Archivo de la categoría ‘Ciencias de la Tierra’

¿Para qué sirve un láser?

Por José Vicente García Ramos (CSIC)*

Cuando se inventó, en 1960, el láser no servía para nada. De hecho, en aquellos tiempos algunos científicos se referían a él como “una solución en busca de problema”. Entonces, ¿para qué lo inventaron? Parece que querían probar, experimentalmente, que el mecanismo de amplificación de la luz por emisión estimulada, predicho por Einstein en 1917 y demostrado con microondas en 1954, podía extenderse a la luz visible.

Hoy, sin embargo, la situación es muy diferente y el láser ha encontrado tantas aplicaciones que nos resulta casi imposible enumerarlas. Las tres características que diferencian la luz de un láser de la luz del Sol o de la generada por una bombilla son que, en el caso del láser, se trata de un haz de luz monodireccional, monocromático y coherente.

Hoy día los láseres tienen numerosas y variadas aplicaciones. / Wikimedia Commons

Hoy día los láseres tienen numerosas y variadas aplicaciones. / Wikimedia Commons

Cualquier láser contiene al menos tres elementos fundamentales: un medio activo, un sistema de bombeo y una cavidad resonante. El medio activo es el material (sólido, líquido o gaseoso) que emite la luz. Para que este medio activo emita luz hay que excitarlo de alguna manera, del mismo modo que el filamento de una bombilla necesita una corriente eléctrica que pase por él. En el caso de un láser se trata del sistema de bombeo, que puede consistir en otro láser, una lámpara convencional o una corriente o descarga eléctrica. El medio activo se coloca entre dos espejos que forman una cavidad resonante donde la luz rebota entre ellos y ayuda a la amplificación, como lo que ocurre en la caja de resonancia de una guitarra que amplifica las ondas acústicas. Uno de los espejos es semirreflectante, por lo que parte de la luz amplificada sale de la cavidad resonante en forma de haz.

El volumen de información que transmite una onda electromagnética depende de su frecuencia; en este sentido, la luz de un rayo láser resulta idónea para la transmisión de señales. Por eso, entre sus aplicaciones más usadas está la lectura de discos compactos, la fabricación de circuitos integrados y la lectura de códigos de barras. En el ámbito de la medicina, la tecnología láser se aplica a los bisturís cauterizantes, ya que permite realizar cortes muy finos de gran precisión, evitar cualquier riesgo de contagio y cauterizar de manera inmediata, alejando el peligro de hemorragias.

Fibra óptica, impresoras o espionaje

Sin embargo, muchas de las aplicaciones del láser no dependen tanto de su capacidad para generar un rayo de luz como del hecho de que representa una concentración extremadamente intensa de energía. Basándonos en esta propiedad, podemos enumerar tres aplicaciones sumamente importantes en el terreno de la óptica. Una de ellas son las telecomunicaciones mediante fibra óptica. En este caso, las señales eléctricas que hasta hace poco tiempo se desplazaban a través de conductores metálicos han sido reemplazadas por pulsos ópticos que se transmiten a través de fibra de vidrio del grosor de un cabello. Como potente fuente de luz, el láser confiere a estas fibras una elevada capacidad de transmisión.

Espectáculo de luces con láseres. / kpr2 - Pixabay

Espectáculo de luces con láseres. / kpr2 – Pixabay

La segunda aplicación óptica importante está en la holografía, que es una técnica para crear imágenes tridimensionales, inventada en 1947 por el ingeniero eléctrico húngaro Dennis Gabor (1900-1979), que obtuvo por ello el Premio Nobel en 1971. Esta técnica se basa en la interferencia entre dos rayos de luz. Uno de los aspectos básicos del sistema es la necesidad de utilizar luz coherente, y cuando se inventó solo se disponía de fuentes relativamente débiles de este tipo de luz. La llegada del láser transformó la situación, porque la generación de una poderosa fuente de luz coherente es su esencia. Con el tiempo, la holografía llegó a hacerse muy familiar en una variedad de formas, como en la marca de seguridad de las tarjetas de crédito y en publicidad.

La tercera aplicación importante está en las impresoras de los ordenadores, donde, controlando un haz láser, se dibujan las palabras que se quieren imprimir.

También podemos destacar las aplicaciones que dependen de su capacidad para concentrar una gran cantidad de energía sobre una superficie muy pequeña (alrededor de un millón de vatios por centímetro cuadrado) durante un periodo de tiempo extremadamente breve. Algunas de las más importantes aplicaciones industriales de los láseres son fruto de esta capacidad: la perforación, la soldadura y el corte de distintos materiales.

Además, puesto que un rayo láser es muy fino y prácticamente no sufre divergencias, se puede usar para medir largas distancias con gran precisión. La técnica (semejante a la del radar) consiste en captar el rayo reflejado por el objeto distante y medir el tiempo transcurrido desde el envío de la señal hasta la recepción de su reflejo. Conociendo la velocidad de la luz, resulta fácil calcular la distancia. En los años setenta, este método se empleó para determinar con precisión la distancia de la Luna, utilizando los reflectores que habían instalado allí los astronautas norteamericanos.

Pero eso no es todo, también se han empleado láseres hasta para temas relacionados con el espionaje. En 1968 se descubrió que un láser puede detectar perfectamente desde el exterior las vibraciones del cristal de las ventanas producidas por las conversaciones en el interior de una casa. Vemos cómo el láser, que en un principio era como “un invento en busca de un empleo”, tiene en la actualidad un sinfín de variadas aplicaciones.

 

* José Vicente García Ramos es Vocal del Comité de Ética del CSIC y autor del libro Las moléculas: cuando la luz te ayuda a vibrar (Editorial CSIC-Los Libros de la Catarata). Hasta su jubilación en 2016 fue investigador en el Instituto de Estructura de la Materia del CSIC.

¿Qué sabemos del cambio climático? Respuestas científicas a 5 preguntas frecuentes

Por Armand Hernández (CSIC)*

Aunque ha habido muchos cambios climáticos a lo largo de la historia de nuestro planeta, sabemos que ahora la Tierra se está calentando a un ritmo sin precedentes.  Ya no hay duda de que el cambio climático actual es un hecho reconocido por la ciencia. Sin embargo, la sociedad sigue haciéndose preguntas al respecto. En este post respondemos a algunas de las más frecuentes.

¿Cómo sabemos que el clima está cambiando?

 Los registros instrumentales a nivel global nos muestran que estamos experimentando las temperaturas más altas desde que se empezaron a medir hace algunos siglos. Diecisiete de los dieciocho años más cálidos desde que existen registros instrumentales se han producido durante el siglo XXI. Además, las observaciones indirectas de registros naturales como el hielo de los casquetes polares, las estalagmitas, los anillos de los árboles, los corales y los sedimentos marinos y lacustres sugieren que este calentamiento no tiene precedentes en los últimos cientos de miles de años.

