Archivo de la categoría ‘Eventos e iniciativas’

‘Regnum vegetabile’: una curiosa fusión de botánica y arte te espera en el Real Jardín Botánico

Por Mar Gulis (CSIC)

El 13 de agosto de 1785 llegó a la costa bilbaína, procedente de Holanda, el navío San Gabriel. El barco transportaba un peculiar tesoro: 160 carpetas con dibujos que había adquirido el Reino de España en una subasta pública. Cuidadosamente empaquetadas y distribuidas en 16 cajones, las obras llegaron a Bilbao intactas y fueron trasladadas al Real Gabinete de Historia Natural de Madrid, que había abierto sus puertas al público en 1776.

¿Qué contenían exactamente aquellas carpetas? Más de 8.000 ilustraciones y grabados de todas las especies botánicas conocidas en aquella época. Las piezas procedían de la colección del médico y naturalista Jan le Francq van Berkhey (Leiden, 1729-1812). Hijo del tratante de lana Evert Le Francq y de Maria Berkhey, este holandés, a quien le apasionaba el dibujo científico y los gabinetes zoológicos y de curiosidades, fue coleccionando a lo largo de 40 años un conjunto de obras realizadas entre los siglos XVI – XVIII. Las piezas, ejecutadas en su mayor parte con acuarela y sobre papel de alta calidad, procedían de distintos países y algunas de ellas estaban firmadas por famosos ilustradores botánicos, como Georg Dyonisius Ehret, Pieter Holsteyn, Johann Michael Seligmann y Johann Mätthaus Meriam, entre otros. Ahora, una selección de aquel tesoro artístico-botánico puede contemplarse en el Real Jardín Botánico (RJB-CSIC) hasta el próximo 8 de diciembre. Pero sigamos con la historia de esta singular colección.

 

Una de las ilustraciones que integran la exposición ‘Regnum vegetabile’ del Real Jardín Botánico

Van Berkhey pretendía reunir, de forma ordenada y sistemática, ilustraciones de las especies del mundo conocido y crear un gran Atlas donde estuvieran representadas todas ellas. Ese afán le llevó a coleccionar no solo pinturas, también minerales, fósiles, piedras preciosas, libros, manuscritos, cuadros, monedas o medallas. ¿Cómo fueron a parar a España? Ese año de 1785, el Cónsul General de España en Ámsterdam, Ignacio Jordán de Asso y del Río (1742-1814), escribió al conde de Floridablanca, ministro del rey Carlos III, informándole de que la colección de un conocido médico y naturalista holandés iba a ser subastada. Debido a su interés artístico y científico, el Cónsul recomendaba que el Real Gabinete de Historia Natural de Madrid comprase la colección. La diplomacia se puso en marcha. Floridablanca comentó el plan a Pedro Franco Dávila, un sabio naturalista español que, entusiasmado con la idea de incorporar ese patrimonio, animó a la compra. Así, el Cónsul General Asso terminó adquiriendo las 160 carpetas que arribaron a la costa bilbaína a bordo del San Gabriel.

Con el tiempo, la colección Van Berkhey terminó repartida entre el Real Jardín Botánico y el Museo Nacional de Ciencias Naturales -curiosamente, dos centros de investigación del CSIC-, donde permanece. Ahora, el original tesoro se exhibe por primera vez en Madrid, en el Pabellón Villanueva del Jardín Botánico, en forma de exposición. Bajo el título Regnum vegetabile [reino vegetal], la muestra reúne una selección de 94 piezas que incluyen dibujos, estampas, libros, cajas originales y plantas secas. Más allá de su valor estético, las obras reflejan el saber científico del siglo XVIII en el campo de la botánica. Además de representar la fisiología de las plantas de África, América, Europa y Asia, los dibujos muestran la convivencia entre antiguos y nuevos sistemas de clasificación de especies, que cristalizarían en la adopción generalizada, ya avanzado el siglo XVIII, del modelo ideado por el sueco Carlos Linneo.

Actualmente se conservan 1.646 dibujos y grabados atesorados por Van Berkhey en el archivo del Real Jardín Botánico. Recuerda: hasta el 8 de diciembre puedes disfrutar de las 94 piezas seleccionadas que componen esta exposición.

¿Eres capaz de fotografiar la ciencia? Envía tus imágenes a FOTCIENCIA17

Por Mar Gulis (CSIC)

Si te gusta la fotografía, es el momento de enseñarnos cómo se ve la ciencia y la tecnología a través del objetivo de tu cámara… ¡o de tu microscopio! Ya está abierto el plazo para participar en la 17ª edición de FOTCIENCIA, una iniciativa que cada año elige las mejores fotografías científicas. Las imágenes seleccionadas formarán parte de un catálogo y de una exposición itinerante que recorrerá España durante 2020-21. Además, las mejores de cada modalidad recibirán una remuneración de hasta 1.500€.

El plazo de presentación es del 7 de noviembre al 16 de diciembre de 2019 (a las 12 del mediodía, hora española peninsular).

La luz, los fenómenos físicos, los organismos vivos o los objetos de la vida cotidiana pueden mirarse desde una perspectiva científica. Las opciones son prácticamente infinitas. Por eso no es necesario que te dediques a la ciencia para poder participar… Solo que seas capaz de ver, extraer o captar lo científico que hay en el mundo que nos rodea. Aquí puedes ver las imágenes seleccionadas en ediciones anteriores.

