BLOGS
Ciencia para llevar Ciencia para llevar

CURIOSIDADES CIENTÍFICAS PARA COMPARTIR

Los biocombustibles pueden ser más nocivos que el petróleo

Por Joaquín Pérez Pariente (CSIC)*

Bajo las etiquetas ‘combustible ecológico’ y ‘diésel verde’ circulan por las ciudades del mundo occidental vehículos que utilizan como combustible sustancias obtenidas a partir de productos agrícolas. Son los denominados biocombustibles, en los que el prefijo ‘bio’ pretende resaltar sus bondades medioambientales. Sin embargo, la realidad es que los biocombustibles pueden llegar a ser incluso más nocivos que el petróleo por su emisión de gases de efecto invernadero, responsables del cambio climático que está experimentando nuestro planeta. La causa de ese daño medioambiental estriba en la forma en la que se obtienen.

Si somos rigurosos, recibe el nombre de biocombustible todo combustible de origen biológico. El más común es la madera, pero también son biocombustibles las grasas animales y los aceites vegetales que han servido para iluminar durante siglos nuestros hogares. Pero los que nos interesan son los que se utilizan hoy en día en vehículos de transporte, que son de dos tipos. Uno es el alcohol denominado etanol, el mismo que se encuentra en el vino o la cerveza, que se obtiene mediante fermentación de azúcares como los de la caña de azúcar, o los de los cereales, entre los cuales destaca el maíz. El segundo es el biodiesel, que se produce mediante una reacción química entre el alcohol denominado metanol y aceites vegetales. Aunque se pueden utilizar diferentes aceites como materia prima para fabricar el biodiesel, en la práctica en todo el mundo se elabora a partir de aceites de soja y palma y, en mucha menor medida, de colza, sobre todo en Europa.

Los defensores del empleo de biocombustibles líquidos como sustitutos de la gasolina y gasoil derivados del petróleo argumentan sus efectos beneficiosos de la siguiente manera. Las plantas de las que se extraen las materias primas necesarias para su elaboración absorben dióxido de carbono, el principal gas de efecto invernadero, durante su crecimiento. Cuando los biocombustibles se queman en un vehículo, se emite dióxido de carbono a la atmósfera. Pero eso no supone un problema, porque las plantas volverán a asimilarlo cuando crezcan de nuevo. Tendríamos así un ciclo cerrado de captura-emisión de ese gas, que por lo tanto no produciría ningún aumento de su concentración en la atmósfera.

 

Producción mundial de bioetanol y biodiesel en miles de barriles por día. En el caso del etanol, 100.000 barriles por día equivalen a 3 millones de toneladas de petróleo anuales, mientras que para el biodiesel equivalen a 4,9 millones. La cantidad total de biocombustibles producidos en 2016 equivalió a 86 millones de toneladas de petróleo.

Sin embargo, esa explicación tan simple oculta un conejo en la chistera, que salta fuera de ella en cuanto nos asomamos a su interior. Esas plantas productoras de biocombustibles no crecen precisamente en el desierto, sino que se cultivan en terrenos fértiles que previamente estaban cubiertos por selvas y sabanas. Esos grandes bosques tropicales y subtropicales se destruyen simplemente quemándolos, para sustituirlos por los cultivos destinados a la producción masiva de biocombustibles, como la soja y la palma. Esos gigantescos incendios, visibles desde los satélites que orbitan el planeta y en ocasiones objeto por ello de atención televisiva, liberan a la atmósfera enormes cantidades de dióxido de carbono: entre 200 y 300 toneladas por hectárea, entre 20.000 y 30.000 toneladas por cada kilómetro cuadrado. Así se deforestan cada año decenas de miles de kilómetros cuadrados, hasta tal punto que provocan unas emisiones de gases de efecto invernadero casi iguales a las provenientes de los vehículos que utilizan combustibles derivados del petróleo. Aunque los biocombustibles contribuyen todavía relativamente poco a esa deforestación global, su amenaza es tan grave que el Parlamento Europeo aprobó en el mes de abril de este año una resolución para eliminar el aceite de palma como fuente de biocombustibles para el año 2020.