Gráfica calentamiento

Temperaturas globales anuales entre 1850 y 2017. La escala de colores representa el cambio en las temperaturas en un rango de 1.35°C. / Autor: Ed Hawkins (University of Cambridge). Datos: HadCRUT4 (Climatic Research Unit-University of East Anglia y Hadley Centre-Met Office).

¿Qué está causando el cambio climático actual?

La fuente principal de la energía que consumimos en la actualidad proviene de combustibles fósiles como el carbón, el petróleo y el gas, que producen emisiones de gases de efecto invernadero.

Cuando la comunidad científica trata de reproducir el calentamiento global actual con modelos climáticos, solo se obtienen resultados satisfactorios si se tienen en cuenta las concentraciones de gases de efecto invernadero procedentes, principalmente, de la quema de combustibles fósiles. De esta manera, se descarta que esta tendencia sea causada sólo por procesos naturales.

¿Qué va a pasar?

Con el aumento de la temperatura global, podemos esperar cambios más rápidos y de mayor magnitud en el medio ambiente, con diversas implicaciones para las diferentes regiones del planeta.

El deshielo en los polos, así como la expansión del agua debido a las mayores temperaturas, provocarán un aumento del nivel del mar, que se prevé que alcanzará más de 1 metro a finales del siglo XXI. Esto es muy importante, ya que la mayor parte de la población mundial vive en zonas costeras.

También se espera que los fenómenos climáticos extremos se hagan más frecuentes, duraderos, intensos y devastadores. Una consecuencia de todos estos cambios podría ser un aumento de los movimientos migratorios y la generación de una inestabilidad geopolítica creciente.

¿Cuánto tiempo tenemos hasta que el cambio climático sea irreversible?

Es casi imposible saber cuánto tiempo nos queda para que el cambio climático sea irreversible. En realidad, algunos de los impactos causados por el cambio climático ya no tienen vuelta atrás, mientras que otros se reducirían si se detuvieran de inmediato las emisiones de gases de efecto invernadero de origen humano.

Según el Grupo Intergubernamental de Expertos sobre el Cambio Climático de las Naciones Unidas (IPCC, siglas en inglés), deberíamos reducir a la mitad las emisiones de dióxido de carbono para el año 2030 y alcanzar el “cero neto” para el año 2050, para así poder mantener el calentamiento global en 1,5 °C a finales del siglo XXI.

Esto es importante, ya que mantener el aumento de la temperatura global por debajo de 2°C es vital para reducir los impactos asociados a los efectos de larga duración, como la pérdida de algunos de los ecosistemas más sensibles (los arrecifes coralinos, por ejemplo) o la capacidad de cultivar ciertos alimentos básicos, como el arroz, el maíz o el trigo.

Estas y otras preguntas, así como sus respuestas, las puedes encontrar en el audiovisual “Climate Change: the FAQs” elaborado por un grupo de científicos/as internacionales (entre los que se encuentran dos integrantes del CSIC) para resolver las dudas planteadas por estudiantes de secundaria y bachillerato.

¿Qué están haciendo las instituciones al respecto?

A menudo se hace hincapié en que los pequeños cambios, como por ejemplo el uso del transporte público o la bicicleta, pueden ayudar a reducir las emisiones de CO2. Sin embargo, para que estas acciones sean suficientes, deben ir acompañadas de cambios drásticos en los sistemas de producción y consumo promovidos por los gobiernos e instituciones a nivel internacional.

La Convención Marco de las Naciones Unidas sobre el Cambio Climático (CMNUCC) es el principal acuerdo internacional sobre el clima. Entró en vigor en el año 1994 como medio de colaboración entre los países para limitar el aumento de la temperatura mundial y hacer frente a sus consecuencias.

Veinte años después, en el famoso Acuerdo de París 2015, y siguiendo las directrices del IPCC, se alcanzó un consenso político mundial para detener el incremento de temperaturas por debajo de los 2ºC respecto a los niveles preindustriales. En virtud de ese acuerdo, cada país decide su contribución a la mitigación del calentamiento global. Como no existe ningún mecanismo que obligue a un país a fijar o cumplir objetivos específicos en fechas concretas, el acuerdo tiene un impacto limitado.

A modo de ejemplo tenemos los resultados de la reciente Cumbre sobre la Acción Climática de las Naciones Unidas, en la que sólo 77 países se comprometieron a reducir las emisiones de gases de efecto invernadero a “cero neto” para el año 2050. Además, únicamente 70 países anunciaron que impulsarán sus planes de acción nacionales para 2020 (en el marco del Acuerdo de París) o que han comenzado el proceso para hacerlos realidad.

Si es suficiente o no, sólo el futuro nos los dirá, pero de lo que no hay duda es que nos enfrentamos a un reto global sin precedentes.

 

* Armand Hernández (@armandherndz) es paleoclimatólogo e investigador en el Instituto de Ciencias de la Tierra Jaume Almera del CSIC.

La mineralogía salva la vida a Iron Man

Por Carlos M. Pina (CSIC-UCM) y Carlos Pimentel (UPM, UCM)*

[Contiene spoilers] Han pasado ya casi 6 meses desde que los Vengadores nos salvaron por última vez. Después de que Thanos asesinase a la mitad de los seres vivos del Universo utilizando las Gemas del Infinito, estas fueron utilizadas por Bruce Banner (Hulk) para devolverles a la vida. Tras ello, los ejércitos de Thanos se enfrentaron a los Vengadores y sus aliados en una cruenta batalla. Para detenerla, Tony Stark (Iron Man) utilizó el Guantelete del Infinito, con el que logró destruir a Thanos y sus ejércitos. Sin embargo, las heridas producidas por el poder de las gemas también causaron su muerte. ¿Fue el sacrificio de Tony Stark en vano?

Miremos detenidamente el Guantelete del Infinito. Está compuesto por 6 gemas con distintos poderes y colores, que juntas tienen un poder inimaginable. Pero lo que todos podemos apreciar es su color, no su poder, incluido Thanos por muy titán que sea. ¿Qué hubiese ocurrido si los Vengadores hubiesen sabido algo de mineralogía? Podrían haberle dado el cambiazo a Thanos y haber sustituido las Gemas del Infinito por gemas iguales pero que careciesen de poderes, como la amatista (morado), el rubí (rojo), el zafiro (azul), el crisoberilo (amarillo), el topacio (naranja) y la esmeralda (verde); gemas muy comunes y mucho más baratas que cualquier armadura de Iron Man. Así, los Vengadores hubiesen ganado la Guerra del Infinito antes de comenzar, Tony Stark seguiría vivo y Steve Rogers continuaría siendo el Capitán América.

Partiendo de la idea de que los minerales que aparecen en la ciencia ficción y la fantasía (por ejemplo, Star Wars, Star Trek, Mundodisco o X-men) hemos escrito una Pequeña guía de minerales inexistentes (Ediciones Complutense, 2019) y organizado una exposición con el mismo nombre en Madrid, que podrá visitarse en la Biblioteca María Zambrano de la UCM hasta el 6 de noviembre. En ellos presentamos 16 minerales ficticios, indicando su origen, sus imposibles propiedades y aplicaciones, e incluso información sobre sus imposibles estructuras y composiciones químicas. El libro también describe minerales o materiales similares reales que muestran propiedades análogas.