Las fotografías deberán presentarse en formato digital a través de un formulario disponible en la página web www.fotciencia.es, junto con un breve texto que permita interpretarlas. El jurado valorará tanto la imagen –su calidad técnica, originalidad y valor estético– como la claridad de la explicación aportada por el autor o autora.

Cualquier persona mayor de edad puede enviar fotografías propias que no hayan sido seleccionadas en procesos similares. Pero también hay una modalidad, ‘La ciencia en el aula’, dirigida al alumnado de Secundaria y Ciclos formativos, que puede participar a través de sus profesores y profesoras.

Las propuestas se podrán presentar en una de las siguientes modalidades:

  • Micro, cuando la dimensión real del objeto fotografiado sea menor o igual a 1 milímetro o la imagen haya sido obtenida mediante un instrumento de micrografía (óptica o electrónica) o técnicas de difracción.
  • General, cuando la dimensión real del objeto fotografiado sea mayor de 1 milímetro.

Además, los autores y autoras también pueden adscribir su imagen a otras modalidades específicas, como ‘Agricultura sostenible’ ‘Alimentación y nutrición’.

FOTCIENCIA es una iniciativa organizada por el Consejo Superior de Investigaciones Científicas (CSIC) y la Fundación Española para la Ciencia y la Tecnología (FECYT), con la colaboración de la Fundación Jesús Serra. En esta 17ª edición, FOTCIENCIA se suma a los 17 Objetivos de  Desarrollo Sostenible declarados por Naciones Unidas.

Toda la información y normas de participación están disponibles en www.fotciencia.es

La mineralogía salva la vida a Iron Man

Por Carlos M. Pina (CSIC-UCM) y Carlos Pimentel (UPM, UCM)*

[Contiene spoilers] Han pasado ya casi 6 meses desde que los Vengadores nos salvaron por última vez. Después de que Thanos asesinase a la mitad de los seres vivos del Universo utilizando las Gemas del Infinito, estas fueron utilizadas por Bruce Banner (Hulk) para devolverles a la vida. Tras ello, los ejércitos de Thanos se enfrentaron a los Vengadores y sus aliados en una cruenta batalla. Para detenerla, Tony Stark (Iron Man) utilizó el Guantelete del Infinito, con el que logró destruir a Thanos y sus ejércitos. Sin embargo, las heridas producidas por el poder de las gemas también causaron su muerte. ¿Fue el sacrificio de Tony Stark en vano?

Miremos detenidamente el Guantelete del Infinito. Está compuesto por 6 gemas con distintos poderes y colores, que juntas tienen un poder inimaginable. Pero lo que todos podemos apreciar es su color, no su poder, incluido Thanos por muy titán que sea. ¿Qué hubiese ocurrido si los Vengadores hubiesen sabido algo de mineralogía? Podrían haberle dado el cambiazo a Thanos y haber sustituido las Gemas del Infinito por gemas iguales pero que careciesen de poderes, como la amatista (morado), el rubí (rojo), el zafiro (azul), el crisoberilo (amarillo), el topacio (naranja) y la esmeralda (verde); gemas muy comunes y mucho más baratas que cualquier armadura de Iron Man. Así, los Vengadores hubiesen ganado la Guerra del Infinito antes de comenzar, Tony Stark seguiría vivo y Steve Rogers continuaría siendo el Capitán América.

Partiendo de la idea de que los minerales que aparecen en la ciencia ficción y la fantasía (por ejemplo, Star Wars, Star Trek, Mundodisco o X-men) hemos escrito una Pequeña guía de minerales inexistentes (Ediciones Complutense, 2019) y organizado una exposición con el mismo nombre en Madrid, que podrá visitarse en la Biblioteca María Zambrano de la UCM hasta el 6 de noviembre. En ellos presentamos 16 minerales ficticios, indicando su origen, sus imposibles propiedades y aplicaciones, e incluso información sobre sus imposibles estructuras y composiciones químicas. El libro también describe minerales o materiales similares reales que muestran propiedades análogas.

¿Hay algún mineral tan radiactivo como la kryptonita que aparece en Superman? En la naturaleza existen algunos minerales altamente radiactivos, como por ejemplo, la uraninita, la pechblenda (variedad impura de la uraninita) y la becquerelita. Sin embargo, ninguno de estos minerales sería capaz de derrotar a Superman, para decepción de Lex Luthor.

¿Existe algún material tan duro como el adamantium que recubre los huesos de Lobezno? Sí, aunque sin su increíble dureza. Se trata de la widia, un metal que se usa, por ejemplo, en las brocas de los taladros.

¿Qué minerales se han usado para comerciar como el tiberium del popular videojuego Command & Conquer? Los metales preciosos, las gemas, la sal común (que es un mineral llamado halita) han sido utilizados históricamente como moneda de cambio.

Tiberium realizado con impresora 3D y que forma parte de la exposición.

¿Podemos pensar en algún mineral como los cristales de adegan de Star Wars? Por supuesto. El rubí fue el mineral con el que se fabricaron los primeros láseres, aunque no sirve para hacer sables láser como los de las películas (una lástima para los frikis).

¿Algún mineral mágico como el octirón de Mundodisco? Por supuesto que no, ya que los minerales no tienen propiedades mágicas. Por más que en muchas tiendas de minerales se les atribuyan ciertos poderes, esto es completamente falso.