Por si fuera poco, los agrocombustibles, como en realidad deberían denominarse los biocombustibles, compiten con la producción de alimentos porque, al igual que estos, necesitan terrenos fértiles donde cultivarse. Y se trata de una competencia desleal, porque si se quisiera sustituir con ellos solo una parte de los que provienen del petróleo, habría que producirlos en tal cantidad que toda la superficie de nuestro planeta no bastaría para ello. Ahí radica el verdadero problema, en que los terrenos cultivables ya escasean y no podemos permitirnos el lujo de malgastarlos en un mundo que no es capaz de alimentar decentemente a toda su población.

No hay ninguna duda de que es necesario buscar alternativas al uso del petróleo, pero los biocombustibles no son la respuesta.

 

Joaquín Pérez Pariente es investigador del Instituto de Catálisis y Petroleoquímica del CSIC y es autor del libro Biocombustibles. Sus implicaciones energéticas, ambientales y sociales, editado por Fondo de Cultura Económica. La obra se presentará el día 19 en la librería Juan Rulfo (Madrid) a las 19:00 horas.

Las legumbres, aliadas en la lucha contra el cambio climático

Por Mar Gulis

Las legumbres son un alimento muy popular en nuestro país por su alto valor nutricional (pese a que su consumo está decayendo en los últimos años). Quizás menos conocido es que con ellas se producen harinas como sustituto del cacao, como el algarrobo, o que sus raíces se utilizan como especias (por ejemplo, el regaliz). Muchas legumbres se emplean además como alimento para animales (alfalfa, veza y trébol) o para la producción de principios activos medicinales, aceites, tinturas y fibras, entre otros productos. Como consecuencia, las leguminosas se encuentran entre los cultivos más importantes a nivel mundial, solo detrás de los cereales. Pero además las legumbres pueden ser aliadas en la lucha contra el cambio climático. Tal y como cuentan los autores del libro de divulgación Las legumbres (CSIC-Catarata), la clave está en que ayudan a fijar el nitrógeno orgánico, uno de los nutrientes, después del agua, más necesarios para el crecimiento de las plantas.

Cartel de la FAO realizado con motivo del Año Internacional de las Legumbres 2016.

En agricultura es muy habitual el uso de abonos nitrogenados. Sin embargo, además de su elevado coste, estos abonos tienen consecuencias medioambientales, ya que una cantidad significativa de ellos son emitidos al aire como óxido de nitrógeno, uno de los gases causantes del efecto invernadero y que, mezclado con el vapor de agua, produce la lluvia ácida. Su sustitución no es baladí si recordamos que, según el Panel Intergubernamental de Expertos sobre el Cambio Climático de la ONU, la agricultura es responsable de cerca del 14% de las emisiones globales de gases de efecto invernadero, un volumen similar al originado por el transporte.

El nitrógeno atmosférico es la forma más abundante de nitrógeno. Los únicos organismos capaces de transformarlo en nitrógeno orgánico son aquellos que poseen la enzima nitrogenasa. Estos organismos pueden realizar la transformación en solitario o en asociación con otros organismos, principalmente con plantas. En este sentido, la asociación simbiótica más importante se da entre unas bacterias del suelo denominadas rizobios y plantas de la familia leguminosae, de las que forman parte las legumbres. Su unión aporta cerca del 80% del total del nitrógeno atmosférico fijado de forma biológica.

La interacción leguminosa-bacteria y el establecimiento de la simbiosis son procesos de gran complejidad en los que intervienen numerosos factores estructurales, bioquímicos y genéticos. El establecimiento de la simbiosis comienza con el reconocimiento entre un rizobio determinado y su planta hospedadora, que consiste en un intercambio de señales químicas que activan recíprocamente programas genéticos específicos. El resultado exitoso de esta interacción es la formación de un órgano nuevo en la planta, el nódulo, donde se lleva a cabo la fijación biológica del nitrógeno atmosférico. La Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO) calcula que las leguminosas pueden llegar a fijar entre 72 y 350 kilos de nitrógeno por hectárea y año.