¿Hay algún mineral tan radiactivo como la kryptonita que aparece en Superman? En la naturaleza existen algunos minerales altamente radiactivos, como por ejemplo, la uraninita, la pechblenda (variedad impura de la uraninita) y la becquerelita. Sin embargo, ninguno de estos minerales sería capaz de derrotar a Superman, para decepción de Lex Luthor.

¿Existe algún material tan duro como el adamantium que recubre los huesos de Lobezno? Sí, aunque sin su increíble dureza. Se trata de la widia, un metal que se usa, por ejemplo, en las brocas de los taladros.

¿Qué minerales se han usado para comerciar como el tiberium del popular videojuego Command & Conquer? Los metales preciosos, las gemas, la sal común (que es un mineral llamado halita) han sido utilizados históricamente como moneda de cambio.

Tiberium realizado con impresora 3D y que forma parte de la exposición.

¿Podemos pensar en algún mineral como los cristales de adegan de Star Wars? Por supuesto. El rubí fue el mineral con el que se fabricaron los primeros láseres, aunque no sirve para hacer sables láser como los de las películas (una lástima para los frikis).

¿Algún mineral mágico como el octirón de Mundodisco? Por supuesto que no, ya que los minerales no tienen propiedades mágicas. Por más que en muchas tiendas de minerales se les atribuyan ciertos poderes, esto es completamente falso.

¿Y por qué es importante saber de minerales? No es sólo para saber cómo salvar a nuestros personajes de cómics, películas o videojuegos preferidos. Los minerales también son esenciales en nuestra vida diaria. Para fabricar el móvil o la tablet en la que estás leyendo esta noticia se han utilizado al menos 13 minerales distintos, la electricidad llega a tu casa a través de cables de cobre que se extraen de minerales y hay minerales y rocas en tu cocina, como la sal o la encimera de granito. Además, los minerales nos cuentan, a geólogos y mineralogistas, cómo fue la Tierra en épocas pasadas. Gracias a su estudio, se ha podido determinar, por ejemplo, cómo era el clima en la época de los dinosaurios o cómo era la Tierra en el pasado.

La exposición podrá visitarse en la Biblioteca María Zambrano de la UCM hasta el 6 de noviembre. El 16 de octubre a las 18:00 habrá un acto de presentación tanto de la exposición como de la guía de minerales inexistentes.

* Carlos M. Pina es profesor titular de Cristalografía y Mineralogía en la Facultad de Ciencias Geológicas de la Universidad Complutense de Madrid e investigador del Instituto de Geociencias (IGEO, CSIC-UCM). Carlos Pimentel es investigador en la E.T.S.I. de Montes, Forestal y del Medio Natural de la Universidad Politécnica de Madrid y colaborador honorífico del Departamento de Mineralogía y Petrología de la Facultad de Ciencias Geológicas de la Universidad Complutense.

Cremas solares: ¿una amenaza para el Mediterráneo?

Por Antonio Tovar (CSIC)*

¿Sabías que España es, sólo por detrás de Francia, el segundo destino mundial en cuanto a visitantes extranjeros? Cada año batimos nuestro récord, con 82,6 millones de visitantes en 2018, casi el doble de la población española. La mayoría buscan un turismo de sol y playa: cerca de la mitad se concentran en las zonas costeras, muy particularmente en la costa mediterránea durante los meses de verano. Si contamos los turistas que reciben otros países del área (por ejemplo, Italia, Francia, Turquía, Grecia, Croacia o Marruecos) veremos que en 2016 se alcanzaron en el Mediterráneo 329,2 millones de visitas, cifra equivalente a la población del tercer país más poblado del mundo, Estados Unidos. Esta afluencia afecta positivamente a la economía de estos países –la actividad turística generó a la Unión Europea 1,1 billones de euros durante 2016–, pero supone también un impacto en el medio ambiente, especialmente en el medio marino, que requiere de una urgente atención.

Crema solar

Entre los múltiples impactos que tiene el turismo sobre los mares, la contaminación por el uso de las cremas solares está recibiendo especial atención de la comunidad científica, ya que nos encontramos ante un problema de alcance global. Las pruebas que sustentan esta afirmación son:

  • La creciente preocupación en las últimas décadas sobre los riesgos asociados con la exposición de la piel a la radiación ultravioleta (UV) se traduce en un incremento en el uso de protectores solares. Estos productos acaban en el mar, bien durante el baño o indirectamente a través de las plantas de aguas residuales.
  • El aumento del turismo de sol y playa lleva aparejado un incremento del consumo de cosméticos. De hecho, el valor de los protectores solares en el mercado alcanzó en 2018 los 7.350 millones de euros y se pronostica que llegará a los 10.430 millones de euros en 2025.
  • Se trata de cosméticos en cuya formulación se incluyen multitud de ingredientes químicos, no todos específicamente indicados en sus etiquetas.
  • Estudios científicos recientes han demostrado la toxicidad de las cremas solares en su conjunto o de alguno de sus ingredientes (como el dióxido de titanio, el óxido de zinc, o la oxibenzona) sobre organismos del ecosistema marino (microalgas, mejillones, erizos, crustáceos, peces, corales, etc.).
  • Se han encontrado ingredientes químicos usados en la formulación de las cremas solares en multitud de animales, como peces, delfines o huevos de aves, y en lugares muy remotos del planeta, como la Antártida.

Todo apunta, por tanto, a que nos encontramos con un problema real, de alcance global y con efectos de magnitud aún desconocida. Ante tales ‘pistas’, algunos gobiernos ya han adoptado medidas sin precedentes para tratar de proteger sus ecosistemas. Así, el estado de Hawái (Estados Unidos) aprobó en 2018 una ley para prohibir la venta y distribución de protectores solares que contengan entre sus ingredientes oxibenzona y sus derivados, que resultan tóxicos para los corales. En el mismo año, y por el mismo motivo, el archipiélago de Palaos (Micronesia) aprobó una ley para prohibir por completo el uso de cremas solares, convirtiéndose en el primer país del mundo en adoptar dicha medida. Sin embargo, existen otras zonas del planeta, como el Mediterráneo, donde el problema puede estar especialmente magnificado, y donde no se ha adoptado ninguna medida encaminada a evaluar o minimizar el impacto de las cremas solares en sus ecosistemas marinos.

Punto caliente de biodiversidad

A pesar de que este impacto no ha sido aún evaluado, el Mediterráneo presenta una serie de características físicas, químicas, biológicas y socioeconómicas que hace que sus ecosistemas sean, desde el punto de vista de la contaminación, unos de los más amenazados del mundo.

Este mar es una cuenca semi-cerrada donde la pérdida de agua por evaporación supera la entrada por precipitaciones y descargas de los ríos. Esto genera un déficit hídrico que se compensa parcialmente con un intercambio limitado de agua con el océano Atlántico a través del Estrecho de Gibraltar (de tan solo 12,8 km de ancho y unos 300 metros de profundidad), y que es la única conexión con el océano abierto. Todo ello hace que la renovación del agua del Mediterráneo sea mucho más lenta que la de cualquier otra zona oceánica, y por tanto el efecto de cualquier contaminante, como podrían ser las cremas solares, permanezca en sus aguas durante más tiempo.