¿Y por qué es importante saber de minerales? No es sólo para saber cómo salvar a nuestros personajes de cómics, películas o videojuegos preferidos. Los minerales también son esenciales en nuestra vida diaria. Para fabricar el móvil o la tablet en la que estás leyendo esta noticia se han utilizado al menos 13 minerales distintos, la electricidad llega a tu casa a través de cables de cobre que se extraen de minerales y hay minerales y rocas en tu cocina, como la sal o la encimera de granito. Además, los minerales nos cuentan, a geólogos y mineralogistas, cómo fue la Tierra en épocas pasadas. Gracias a su estudio, se ha podido determinar, por ejemplo, cómo era el clima en la época de los dinosaurios o cómo era la Tierra en el pasado.

La exposición podrá visitarse en la Biblioteca María Zambrano de la UCM hasta el 6 de noviembre. El 16 de octubre a las 18:00 habrá un acto de presentación tanto de la exposición como de la guía de minerales inexistentes.

* Carlos M. Pina es profesor titular de Cristalografía y Mineralogía en la Facultad de Ciencias Geológicas de la Universidad Complutense de Madrid e investigador del Instituto de Geociencias (IGEO, CSIC-UCM). Carlos Pimentel es investigador en la E.T.S.I. de Montes, Forestal y del Medio Natural de la Universidad Politécnica de Madrid y colaborador honorífico del Departamento de Mineralogía y Petrología de la Facultad de Ciencias Geológicas de la Universidad Complutense.

¿Quieres participar en el calendario científico de 2020? ¡Envía tu efeméride!

Por Mar Gulis (CSIC)

El 7 de noviembre podría dedicarse a Marie Curie. Ese día, en 1867, nació esta científica, Premio Nobel de física y química y descubridora del polonio y el radio. / Imagen extraída de un panel de la exposición Entre moléculas.

Un 3 de octubre de 1916 nació Mª Ángeles Alvariño González, primera mujer científica que trabajó a bordo de un buque británico de investigación. Diez años después, el día 17 de agosto, lo hacía Margaret Hamilton, matemática que desarrolló el programa informático de navegación del Programa Apolo de la NASA. Estas y otras efemérides aparecerán en un calendario que también recogerá conmemoraciones de hallazgos e inventos destacables, pasados o de épocas recientes. Así, el 16 de noviembre podría reflejar que ese día, pero del año 1989, los investigadores del CSIC Javier Borderías y Margarita Tejada patentaron el procedimiento para fabricar las famosas gulas, mientras que el 21 de junio de 2002 recogería que, gracias a las vacunas, Europa logró erradicar la poliomielitis.

Lo decimos en condicional porque este calendario científico está en proceso de elaboración. El proyecto, coordinado por el investigador Pablo G. Toral, del Instituto de Ganadería de Montaña (CSIC-Universidad de León), se inspira en las versiones existentes en Rumanía y Escocia, pero el objetivo es incluir contenidos adaptados a nuestro contexto. “A partir de la información que tenemos de otros calendarios científicos, hemos preparado un primer borrador que está disponible online”, explica Toral. Su idea es que cualquiera pueda aportar información para incluir en la versión final. “Vamos a dar de plazo hasta el próximo 6 de septiembre para que la gente envíe sus propuestas. Si conseguimos varios aniversarios para un mismo día, haremos una selección con los temas prioritarios. El resto se aprovecharán en futuras versiones del calendario, pues nace con vocación de continuar”. Ya sabes, si se te ocurre alguna efeméride relacionada con la ciencia, este es el sitio para contarla.

¿Y para qué un almanaque de estas características? El principal objetivo es acercar la cultura científica a la población más joven –especialmente al alumnado de primaria y ESO– y crear referentes que le resulten cercanos. Por esta razón, el calendario científico escolar hace hincapié en mostrar personas y descubrimientos del presente, y en visibilizar a las investigadoras para promover las vocaciones científico-técnicas entre las niñas y adolescentes. Otro de sus propósitos es divulgar la actividad de los centros de investigación españoles y aprovechar el 150º aniversario de la creación de la tabla periódica de los elementos químicos para incluir contenidos relacionados con este icono de la ciencia. Para lograrlo, el calendario irá acompañado de guías didácticas que podrán utilizarse en las aulas.

Y como la idea es llegar a cuanto más público, mejor, todos los materiales estarán disponibles online para su descarga gratuita y se traducirán, además, al  euskera, catalán, gallego y asturiano.

Este proyecto cuenta con la colaboración de la Fundación Española para la Ciencia y la Tecnología-Ministerio de Ciencia, Innovación y Universidades. Asimismo, asociaciones enfocadas a promover la divulgación de la ciencia y el pensamiento crítico, y profesionales del ámbito educativo, respaldan la propuesta. A su vez, el calendario se basa en las versiones existentes en Rumanía, donde esta iniciativa se desarrolla desde 2011, y Escocia, en la que el Daily Discovery Calendar se ha popularizado más recientemente.

¡Busca tu efeméride y participa!

Arte y ciencia se alían contra la contaminación urbana

Por Fernando del Blanco Rodríguez (CSIC)*

Zabol, Onitsha, Peshawar, Gwalior… Tal vez a un oído europeo no le diga mucho el nombre de estas ciudades. Sin embargo, cada una de ellas se encuentra representada en uno de los doce relojes que conforman la instalación artística conTIMEminación, que se exhibe el Centro de Investigación y Desarrollo de Barcelona (CID-CSIC). ¿Por qué?

conTIMEminacio

Pues precisamente porque estas ciudades presentan algunos de los índices de polución ambiental más altos del mundo si atendemos a los datos de la Organización Mundial de la Salud (OMS) de 2016 sobre calidad de aire y, en concreto, a los indicadores de presencia de material particulado en suspensión (PM).