Este proceso, además de ayudar al crecimiento de la planta, mejora la calidad nutricional de los suelos. Ese suelo queda ‘abonado’ y sigue siendo útil para cultivos posteriores, lo que permitirá a su vez reducir el uso de fertilizantes nitrogenados.

Además de enriquecer los suelos, incluir legumbres en los cultivos reduce el riesgo de erosión y aumenta su potencial de absorción de carbono. Igualmente, las leguminosas soportan mejor los climas extremos y son más resistentes que otros cultivos. Por su amplia diversidad genética permiten obtener variedades mejoradas capaces de adaptarse mejor a condiciones climáticas adversas. ¿Se les puede pedir más?

Mucho más sobre estas plantas en el libro Las legumbres  (CSIC – Catarata), coordinado por Alfonso Clemente y Antonio M. de Ron, de la Estación Experimental del Zaidín del CSIC y la Misión Biológica de Galicia del CSIC, respectivamente.

Matrix acústico: una habitación donde el sonido nunca vuelve

Mar Gulis (CSIC)

Quizá recordéis la mítica escena de Matrix (1999) en la que Morfeo (Laurence Fishburne) y Neo (Keanu Reeves) aparecen en una habitación en blanco, que resulta ser un programa en el que pueden simular la realidad. “¿Esto no es real?”, pregunta Neo tocando un sillón. “¿Qué es real? ¿Cómo defines real?… Si hablas de lo que puedes sentir, de lo que puedes oler, probar y ver… lo real son impulsos eléctricos que tu cerebro interpreta”, le contesta el Guía al Elegido. Bien, en esta ocasión vamos a hablar de lo que puedes oír y de una habitación como la de Matrix, pero ubicada en el Instituto de Tecnologías Físicas y de la Información Leonardo Torres Quevedo (ITEFI) del CSIC, en Madrid.

Al cruzar la puerta, una tiene la impresión de entrar en un espacio muy peculiar. La sensación acústica es “la de estar colgado de un globo a 1.000 metros de altura”, explica el físico del CSIC del Grupo de Acústica Ambiental Francisco Simón. Y es así, todo sonido emitido en esta habitación nunca vuelve, queda absorbido por unas paredes, suelo y techo de grandes cuñas de lana de vidrio.

Cámara anecoica del Instituto Leonardo Torres Quevedo / CSIC Divulga.

Esta cámara anecoica (sin eco ni reverberación) de 220 metros cúbicos sirve para crear campos acústicos virtuales que, como en la habitación de Matrix, simulen una realidad sonora. Esto es muy útil para el diseño de salas de música, dado que pueden reproducir cómo sonaría un violín, por ejemplo, en un espacio antes de construir el recinto, para simuladores de juego, que intentan que te des la vuelta con el sonido de un libro que se cae detrás de ti, para el cine… Los primeros en usar este tipo de tecnología fueron los militares con simuladores de vuelo y la industria del automóvil, que tiene muy en cuenta cuál es el sonido que quiere que emitan sus vehículos.

Cuando se construyeron estas cámaras, en los ’70, esta instalación era absolutamente pionera. Ahora empresas como Google, Microsoft o Telefónica tienen sus cámaras anecoicas. En ellas, las compañías prueban las características acústicas de sus dispositivos, como la potencia o cantidad del sonido que emite cualquiera de sus aparatos, y la directividad, es decir, en qué dirección lo hacen.

Y aquí, ¿podríamos escuchar el silencio total? “Tendríamos que congelarnos del todo para hacerlo”, bromea Simón. “Aquí está nuestro cuerpo, escuchamos el aire salir y entrar de los pulmones, nuestras tripas; si nos calláramos, escucharíamos nuestro corazón”, concreta.

Cámara reverberante del Instituto Leonardo Torres Quevedo / CSIC Divulga.