Posidonia

Posidonia oceanica. / Alberto Romeo (CC BY-SA 2.5).

Con más de 17.000 especies marinas, el Mediterráneo es uno de los puntos calientes de biodiversidad del planeta, con especies endémicas de gran valor ecológico y muy sensibles a la contaminación, como las praderas de Posidonia oceanica. A pesar de su riqueza biológica, es un mar oligotrófico, es decir, su producción primaria es muy baja como resultado de la escasa concentración de determinados nutrientes disueltos en sus aguas, principalmente el fósforo. Esta característica confiere a sus aguas un aspecto azulado y cristalino.

Además tiene una media de 250 días de sol al año, el clima es suave y húmedo durante el invierno, y cálido y seco durante el verano. Todo esto, junto con un rico patrimonio cultural y una situación sociopolítica favorable, crea en las regiones costeras mediterráneas un escenario idílico que atrae a millones de turistas cada año.

Nos encontramos, por tanto, ante una región que recibe de manera masiva turistas atraídos en buena parte por las características medioambientales y ecológicas del medio. Esto genera una gran riqueza económica, pero a la vez perjudica y amenaza los recursos ambientales. Es una responsabilidad de los gobiernos buscar alternativas que garanticen un turismo sostenible que priorice la conservación de los ecosistemas y evitar que el crecimiento turístico del que presumimos se convierta en víctima de su propio éxito. La búsqueda de dichas alternativas requiere ineludiblemente de la cooperación entre la comunidad científica, empresas cosméticas y farmacéuticas, gestores ambientales y políticos.

 

* Antonio Tovar es investigador en el Instituto de Ciencias Marinas de Andalucía, del CSIC.

Arte y ciencia se alían contra la contaminación urbana

Por Fernando del Blanco Rodríguez (CSIC)*

Zabol, Onitsha, Peshawar, Gwalior… Tal vez a un oído europeo no le diga mucho el nombre de estas ciudades. Sin embargo, cada una de ellas se encuentra representada en uno de los doce relojes que conforman la instalación artística conTIMEminación, que se exhibe el Centro de Investigación y Desarrollo de Barcelona (CID-CSIC). ¿Por qué?

conTIMEminacio

Pues precisamente porque estas ciudades presentan algunos de los índices de polución ambiental más altos del mundo si atendemos a los datos de la Organización Mundial de la Salud (OMS) de 2016 sobre calidad de aire y, en concreto, a los indicadores de presencia de material particulado en suspensión (PM).

Este material particulado al que alude la OMS y que es posible detectar en la atmósfera de nuestras ciudades se suele clasificar en dos grupos según el tamaño de las partículas que lo constituyen: por un lado, las partículas de diámetro aerodinámico igual o inferior a los 10 micrómetros (µm) –un micrómetro equivale a una milésima parte de un milímetro–, denominadas PM10; y, por otro, la fracción respirable más pequeña, las partículas de diámetro aerodinámico inferior o igual a los 2,5 micrómetros, a las que nos referimos como PM2,5.

El tamaño no supone la única diferencia entre ambos grupos. Las PM2,5, consideradas las más potencialmente peligrosas para la salud, se originan sobre todo en fuentes de combustión creadas por los seres humanos, como las emisiones de los motores diésel. Mientras, una parte significativa de las partículas de mayor tamaño suele ser de tipo metálico o mineral, ya sea de origen antrópico (humano) o natural.

La instalación conTIMEminación, creada por el artista Francisco Martínez Gómez, explora los problemas derivados de la presencia de estas partículas en nuestros entornos. Consta de doce relojes en funcionamiento, cada uno de los cuales ha sido inyectado con un producto metafóricamente tóxico que detendrá su mecanismo a medida que la agujas ya no sean capaces de superar la resistencia creciente e incesante de la sustancia extraña que las entorpece.

El proyecto, que cuenta con la colaboración de los investigadores del CSIC Xavier Querol y Sergi Díez, propone una reflexión en torno al volumen de contaminación al que estamos sometidos los habitantes de los núcleos urbanos y esboza el desenlace alegórico al que nos abocaría no comprender la magnitud de este riesgo.

Cada reloj representa una ciudad: Zabol (Irán), Onitsha (Nigeria), Peshawar (Pakistán), Riyadh (Arabia Saudí), Gwalior (India), Guangzhou (China), Moscú (Rusia), Estambul (Turquía), Buenos Aires (Argentina), París (París), Barcelona (España) y Lima (Perú). El artista y los investigadores matizan que la instalación no pretende reflejar los datos científicos de forma precisa, sino ilustrar la dimensión global del problema. Estas ciudades sufren significativos problemas de polución, aunque no todas presentan los indicadores más altos de contaminación.

Tendencias opuestas

“La tendencia de la calidad del aire en el mundo puede llegar a seguir evoluciones temporales opuestas en función del desarrollo económico”, explica Querol. “Mientras en Europa, Australia, EEUU, Japón y otras sociedades desarrolladas, la calidad ha mejorado drásticamente en las últimas décadas, en algunas ciudades de Irán, Pakistán, India y China se evidencia un empeoramiento muy marcado”, aclara este investigador del Instituto de Diagnóstico Ambiental y Estudios del Agua (IDAEA) del CSIC.

Concentración de material particulado con diámetro aerodinámico igual o menor a 2,5 micrómetros (PM2,5) en cerca de 3.000 áreas urbanas, 2008-2015. / Organización Mundial de la Salud, 2016

Mapa PM 10

Concentración de material particulado con diámetro aerodinámico igual o menor a 10 micrómetros (PM10) en cerca de 3.000 áreas urbanas, 2008-2015. / Organización Mundial de la Salud, 2016

El caso de España está en sintonía con el europeo. Si en 2005 en nuestro país 49 zonas incumplían la normativa para PM, en la actualidad solo lo hace una (Avilés). Esta tendencia ha reducido notablemente las muertes prematuras anuales atribuibles a la mala calidad del aire en la Unión Europea: según la Agencia Europea de Medio Ambiente, se ha pasado de una estimación de un millón de muertes al año en 1990 a otra de 400.000 en 2016.

Querol considera que “los países y ciudades más avanzados en política ambiental han asumido social y políticamente que la calidad del aire no es un tema solamente de ecologismo, sino que lo es de salud pública en primer lugar”. Sin embargo, estos avances no han servido para alcanzar metas como la estrategia europea inicial en materia ambiental. “Prueba de ello es que desde 2010 debíamos cumplir una legislación en dióxido de nitrógeno que se ha infringido ampliamente en toda la Europa urbana; o que aún no se han adoptado como normativos los valores guía para PM de la OMS, a pesar de que la primera directiva de calidad del aire en Europa establecía que esto debía hacerse en 2010”, afirma el investigador.

