¿Cuándo empezamos a sentir? Electricidad en los circuitos cerebrales

Por Óscar Herreras (CSIC)*

¿Sentimos lo mismo ante una misma situación? Es evidente que no. Cada objeto, emoción o concepto se graba en circuitos neuronales por la propia experiencia de cada individuo, y para esto no hay manuales, no hay genes. Pero, ¿qué entendemos por sentir? Como casi todos los conceptos que empleamos para definir el comportamiento humano, este también tiene su origen en la era precientífica, de ahí sus mil significados.

Etimológicamente, sentir significa dirigirse hacia donde nos indican los sentidos. Implica, por tanto, percepción y movimiento. ¡Casi nada! Las dos principales propiedades de la vida animal. Afortunadamente, hay una disciplina que estudia las funciones del sistema nervioso y nos las explica con el lenguaje común de la física: la neurofisiología. De ella aprendimos hace ya más de un siglo que todo lo que se percibe –sonidos, imágenes, olores– se traduce y se transmite en los circuitos nerviosos como actividad eléctrica. Desde el instante en que vemos un anuncio de chocolate hasta el momento en el que los músculos nos llevan a la tienda, todo es actividad eléctrica fluyendo por los circuitos neuronales. Esta puede ser la definición mínima de sentir. Y no es para menos: la electricidad es la clave de la vida.

Todas las células, no solo las neuronas, son bolitas de grasa que contienen electrolitos en su interior, como si fueran la batería de un coche. Buena parte de estas células son excitables, lo que les permite generar corriente. Las neuronas evolucionaron dominando este juego de una forma espectacular: pueden codificar en forma de impulsos eléctricos lo que percibimos del mundo exterior e interaccionar con él enviando órdenes a los músculos. Sin flujo eléctrico a través de los circuitos nerviosos no hay sensación, no hay movimiento. La electricidad es lo que diferencia a los circuitos vivos de los muertos, así de simple.

Circuitos de la corteza cerebral

Diversos tipos neuronales forman los complejos circuitos en la corteza cuya actividad eléctrica y funciones madurarán lentamente en la infancia. /López-Mascaraque, Instituto Cajal, CSIC

No obstante, ¿es esta la única función de la electricidad en el sistema nervioso? No, ni mucho menos. Recientemente, nuestro grupo ha mostrado que la actividad eléctrica de la corteza cerebral sensorial en roedores jóvenes, aunque es similar a la de los adultos, está generada por circuitos diferentes. Este hallazgo, publicado en Journal of Neuroscience, es relevante porque previamente sabíamos que los circuitos ya estaban formados a esa edad, y ahora podemos concluir que aún no están plenamente operativos. En este caso, se trataba de los circuitos que controlan las patas, y sabemos que en unos pocos días más, cuando el animal entrene un poco, la electricidad fluirá por sus circuitos como en un adulto. Esta maduración tardía de los circuitos corticales a medida que se usan revela un patrón de economía biológica.

Lejos de ser canales fijos de comunicación, los circuitos son extremadamente mutables, y es nuestra actividad diaria la principal promotora de sus adaptaciones. El entrenamiento es esencial. Los recién nacidos entrenan días, meses y años para adquirir nuevas funciones y capacidades, tiempo en el que la electricidad irá produciendo los cambios necesarios para que todos los segmentos del circuito sean activos y engranen perfectamente.

Corteza cerebral rata adolescente

Los circuitos de la corteza cerebral están organizados en estratos de neuronas diferentes. /Silvia Tapia, Instituto Cajal, CSIC

Suele decirse que hay un mapa genéticamente determinado de nuestros circuitos, y esto es correcto, pero solo en parte. Sin la electricidad, los circuitos no se forman o lo hacen de manera aberrante, como mostraron hace más de medio siglo los Nobeles Hubel y Wiesel al observar que, impidiendo la visión de un ojo unos pocos días tras el parto, los circuitos de la corteza visual eran aberrantes. Hallazgos más recientes muestran que la actividad eléctrica es imprescindible para activar los genes necesarios en la construcción de los circuitos. Así, en esta época en la que todo parece consecuencia de un plan genético determinado para cada especie y cada individuo, resulta que la energía eléctrica determina cuándo, cuánto y cómo se va a ejecutar ese plan. La electricidad no es solo la energía que permite a un organismo complejo ejecutar sus funciones, sino que además controla sus propios cambios estructurales para adaptarse al medio con el que tiene que interaccionar, y permite que este interactúe con nosotros generando electricidad en nuestros órganos sensoriales y cambios en nuestro sistema nervioso.

Medicina sin fármacos

Estudiar y catalogar la electricidad en el cerebro no es fácil; hay demasiados núcleos activos a la vez realizando gran cantidad de funciones. Sus cambios son tan rápidos que es muy difícil clasificarlos para interpretar qué información llevan, que función realizan y si es normal o patológica. Si hoy la ciencia pone el énfasis en las alteraciones moleculares y génicas como responsables de las patologías, algunos investigadores vemos la electricidad como la causa última, y ya vislumbramos el día en que un conocimiento exhaustivo de la actividad eléctrica en los circuitos nos permita interactuar con ellos para reconducir las anomalías estructurales que causan las deficiencias. Aquí está una de las posibles claves de la investigación futura. Medicina sin fármacos. Sabemos que la actividad eléctrica debe seguir un patrón preciso para generar cambios en la estructura, tanto a nivel celular como en los circuitos. Ya hace décadas que se está empleando estimulación eléctrica con patrones temporales muy precisos para tratar la epilepsia y la enfermedad de Parkinson, y ahora se están desarrollando tecnologías para muchas otras patologías, como el alzhéimer o la migraña, o para restablecer funciones perdidas tras un ictus cerebral.

En definitiva, sentimos de manera diferente porque la actividad eléctrica fluye por distintas partes de nuestros circuitos, bien porque seamos un reptil o un primate, un embrión o un adulto, o bien porque usemos la parte reptiliana de nuestro cerebro o dejemos llegar la corriente eléctrica hasta la corteza. Así, si queremos comprendernos a nosotros mismos y nuestras patologías, seamos primates y estudiemos la actividad eléctrica del cerebro.

