. La red trófica marina también ayuda a reducir el CO2 atmosférico gracias a un proceso denominado bomba biológica marina. Mediante este proceso las algas absorben CO2 que ha penetrado en el mar desde la atmósfera y lo incorporan en forma de carbono orgánico en su materia viva. Al ser consumidas por el zooplancton, el carbono contenido en las algas pasa a formar parte de este, o acaba en paquetes fecales que son expulsados y sedimentan hacia las profundidades del océano. Allí, este carbono será reciclado o acabará secuestrado en los sedimentos por cientos o miles de años.

Copépodo marino del género Labidocera sobre fondo negro

Copépodo marino del género Labidocera. Este género habita aguas superficiales y posee tonalidades azules que le confieren sus pigmentos fotoprotectores. / Imagen capturada al microscopio por Albert Calbet

La mayor migración de la Tierra

Este proceso de transporte vertical de carbono está estrechamente relacionado con las migraciones de zooplancton. Estos desplazamientos diarios son considerados las mayores migraciones que existen en el planeta. Al migrar hacia capas superficiales para alimentarse durante la noche, el zooplancton evita que sus depredadores, los peces, lo puedan ver y devorar. Todo encaja en un orden y un equilibrio marcados por millones y millones de años de evolución conjunta de depredadores y presas.

Ilustración de la red trófica oceánica

Ilustración de Albert Calbet

El plancton no solo muestra ritmos diarios, también los hay anuales y plurianuales. Los ritmos anuales están marcados por las estaciones. En invierno, el fitoplancton, a pesar de tener plenitud de nutrientes, está limitado por la escasa luz y la baja temperatura. Hacia finales del invierno y principios de la primavera la luz es más intensa y la temperatura comienza a subir, lo que favorece la floración explosiva o bloom del fitoplancton, el cual irá acompañado por un crecimiento de las poblaciones de protozoos primero y de zooplancton de mayor tamaño después.

Ciliado tintínido del género Favella. Los ciliados son protozoos y forman parte del microzooplancton, el mayor grupo de herbívoros del mar. / Imagen capturada al microscopio por Albert Calbet

Cuando el verano está en su máximo esplendor, la ya bien formada termoclina, la capa de separación entre dos masas de agua a temperatura diferente, separa claramente dos zonas: una capa superficial, caliente y pobre en nutrientes, y una más profunda, fría y repleta de nutrientes. El consumo de las algas va agotando lentamente los nutrientes en la capa de mezcla superficial y con la falta de sustento estas van perdiendo empuje. Las algas veraniegas son o bien de pequeño tamaño o bien grandes, pero con capacidad de locomoción (como los dinoflagelados), y esto les permite explorar las micromanchas de nutrientes que puedan quedar. Son estas algas de gran tamaño las que, en condiciones propicias (por ejemplo, dentro de zonas confinadas como bahías, puertos y espigones), pueden multiplicarse hasta formar proliferaciones nocivas. En esta época es cuando aparecen también las medusas y otros tipos de plancton gelatinoso.

Las primeras tormentas del otoño llegan acompañadas de un aumento en la intensidad del viento, lo cual acaba deteriorando la termoclina, que al final se rompe y permite que las aguas ricas en nutrientes lleguen de nuevo a la superficie. En ocasiones, si las condiciones climáticas del año lo permiten, puede haber otro pequeño crecimiento de algas, pero muchas veces las pobres intensidades lumínicas y bajas temperaturas hacen que el fitoplancton no consiga aprovechar la abundancia de nutrientes. Vuelve el invierno y el ciclo comienza de nuevo.