Este material particulado al que alude la OMS y que es posible detectar en la atmósfera de nuestras ciudades se suele clasificar en dos grupos según el tamaño de las partículas que lo constituyen: por un lado, las partículas de diámetro aerodinámico igual o inferior a los 10 micrómetros (µm) –un micrómetro equivale a una milésima parte de un milímetro–, denominadas PM10; y, por otro, la fracción respirable más pequeña, las partículas de diámetro aerodinámico inferior o igual a los 2,5 micrómetros, a las que nos referimos como PM2,5.

El tamaño no supone la única diferencia entre ambos grupos. Las PM2,5, consideradas las más potencialmente peligrosas para la salud, se originan sobre todo en fuentes de combustión creadas por los seres humanos, como las emisiones de los motores diésel. Mientras, una parte significativa de las partículas de mayor tamaño suele ser de tipo metálico o mineral, ya sea de origen antrópico (humano) o natural.

La instalación conTIMEminación, creada por el artista Francisco Martínez Gómez, explora los problemas derivados de la presencia de estas partículas en nuestros entornos. Consta de doce relojes en funcionamiento, cada uno de los cuales ha sido inyectado con un producto metafóricamente tóxico que detendrá su mecanismo a medida que la agujas ya no sean capaces de superar la resistencia creciente e incesante de la sustancia extraña que las entorpece.

El proyecto, que cuenta con la colaboración de los investigadores del CSIC Xavier Querol y Sergi Díez, propone una reflexión en torno al volumen de contaminación al que estamos sometidos los habitantes de los núcleos urbanos y esboza el desenlace alegórico al que nos abocaría no comprender la magnitud de este riesgo.

Cada reloj representa una ciudad: Zabol (Irán), Onitsha (Nigeria), Peshawar (Pakistán), Riyadh (Arabia Saudí), Gwalior (India), Guangzhou (China), Moscú (Rusia), Estambul (Turquía), Buenos Aires (Argentina), París (París), Barcelona (España) y Lima (Perú). El artista y los investigadores matizan que la instalación no pretende reflejar los datos científicos de forma precisa, sino ilustrar la dimensión global del problema. Estas ciudades sufren significativos problemas de polución, aunque no todas presentan los indicadores más altos de contaminación.

Tendencias opuestas

“La tendencia de la calidad del aire en el mundo puede llegar a seguir evoluciones temporales opuestas en función del desarrollo económico”, explica Querol. “Mientras en Europa, Australia, EEUU, Japón y otras sociedades desarrolladas, la calidad ha mejorado drásticamente en las últimas décadas, en algunas ciudades de Irán, Pakistán, India y China se evidencia un empeoramiento muy marcado”, aclara este investigador del Instituto de Diagnóstico Ambiental y Estudios del Agua (IDAEA) del CSIC.

Concentración de material particulado con diámetro aerodinámico igual o menor a 2,5 micrómetros (PM2,5) en cerca de 3.000 áreas urbanas, 2008-2015. / Organización Mundial de la Salud, 2016

Mapa PM 10

Concentración de material particulado con diámetro aerodinámico igual o menor a 10 micrómetros (PM10) en cerca de 3.000 áreas urbanas, 2008-2015. / Organización Mundial de la Salud, 2016

El caso de España está en sintonía con el europeo. Si en 2005 en nuestro país 49 zonas incumplían la normativa para PM, en la actualidad solo lo hace una (Avilés). Esta tendencia ha reducido notablemente las muertes prematuras anuales atribuibles a la mala calidad del aire en la Unión Europea: según la Agencia Europea de Medio Ambiente, se ha pasado de una estimación de un millón de muertes al año en 1990 a otra de 400.000 en 2016.

Querol considera que “los países y ciudades más avanzados en política ambiental han asumido social y políticamente que la calidad del aire no es un tema solamente de ecologismo, sino que lo es de salud pública en primer lugar”. Sin embargo, estos avances no han servido para alcanzar metas como la estrategia europea inicial en materia ambiental. “Prueba de ello es que desde 2010 debíamos cumplir una legislación en dióxido de nitrógeno que se ha infringido ampliamente en toda la Europa urbana; o que aún no se han adoptado como normativos los valores guía para PM de la OMS, a pesar de que la primera directiva de calidad del aire en Europa establecía que esto debía hacerse en 2010”, afirma el investigador.

A su juicio, para reducir la contaminación urbana es necesario adoptar medidas que “afectan al vehículo privado y la distribución de mercancías”. En esta dirección se enfoca el proyecto europeo Airuse Life +, galardonado como el mejor proyecto `Ciudades Verdes´ de 2018 y coordinado por este especialista. La iniciativa propone una reformulación urbanística, logística y del transporte muy profunda como estrategia para conseguir reducir la contaminación del aire en nuestras ciudades.

Mientras esto pasa en Europa, conTIMEminación se pregunta si estas medidas –en caso de que se implementen– llegarán a tiempo, y si lo harán en aquellos entornos –como los de los países en desarrollo– donde sus habitantes sufren un tipo de pobreza aun escasamente contemplada como un fenómeno de desigualdad geoeconómica: la pobreza ambiental. La imposibilidad de respirar aire digno.