A su juicio, para reducir la contaminación urbana es necesario adoptar medidas que “afectan al vehículo privado y la distribución de mercancías”. En esta dirección se enfoca el proyecto europeo Airuse Life +, galardonado como el mejor proyecto `Ciudades Verdes´ de 2018 y coordinado por este especialista. La iniciativa propone una reformulación urbanística, logística y del transporte muy profunda como estrategia para conseguir reducir la contaminación del aire en nuestras ciudades.

Mientras esto pasa en Europa, conTIMEminación se pregunta si estas medidas –en caso de que se implementen– llegarán a tiempo, y si lo harán en aquellos entornos –como los de los países en desarrollo– donde sus habitantes sufren un tipo de pobreza aun escasamente contemplada como un fenómeno de desigualdad geoeconómica: la pobreza ambiental. La imposibilidad de respirar aire digno.

Zabol, Onitsha, Peshawar, Gwalior…

* Fernando del Blanco Rodríguez es bibliotecario en el Centro de Investigación y Desarrollo del CSIC.

Si los muros del Metro hablaran… ¿Qué nos dicen los azulejos de una ‘estación fantasma’?

Por Elena Mercedes Pérez Monserrat y Mar Gulis (CSIC)*

El Metro de Madrid cumple 100 años en 2019. Esta red de Metro, que hoy es una de las mejores del mundo y cuenta con 302 estaciones a lo largo de 294 kilómetros de recorrido, fue inaugurada en 1919 por el rey Alfonso XIII con una sola línea Norte-Sur que iba desde Puerta del Sol a Cuatro Caminos (el germen de la que hoy se denomina Línea 1), con un total de 8 estaciones y que no llegaba a cubrir 3,5 kilómetros.

En los años 60 del siglo XX, cuando la compañía Metropolitano decidió alargar los trenes, se reformaron las estaciones para que los andenes pasaran de tener 60 a 90 metros. Pero hubo una estación en la que, por su situación en curva y por la cercanía a las paradas colindantes, no se pudo acometer esta reforma y acabó siendo clausurada por el Ministerio de Obras Públicas: la estación de Chamberí.

 

La icónica decoración de las estaciones del Metro de Madrid, incluidos vestíbulos, andenes o bocas de acceso, fue diseño del arquitecto Antonio Palacios. / Laura Llera

La icónica decoración de las estaciones del Metro de Madrid, incluidos vestíbulos, andenes o bocas de acceso, fue diseño del arquitecto Antonio Palacios. / Laura Llera

Tras más de 40 años cerrada y siendo objeto de curiosidades varias, la estación de Chamberí, después de una importante actuación de limpieza, restauración y conservación, fue reabierta en 2008 como centro de interpretación visitable del Metro de Madrid. Durante esas décadas en las que la “estación fantasma” permaneció cerrada al público, los accesos exteriores fueron vallados, hecho que permitió que se conservaran muchos de los objetos cotidianos de la época, como carteles publicitarios, tornos, papeleras… así como las cerámicas que recubrían toda la estación. Es decir, lo excepcional del lugar es que se trata de la única estación del Metropolitano que conserva su estado original casi en su práctica totalidad.

Luz y color para el Metropolitano de Madrid

En 1913 los ingenieros Carlos Mendoza (1872-1950), Miguel Otamendi (1878-1958) y Antonio González Echarte (1864-1942) presentaban un proyecto de red de metro para la ciudad de Madrid. El arquitecto Antonio Palacios (1874-1945) fue el encargado de diseñar las estaciones, los accesos y los edificios del proyecto. Se buscaba integrar el uso de materiales tradicionales en un entorno tecnológico completamente nuevo, dando un resultado muy decorativo de marcado estilo español. Con la aplicación de azulejería en el suburbano se pretendía proporcionar luminosidad y color a unos nuevos espacios -bajo tierra- que iban a ser utilizados por personas acostumbradas a la luz natural. La rica variedad de cerámicas de las diversas regiones españolas facilitó poner en práctica este empeño.

Estado actual de la estación de Metro de Chamberí (Madrid), alicatada con azulejos blancos y decorada con piezas coloreadas y/o con reflejo metálico. / Laura Llera

Estado actual de la estación de Metro de Chamberí (Madrid), alicatada con azulejos blancos y decorada con piezas coloreadas y/o con reflejo metálico. / Laura Llera

En Madrid, la cerámica vidriada aplicada a la arquitectura tuvo su máximo apogeo a finales del siglo XIX y principios del XX. Entonces, la azulejería publicitaria -especialmente en las estaciones del Metropolitano- y la urbana cobraron un especial significado. Este material favoreció el auge de las industrias cerámicas de los principales centros productores. Así, en la arquitectura madrileña de principios del siglo XX la cerámica vidriada desempeñaba un papel esencial desde la concepción inicial de los proyectos; y cabe resaltar la apuesta por seleccionar materias primas nacionales para su elaboración. En cuanto a las piezas de reposición que se han elaborado recientemente para las labores de restauración, se han respetado los aspectos formales de las originales, pero utilizando materiales y tecnologías que incrementan su resistencia.

El uso de la cerámica vidriada respondía también al apogeo en la época de la publicidad alicatada, así como a las condiciones de buena conservación y fácil limpieza que presenta la azulejería. Tras la Guerra Civil española (1936-1939) la publicidad en cerámica de la estación fue cubierta por tela y papel, que protegieron las cerámicas.

Qué nos dice el análisis científico de las cerámicas vidriadas de Chamberí

Un estudio multidisciplinar coordinado por personal investigador del Instituto de Geociencias (CSIC/UCM) ha permitido conocer las materias primas y las tecnologías de fabricación de unas cerámicas vidriadas extraordinarias, especialmente elaboradas para este emplazamiento excepcional: la estación de Metro de Chamberí (Madrid). El conocimiento adquirido pretende apostar por la conservación y puesta en valor de estos materiales, tanto de las piezas originales como de las de reposición.

Conforme a la función que desempeñan en la estación, las piezas estudiadas se agrupan en:

  • Azulejos blancos y lisos, que revisten la práctica totalidad de los paramentos y desempeñan una función esencialmente práctica, al otorgar luminosidad y resultar de fácil limpieza.
  • Piezas con reflejo metálico y superficies adornadas, con un carácter marcadamente decorativo, resaltando los encuentros de los planos y el enmarcado de la publicidad alicatada en los andenes.
Piezas originales. Perspectivas: a simple vista, imágenes de microscopia óptica de polarización (vidriados y soporte cerámico) y electrónica de barrido (soportes cerámicos). Superior: azulejos blancos. Inferior: piezas decorativas con reflejo metálico

Piezas originales. Arriba: azulejos blancos, elaborados en Onda (Castellón). Abajo: piezas con reflejo metálico, elaboradas en Triana (Sevilla). Perspectivas: a simple vista, imágenes de microscopia óptica de polarización (vidriados y soporte cerámico) y electrónica de barrido (soportes cerámicos).