* Óscar Herreras es investigador del Instituto Cajal del CSIC.

‘Regnum vegetabile’: una curiosa fusión de botánica y arte te espera en el Real Jardín Botánico

Por Mar Gulis (CSIC)

El 13 de agosto de 1785 llegó a la costa bilbaína, procedente de Holanda, el navío San Gabriel. El barco transportaba un peculiar tesoro: 160 carpetas con dibujos que había adquirido el Reino de España en una subasta pública. Cuidadosamente empaquetadas y distribuidas en 16 cajones, las obras llegaron a Bilbao intactas y fueron trasladadas al Real Gabinete de Historia Natural de Madrid, que había abierto sus puertas al público en 1776.

¿Qué contenían exactamente aquellas carpetas? Más de 8.000 ilustraciones y grabados de todas las especies botánicas conocidas en aquella época. Las piezas procedían de la colección del médico y naturalista Jan le Francq van Berkhey (Leiden, 1729-1812). Hijo del tratante de lana Evert Le Francq y de Maria Berkhey, este holandés, a quien le apasionaba el dibujo científico y los gabinetes zoológicos y de curiosidades, fue coleccionando a lo largo de 40 años un conjunto de obras realizadas entre los siglos XVI – XVIII. Las piezas, ejecutadas en su mayor parte con acuarela y sobre papel de alta calidad, procedían de distintos países y algunas de ellas estaban firmadas por famosos ilustradores botánicos, como Georg Dyonisius Ehret, Pieter Holsteyn, Johann Michael Seligmann y Johann Mätthaus Meriam, entre otros. Ahora, una selección de aquel tesoro artístico-botánico puede contemplarse en el Real Jardín Botánico (RJB-CSIC) hasta el próximo 8 de diciembre. Pero sigamos con la historia de esta singular colección.

 

Una de las ilustraciones que integran la exposición ‘Regnum vegetabile’ del Real Jardín Botánico

Van Berkhey pretendía reunir, de forma ordenada y sistemática, ilustraciones de las especies del mundo conocido y crear un gran Atlas donde estuvieran representadas todas ellas. Ese afán le llevó a coleccionar no solo pinturas, también minerales, fósiles, piedras preciosas, libros, manuscritos, cuadros, monedas o medallas. ¿Cómo fueron a parar a España? Ese año de 1785, el Cónsul General de España en Ámsterdam, Ignacio Jordán de Asso y del Río (1742-1814), escribió al conde de Floridablanca, ministro del rey Carlos III, informándole de que la colección de un conocido médico y naturalista holandés iba a ser subastada. Debido a su interés artístico y científico, el Cónsul recomendaba que el Real Gabinete de Historia Natural de Madrid comprase la colección. La diplomacia se puso en marcha. Floridablanca comentó el plan a Pedro Franco Dávila, un sabio naturalista español que, entusiasmado con la idea de incorporar ese patrimonio, animó a la compra. Así, el Cónsul General Asso terminó adquiriendo las 160 carpetas que arribaron a la costa bilbaína a bordo del San Gabriel.

Con el tiempo, la colección Van Berkhey terminó repartida entre el Real Jardín Botánico y el Museo Nacional de Ciencias Naturales -curiosamente, dos centros de investigación del CSIC-, donde permanece. Ahora, el original tesoro se exhibe por primera vez en Madrid, en el Pabellón Villanueva del Jardín Botánico, en forma de exposición. Bajo el título Regnum vegetabile [reino vegetal], la muestra reúne una selección de 94 piezas que incluyen dibujos, estampas, libros, cajas originales y plantas secas. Más allá de su valor estético, las obras reflejan el saber científico del siglo XVIII en el campo de la botánica. Además de representar la fisiología de las plantas de África, América, Europa y Asia, los dibujos muestran la convivencia entre antiguos y nuevos sistemas de clasificación de especies, que cristalizarían en la adopción generalizada, ya avanzado el siglo XVIII, del modelo ideado por el sueco Carlos Linneo.

Actualmente se conservan 1.646 dibujos y grabados atesorados por Van Berkhey en el archivo del Real Jardín Botánico. Recuerda: hasta el 8 de diciembre puedes disfrutar de las 94 piezas seleccionadas que componen esta exposición.

¿Qué es la nanomedicina?

Por Fernando Herranz (CSIC)*

La nanomedicina consiste nada más (y nada menos) que en la aplicación de la nanotecnología para el diagnóstico y tratamiento de distintas enfermedades. Se trata de una rama de la medicina cuyo uso se está extendiendo a prácticamente todos los ámbitos de la salud, como la lucha contra el cáncer, las patologías cardiovasculares y las enfermedades raras; el desarrollo de nuevos antibióticos; o, como veremos, la mayoría de los test de embarazo que se realizan en la actualidad.

Spaghetti celulares

Células de tejido conectivo sobre material biomédico. / Álvaro A. González y Salvador D. Aznar (FOTCIENCIA12)

Pero, empecemos por el principio: ¿qué es la nanotecnología? Esta se puede definir como la producción, manipulación y estudio de la materia con, al menos, un tamaño en el rango de los 100 nanómetros (nm). Para hacernos una idea, el diámetro medio de un cabello humano es de unos 70.000 nanómetros. Estamos hablando por tanto de lo muy muy pequeño: la escala más pequeña antes de entrar en el mundo de las moléculas y los átomos.

¿Qué tiene de especial esa escala? ¿Por qué no hablamos simplemente de “micromedicina”? La clave está en que cuando confinamos la materia en la escala nanométrica los objetos se comportan de forma muy diferente a cómo lo hacen a escalas de tamaño mayores, debido a que en el nanomundo las propiedades fisicoquímicas de los materiales varían según su tamaño. Lo que podemos hacer con una partícula de dos nanómetros de un material es totalmente distinto a lo que podemos hacer con una partícula de 10 nanómetros del mismo material.

