Entradas etiquetadas como ‘agua’

Zeolitas en Etiopía: una solución ecológica contra la fluorosis

Por Mar Gulis (CSIC)

¿Te has preguntado alguna vez por qué aparecen manchas en los dientes? El tabaco o el vino tinto son algunas de las causas que te vendrán a la cabeza más rápidamente. Entre la multitud de motivos posibles que encontrarás, nos detendremos en uno que va más allá del esmalte dental: la fluorosis. Además de las manchas que produce en los dientes, esta enfermedad ósea causada por el consumo excesivo del ión fluoruro (conocido como flúor) en la dieta, sobre todo a través del agua, puede provocar osteoesclerosis, calcificación de los tendones y ligamentos, deformidades de los huesos, y otras afecciones.

Fuente de agua potabilizada

Fuente de agua potabilizada por la tecnología del CSIC en Etiopía. / César Hernández.

Según estima la Organización Mundial de la Salud (OMS), la fluorosis afecta a unos 300 millones de personas en el mundo. No en vano, la OMS considera que el flúor es una de las diez sustancias químicas que constituyen una preocupación para la salud pública, entre las que también figuran el amianto, el arsénico y el mercurio, entre otras.

A pesar de que el fluoruro tiene efectos beneficiosos para nuestra dentición como la reducción de las caries, la presencia de elevadas cantidades de este elemento en el agua puede convertirlo en un contaminante natural. Consumir agua con una concentración de fluoruro superior a 1,5 miligramos por litro (límite establecido por la OMS) puede provocar problemas de salud asociados a la fluorosis, como los antes citados, y es especialmente perjudicial para mujeres en estado de gestación y niños/as que están formando sus huesos.

La existencia de flúor en el agua tiene un origen geológico, es decir, se debe a que el agua está en contacto con rocas de acuíferos que tienen el ion fluoruro en su composición química. Estas rocas se hallan en terrenos volcánicos, por tanto, más de 25 países en todo el mundo están afectados por la contaminación de fluoruros en el agua, entre los que se encuentran España, China, India, Estados Unidos y Etiopía. En este último país, el 41% de sus fuentes de agua potable tienen una concentración de fluoruro superior a 1,5 mg/l y se calcula que aproximadamente el 15% de la población etíope está afectada por fluorosis.

Zeolitas naturales

Mineral de Estilbita, zeolita natural de Etiopia. / Defluoridation Ethiopia.

Filtros naturales para atrapar el fluoruro

Etiopía es uno de los países pertenecientes al valle del Rift, junto con Kenia, Uganda y Tanzania. En la zona del valle del Rift etíope, “donde se abra un pozo, va a haber contaminación por fluoruro y, por tanto, la enfermedad tiene elevados números”, asegura Isabel Díaz, investigadora del CSIC en el Instituto de Catálisis y Petroleoquímica (ICP). Díaz es además una de las inventoras de una tecnología que permite extraer el fluoruro del agua de una manera barata y sostenible.

Esta tecnología está basada en zeolitas naturales, un mineral abundante en Etiopía, así como en otros lugares del mundo, ya que también es de origen volcánico. “Su principal característica es que es un material muy poroso, lleno de cavidades de tamaño molecular”, explica la científica del CSIC. Gracias a esta estructura, las zeolitas tienen la capacidad de atrapar una amplia variedad de elementos, como sodio, potasio, calcio y magnesio, y son utilizadas como catalizadores y absorbentes en un gran número de procesos químicos industriales, sobre todo en la industria petroquímica.

Estructura zeolita

Estructura atómica de la Estilbita. En azul moléculas de agua, verde cationes calcio y morado cationes sodio. / Defluoridation Ethiopia.

Con la nueva tecnología desarrollada por el grupo del ICP —además de Isabel Díaz como investigadora principal, forman parte del equipo los científicos Joaquín Pérez Pariente y Luis Gómez Hortigüela—, junto con la Universidad de Adís Abeba, se modifica la zeolita para que absorba selectivamente el ion fluoruro. “De esta forma es posible abastecer a la población de agua potable”, afirma Díaz. Esta solución resulta primordial en el valle del Rift en Etiopía, dado que el agua de los pozos en la zona tiene una concentración de fluoruro de 2-3 mg/l, prácticamente el doble del límite que establece la OMS.

Planta potabilizadora

Planta potabilizadora con zeolitas en Etiopía. / César Hernández.