Imagen de alga diatomea al microscopio

Diatomea del género Coscinodiscus. Las diatomeas son algas unicelulares planctónicas o bentónicas que tienen su cuerpo recubierto por dos valvas de sílice, a modo de cajita. / Imagen capturada al microscopio por Albert Calbet

Ritmos alterados por el cambio climático

Este ciclo se repite año tras año en las zonas templadas, sin embargo, la duración de las estaciones y la magnitud de los parámetros físicos (temperatura, densidad, luz) que se alcanzan en ellas es variable. Debido al cambio climático, el plancton se enfrenta a grandes retos y a fenómenos extremos que están provocando cambios en las comunidades. Estas alteraciones en el plancton se transmiten a través de la red trófica al resto de seres vivos y llegan hasta las pesquerías, de las que tanto dependen algunas zonas del planeta. Desincronización entre el período de aparición de depredadores y presas, desplazamiento y sustitución de especies por otras invasoras, aumento de las proliferaciones algales nocivas (antes conocidas como mareas rojas), incremento en la abundancia de medusas, etc., son algunos de los ejemplos de los retos a los que nos enfrentamos. La red trófica planctónica es compleja y nuestra actividad puede dañarla. Por eso es necesario que se apliquen medidas de contención del cambio climático y de la actividad antropogénica en general, y debemos seguir estudiando cómo evolucionarán las comunidades marinas, pues la incertidumbre ante el futuro no había sido nunca tan grande desde nuestra historia reciente.

Sapphirina sp. o zafiro de mar sobre fondo negro

Sapphirina sp. o zafiro de mar. Esta especie de copépodo de forma deprimida posee cristales de guanina que le confieren iridiscencias que reflejan la luz con diferentes tonalidades. / Imagen capturada al microscopio por Albert Calbet

* Albert Calbet es investigador del CSIC en el Instituto de Ciencias del Mar (ICM-CSIC) y autor del libro El plancton y las redes tróficas marinas (2022), una de las últimas novedades de la colección ¿Qué sabemos de? (Editorial CSIC-Catarata). El libro ofrece una visión clara y amena sobre el plancton y su importancia, desarrolla estos y otros temas en detalle y presenta curiosidades sobre el plancton que difícilmente se encuentran en los libros de texto.

 

Praderas marinas: su función en los ecosistemas y su futuro ante el calentamiento global

Por Julia Máñez Crespo (CSIC)*

Alguers, herbeis, praderas o sebaldales… son muchos los nombres que reciben las poblaciones de las diferentes especies de fanerógamas marinas; pero, ¿qué son y cómo se originaron? Las fanerógamas marinas son organismos fascinantes: todos sus géneros, excepto uno, pueden vivir completamente sumergidos en el agua de mar e incluso florecer y ser polinizadas, ya sea con el movimiento de las corrientes o con la ayuda de pequeños invertebrados, como por ejemplo los isópodos o “abejas” del mar. Son plantas superiores de estructura compleja constituidas por un sistema de raíces, rizoma y hojas y que, además, producen flores verdaderas.

Flor femenina, Cymodocea nodosa / L. G. Egea

Su origen se sitúa en un planeta Tierra aún habitado por dinosaurios, cuando estas plantas fueron capaces de colonizar el mar hace aproximadamente 100 millones de años y de adaptarse a unas condiciones mucho más adversas a las del medio terrestre. Por eso, hoy en día se contabilizan solo unas 60 especies diferentes alrededor del mundo, a excepción del continente Antártico, donde no hay. Uno de los atributos más característicos de estas plantas es la gran diversidad de flores y frutos entre todas las especies existentes.

La adaptación al medio marino ha tenido una influencia directa en la morfología y estructura de estas plantas, lo que ha condicionado su distribución geográfica y especiación. Al tratarse de organismos fotosintéticos, su mayor limitación es la luz, lo que restringe su área de distribución costera entre los 0 y los 50 metros de profundidad, y de ahí la importancia de sus hojas, las cuales se encargan de realizar la fotosíntesis. A diferencia de sus parientes terrestres, estas plantas marinas utilizan también sus hojas para captar la mayoría de los nutrientes y utilizan sus raíces principalmente como anclaje al sedimento. En algunas praderas como las de la especie Cymodocea nodosa se ha observado la capacidad de desarrollar un mayor o menor sistema radicular (raíces de una misma planta) en función de la profundidad y la exposición al oleaje al que están sometidas sus poblaciones.