Estamos habituados a pensar que los compuestos químicos, como los principios activos de los medicamentos, muestran propiedades distintas cuando cambian su composición. Para explicarlo con un ejemplo muy simple: en el mundo macroscópico, si los compuestos químicos fueran fruta y quisiéramos obtener distintos sabores, lo haríamos utilizando distintas frutas: naranja para el sabor naranja, manzana para el sabor manzana, etc. De igual manera, el paracetamol sirve para el dolor, pero el antibiótico para la infección bacteriana. Sin embargo, en la escala nanométrica, el sabor no solo depende de la composición de un compuesto, sino también de su tamaño: una naranja de tres nanómetros de radio sabría completamente diferente a una naranja de ocho nanómetros de radio.

 

Nanopartículas de oro en los test de embarazo

Fijémonos por ejemplo en las nanopartículas de oro, uno de los materiales más empleados en nanomedicina. Cuando hablamos de nanomedicina, una de las herramientas más empleadas son precisamente las nanopartículas; esferas con un tamaño nanométrico.

A diferencia del oro que estamos acostumbrados a ver en el día a día, las nanopartículas de oro presentan una gama amplia de colores muy vivos que varían del rojo al morado según su tamaño. En esta variedad de colores radica la clave de una de sus aplicaciones: su uso como sensores. Un sensor se puede definir, de forma muy resumida, como un compuesto que da una señal y que, en presencia de aquello que queremos detectar, cambia dicha señal.

En el caso de las nanopartículas de oro, lo importante es que cuando se unen al compuesto que se trata de detectar, su superficie se modifica, cambian de tamaño y, por tanto, de color. Ese cambio puede ser observado a simple vista, lo que permite la identificación del compuesto en cuestión.

Nanopartículas de oro de tamaños diferentes dispersas en agua.

Nanopartículas de oro de tamaños diferentes dispersas en agua.

Hay multitud de usos médicos de las nanotpartículas de oro basados en su capacidad de cambiar de color, pero quizás el test de embarazo es el más conocido. En ese caso, la típica banda que aparece si el resultado es positivo, se debe al cambio de tamaño de las nanopartículas de oro que se produce solo si se unen a la hormona gonadotropina coriónica humana, cuya presencia determina si hay un embarazo.

Como en toda nueva tecnología, el tiempo dirá cuáles de los nuevos desarrollos se convierten en nuevas terapias al alcance de todos y cuáles se quedarán por el camino. Al menos, por el momento, podemos olvidarnos de las típicas imágenes de ciencia ficción donde pequeños robots circulan por la sangre haciendo distintas labores. Lo que está claro es que la nanomedicina ha venido para quedarse y que su uso abre un campo inmenso de posibles y revolucionarias aplicaciones destinadas a mejorar el diagnóstico y tratamiento de algunas de las enfermedades más difíciles de diagnosticar y tratar en la actualidad.

 

* Fernando Herranz dirige el Grupo de Nanomedicina del Instituto de Química Médica del CSIC y colaborador habitual del blog DCIENCIA.

¿Eres capaz de fotografiar la ciencia? Envía tus imágenes a FOTCIENCIA17

Por Mar Gulis (CSIC)

Si te gusta la fotografía, es el momento de enseñarnos cómo se ve la ciencia y la tecnología a través del objetivo de tu cámara… ¡o de tu microscopio! Ya está abierto el plazo para participar en la 17ª edición de FOTCIENCIA, una iniciativa que cada año elige las mejores fotografías científicas. Las imágenes seleccionadas formarán parte de un catálogo y de una exposición itinerante que recorrerá España durante 2020-21. Además, las mejores de cada modalidad recibirán una remuneración de hasta 1.500€.

El plazo de presentación es del 7 de noviembre al 16 de diciembre de 2019 (a las 12 del mediodía, hora española peninsular).

La luz, los fenómenos físicos, los organismos vivos o los objetos de la vida cotidiana pueden mirarse desde una perspectiva científica. Las opciones son prácticamente infinitas. Por eso no es necesario que te dediques a la ciencia para poder participar… Solo que seas capaz de ver, extraer o captar lo científico que hay en el mundo que nos rodea. Aquí puedes ver las imágenes seleccionadas en ediciones anteriores.

Las fotografías deberán presentarse en formato digital a través de un formulario disponible en la página web www.fotciencia.es, junto con un breve texto que permita interpretarlas. El jurado valorará tanto la imagen –su calidad técnica, originalidad y valor estético– como la claridad de la explicación aportada por el autor o autora.

Cualquier persona mayor de edad puede enviar fotografías propias que no hayan sido seleccionadas en procesos similares. Pero también hay una modalidad, ‘La ciencia en el aula’, dirigida al alumnado de Secundaria y Ciclos formativos, que puede participar a través de sus profesores y profesoras.

Las propuestas se podrán presentar en una de las siguientes modalidades:

  • Micro, cuando la dimensión real del objeto fotografiado sea menor o igual a 1 milímetro o la imagen haya sido obtenida mediante un instrumento de micrografía (óptica o electrónica) o técnicas de difracción.
  • General, cuando la dimensión real del objeto fotografiado sea mayor de 1 milímetro.

Además, los autores y autoras también pueden adscribir su imagen a otras modalidades específicas, como ‘Agricultura sostenible’ ‘Alimentación y nutrición’.

FOTCIENCIA es una iniciativa organizada por el Consejo Superior de Investigaciones Científicas (CSIC) y la Fundación Española para la Ciencia y la Tecnología (FECYT), con la colaboración de la Fundación Jesús Serra. En esta 17ª edición, FOTCIENCIA se suma a los 17 Objetivos de  Desarrollo Sostenible declarados por Naciones Unidas.

Toda la información y normas de participación están disponibles en www.fotciencia.es

¿Para qué sirve un láser?

Por José Vicente García Ramos (CSIC)*

Cuando se inventó, en 1960, el láser no servía para nada. De hecho, en aquellos tiempos algunos científicos se referían a él como “una solución en busca de problema”. Entonces, ¿para qué lo inventaron? Parece que querían probar, experimentalmente, que el mecanismo de amplificación de la luz por emisión estimulada, predicho por Einstein en 1917 y demostrado con microondas en 1954, podía extenderse a la luz visible.