Zabol, Onitsha, Peshawar, Gwalior…

* Fernando del Blanco Rodríguez es bibliotecario en el Centro de Investigación y Desarrollo del CSIC.

Si los muros del Metro hablaran… ¿Qué nos dicen los azulejos de una ‘estación fantasma’?

Por Elena Mercedes Pérez Monserrat y Mar Gulis (CSIC)*

El Metro de Madrid cumple 100 años en 2019. Esta red de Metro, que hoy es una de las mejores del mundo y cuenta con 302 estaciones a lo largo de 294 kilómetros de recorrido, fue inaugurada en 1919 por el rey Alfonso XIII con una sola línea Norte-Sur que iba desde Puerta del Sol a Cuatro Caminos (el germen de la que hoy se denomina Línea 1), con un total de 8 estaciones y que no llegaba a cubrir 3,5 kilómetros.

En los años 60 del siglo XX, cuando la compañía Metropolitano decidió alargar los trenes, se reformaron las estaciones para que los andenes pasaran de tener 60 a 90 metros. Pero hubo una estación en la que, por su situación en curva y por la cercanía a las paradas colindantes, no se pudo acometer esta reforma y acabó siendo clausurada por el Ministerio de Obras Públicas: la estación de Chamberí.

 

La icónica decoración de las estaciones del Metro de Madrid, incluidos vestíbulos, andenes o bocas de acceso, fue diseño del arquitecto Antonio Palacios. / Laura Llera

La icónica decoración de las estaciones del Metro de Madrid, incluidos vestíbulos, andenes o bocas de acceso, fue diseño del arquitecto Antonio Palacios. / Laura Llera

Tras más de 40 años cerrada y siendo objeto de curiosidades varias, la estación de Chamberí, después de una importante actuación de limpieza, restauración y conservación, fue reabierta en 2008 como centro de interpretación visitable del Metro de Madrid. Durante esas décadas en las que la “estación fantasma” permaneció cerrada al público, los accesos exteriores fueron vallados, hecho que permitió que se conservaran muchos de los objetos cotidianos de la época, como carteles publicitarios, tornos, papeleras… así como las cerámicas que recubrían toda la estación. Es decir, lo excepcional del lugar es que se trata de la única estación del Metropolitano que conserva su estado original casi en su práctica totalidad.

Luz y color para el Metropolitano de Madrid

En 1913 los ingenieros Carlos Mendoza (1872-1950), Miguel Otamendi (1878-1958) y Antonio González Echarte (1864-1942) presentaban un proyecto de red de metro para la ciudad de Madrid. El arquitecto Antonio Palacios (1874-1945) fue el encargado de diseñar las estaciones, los accesos y los edificios del proyecto. Se buscaba integrar el uso de materiales tradicionales en un entorno tecnológico completamente nuevo, dando un resultado muy decorativo de marcado estilo español. Con la aplicación de azulejería en el suburbano se pretendía proporcionar luminosidad y color a unos nuevos espacios -bajo tierra- que iban a ser utilizados por personas acostumbradas a la luz natural. La rica variedad de cerámicas de las diversas regiones españolas facilitó poner en práctica este empeño.

Estado actual de la estación de Metro de Chamberí (Madrid), alicatada con azulejos blancos y decorada con piezas coloreadas y/o con reflejo metálico. / Laura Llera

Estado actual de la estación de Metro de Chamberí (Madrid), alicatada con azulejos blancos y decorada con piezas coloreadas y/o con reflejo metálico. / Laura Llera

En Madrid, la cerámica vidriada aplicada a la arquitectura tuvo su máximo apogeo a finales del siglo XIX y principios del XX. Entonces, la azulejería publicitaria -especialmente en las estaciones del Metropolitano- y la urbana cobraron un especial significado. Este material favoreció el auge de las industrias cerámicas de los principales centros productores. Así, en la arquitectura madrileña de principios del siglo XX la cerámica vidriada desempeñaba un papel esencial desde la concepción inicial de los proyectos; y cabe resaltar la apuesta por seleccionar materias primas nacionales para su elaboración. En cuanto a las piezas de reposición que se han elaborado recientemente para las labores de restauración, se han respetado los aspectos formales de las originales, pero utilizando materiales y tecnologías que incrementan su resistencia.

El uso de la cerámica vidriada respondía también al apogeo en la época de la publicidad alicatada, así como a las condiciones de buena conservación y fácil limpieza que presenta la azulejería. Tras la Guerra Civil española (1936-1939) la publicidad en cerámica de la estación fue cubierta por tela y papel, que protegieron las cerámicas.

Qué nos dice el análisis científico de las cerámicas vidriadas de Chamberí

Un estudio multidisciplinar coordinado por personal investigador del Instituto de Geociencias (CSIC/UCM) ha permitido conocer las materias primas y las tecnologías de fabricación de unas cerámicas vidriadas extraordinarias, especialmente elaboradas para este emplazamiento excepcional: la estación de Metro de Chamberí (Madrid). El conocimiento adquirido pretende apostar por la conservación y puesta en valor de estos materiales, tanto de las piezas originales como de las de reposición.