Posidonia oceanica

Las ingenieras ecosistémicas del mar

Las fanerógamas marinas son también conocidas como ‘ingenieras ecosistémicas’, lo que quiere decir que su presencia en un ecosistema modula los flujos de energía y nutrientes y determina la presencia de otras especies en su ecosistema. Por un lado, contribuyen a la geomorfología litoral, es decir, a dar forma al sistema costero, ya que amortiguan el efecto de las olas y de las corrientes, lo que disminuye la energía con la que impactaran sobre la costa. Y favorecen la sedimentación de partículas, que influye en la transparencia de las aguas. Por otro lado son también llamadas ‘pulmones marinos’, ya que especies como Posidonia oceánica forman praderas capaces de producir hasta 20 litros de oxígeno por hectárea y día. Pero no solo eso, sino que además son capaces de captar el dióxido de carbono atmosférico que entra en el mar y utilizarlo para su propio crecimiento, lo que conlleva que las praderas sean grandes sumideros de este gas de efecto invernadero.

Además de su influencia en la regulación de los flujos de materia y energía, su presencia en los ecosistemas es de vital importancia en la preservación de la biodiversidad. Son el principal alimento para algunas tortugas marinas y para dugongos (único representante de su género y el único miembro superviviente de la familia Dugongidae); también para multitud de pequeños invertebrados y para algunas especies de peces. Al conformar una zona altamente productiva, atraen a organismos que a su vez serán presa para otros y ofrecen refugio entre sus hojas para aquellos en primeras fases de desarrollo, como las larvas de peces, gasterópodos o bivalvos.

Banco de salpas en pradera de Cymodocea nodosa / Mallorca Blue

A pesar de su singularidad e importancia y de aportar un sinfín de beneficios ecosistémicos, actualmente las praderas de estas plantas marinas se enfrentan a un gran número de adversidades que están ocasionando el aumento su estado de vulnerabilidad. Todas las problemáticas son consecuencia directa o indirecta de las actividades humanas. De manera directa, la mala gestión de las aguas residuales o la erosión ocasionada por las anclas de las embarcaciones daña las praderas, reduce su producción de oxígeno, y el hábitat disponible para la biodiversidad, y reintroduce el dióxido de carbono que estaba almacenando al sistema. De manera indirecta, la llegada de especies invasoras o la sobrepesca facilita la expansión de poblaciones de otros organismos en detrimento de las de fanerógamas marinas.

No obstante, el calentamiento global es una de las mayores amenazas a las que se enfrentan. Los resultados mostrados en el último informe del IPCC (Grupo Intergubernamental de Expertos sobre el Cambio Climático) sobre los océanos prevén una alta probabilidad de olas de calor extremo: de mayor duración e intensidad, siendo las zonas costeras lugares donde estos episodios sucederán con mayor severidad. Y es en esas áreas costeras donde residen estas plantas marinas.

Pradera de Cymodocea nodosa / Mallorca Blue

Episodios de olas de calor sostenidas en el tiempo como las de este verano, que en el mes de noviembre parecía no irse en zonas del Mediterráneo y del Atlántico, han provocado fenómenos de blanqueamiento de las hojas en praderas de la cuenca mediterránea, lo que podría afectar a las respuestas fisiológicas de las plantas. Algunas de estas respuestas las estamos investigando.

Dada la importancia y el actual estado de vulnerabilidad de estos organismos es necesario continuar estudiando su comportamiento ante el nuevo paradigma climático así como reducir las amenazas a las que se enfrentan, a fin de mejorar las políticas de conservación de sus praderas e incrementar la restauración en las zonas más afectadas. Las praderas de fanerógamas marinas son lugares únicos en el mundo, anteriores a nuestra presencia en el planeta y con derecho a seguir en él como hasta ahora.

* Julia Máñez Crespo es investigadora postdoctoral en el Instituto Mediterráneo de Estudios Avanzados (IMEDEA, UIB-CSIC), donde investiga el rol ecológico de las praderas de fanerógamas marinas así como los efectos ecológicos de la llegada de especies invasoras.