Aunque este tipo de métodos basados en absorbentes generan una gran cantidad de residuos tras su uso, una de las mayores ventajas de la zeolita es que luego puede usarse como fertilizante del suelo. En la actualidad, se han instalado dos plantas potabilizadoras con zeolitas en las localidades etíopes Dida y Obe, gracias al proyecto Defluoridation Ethiopia, del CSIC y la ONG Amigos de Silva. Esta acción supone un primer paso para que empiece a mermar la cifra de 14 millones de personas en riesgo de padecer fluorosis que, según los estudios, viven en el país africano.

 

¿Por qué los gatos odian el agua? Pregúntale a sus genes

Por Karel H.M. van Wely (CSIC)*

Si hay algo que la mayoría de los gatos temen, es el agua. Pero, ¿por qué los mininos son tan tímidos cuando se trata de sumergirse en este medio líquido? Probablemente habéis visto algún vídeo de gatos que se caen a la bañera y entran en pánico. Los esfuerzos para salir, muchas veces infructuosos por el diseño de la tina, dan lugar a situaciones divertidísimas para algunos. Si además añadimos una musiquita marchosa a esta imagen de terror gatuno y subimos este contenido a las redes, ya solo hay que esperar a obtener los deseados likes. Graciosos o de mal gusto, lo que estos vídeos no nos explican es por qué los gatos tienen tanto miedo al agua.

Gato pescador

Gato pescador ‘Prionailurus viverrinus’.

Según los biólogos conductuales, hay varias razones que explican este comportamiento. Una de ellas es que el gato europeo proviene originalmente de áreas donde siempre había poca agua. Nuestros gatos simplemente no están acostumbrados a permanecer en un ambiente líquido. Olvidamos a menudo que sus antecesores probablemente eran los gatos salvajes africanos. Si pensamos en la estrecha relación de los antiguos egipcios con estos felinos, nos vienen a la mente los gatos salvajes del oriente medio Felis silvestris lybica. De manera natural, estos gatos viven en áreas con muy poca agua, como por ejemplo estepas o desiertos. Si a esto añadimos el riesgo de que ocurran riadas en las ramblas, ya tenemos todos los ingredientes para que el miedo al agua se haya establecido genéticamente.

Pelo fino y sin grasa, mala combinación

En el rechazo al agua, también tiene un papel importante el pelaje, muy diferente al de los perros, por ejemplo. Estos últimos poseen una doble capa de pelaje: por debajo, pelos para mantener el calor corporal; y por encima, pelos gruesos para alejar el agua de la piel. Además, los eternos enemigos de los gatos a menudo tienen el pelo graso, lo que ayuda a impermeabilizar el pelaje contra el agua. Los biólogos nos indican que, a diferencia del perro, el pelaje de gato no repele al agua, sino que la absorbe por completo. Total, que el protagonista de nuestro vídeo en la bañera se humedece hasta la piel y experimenta una caída significativa de la temperatura, algo nada agradable en un ambiente ya de por sí frío. Tenemos que tener en cuenta que la temperatura normal del hogar humano, comparada con la de la estepa o el desierto, resulta muy baja. Por eso no es raro que a los gatos les guste estar encima de los radiadores de la calefacción.

Aun así, no todas las razas de gatos aborrecen pegarse un bañito. Por ejemplo, el gato bengalí, un descendiente domesticado del gato leopardo asiático Prionailurus bengalensis, adora el agua. También los grandes felinos como panteras y tigres, que viven en áreas cálidas con abundancia de agua, se bañan regularmente. En este ambiente de selva, las zonas húmedas les sirven para aliviar el bochorno y encontrar alimento, ya que algunas presas suelen refugiarse en los ríos y riachuelos.

Por otra parte, a pesar del posible repelús, los gatos domésticos sí comen productos que salen del agua, como el pescado, y hay parientes suyos muy cercanos que con tal de alimentarse parecen dispuestos a mojarse. Es el caso de Prionailurus viverrinus, desafortunadamente en peligro de extinción y conocido en algunos países como el gato pescador. Así pues, comer y enfriarse son factores importantes que han ayudado a perder el miedo al agua en determinadas especies de felinos.

¿Un miedo superable?