Conforme a la función que desempeñan en la estación, las piezas estudiadas se agrupan en:

  • Azulejos blancos y lisos, que revisten la práctica totalidad de los paramentos y desempeñan una función esencialmente práctica, al otorgar luminosidad y resultar de fácil limpieza.
  • Piezas con reflejo metálico y superficies adornadas, con un carácter marcadamente decorativo, resaltando los encuentros de los planos y el enmarcado de la publicidad alicatada en los andenes.
Piezas originales. Perspectivas: a simple vista, imágenes de microscopia óptica de polarización (vidriados y soporte cerámico) y electrónica de barrido (soportes cerámicos). Superior: azulejos blancos. Inferior: piezas decorativas con reflejo metálico

Piezas originales. Arriba: azulejos blancos, elaborados en Onda (Castellón). Abajo: piezas con reflejo metálico, elaboradas en Triana (Sevilla). Perspectivas: a simple vista, imágenes de microscopia óptica de polarización (vidriados y soporte cerámico) y electrónica de barrido (soportes cerámicos).

Los azulejos blancos originales fueron fabricados en Onda (Castellón) a partir de mezclas arcillosas muy ricas en carbonatos y cocidas a unos 950 ºC. Presentan un vidriado plúmbico alcalino cuya opacidad es en gran parte otorgada por partículas ricas en plomo y arsénico. Las piezas originales de carácter decorativo -con reflejo metálico- fueron elaboradas en Triana (Sevilla) a partir de arcillas illíticas calcáreas y cocidas entre 850-950 ºC. Se cubrieron con vidriados plúmbicos transparentes, con la adición de cobre y estaño.

Piezas de reposición. Perspectivas: a simple vista, imágenes de microscopia óptica de polarización (vidriados y soporte cerámico) y electrónica de barrido (soportes cerámicos). Superior: azulejos blancos. Inferior: piezas decorativas con reflejo metálico

Piezas de reposición, elaboradas en Madrid. Arriba: azulejos blancos. Abajo: piezas con reflejo metálico. Perspectivas: a simple vista, imágenes de microscopia óptica de polarización (vidriados y soporte cerámico) y electrónica de barrido (soportes cerámicos).

Las piezas de reposición se elaboraron según el aspecto de las originales y se apostó por la utilización de materiales y técnicas que otorgaran especial resistencia a las piezas. Se fabricaron en Madrid con materias primas principalmente procedentes de Barcelona, Castellón y Teruel. Las blancas, a partir de arcillas illítico-caoliníticas y calcáreas ricas en cuarzo cocidas a >950 ºC, aplicando un vidriado alcalino muy rico en zircona y alúmina. Las nuevas piezas con reflejo se elaboraron a partir de arcillas illítico-caoliníticas muy alumínicas cocidas a <850 ºC y con la importante adición de una chamota especialmente refractaria, cubriéndose con un vidriado plúmbico-potásico rico en alúmina.

 

* Este proyecto de investigación ha sido realizado por un equipo multidisciplinar del Instituto de Geociencias (CSIC/UCM), la Universidad de Granada, el Museo Nacional de Ciencias Naturales (CSIC) y la Universidad Nacional de Educación a Distancia. Puedes leer el artículo completo aquí.

SOS: estos elementos químicos están en peligro de extinción

Por Pilar Goya (CSIC)*

La tabla periódica constituye un verdadero icono de la ciencia y la cultura. La Sociedad Europea de Química (EuchemS, por sus siglas en inglés) ha contribuido al “Año Internacional de la Tabla Periódica de los Elementos Químicos”, que se está celebrando en 2019, con la elaboración de su propia tabla, presentada en el Parlamento Europeo el pasado 22 de enero.

Junto con su estética colorista, esta tabla incorpora un mensaje claramente conservacionista: no todos los elementos tienen la misma presencia en la corteza terrestre y los más escasos merecen un cuidado especial; no se pueden malgastar.

 

 

Esta tabla está basada en la diseñada por W. F. Sheehan, pero se ha modificado para reflejar la abundancia de los elementos a escala logarítmica, y se ha coloreado para llamar la atención sobre aquellos que pueden estar en peligro de desaparición a corto plazo. La tabla recoge los 90 elementos naturales constitutivos de todas las cosas, desde las maravillas de la naturaleza hasta los dispositivos electrónicos más sofisticados. A ellos se han sumado el tecnecio y el prometio, que son elementos radiactivos sintéticos, de los que, sin embargo, se han hallado trazas en la naturaleza. No figuran, por el contrario, los elementos transuránidos. La estructura de la tabla no deja espacio entre el berilio y el boro, ni entre el magnesio y el aluminio. Los lantánidos aparecen en su posición correcta.

El código de colores hace referencia a la disponibilidad y vulnerabilidad de los diferentes elementos. En rojo aparecen 12 elementos químicos cuya disponibilidad será considerablemente menor en los próximos 100 años: el helio, el zinc, el galio, el germanio, el arsénico, el estroncio, el itrio, la plata, el indio, el telurio, el hafnio y el tántalo. Por poner algún ejemplo, el helio se utiliza para la resonancia magnética nuclear, las sales de estroncio se añaden a los fuegos artificiales y bengalas para producir el color rojo, mientras que el galio se emplea en dispositivos optoelectrónicos y células solares, y el indio forma parte de la mayoría de las pantallas táctiles.

Los colores naranja y amarillo alertan sobre el riesgo que corren los correspondientes elementos si continuamos con su uso creciente; por ejemplo, el litio, cuya demanda aumenta progresivamente a causa de su presencia en baterías recargables para automóviles, aunque es un metal que puede ser reciclado de manera bastante sencilla. En verde se muestran los elementos químicos más abundantes.