Los azulejos blancos originales fueron fabricados en Onda (Castellón) a partir de mezclas arcillosas muy ricas en carbonatos y cocidas a unos 950 ºC. Presentan un vidriado plúmbico alcalino cuya opacidad es en gran parte otorgada por partículas ricas en plomo y arsénico. Las piezas originales de carácter decorativo -con reflejo metálico- fueron elaboradas en Triana (Sevilla) a partir de arcillas illíticas calcáreas y cocidas entre 850-950 ºC. Se cubrieron con vidriados plúmbicos transparentes, con la adición de cobre y estaño.

Piezas de reposición. Perspectivas: a simple vista, imágenes de microscopia óptica de polarización (vidriados y soporte cerámico) y electrónica de barrido (soportes cerámicos). Superior: azulejos blancos. Inferior: piezas decorativas con reflejo metálico

Piezas de reposición, elaboradas en Madrid. Arriba: azulejos blancos. Abajo: piezas con reflejo metálico. Perspectivas: a simple vista, imágenes de microscopia óptica de polarización (vidriados y soporte cerámico) y electrónica de barrido (soportes cerámicos).

Las piezas de reposición se elaboraron según el aspecto de las originales y se apostó por la utilización de materiales y técnicas que otorgaran especial resistencia a las piezas. Se fabricaron en Madrid con materias primas principalmente procedentes de Barcelona, Castellón y Teruel. Las blancas, a partir de arcillas illítico-caoliníticas y calcáreas ricas en cuarzo cocidas a >950 ºC, aplicando un vidriado alcalino muy rico en zircona y alúmina. Las nuevas piezas con reflejo se elaboraron a partir de arcillas illítico-caoliníticas muy alumínicas cocidas a <850 ºC y con la importante adición de una chamota especialmente refractaria, cubriéndose con un vidriado plúmbico-potásico rico en alúmina.

 

* Este proyecto de investigación ha sido realizado por un equipo multidisciplinar del Instituto de Geociencias (CSIC/UCM), la Universidad de Granada, el Museo Nacional de Ciencias Naturales (CSIC) y la Universidad Nacional de Educación a Distancia. Puedes leer el artículo completo aquí.

Blockchain, tierras raras, aceleradores de partículas… El CSIC lleva la actualidad científica a la Feria del Libro

Por Mar Gulis (CSIC)

¿Sabes cómo funcionan el bitcoin y otras criptomonedas? Si quieres algunas pistas, el martes 11 de junio en la Feria del Libro de Madrid David Arroyo, Jesús Díaz y Luis Hernández presentarán su libro Blockchain. Los autores explicarán al público los entresijos de esta tecnología y sus aplicaciones en la denominada criptoeconomía.

Como cada año, investigadores e investigadoras del CSIC acudirán a esta emblemática cita para dar a conocer los últimos libros publicados en las colecciones ‘¿Qué sabemos de?’ y ‘Divulgación’ (CSIC-Catarata), que acercan la ciencia al público general. El mismo día 11, además de criptoeconomía, se hablará del futuro de la óptica; el LHC, el mayor acelerador de partículas del mundo; y las tierras raras, 17 elementos químicos omnipresentes en las sociedades tecnológicamente avanzadas y, sin embargo, poco conocidos.

El 12 de junio, la investigadora Pilar Ruiz Lapuente se ocupará de la energía oscura, del posible final “frío y estéril” del cosmos y de otras cuestiones relacionadas con la astrofísica que aborda en su libro La aceleración del universo. En la misma jornada tendrán cabida temas como la tabla periódica de los elementos químicos, el albinismo y otras mutaciones genéticas o el papel de las áreas protegidas en la sostenibilidad ambiental.

En total, el CSIC y la editorial Los Libros de la Catarata, presentarán ocho obras de divulgación a través de las intervenciones de sus propios autores.

Estas son las coordenadas

Las presentaciones se realizarán los días 11 y 12 de junio, a partir de las 12:30 horas, en el Pabellón Bankia de Actividades Culturales, situado en las proximidades de los jardines de Cecilio Rodríguez del parque de El Retiro. De acceso libre, estas citas son una oportunidad para escuchar y plantear preguntas a los protagonistas de la ciencia.

Quienes busquen actividades para público más joven, el sábado 8 de junio tienen además una cita en el Pabellón infantil. Allí, investigadores del CSIC que han participado en la obra Descubriendo la luz. Experimentos divertidos de óptica realizarán demostraciones para niños y niñas. Las sesiones, de entrada libre y una duración de 15 minutos, se prolongarán desde las 12:30 hasta las 15:00 horas.

Y si la prioridad es llevarte tu libro con dedicatoria incluida, pásate por la caseta del CSIC (número 19) o la de Los Libros de la Catarata (número 336). Durante toda la feria, los autores de las novedades editoriales estarán en firmando ejemplares.

La información de las firmas se puede consultar aquí.

De la investigación a tu casa: ¿cómo controlar el gas radón?

Por Borja Frutos Vázquez* y Mar Gulis (CSIC)

Llega el día en el que por fin decides mudarte a otra vivienda. Has escogido una bonita casa ubicada en la sierra, alejada de la gran ciudad, el tráfico, el bullicio y la contaminación. La situación te parece idílica y vives con ilusión el cambio hasta que un día, hablando con tus nuevos vecinos, descubres que vivir en ella te podría acarrear serios problemas de salud. Te informas y descubres que la mayoría de las casas construidas en esa zona tienen, en su interior, concentraciones de un gas que es considerado cancerígeno y que este se adentra en la vivienda de manera natural a través del suelo… ¿verdad que la situación ha empeorado bastante?

Esto nos podría suceder a cualquiera que decidamos ir a vivir a alguna de las zonas consideradas de potencial riesgo por presencia de radón según los mapas publicados por el Consejo de Seguridad Nuclear (CSN). Esta cartografía representa, para todo el territorio nacional, los posibles niveles de presencia de gas radón según tres categorías.

Mapa de exposición potencial al radón elaborado por el CSN que muestra las tres zonas de riesgo, siendo la categoría 2 (color naranja) la de máximo riesgo

Pero tratemos de conocer mejor este gas, cómo puede estar presente en nuestros hogares y cómo podría afectar a nuestra salud.

El isótopo del radón Rn-222 aparece en la naturaleza como producto de la desintegración natural del radio-226, común en la corteza terrestre. La cantidad de este gas que puede exhalar viene definida, por un lado, por el contenido de radio del sustrato (por ejemplo, los graníticos), y por otro, por la permeabilidad del mismo, que facilita la movilidad a través de los poros. El radón, como elemento gaseoso, posee una alta movilidad y puede penetrar en los edificios a través de fisuras o grietas o por la propia permeabilidad de los materiales que estén en contacto con el terreno. Así, puede entrar fácilmente en el interior de la vivienda, atravesando los forjados, soleras y muros.