Cerca de esta cámara encontramos su opuesta: la habitación reverberante, un espacio en el que se busca que el sonido se expanda por todo el espacio y reverbere en todas direcciones. Para ello, hay colgados unos grandes paneles de metacrilato que producen el máximo número posible de reflexiones del sonido. Este espacio de 210 metros cúbicos se usa para sumergir en él materiales de construcción y caracterizarlos. Así, cuando un sonido llega a un material para edificación podemos ver si “rebota”, entra dentro y se disipa o lo traspasa y llega al otro lado. Por eso, aquí se realizan mediciones de absorción acústica de materiales y objetos de mobiliario.

En esta sala, solo escuchamos reverberación, no eco. La diferencia entre el eco y la reverberación es cuestión solo de tiempo: si el sonido tarda en volver menos de 50 milisegundos, lo percibimos como un sonido continuado, si tarda más, escuchamos dos sonidos; se produce el eco.

De hecho, ya en los años 60 y 70 se realizaron en este centro muchos estudios sobre aislamiento en la edificación: aislamiento al ruido aéreo de puertas, ventanas, barreras acústicas, suelos, techo, etc. No se trata de una cuestión baladí: una diferencia de 3 decibelios supone el doble de energía en el sonido que estábamos escuchando.

Por cierto, este mismo mes de octubre se cumplen diez años de la publicación de las condiciones acústicas exigidas en el Código Técnico de Edificación con las que se endurecieron las prestaciones acústicas que deben satisfacer los edificios, ofreciendo a constructores, administración y usuarios herramientas para que las viviendas que se construyen hoy día planteen menos problemas a sus habitantes y proporcionen un nivel de confort adecuado.

 

¿Qué son las misteriosas luces que aparecen a veces con los terremotos?

Por Arantza Ugalde (CSIC)*

El suelo de México no ha parado de temblar en los últimos días con fatales consecuencias. Durante el pasado 8 de septiembre muchas personas presenciaron la aparición de extraños fenómenos luminosos en el cielo nocturno durante el terremoto de magnitud 8.1 que afectó México. Fotografías y vídeos de estas luces, tiñendo las nubes de diferentes colores al paso de las ondas sísmicas, circularon por las redes sociales y medios de comunicación. No era la primera vez que los habitantes de Ciudad de México observaban este raro fenómeno. Con ocasión de los terremotos de Petatlán en 1979 (7.2) y de Michoacán en 1985 (8.0) también se observaron fuertes variaciones en la luminosidad del cielo.

Estos fenómenos componen lo que se denomina luminescencia sísmica. Las apariciones de estas ‘luces de terremoto’ o EQL (Earth Quake Lights en inglés) cerca del suelo durante un seísmo aparecen descritas desde la Antigüedad. Sus características son muy variadas: desde brillos difusos, destellos y resplandores, hasta objetos luminosos esféricos o lineales. Se observan principalmente durante el terremoto, aunque también en los instantes previos y posteriores a él. Su localización también varía, pudiendo producirse desde en la zona del epicentro hasta a cientos de kilómetros de ella, en la tierra o en el mar. El rango de magnitudes en el que se observa este fenómeno es también amplio, aunque normalmente ocurre en los terremotos de magnitud superior a 5. A pesar de esto, las EQL no acompañan a todos los terremotos y ocurren en muy raras ocasiones.

Imágenes de CCTV con EQL. / Municipalidad de Miraflores (Perú)

El irlandés Robert Mallet, considerado el padre de la sismología, publicó a mediados del siglo XIX un catálogo de observaciones sísmicas luminosas que cubrían testimonios desde el año 1606 a.C. hasta el 1842 d.C.  A principios del siglo XX, el sacerdote y naturalista italiano Ignazio Galli compiló un catálogo de seísmos relacionados con diferentes tipos de luminiscencia, ocurridos entre el año 89 a.C. y 1910. Las descripciones de los fenómenos luminosos incluían en muchas ocasiones elementos fantásticos y religiosos asociados a interpretaciones y tradiciones culturales de la época y el lugar.