Con estos antecedentes, ¿puede superar su miedo al agua un gato doméstico? Según los biólogos conductuales, sí, pero hay que empezar temprano con un condicionamiento progresivo. Si dejas que un gatito se acostumbre al agua y nade desde el comienzo de su vida, tendrás un gato adulto con menos problemas para mojarse. Los gatos mayores también pueden acostumbrarse al agua, siempre que sean recompensados. Hace falta un entrenamiento con una golosina o juguetes, y situaciones siempre agradables. Si la recompensa es lo bastante grande, el gato entrará al agua para ganarla.

Pero, ¿este entrenamiento vale la pena realmente? Un gato sano no tiene que bañarse porque sí. Sabemos que los gatos son animales muy higiénicos que se lamen regularmente. Su lengua funciona como un peine y sirve para limpiar profundamente el pelaje. Además, bañarles demasiado puede provocarles problemas en la piel, dado que normalmente no tienen contacto con el agua. Los gatos siguen siendo animales tímidos, que tienen razones de sobra para no mojarse.

 

* Karel H. M. van Wely es investigador en el Centro Nacional de Biotecnología del CSIC y autor de varios libros de divulgación, como El ADN (CSIC-Catarata).

¿De dónde viene la sal del mar?

Por Mar Gulis

Si observamos la etiqueta de una botella de agua mineral, comprobaremos que contiene una pequeña cantidad de sales. Estos componentes no han sido añadidos artificialmente sino que provienen de la disolución de las rocas por las que ha pasado el agua (un proceso que recibe el nombre de lixiviación).

Boyas SMOS

Boyas usadas durante la Expedición Malaspina 2010 para medir la salinidad superficial del océano con el satélite SMOS de la Agencia Espacial Europea (ESA). / Joan Costa-CSIC

Durante millones de años el agua procedente de ríos y manantiales, como la de la botella, ha ido a parar al mar. Junto con ella, el polvo que el viento transporta desde tierra, las cenizas volcánicas y las fuentes hidrotermales de los fondos marinos también han ido depositando sales en mares y océanos. En ocasiones de forma nada desdeñable, como ocurre habitualmente con las tormentas de arena procedentes del Sahara o como sucedió en 2010 con la erupción del volcán islandés Eyjafjallajokull.

Puesto que en el proceso de evaporación del mar el agua se va pero las sales se quedan, la concentración de sales ha ido aumentando, año tras año, hasta alcanzar la salinidad actual, que es aproximadamente de unos 35 gramos de sal por litro de agua de mar. Sin embargo, hay que tener en cuenta que la salinidad puede variar bastante entre diferentes mares. Por ejemplo, en el Mar Muerto, que está bastante aislado y en el cual hay mucha evaporación, la salinidad puede ser muy elevada –entre cinco y diez veces mayor que la del Mediterráneo–. En cambio, en la Antártida encontramos habitualmente salinidades de 33 o 34 psu (aproximadamente 33 o 34 gramos de sal por litro de agua). Esto es debido a la disolución de los icebergs y las masas de hielo continental.

Sin sales, los océanos y la Tierra no serían lo que son. Estos compuestos hacen que el agua de mar sea más densa que las aguas continentales y que tenga un punto de congelación menor, unos -2º C. Las pequeñas diferencias de salinidad y temperatura hacen que algunas masas de agua sean más densas que otras (a más salinidad y menos temperatura, más densidad). El agua más densa se hunde y deja lugar en la superficie a aguas menos densas, lo cual es clave para la circulación de las corrientes marinas que distribuyen el calor por el planeta y regulan su climatología.

Además, las sales son de vital importancia para los organismos marinos. Por ejemplo, el esqueleto de ciertos corales y las conchas de almejas, ostras y algunos caracoles están construidos con carbonato cálcico.

5 años de variaciones en la salinidad superficial del mar captadas por el satélite SMOS / ESA

 

Si quieres más ciencia para llevar sobre las sales del mar consulta las web El mar a fondo e ICM Divulga, así como la exposición Un mar de datos.

Cómo llevar un río al laboratorio

Por Mar Gulis

Cerca de 25.000 kilómetros de los cursos fluviales de España, algo así como el 33% del total, están muy contaminados, según indican varios estudios científicos. Los ríos son uno de los ecosistemas acuáticos más amenazados por las actividades humanas. El vertido de aguas domésticas o residuales insuficientemente tratadas o la llegada de pesticidas utilizados en la agricultura empeoran la calidad química del agua, afectando a los organismos que habitan en los ríos.

Detalle recogida porta sustratos

Detalle de la recogida de un porta sustratos, cerca del nacimiento del río Gállego.