Finalmente, hay cuatro elementos que aparecen en negro: el estaño, el tántalo, el wolframio y el oro, porque frecuentemente se obtienen de minerales extraídos en las denominadas zonas de conflicto.

Además, se ha incluido un icono de un teléfono móvil en las casillas de los 31 elementos que forman parte de los smartphones (algunos autores discrepan de esta cifra). La existencia de muchos de estos elementos estará en riesgo si seguimos usándolos con la frecuencia con la que lo hacemos en este momento. Solo en Europa se sustituyen unos 10 millones de teléfonos móviles al mes. Es cierto que una buena parte de ellos se envían a países en desarrollo para su uso o para su reciclaje, aunque sobre la eficacia de estos envíos hay dudas más que razonables.

En definitiva, el mensaje de esta tabla periódica es que hay que hacer todo lo posible para proteger y reciclar los elementos químicos amenazados. Además, quienes investigamos en química debemos trabajar en la búsqueda de alternativas que permitan utilizar elementos abundantes para sustituir aquellos que están en peligro, ya sea por su uso creciente o por su escasa disponibilidad.

* Pilar Goya es investigadora del CSIC en el Instituto de Química Médica y coautora del libro La tabla periódica de los elementos químicos . Este texto está extraído del artículo “La tabla periódica de EuChemS”, publicado en un número monográfico dedicado al Año Internacional de la Tabla Periódica de los Elementos Químicos por la revista Anales de Química.

La EuChemS es una organización supranacional que engloba a 42 sociedades químicas de 33 países y que representa a más de 160.000 químicos. En España, pertenecen a la EuChemS, la Real Sociedad Española de Química (RSEQ), la Asociación Nacional de Químicos de España (ANQUE), la Societat Catalana de Química (SCQ) y la Sociedad de Química Analítica (SEQA).

Blockchain, tierras raras, aceleradores de partículas… El CSIC lleva la actualidad científica a la Feria del Libro

Por Mar Gulis (CSIC)

¿Sabes cómo funcionan el bitcoin y otras criptomonedas? Si quieres algunas pistas, el martes 11 de junio en la Feria del Libro de Madrid David Arroyo, Jesús Díaz y Luis Hernández presentarán su libro Blockchain. Los autores explicarán al público los entresijos de esta tecnología y sus aplicaciones en la denominada criptoeconomía.

Como cada año, investigadores e investigadoras del CSIC acudirán a esta emblemática cita para dar a conocer los últimos libros publicados en las colecciones ‘¿Qué sabemos de?’ y ‘Divulgación’ (CSIC-Catarata), que acercan la ciencia al público general. El mismo día 11, además de criptoeconomía, se hablará del futuro de la óptica; el LHC, el mayor acelerador de partículas del mundo; y las tierras raras, 17 elementos químicos omnipresentes en las sociedades tecnológicamente avanzadas y, sin embargo, poco conocidos.

El 12 de junio, la investigadora Pilar Ruiz Lapuente se ocupará de la energía oscura, del posible final “frío y estéril” del cosmos y de otras cuestiones relacionadas con la astrofísica que aborda en su libro La aceleración del universo. En la misma jornada tendrán cabida temas como la tabla periódica de los elementos químicos, el albinismo y otras mutaciones genéticas o el papel de las áreas protegidas en la sostenibilidad ambiental.

En total, el CSIC y la editorial Los Libros de la Catarata, presentarán ocho obras de divulgación a través de las intervenciones de sus propios autores.

Estas son las coordenadas

Las presentaciones se realizarán los días 11 y 12 de junio, a partir de las 12:30 horas, en el Pabellón Bankia de Actividades Culturales, situado en las proximidades de los jardines de Cecilio Rodríguez del parque de El Retiro. De acceso libre, estas citas son una oportunidad para escuchar y plantear preguntas a los protagonistas de la ciencia.

Quienes busquen actividades para público más joven, el sábado 8 de junio tienen además una cita en el Pabellón infantil. Allí, investigadores del CSIC que han participado en la obra Descubriendo la luz. Experimentos divertidos de óptica realizarán demostraciones para niños y niñas. Las sesiones, de entrada libre y una duración de 15 minutos, se prolongarán desde las 12:30 hasta las 15:00 horas.

Y si la prioridad es llevarte tu libro con dedicatoria incluida, pásate por la caseta del CSIC (número 19) o la de Los Libros de la Catarata (número 336). Durante toda la feria, los autores de las novedades editoriales estarán en firmando ejemplares.

La información de las firmas se puede consultar aquí.

¿Te atreves con los microrrelatos científicos? Participa en el concurso #100QSD

Por Mar Gulis (CSIC)

Estamos de celebración. Acaba de publicarse el libro número 100 de nuestra colección de divulgación ‘¿Qué sabemos de?’. Se titula El LHC y la frontera de la física. El camino a la teoría del todo y lo firma el físico teórico del CSIC Alberto Casas, que escribió la primera parte de esta obra hace ya una década. Ahora, Casas actualiza y amplía lo que es un viaje fascinante por la ciencia básica y la física fundamental.