Hoy, sin embargo, la situación es muy diferente y el láser ha encontrado tantas aplicaciones que nos resulta casi imposible enumerarlas. Las tres características que diferencian la luz de un láser de la luz del Sol o de la generada por una bombilla son que, en el caso del láser, se trata de un haz de luz monodireccional, monocromático y coherente.

Hoy día los láseres tienen numerosas y variadas aplicaciones. / Wikimedia Commons

Hoy día los láseres tienen numerosas y variadas aplicaciones. / Wikimedia Commons

Cualquier láser contiene al menos tres elementos fundamentales: un medio activo, un sistema de bombeo y una cavidad resonante. El medio activo es el material (sólido, líquido o gaseoso) que emite la luz. Para que este medio activo emita luz hay que excitarlo de alguna manera, del mismo modo que el filamento de una bombilla necesita una corriente eléctrica que pase por él. En el caso de un láser se trata del sistema de bombeo, que puede consistir en otro láser, una lámpara convencional o una corriente o descarga eléctrica. El medio activo se coloca entre dos espejos que forman una cavidad resonante donde la luz rebota entre ellos y ayuda a la amplificación, como lo que ocurre en la caja de resonancia de una guitarra que amplifica las ondas acústicas. Uno de los espejos es semirreflectante, por lo que parte de la luz amplificada sale de la cavidad resonante en forma de haz.

El volumen de información que transmite una onda electromagnética depende de su frecuencia; en este sentido, la luz de un rayo láser resulta idónea para la transmisión de señales. Por eso, entre sus aplicaciones más usadas está la lectura de discos compactos, la fabricación de circuitos integrados y la lectura de códigos de barras. En el ámbito de la medicina, la tecnología láser se aplica a los bisturís cauterizantes, ya que permite realizar cortes muy finos de gran precisión, evitar cualquier riesgo de contagio y cauterizar de manera inmediata, alejando el peligro de hemorragias.

Fibra óptica, impresoras o espionaje

Sin embargo, muchas de las aplicaciones del láser no dependen tanto de su capacidad para generar un rayo de luz como del hecho de que representa una concentración extremadamente intensa de energía. Basándonos en esta propiedad, podemos enumerar tres aplicaciones sumamente importantes en el terreno de la óptica. Una de ellas son las telecomunicaciones mediante fibra óptica. En este caso, las señales eléctricas que hasta hace poco tiempo se desplazaban a través de conductores metálicos han sido reemplazadas por pulsos ópticos que se transmiten a través de fibra de vidrio del grosor de un cabello. Como potente fuente de luz, el láser confiere a estas fibras una elevada capacidad de transmisión.

Espectáculo de luces con láseres. / kpr2 - Pixabay

Espectáculo de luces con láseres. / kpr2 – Pixabay

La segunda aplicación óptica importante está en la holografía, que es una técnica para crear imágenes tridimensionales, inventada en 1947 por el ingeniero eléctrico húngaro Dennis Gabor (1900-1979), que obtuvo por ello el Premio Nobel en 1971. Esta técnica se basa en la interferencia entre dos rayos de luz. Uno de los aspectos básicos del sistema es la necesidad de utilizar luz coherente, y cuando se inventó solo se disponía de fuentes relativamente débiles de este tipo de luz. La llegada del láser transformó la situación, porque la generación de una poderosa fuente de luz coherente es su esencia. Con el tiempo, la holografía llegó a hacerse muy familiar en una variedad de formas, como en la marca de seguridad de las tarjetas de crédito y en publicidad.

La tercera aplicación importante está en las impresoras de los ordenadores, donde, controlando un haz láser, se dibujan las palabras que se quieren imprimir.

También podemos destacar las aplicaciones que dependen de su capacidad para concentrar una gran cantidad de energía sobre una superficie muy pequeña (alrededor de un millón de vatios por centímetro cuadrado) durante un periodo de tiempo extremadamente breve. Algunas de las más importantes aplicaciones industriales de los láseres son fruto de esta capacidad: la perforación, la soldadura y el corte de distintos materiales.

Además, puesto que un rayo láser es muy fino y prácticamente no sufre divergencias, se puede usar para medir largas distancias con gran precisión. La técnica (semejante a la del radar) consiste en captar el rayo reflejado por el objeto distante y medir el tiempo transcurrido desde el envío de la señal hasta la recepción de su reflejo. Conociendo la velocidad de la luz, resulta fácil calcular la distancia. En los años setenta, este método se empleó para determinar con precisión la distancia de la Luna, utilizando los reflectores que habían instalado allí los astronautas norteamericanos.

Pero eso no es todo, también se han empleado láseres hasta para temas relacionados con el espionaje. En 1968 se descubrió que un láser puede detectar perfectamente desde el exterior las vibraciones del cristal de las ventanas producidas por las conversaciones en el interior de una casa. Vemos cómo el láser, que en un principio era como “un invento en busca de un empleo”, tiene en la actualidad un sinfín de variadas aplicaciones.

 

* José Vicente García Ramos es Vocal del Comité de Ética del CSIC y autor del libro Las moléculas: cuando la luz te ayuda a vibrar (Editorial CSIC-Los Libros de la Catarata). Hasta su jubilación en 2016 fue investigador en el Instituto de Estructura de la Materia del CSIC.

¿Yogur natural o edulcorado?: cómo afecta su consumo a tu salud

Por Mar Gulis (CSIC)

¿Alguna vez te has parado a pensar qué productos fermentados forman parte de tu dieta? Son alimentos en los que su procesamiento involucra el crecimiento de microorganismos. Generalmente son más ricos nutricionalmente que un alimento no fermentado, ya que resultan más digeribles, contienen compuestos biactivos producidos durante la fermentación y constituyen una fuente de microorganismos. Estas características hacen que los alimentos fermentados resulten beneficiosos para la salud.