Y el papel de estos organismos no es baladí: contribuyen al buen estado de sus aguas e incluso procesan parte de los vertidos y contaminantes que llegan al río; es decir, son parte imprescindible del proceso de autodepuración del río. Precisamente, su estudio en el laboratorio permite predecir el impacto sobre ecosistemas acuáticos de determinados contaminantes y otros factores ligados al cambio climático, como el incremento de la temperatura o la radiación ultravioleta. Pero, ¿cómo se lleva un río al laboratorio?

Quienes se encargan de hacerlo son los ecotoxicólogos fluviales. En el Instituto Pirenaico de Ecología del CSIC son quienes valoran el estado de los ríos y miden los compuestos químicos que puedan resultar perjudiciales para la salud del río. Para hacerlo, estudian los organismos que habitan en ellos, como las algas o los insectos. Las algas están expuestas a todos los compuestos químicos transportados por el agua del río. Además, al estar ‘fijas’ en un lugar determinado del río (adheridas a una piedra, por ejemplo), permiten conocer qué cosas han sucedido en ese punto, como qué compuestos químicos había en el agua durante el periodo en el que han crecido.

Vista canales artificiales en el laboratorio

Vista lateral de los canales artificiales en funcionamiento, iluminados con fluorescentes que simulan la luz solar.

En este sentido, estos microorganismos actúan como indicadores de la calidad del agua, ya que la presencia o ausencia de las diferentes especies es una señal de la presencia o ausencia de determinados contaminantes.

Como los investigadores no se pueden llevar ni el río ni las piedras al laboratorio, utilizan sustratos artificiales. Estos son trocitos de plástico que se insertan en unas estructuras para que no se los lleve la corriente del río. Se dejan un tiempo en el río y se recogen cuando las algas han crecido sobre ellos. Una vez en el laboratorio los sustratos y sus algas son depositados en canales artificiales con agua del río, y sometidos a las mismas condiciones de luz, velocidad, etcétera, que se utilizarán durante los experimentos.

Una vez en el laboratorio se recrean diferentes situaciones. Por ejemplo, para medir el efecto o la toxicidad de un determinado compuesto se comparan los microorganismos de varios canales: en uno de ellos se deja el agua limpia y en los demás se añaden diferentes cantidades del tóxico que se quiere estudiar. Al medir y comparar la fotosíntesis de unas algas con otras se puede conocer con mucha precisión cuánta cantidad del tóxico afecta al alga.

Si quieres saber más sobre cómo llevar un río al laboratorio échale un vistazo al vídeo realizado por el CSIC para dar a conocer sus líneas de investigación. El vídeo forma parte del proyecto de divulgación ‘Investiga con nosotros’, que cuenta con el apoyo de la FECYT.

‘We are water, my friend’

Agua en el cuerpoPor Mar Gulis

Si fuera un personaje de Marvel, sería uno de los más poderosos, capaz de cambiar de estado y hacerse líquida, gaseosa y sólida con gran facilidad, además de controlar la temperatura de los seres vivos y de nuestro planeta. Mañana se celebra el Día Mundial del Agua y por eso desde este blog queremos homenajear a la molécula del agua, cuyas propiedades físico-químicas la hacen única.

Por ejemplo, su comportamiento térmico es excepcional. Por su alto calor específico y de vaporización, el agua es capaz de absorber calor y desprenderlo. Este ‘poder’ resulta esencial para la vida. Permite generar un clima benigno en la Tierra y regula nuestro termostato corporal, evitando grandes diferencias de temperatura entre distintas zonas del organismo, ya que basta muy poca variación de grados para poner en peligro nuestra salud. Cuando hacemos ejercicio físico generamos energía y con ella también se produce calor; para prevenir un peligroso aumento de la temperatura corporal, el agua absorbe el calor allí donde es generado y lo disipa en los compartimentos líquidos del organismo. Es decir, que a través del sudor o la respiración, el agua refrigera nuestro cuerpo.

Teniendo en cuenta que el ser humano tiene una proporción de agua que va desde el 75% en los recién nacidos hasta el 45% en la vejez, todos y todas tenemos un poco de súper héroe o heroína de Marvel. Conviene no dejar de hidratarse.

 

Si quieres más ciencia para llevar sobre la molécula del agua y sus ‘superpoderes’, visita la web La esfera del Agua, del CSIC y Aqualogy.