La colección, fruto de la colaboración entre el Consejo Superior de Investigaciones Científicas (CSIC) y Los Libros de la Catarata, cumple además 10 años. En todo este tiempo, ‘¿Qué sabemos de?’ ha despertado la curiosidad de personas que querían aprender sobre mecánica cuántica, inteligencia artificial, neutrinos o cometas y asteroides. O descubrir la cultura de los neandertales, algunos falsos mitos sobre la alimentación, cómo se comunican las neuronas o las últimas terapias contra el cáncer o la enfermedad de Alzheimer. Los volcanes, la exploración planetaria, todo lo que se ha denominado la química verde o las células madre también están presentes en varios títulos de la colección. Y por supuesto las matemáticas, protagonistas de varias obras, la antimateria, la locura y temas de plena actualidad como las tierras raras o el debate sobre si vivimos o no en una nueva era, el Antropoceno. En fin, la lista sería demasiado larga…

Vamos a la celebración. Ayer lanzamos en Twitter el concurso de microrrelatos científicos #100QSD. Este es el reto: echad un vistazo al listado con los 100 títulos de ‘¿Qué sabemos de?’ (podéis consultarlo aquí) y buscad inspiración para condensar en un máximo de 280 caracteres un microrrelato propio, único y original. Eso sí, vuestra breve obra deberá contener el título (o alguna de sus palabras clave) de alguno de los 100 libros publicados hasta el momento.

Cuando la escribáis en Twitter utilizad el hashtag #100QSD y mencionad nuestra cuenta @CSICdivulga. Ojo, quienes se animen a participar deberán seguir a las cuentas @CSICdivulga y @CatarataLibros. Y si os sobra inspiración, aprovechadla: cada seguidor o seguidora podrá presentar un máximo de 5 microrrelatos en 5 tuits, a razón de un solo microrrelato por tuit (es decir, no son válidos hilos o microrrelatos divididos en varios tuits).

Os tenéis que dar prisa. El concurso comenzó este 4 de abril y solo podréis participar hasta el 7 de abril (hora española peninsular).

¿Y el premio? Lo habéis adivinado. Los tres mejores microrrelatos científicos recibirán un lote de cinco libros de ‘¿Qué sabemos de?’. El CSIC contactará con las personas premiadas a través de MD para concretar la dirección de envío.

Antes de poneros a escribir, podéis consultar las bases del certamen aquí.

¿Qué reflejan estas siete fotografías? Descubre las mejores imágenes científicas de FOTCIENCIA 16

Por Mar Gulis (CSIC)

Además de ser perjudicial para la salud, ¿qué efectos tiene el hábito de fumar para el medio ambiente? ¿Qué sucede al modificar genéticamente un ratón? ¿Sabes qué es el efecto Schlieren? Las imágenes seleccionadas en la 16ª edición de FOTCIENCIA tratan de explicar gráficamente estos y otros fenómenos científicos. Un jurado integrado por profesionales de distintos campos ha escogido siete fotografías, de entre las 697 que han participado en FOTCIENCIA, por ser las más impactantes y que mejor describen hechos relacionados con la ciencia.

Una de ellas, titulada ¡Prohibido fumar!, muestra el corte transversal de un filtro de cigarro visto a través del microscopio. Quizá no sepas que esta es la parte más contaminante del tabaco, por su elevada concentración de acetato de celulosa. De hecho, grupos de investigación de todo el mundo estudian métodos para reciclar las colillas para su reutilización. Pero antes de seguir, mira el vídeo con esta y las otras seis imágenes seleccionadas:

Seguimos. Al observar ‘Entrelazados’ llamarán tu atención unas curiosas estructuras que forman parte de las hojas de Galium aparine, la ‘hierba pegajosa’. Lo que aparenta ser una especie de pinchos rosáceos son en realidad los acúleos de esta especie, responsables de que la planta se adhiera a la ropa o a la piel como si fuera velcro.

Si miras la imagen ‘El abrazo’, intuirás fácilmente que se trata de un embrión de ratón. Pero, ojo, lo que ves es fruto de las técnicas de biología molecular, que permiten visualizar en un color distinto las partes del cuerpo en las que se está expresnado un gen ‘foráneo’ o exógeno introducido en el genoma de este animal.

También los fenómenos ópticos han llamado la atención de jurado en esta ocasión. Una de las fotografías elegidas, ‘Trampa de luz’, refleja un desconcertante juego luminoso: luces y colores se proyectan sobre una hoja de hiedra al aplicar técnicas de nanotecnología. Concretamente, la fabricación de cristales fotónicos permite, además de activar fenómenos electrónicos, térmicos o biológicos, jugar con la luz.

En ‘Las redes sociales del bosque’ encontrarás un red de hilos azulados que se entrecruzan de forma caótica. Podría ser una obra pictórica abstracta, pero no. La imagen muestra micorrizas, las asociaciones que establecen el 90% de las plantas terrestres con hongos que se encuentran en el suelo. Son relaciones simbióticas en la que ambos obtienen beneficios.

El impacto del desarrollo tecnológico sobre la industria alimentaria se condensa en ‘Manzana programable’, una fotografía que nos remite a cuestiones como el diseño de ingredientes activos y la manipulación genética en la producción de alimentos.

Llegamos a la séptima fotografía escogida: ‘Efecto Schlieren’. Obsérvala porque estás ante algo que tus ojos no podrían apreciar sin la intervención de la ciencia. Sí, estás viendo una cerilla encendida, pero lo que desprende la llama no es humo, sino el movimiento del aire que provoca el aumento de la temperatura…

Con estas siete imágenes y una selección más amplia, próximamente se realizará una exposición itinerante y un catálogo. A través de la iniciativa de FOTCIENCIA, el CSIC y la FECYT pretenden acercar la ciencia a la sociedad a través de la fotografía. Si quieres participar en la próxima edición, no pierdas de vista esta web: www.fotciencia.es