“El consumo de lácteos fermentados se ha asociado con la prevención de la obesidad, la reducción del riesgo de trastornos metabólicos y patologías relacionadas con el sistema inmunitario”, destaca el investigador Miguel Gueimonde del Instituto de Productos Lácteos de Asturias (IPLA) del CSIC. Precisamente, los lácteos fueron este año los protagonistas del Día Nacional de la Nutrición (28 de mayo), como también lo han sido de un estudio en el que ha participado el investigador para determinar cómo impacta el consumo de productos lácteos fermentados en la microbiota intestinal y en la salud.

yogur

Fuente: Freepik

La microbiota intestinal es la comunidad microbiana que se encuentra en nuestro intestino y está compuesta por cientos de especies bacterianas diferentes, presentes en niveles muy elevados  –entre 0,1 y 1 billón de bacterias por gramo de contenido colónico–. Durante la última década, numerosos estudios han puesto de manifiesto la importancia de la microbiota intestinal para la salud y cómo algunas alteraciones en ella se relacionan con el incremento en el riesgo de sufrir diversas patologías. Por ello, indica el investigador, ha aumentado el interés sobre la relación existente entre la microbiota intestinal y las distintas funciones del organismo, desde la intestinal a la inmune e incluso la cognitiva, así como al estudio de los factores que determinan y modulan la composición de la microbiota. Y entre ellos, la dieta tiene un papel destacado. Así que presta atención la próxima vez que decidas en el supermercado: ¿yogur natural o edulcorado?; antes deberías saber qué efectos podría tener en tu salud.

Estos productos aportan nutrientes de gran calidad y contribuyen a la presencia de microorganismos beneficiosos. Así lo demuestra este estudio en el que 130 adultos han proporcionado información nutricional y de hábitos de vida, y en él se ha evaluado la ingesta de alimentos mediante un cuestionario con 26 productos lácteos fermentados. Los favoritos: el yogur natural, el yogur edulcorado y el queso curado o semi curado.

Entre los resultados, el más sorprendente, destaca el investigador, fue la observación de una asociación positiva entre el consumo de yogur natural y los niveles de microorganismos del género Akkermansia en el intestino, que tienen efectos beneficiosos sobre la obesidad y el síndrome metabólico. “Nuestro estudio indica que el consumo regular de yogur natural ayuda a mantener unos niveles elevados de este microorganismo”, explica, unos resultados que demuestran “los posibles efectos beneficiosos del consumo de yogur”.

Por el contrario, estos efectos no se observaron en los consumidores de yogur edulcorado ya que este consumo se asoció a niveles más bajos de Bacteroides. Y, de hecho, señala Gueimonde, los efectos pueden verse afectados por la adición de edulcorantes, lo que conllevaría además efectos diferentes sobre la microbiota intestinal, pero esto sería objeto de otro estudio.

¿Qué sabemos del cambio climático? Respuestas científicas a 5 preguntas frecuentes

Por Armand Hernández (CSIC)*

Aunque ha habido muchos cambios climáticos a lo largo de la historia de nuestro planeta, sabemos que ahora la Tierra se está calentando a un ritmo sin precedentes.  Ya no hay duda de que el cambio climático actual es un hecho reconocido por la ciencia. Sin embargo, la sociedad sigue haciéndose preguntas al respecto. En este post respondemos a algunas de las más frecuentes.

¿Cómo sabemos que el clima está cambiando?

 Los registros instrumentales a nivel global nos muestran que estamos experimentando las temperaturas más altas desde que se empezaron a medir hace algunos siglos. Diecisiete de los dieciocho años más cálidos desde que existen registros instrumentales se han producido durante el siglo XXI. Además, las observaciones indirectas de registros naturales como el hielo de los casquetes polares, las estalagmitas, los anillos de los árboles, los corales y los sedimentos marinos y lacustres sugieren que este calentamiento no tiene precedentes en los últimos cientos de miles de años.

Gráfica calentamiento

Temperaturas globales anuales entre 1850 y 2017. La escala de colores representa el cambio en las temperaturas en un rango de 1.35°C. / Autor: Ed Hawkins (University of Cambridge). Datos: HadCRUT4 (Climatic Research Unit-University of East Anglia y Hadley Centre-Met Office).

¿Qué está causando el cambio climático actual?

La fuente principal de la energía que consumimos en la actualidad proviene de combustibles fósiles como el carbón, el petróleo y el gas, que producen emisiones de gases de efecto invernadero.

Cuando la comunidad científica trata de reproducir el calentamiento global actual con modelos climáticos, solo se obtienen resultados satisfactorios si se tienen en cuenta las concentraciones de gases de efecto invernadero procedentes, principalmente, de la quema de combustibles fósiles. De esta manera, se descarta que esta tendencia sea causada sólo por procesos naturales.

¿Qué va a pasar?

Con el aumento de la temperatura global, podemos esperar cambios más rápidos y de mayor magnitud en el medio ambiente, con diversas implicaciones para las diferentes regiones del planeta.

El deshielo en los polos, así como la expansión del agua debido a las mayores temperaturas, provocarán un aumento del nivel del mar, que se prevé que alcanzará más de 1 metro a finales del siglo XXI. Esto es muy importante, ya que la mayor parte de la población mundial vive en zonas costeras.

También se espera que los fenómenos climáticos extremos se hagan más frecuentes, duraderos, intensos y devastadores. Una consecuencia de todos estos cambios podría ser un aumento de los movimientos migratorios y la generación de una inestabilidad geopolítica creciente.

¿Cuánto tiempo tenemos hasta que el cambio climático sea irreversible?

Es casi imposible saber cuánto tiempo nos queda para que el cambio climático sea irreversible. En realidad, algunos de los impactos causados por el cambio climático ya no tienen vuelta atrás, mientras que otros se reducirían si se detuvieran de inmediato las emisiones de gases de efecto invernadero de origen humano.

Según el Grupo Intergubernamental de Expertos sobre el Cambio Climático de las Naciones Unidas (IPCC, siglas en inglés), deberíamos reducir a la mitad las emisiones de dióxido de carbono para el año 2030 y alcanzar el “cero neto” para el año 2050, para así poder mantener el calentamiento global en 1,5 °C a finales del siglo XXI.