Caminos de mayor entrada de gas radón, que suelen coincidir con los puntos débiles de estanquidad de la envolvente en contacto con el terreno, fisuras, juntas, cámara de aire, chimeneas, conductos de saneamiento o materiales de cerramiento/ Elaboración propia

La acumulación de este gas en los recintos cerrados puede elevar las concentraciones y constituir un riesgo para la salud de las personas que lo inhalen. La OMS advierte de sus efectos, situándolo como agente cancerígeno de grado uno (es decir, probado), y alerta de que se trata de la segunda causa de cáncer de pulmón, detrás del tabaquismo. En otros documentos, como los publicados por la Agencia Estadounidense para la Protección Ambiental (EPA), se ofrecen datos de muertes asociadas a la inhalación de gas radón del mismo orden que las atribuidas a los accidentes de tráfico.

Dada la gravedad de la problemática y a partir de la percepción del riesgo derivada de estudios médicos epidemiológicos, algunos países han establecido unos niveles de concentración de radón de referencia, por encima de los cuales se recomienda, o se obliga según el caso, a una intervención arquitectónica para reducir los niveles. La concentración de este gas se expresa en bequerelios (número de desintegraciones subatómicas por segundo) por metro cúbico de aire y los valores límite que se están manejando a nivel internacional oscilan entre 100 y 300 Bq/m3, publicados en documentos de la OMS, la EPA o la Comisión Europea, mediante la Directiva 2013/59/EURATOM. Sobrepasados los niveles citados, resulta necesario realizar actuaciones correctoras para reducir las concentraciones.

¿Cómo se puede actuar frente al radón en las viviendas?

El CSN ha publicado una guía sobre las diferentes técnicas que se pueden emplear. Estas actuaciones se pueden clasificar en tres categorías. Ordenadas de mayor a menor eficacia, serían las siguientes:

  • Técnicas de despresurización del terreno. Se centran en drenar el gas contaminado en el terreno mediante redes o puntos de captación insertados en el subsuelo con conexión al ambiente exterior. Suelen usarse equipos de extracción para mejorar el rendimiento y radio de acción. Es una técnica de alta eficacia, aunque requiere de técnicos especializados.
  • Técnicas de barreras frente al radón. Se basan en la instalación de barreras estancas frente al paso del gas en todo elemento constructivo que separe el edificio del terreno. La colocación idónea es bajo la solera y por el exterior de los muros de sótano, por lo que suele usarse en proyectos en fase de ejecución y no en viviendas existentes.
  • Técnicas de ventilación. Mediante el intercambio de aire con el exterior se consigue reducir la concentración por dilución. Esta técnica puede requerir altas tasas de intercambio de aire que en muchos de los casos puede perjudicar la eficiencia energética por pérdidas de confort térmico. Se aconseja para situaciones de concentración baja o moderada.

Desde la identificación del radón como agente cancerígeno se ha incrementado el interés por el desarrollo de técnicas de protección. Durante las últimas dos décadas, se han venido probando soluciones y estudiando sus efectividades. En nuestro país, hace ya tiempo que se llevan a cabo estudios relacionados con la medida del gas, las concentraciones, los mecanismos de transporte o los efectos sobre la salud. Sin embargo, la investigación sobre las técnicas de protección y las experiencias de aplicación son aún escasas. En esta línea, en el Instituto de Ciencias de la Construcción Eduardo Torroja del CSIC se están desarrollando, en la actualidad, dos proyectos con el objetivo de controlar con mayor precisión la eficacia y optimizar el diseño de técnicas de protección. En concreto, el proyecto RADONCERO, busca obtener datos de optimización de los sistemas de protección frente a la entrada de gas radón en edificios para desarrollar una metodología de intervención que tenga en cuenta la diversidad de terrenos, las tipologías edificatorias más comunes en España y el uso que se les vaya a dar.

Para ello, en primer lugar, se evalúa la penetración de radón en edificios existentes analizando varias tipologías de terrenos y técnicas constructivas. En segundo lugar, se estudian los sistemas de protección como las barreras y los basados en extracciones de gas y ventilaciones (mediante el uso de herramientas informáticas que permiten simular procesos de movimiento del gas en todo el recorrido, desde el terreno hasta el interior del edificio). La última fase del proyecto consiste en la intervención en los edificios previamente analizados, aplicando el método resultante de los estudios de simulación antes citados y el método que ha sido propuesto para la protección frente al radón.

Dado que, a pesar de su importancia, aún no existe una reglamentación específica al respecto en nuestro país, los resultados de este proyecto constituyen una referencia técnica para el documento básico de protección frente al gas radón que se encuentra en la actualidad en fase de desarrollo en el ámbito del Código Técnico de la Edificación.


* Borja Frutos Vázquez es investigador del Instituto de Ciencias de la Construcción Eduardo Torroja (IETcc), del CSIC y lidera el proyecto RADONCERO.

25.000 especies están amenazadas: ¿cómo nos afecta esta pérdida de biodiversidad?

Por Mar Gulis (CSIC)*

Cerca de 25.000 especies están amenazadas por el cambio global causado por el ser humano. Más concretamente, el cambio climático amenaza la extinción de entre el 15 y el 37% de todas las especies terrestres de aquí a 2050. Estas son algunas de las cifras que recoge el libro colectivo Cambio global. Una mirada desde Iberoamérica, una publicación de LINCglobal en la que han participado una decena de investigadores e investigadoras del CSIC.

Las cascadas de Houpeton (Australia), póximas al Otway National Park, forman parte de un entorno de extraordinario valor ecológico por su gran biodiversidad. / David Iliff

La comunidad científica coincide en que vivimos en un periodo de extinción masiva de especies. Esta pérdida de biodiversidad es una de las consecuencias más perniciosas del denominado cambio global, referido al conjunto de transformaciones que la actividad humana está provocando a escala planetaria, y que ha llevado a algunas voces expertas denominar al actual momento como la Era del Antropoceno.

Pero este proceso comenzó hace mucho tiempo. Como explica el libro, “en los últimos 11.000 años (…), la humanidad se ha venido apropiando, de forma creciente y continuada, de los recursos biológicos y de la productividad natural de la tierra y el mar, para generar crecimiento y expandir las civilizaciones”. Como resultado, más de la mitad de la superficie habitable de la tierra ha sido significativamente modificada por la actividad humana. Hemos alterado la naturaleza, y por tanto la biodiversidad, a través de la agricultura, la silvicultura y la pesca; la sobreexplotación de las especies de valor comercial; la destrucción, conversión, fragmentación y degradación de hábitats; la introducción de especies exóticas; la contaminación del suelo, el agua y la atmósfera, etc. Nuestro modelo de “desarrollo” es insostenible, pues se apoya en la explotación de recursos naturales y en la generación de todo tipo de desechos sobre los sistemas naturales. Esa actividad frenética va acompañada de una mayor producción y consumo de energía, un aumento de contaminantes y un incremento de las temperaturas.