Esto es importante, ya que mantener el aumento de la temperatura global por debajo de 2°C es vital para reducir los impactos asociados a los efectos de larga duración, como la pérdida de algunos de los ecosistemas más sensibles (los arrecifes coralinos, por ejemplo) o la capacidad de cultivar ciertos alimentos básicos, como el arroz, el maíz o el trigo.

Estas y otras preguntas, así como sus respuestas, las puedes encontrar en el audiovisual “Climate Change: the FAQs” elaborado por un grupo de científicos/as internacionales (entre los que se encuentran dos integrantes del CSIC) para resolver las dudas planteadas por estudiantes de secundaria y bachillerato.

¿Qué están haciendo las instituciones al respecto?

A menudo se hace hincapié en que los pequeños cambios, como por ejemplo el uso del transporte público o la bicicleta, pueden ayudar a reducir las emisiones de CO2. Sin embargo, para que estas acciones sean suficientes, deben ir acompañadas de cambios drásticos en los sistemas de producción y consumo promovidos por los gobiernos e instituciones a nivel internacional.

La Convención Marco de las Naciones Unidas sobre el Cambio Climático (CMNUCC) es el principal acuerdo internacional sobre el clima. Entró en vigor en el año 1994 como medio de colaboración entre los países para limitar el aumento de la temperatura mundial y hacer frente a sus consecuencias.

Veinte años después, en el famoso Acuerdo de París 2015, y siguiendo las directrices del IPCC, se alcanzó un consenso político mundial para detener el incremento de temperaturas por debajo de los 2ºC respecto a los niveles preindustriales. En virtud de ese acuerdo, cada país decide su contribución a la mitigación del calentamiento global. Como no existe ningún mecanismo que obligue a un país a fijar o cumplir objetivos específicos en fechas concretas, el acuerdo tiene un impacto limitado.

A modo de ejemplo tenemos los resultados de la reciente Cumbre sobre la Acción Climática de las Naciones Unidas, en la que sólo 77 países se comprometieron a reducir las emisiones de gases de efecto invernadero a “cero neto” para el año 2050. Además, únicamente 70 países anunciaron que impulsarán sus planes de acción nacionales para 2020 (en el marco del Acuerdo de París) o que han comenzado el proceso para hacerlos realidad.

Si es suficiente o no, sólo el futuro nos los dirá, pero de lo que no hay duda es que nos enfrentamos a un reto global sin precedentes.

 

* Armand Hernández (@armandherndz) es paleoclimatólogo e investigador en el Instituto de Ciencias de la Tierra Jaume Almera del CSIC.

Cómo nos puede ayudar la ciencia frente al despilfarro de alimentos

Por Ana Mª Veses (CSIC)*

El otro día fui a un restaurante con mi familia. En la mesa de al lado, un niño se puso a protestar porque no le gustaba la comida que le habían servido; inmediatamente, un camarero acudió para retirarle el plato.

Esta anécdota contrasta con la realidad que nos muestra la Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO): mientras cerca de 800 millones de personas sufren desnutrición en el mundo, según datos de 2017, aproximadamente un tercio de la producción mundial de alimentos se pierde o se desperdicia.

Además, este despilfarro produce graves consecuencias para el medioambiente. Tirar comida supone una notable pérdida de recursos naturales (tierra, agua y energía) y un incremento de emisiones de gases de efecto invernadero, para producir unos alimentos que finalmente nadie consumirá. Si ‘dilapidar comida’ fuera un país, sería el tercero con más emisiones de dióxido de carbono, detrás de China y EEUU. Asimismo, los alimentos que producimos pero luego no comemos consumen un volumen de agua equivalente al caudal anual del río Volga.

¿Por qué pasa esto? ¿Alguien se ha planteado hacer algo al respecto?

En los países industrializados principalmente se desperdician tantos alimentos porque la producción excede a la demanda, porque los supermercados imponen altos estándares estéticos a los productos frescos y descartan aquellos que son más feos, y porque se piensa que tirar es más cómodo que reutilizar.

En cambio, en países en vías de desarrollo, según indican estudios de la FAO, el desperdicio de alimentos por parte de los consumidores es mínimo. En estos países, sin embargo, son los inadecuados sistemas comerciales y las escasas y deficientes instalaciones de almacenamiento y procesamiento los que provocan grandes pérdidas de alimentos.

Desde las instituciones públicas se están desarrollando diversas estrategias y planes de actuación, a distintos niveles, para controlar y reducir estos desperdicios. Se han puesto en marcha planes de sensibilización cuya finalidad es modificar hábitos y modelos de consumo en las comunidades, como la difusión de buenas prácticas de conservación de productos en los hogares a través de los medios de comunicación o aplicaciones móviles para la sensibilización e innovación social o para la redistribución de excedentes.

Ciencia y tecnología para desperdiciar menos

Por otro lado, la ciencia y la tecnología contribuyen a generar herramientas que puedan disminuir el desperdicio de alimentos a lo largo de toda la cadena alimentaria. La creación de nuevas técnicas de conservación de alimentos, diseños de envases más resistentes, así como el uso de tecnologías limpias y la identificación de dónde se producen las pérdidas de producto son algunas de las alternativas que se investigan. Por ejemplo, ya se está trabajando en el desarrollo de envases más resistentes al transporte, que puedan volver a cerrarse fácilmente o divididos en porciones que aumenten la vida útil de los alimentos.

El catálogo de iniciativas nacionales e internacionales sobre el desperdicio alimentario realizado por la Agencia Española de Seguridad Alimentaria y Nutrición (AESAN) reúne iniciativas como un papel diseñado en 2010 (por la empresa Fenugreen) que consigue duplicar el tiempo de conservación de frutas y verduras frescas. Está impregnado con distintas especias que inhiben el crecimiento de hongos y bacterias y, además, contiene un determinado aroma que informa de si el sistema sigue siendo efectivo. Este papel, utilizado tanto en la agricultura como en hogares de todo el mundo, tiene una vida de tres semanas y después se puede aprovechar como abono.