Las deforestaciones realizadas en la Amazonía ponen en peligro a muchas especies que habitan en esta región. / Aaron Martin

Pero, ¿qué efectos tiene la pérdida de la biodiversidad para la humanidad? Este concepto va mucho más allá de la diversidad de especies; se refiere a todas las variaciones de las formas de vida en una determinada región, lo que incluye también la diversidad genética, de formas, de atributos funcionales, de interacción entre especies e incluso de ecosistemas. Por ello, la pérdida de biodiversidad, en  cualquiera de sus formas, tiene consecuencias muy perjudiciales para la humanidad a corto y a largo plazo. Sectores como la producción de alimentos, el suministro de agua potable y la producción de medicamentos dependen directamente de la biodiversidad y los servicios ecosistémicos. Por ejemplo, la sobreexplotación de los océanos puede poner en peligro la pesca y afectar a la soberanía alimentaria de muchas comunidades, como sucede en la costa chilena, donde las pesquerías están prácticamente en colapso. También la deforestación y consiguiente pérdida de los bosques promueve la concentración de gases de efecto invernadero en la atmósfera y puede alterar el ciclo hidrológico. Esta situación se observa en la Amazonía a través de los llamados ‘ríos voladores’, expresión que alude al vapor de agua generado por el bosque y que regula la precipitación en diferentes regiones del continente. Dicha regulación garantiza a su vez el agua necesaria para el consumo humano, la agricultura, la ganadería y la electricidad, de ahí que la pérdida de diversidad biológica sea tan nociva.

Junto a lo anterior, la obra se refiere a los efectos en el ecoturismo. Esta actividad, importante fuente de riqueza para muchas regiones, puede comprometerse si se pierde biodiversidad y se degradan los paisajes. Lógicamente, el deterioro del sector conllevaría la destrucción de empresas y puestos de trabajo relacionados con el turismo sostenible.

Aunque aún no conocemos el papel exacto de la biodiversidad en el mantenimiento de los procesos ecológicos, el debate científico en torno a esta cuestión se ha intensificado. Tanto es así que la ONU ha declarado el 22 de mayo Día Internacional de la Diversidad Biológica.

Como señala la obra Cambio global. Una mirada desde Iberoamérica, “asignar un valor a la biodiversidad no es sencillo, no podemos establecer un valor monetario, pero sin ninguna duda su mantenimiento y conservación son esenciales para el bienestar humano en el planeta”.

LiquenCity: busca líquenes urbanitas y conoce la calidad del aire de tu ciudad

Por Mar Gulis (CSIC)

La clasificación de los líquenes fotografiados es la base de este proyecto de ciencia ciudadana.

“En 1866, William Nylander fue el primer investigador que observó la desaparición de los líquenes según se adentraba en el centro de París durante el auge de la revolución industrial”, señala la web del proyecto LiquenCity. En efecto, durante décadas la comunidad científica ha utilizado los denominados epífitos, que crecen en la corteza de los árboles, para conocer el grado de contaminación atmosférica.

¿Por qué los líquenes? Estos organismos, formados por la unión simbiótica de un hongo y, al menos, un organismo fotosintético (un alga verde o una cianobacteria), son muy sensibles a los cambios ambientales en general y a la contaminación atmosférica en particular; por eso son buenos bioindicadores. “A diferencia de las plantas, no tienen estructuras activas para regular la entrada y salida del agua y los gases del aire, por lo que las sustancias que hay en la atmósfera, entre ellas las contaminantes, se acumulan fácilmente en su interior. Esto provoca síntomas de deterioro mucho más rápido que en otros organismos, lo que les convierte en excelentes centinelas de problemas potenciales para nuestra salud”, explica la misma web. De hecho, “se han publicado más de 2.000 trabajos científicos basados en el uso de líquenes como bioindicadores de la calidad del aire y los niveles de contaminación por dióxido de azufre, óxidos de nitrógeno, metales pesados… en los 5 continentes”.

Si te interesa saber cuál es la calidad del aire de tu ciudad o cómo varía de unos distritos a otros, quizá puedas participar en LiquenCity. En este proyecto de ciencia ciudadana, cuyo investigador principal es el liquenólogo Sergio Pérez Ortega, cualquiera puede identificar líquenes urbanos que servirán después para medir la contaminación atmosférica.

El equipo que impulsa la iniciativa, del Real Jardín Botánico (RJB) del CSIC y el Nodo Nacional de Información de la Biodiversidad (GBIF), trabaja bajo la hipótesis de que, tras analizar los datos recopilados, se confirmará que cuanta mayor diversidad de líquenes se observe en un área, mejor será la calidad del aire, y viceversa. Sin embargo, no todas las especies de líquenes tienen la misma sensibilidad hacia la contaminación. Algunas desaparecen al menor atisbo de polución en el aire, mientras que otras son capaces de medrar en áreas muy contaminadas. De momento, LiquenCity se basa en una selección de especies que viven en Madrid y Barcelona con distinta resistencia a la contaminación.

¿Cómo puedes participar?

Dos estudiantes toman una muestra de líquen.

Muestrear líquenes es sencillo. Solo tienes que buscarlos en los troncos de los árboles de tu ciudad, hacerles una foto y colgarla en Natusfera a través de su página web o la app móvil. La comunidad de Natusfera –que incluye a expertos del RJB y de la Universidad de Barcelona– te ayudará a identificar la especie que hayas visto. El proyecto se ha diseñado para que la ciudadanía, de forma voluntaria, realice el monitoreo de los líquenes. Acompañados por alguien experto, los participantes, lupa en mano, acuden a un punto de la ciudad para buscar ejemplares y obtener muestreos en distintas zonas. De momento, LiquenCity se ha centrado en el ámbito educativo: desde el pasado octubre, esta iniciativa se ha presentado en más de 50 centros escolares, donde ha llegado a más de 2.000 estudiantes que han realizado unas 4.000 observaciones. Estos datos se han volcado en Natusfera y han permitido identificar más de 30 especies de líquenes.

También se busca la participación del público general. Por ejemplo, en Madrid LiquenCity ha reunido a grupos de 50 personas de diversos perfiles en la Casa de Campo y el Parque del Oeste para que, durante unas horas, se convirtieran en ‘buscadoras de líquenes’.

Ahora el proyecto está en la segunda fase, que consiste en analizar la información recopilada para elaborar mapas de contaminación de varios distritos de Madrid y Barcelona. Estos mapas se basarán en el cruce de datos sobre la diversidad de líquenes detectada y los niveles de contaminación registrados por los medidores que gestionan los respectivos ayuntamientos. Uno de los objetivos de LiquenCity es dar recomendaciones para que se adopten medidas que mitiguen la contaminación en las zonas más afectadas.

Si te interesa lo que has leído hasta ahora, echa un ojo a la web del proyecto. En los próximos meses, el equipo de LiquenCity pretende ampliar su radio de acción, así que previsiblemente se necesitarán más personas dispuestas a detectar líquenes urbanitas en otras ciudades como Zaragoza, Pontevedra, Pamplona y Oviedo.

Esta iniciativa cuenta con el apoyo de la FECYT, y en ella participan también el Instituto de Ciencias del Mar (ICM-CSIC), el Centro de Investigación Ecológica y Aplicaciones Forestales (CREAF) y el Instituto de Investigación de la Biodiversidad (IRBio-UB), todos en Barcelona.