Otras iniciativas aseguran la integridad del sellado en los envases mediante la selección de materiales de difícil perforación o desarrollan envases activos que evitan la entrada de sustancias indeseables al tiempo que liberan otras beneficiosas para la conservación del producto, como biocidas, antioxidantes o compuestos que absorben el oxígeno y la humedad.

Algunas líneas de investigación se basan en la reutilización y el reciclaje de subproductos industriales para evitar la disposición en vertedero, de manera que se puedan desarrollar nuevos productos a partir de los materiales excedentarios, recuperar compuestos de interés para utilizarlos como aditivos o ingredientes en otras industrias, así como obtener nuevos productos más saludables.

En el Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN) del CSIC, diversos grupos de investigación trabajan con residuos alimentarios procedentes de las industrias que usan productos vegetales y animales, con el objetivo de revalorizarlos. Uno de ellos es la okara, un subproducto de la soja que se obtiene tras extraer la fracción soluble para la producción de bebida de soja o tofu, y que antes era eliminado en las industrias de procesamiento. Al tratarla con altas presiones hidrostáticas y enzimas específicas, se consigue por un lado aumentar los carbohidratos solubles al doble de los valores iniciales y, por otro, incrementar sus capacidades prebióticas, favoreciendo el crecimiento de bacterias beneficiosas (Bifidobacterium y Lactobacillus) y la inhibición de otras potencialmente perjudiciales. Se ha comprobado que la okara tratada, suministrada a ratas que habían seguido una dieta grasa, frena la ganancia de peso, reduce los niveles de triglicéridos en plasma y aumenta la absorción mineral y la producción de ácidos grasos de cadena corta.

Estos ejemplos reflejan que se están empleando muchos recursos para frenar este problema y buscar soluciones. Pero no hay que olvidar el importante papel que tenemos los consumidores. Cada uno desde su posición, el personal investigador en sus laboratorios, los gobiernos en sus políticas y los consumidores en sus hogares, debemos colaborar para evitar que comida y productos válidos para el consumo sean desaprovechados, mientras en otra parte del mundo se pasa hambre.

* Ana Mª Veses es investigadora del Instituto de Ciencia y Tecnología de Alimentos y Nutrición del CSIC.

La mineralogía salva la vida a Iron Man

Por Carlos M. Pina (CSIC-UCM) y Carlos Pimentel (UPM, UCM)*

[Contiene spoilers] Han pasado ya casi 6 meses desde que los Vengadores nos salvaron por última vez. Después de que Thanos asesinase a la mitad de los seres vivos del Universo utilizando las Gemas del Infinito, estas fueron utilizadas por Bruce Banner (Hulk) para devolverles a la vida. Tras ello, los ejércitos de Thanos se enfrentaron a los Vengadores y sus aliados en una cruenta batalla. Para detenerla, Tony Stark (Iron Man) utilizó el Guantelete del Infinito, con el que logró destruir a Thanos y sus ejércitos. Sin embargo, las heridas producidas por el poder de las gemas también causaron su muerte. ¿Fue el sacrificio de Tony Stark en vano?

Miremos detenidamente el Guantelete del Infinito. Está compuesto por 6 gemas con distintos poderes y colores, que juntas tienen un poder inimaginable. Pero lo que todos podemos apreciar es su color, no su poder, incluido Thanos por muy titán que sea. ¿Qué hubiese ocurrido si los Vengadores hubiesen sabido algo de mineralogía? Podrían haberle dado el cambiazo a Thanos y haber sustituido las Gemas del Infinito por gemas iguales pero que careciesen de poderes, como la amatista (morado), el rubí (rojo), el zafiro (azul), el crisoberilo (amarillo), el topacio (naranja) y la esmeralda (verde); gemas muy comunes y mucho más baratas que cualquier armadura de Iron Man. Así, los Vengadores hubiesen ganado la Guerra del Infinito antes de comenzar, Tony Stark seguiría vivo y Steve Rogers continuaría siendo el Capitán América.

Partiendo de la idea de que los minerales que aparecen en la ciencia ficción y la fantasía (por ejemplo, Star Wars, Star Trek, Mundodisco o X-men) hemos escrito una Pequeña guía de minerales inexistentes (Ediciones Complutense, 2019) y organizado una exposición con el mismo nombre en Madrid, que podrá visitarse en la Biblioteca María Zambrano de la UCM hasta el 6 de noviembre. En ellos presentamos 16 minerales ficticios, indicando su origen, sus imposibles propiedades y aplicaciones, e incluso información sobre sus imposibles estructuras y composiciones químicas. El libro también describe minerales o materiales similares reales que muestran propiedades análogas.

¿Hay algún mineral tan radiactivo como la kryptonita que aparece en Superman? En la naturaleza existen algunos minerales altamente radiactivos, como por ejemplo, la uraninita, la pechblenda (variedad impura de la uraninita) y la becquerelita. Sin embargo, ninguno de estos minerales sería capaz de derrotar a Superman, para decepción de Lex Luthor.

¿Existe algún material tan duro como el adamantium que recubre los huesos de Lobezno? Sí, aunque sin su increíble dureza. Se trata de la widia, un metal que se usa, por ejemplo, en las brocas de los taladros.

¿Qué minerales se han usado para comerciar como el tiberium del popular videojuego Command & Conquer? Los metales preciosos, las gemas, la sal común (que es un mineral llamado halita) han sido utilizados históricamente como moneda de cambio.

Tiberium realizado con impresora 3D y que forma parte de la exposición.

¿Podemos pensar en algún mineral como los cristales de adegan de Star Wars? Por supuesto. El rubí fue el mineral con el que se fabricaron los primeros láseres, aunque no sirve para hacer sables láser como los de las películas (una lástima para los frikis).

¿Algún mineral mágico como el octirón de Mundodisco? Por supuesto que no, ya que los minerales no tienen propiedades mágicas. Por más que en muchas tiendas de minerales se les atribuyan ciertos poderes, esto es completamente falso.

¿Y por qué es importante saber de minerales? No es sólo para saber cómo salvar a nuestros personajes de cómics, películas o videojuegos preferidos. Los minerales también son esenciales en nuestra vida diaria. Para fabricar el móvil o la tablet en la que estás leyendo esta noticia se han utilizado al menos 13 minerales distintos, la electricidad llega a tu casa a través de cables de cobre que se extraen de minerales y hay minerales y rocas en tu cocina, como la sal o la encimera de granito. Además, los minerales nos cuentan, a geólogos y mineralogistas, cómo fue la Tierra en épocas pasadas. Gracias a su estudio, se ha podido determinar, por ejemplo, cómo era el clima en la época de los dinosaurios o cómo era la Tierra en el pasado.

La exposición podrá visitarse en la Biblioteca María Zambrano de la UCM hasta el 6 de noviembre. El 16 de octubre a las 18:00 habrá un acto de presentación tanto de la exposición como de la guía de minerales inexistentes.

* Carlos M. Pina es profesor titular de Cristalografía y Mineralogía en la Facultad de Ciencias Geológicas de la Universidad Complutense de Madrid e investigador del Instituto de Geociencias (IGEO, CSIC-UCM). Carlos Pimentel es investigador en la E.T.S.I. de Montes, Forestal y del Medio Natural de la Universidad Politécnica de Madrid y colaborador honorífico del Departamento de Mineralogía y Petrología de la Facultad de Ciencias Geológicas de la Universidad Complutense.

¿Cómo funcionan el bitcoin y otras monedas virtuales? La clave es la tecnología blockchain

Por Mar Gulis (CSIC)

Basada en la tecnología blockchain, la moneda virtual bitcoin no cuenta con el respaldo de ningún gobierno  o banco central.

En 2008 alguien que firmaba bajo el seudónimo de Sataoshi Nakamoto creó el bitcoin. La famosa moneda virtual ha sido la punta de lanza de un fenómeno más amplio: la criptoeconomía. Este concepto se refiere a toda la actividad financiera basada en el uso de criptomonedas y tecnología blockchain (cadena de bloques), un sistema descentralizado de recolección de datos en el que la información se agrupa en bloques, es de acceso público y, mediante técnicas criptográficas, solo puede ser editada o alterada modificando toda la cadena de bloques previa.

Los investigadores del CSIC David Arroyo y Luis Hernández, y su colega Jesús Díaz, de IBM,  explican que el éxito de cualquier criptomoneda no reside solo en esta base criptográfica, sino que es necesario que exista un conjunto de usuarios que pongan sus ordenadores al servicio del ecosistema, actuando como nodos activos en la generación de criptomonedas. Así es como funciona la red Bitcoin. Expertos en telecomunicaiones, matemáticas e informática, los tres autores acaban de publicar Blockchain (Editorial CSIC-Los libros de la Catarata), donde explican el significado y alcance de este vocablo. A lo largo del libro cuentan cómo funciona y para qué sirve una tecnología que puede ser clave para transitar a una nueva economía digital y a la denominada web 4.0.

Portada del libro Blockchain, editado por el CSIC y Los Libros de la Catarata.

Como decíamos, blockchain es un sistema descentralizado de recolección de datos que elimina a los intermediarios, los bancos en el caso de Bitcoin, desconcentrando todas las tareas de gestión. Son los usuarios quienes controlan el proceso, como si se tratase de un enorme banco con millones de nodos, de modo que cada uno se convierte en partícipe y gestor de los libros de cuentas de esta peculiar entidad. En ese contexto de aplicación, blockchain sería una especie de libro de contabilidad gigante en el que los registros (bloques) están enlazados y validados criptográficamente para proteger la seguridad de las transacciones. En otras palabras, es una base de datos distribuida (no se almacena en una sola ubicación) y segura que se puede aplicar a todo tipo de transacción, no solo económica.

Precisamente por esta particular estructura, blockchain se está empleando para crear sistemas financieros alternativos, al margen del tradicional control de los bancos centrales. Ejemplos de ello son las plataformas Bitcoin y Etherum, a través de las cuales cualquiera puede registrar transacciones con sus respectivas monedas virtuales, el bitcoin y el ether. Como apuntan los investigadores en su libro, la utilización de este dinero virtual y la tecnología en la que se sustenta –blockchain– ha pasado de cierto rechazo institucional, e incluso mala fama, a representar una oportunidad para nuevos modelos de negocio y actividad financiera, en medio de una ola de entusiasmo hacia la denominada criptoeconomía. El potencial de blockchain es diverso, y pasa por la construcción de sistemas de protección de derechos de autor; la configuración de organizaciones autónomas basadas en ‘contratos inteligentes’ o la gestión del Internet de las cosas, entre otras aplicaciones.

Pero sus múltiples oportunidades conviven con varios puntos débiles: por ejemplo, la no trazabilidad de las criptomonedas, frente al pago tradicional con tarjeta de crédito o mediante transferencia bancaria, dificulta la persecución del lavado de dinero; sus limitaciones en la gestión de la identidad y privacidad de los usuarios; las fluctuaciones en la cotización de las monedas virtuales; la gran cantidad de energía que requieren los modelos de generación de moneda en Bitcoin y Ethereum; el déficit en escalabilidad de la red blockchain de acceso abierto; o ciertos incidentes de seguridad. “En los últimos años podemos hallar errores en la implementación de protocolos criptográficos, robos de credenciales en plataformas digitales, incluso fallas graves de seguridad en dispositivos hardware resistentes a la manipulación”, señalan los autores. Como explica David Arroyo, del Instituto de Tecnologías Físicas y de la Información Leonardo Torres Quevedo (ITEFI-CSIC), “el trabajo teórico que sustenta esta tecnología está aún en fase de desarrollo, y los organismos de estandarización quieren establecer un marco de referencia básico que ofrezca garantías a su utilización”.

Con todo, la obra incide en que blockchain va más allá de posibilitar meros intercambios económico-financieros. Es una herramienta para desarrollar nuevos protocolos que permitan la gestión de todo tipo de datos en esta sociedad de la información.