Debido a la falta de datos comprobables, no ha sido hasta tiempos recientes cuando el fenómeno de la luminiscencia sísmica ha despertado el interés científico. Hace poco más de 50 años,  T. Kuribayashi, un fotógrafo amateur, captaba por primera vez con su cámara las imágenes de unos fenómenos luminosos inusuales que aparecieron en la zona sísmica de los terremotos ocurridos en Matsushiro (Japón) de 1965 a 1967. Desde entonces, ha continuado la recopilación de testimonios gráficos de estos fenómenos coincidentes con terremotos en diversas partes del mundo como Taskent, Uzbekistán (1966); Santa Rosa, California (1969); Haicheng, China (1975); Vrancea, Rumanía (1977); Saguenay, Canadá (1988); Izmit, Turquía (1999); Pisco, Perú (2007); o L’Aquila, Italia (2009).

Imágenes de T. Koribayashi de las EQL. / Arantza Ugalde

Las observaciones son numerosas, pero examinadas individualmente algunas pueden resultar cuestionables. Así, algunos fenómenos luminosos con esas mismas características también han podido ocurrir en la misma zona sin coincidir con ningún terremoto.

La luminiscencia puede explicarse en muchos de los casos como auroras polares, otros fenómenos ionosféricos (dínamo ionosférica electrochorro ecuatorial), nubes noctiluentes (compuestas de cristales de agua helada), relámpagos, etc. En el caso del reciente terremoto de Pijijiapan (México), las luces observadas en el cielo nocturno pudieron deberse a cortocircuitos y pequeñas explosiones en los transformadores de la red eléctrica. Para otros casos, sin embargo, no se ha encontrado una explicación satisfactoria.

Actualmente no existe ninguna teoría que aclare completamente el fenómeno, que continúa siendo un tema controvertido a nivel científico. No obstante, se han publicado posibles explicaciones sobre la relación entre los terremotos y las EQL en revistas científicas cuyas teorías incluyen, entre otras, oscilaciones violentas del aire que provocan descargas eléctricas entre las capas bajas de la atmósfera y el suelo en condiciones geológicas favorables; el efecto piezoeléctrico (generación de electricidad por presión) en las rocas, la liberación de gas radón a la atmósfera, o las reacciones quimioluminiscentes debido a la emisión de gases inflamables de forma espontánea.

Quedan todavía muchas preguntas sin respuesta: ¿por qué la luminiscencia se manifiesta de formas tan diferentes?, ¿tiene relación con el proceso físico que generan los terremotos? Y, si es así, ¿cuál es? Será la ciencia la que deberá arrojar luz sobre este, aún, oscuro fenómeno.

 

* Arantza Ugalde es doctora en Ciencias Físicas e investigadora en el Instituto de Ciencias de la Tierra ‘Jaume Almera’ de Barcelona, del CSIC, y una de las autoras del libro Terremotos. Cuando la Tierra tiembla de la colección Divulgación.

 

¿Para qué sirve el reloj interno de las plantas?

Por Ana María Butrón Gómez (CSIC)*

Las llamadas plantas anuales, aquellas que completan su ciclo de vida en un año o menos, deben ser capaces de florecer, ser polinizadas y granar en el momento adecuado dentro del ciclo anual. Solo así pueden garantizar su supervivencia. Pero ¿cómo saben exactamente cuándo es el momento de florecer? La respuesta tiene que ver con la sensibilidad; las plantas suelen ser sensibles a ciertas claves estacionales, como la duración del día o de la noche, y a la temperatura.

Las plantas de ‘día largo’ son aquellas que florecen cuando el día se alarga por encima de un determinado umbral. Este tipo de plantas, aunque puede haber excepciones, también perciben las bajas temperaturas como una señal para seguir en el estado vegetativo, que es más tolerante al frío que el estado reproductivo (el que va desde floración hasta la formación de la semilla). De modo que seguirán en estado vegetativo hasta que hayan acumulado un determinado número de horas por debajo de cierta temperatura umbral, lo que les asegurará el florecimiento cuando las bajas temperaturas ya hayan pasado. Entre las plantas de ‘día largo’ están el trigo, la cebada, el guisante, la cebolla, la espinaca, la lechuga, la remolacha, etc.

Flores de trigo, cebada, cebolla y guisante. / Lavin y Pixabay

En cambio, las plantas de ‘día corto’, como el arroz, el maíz, el sorgo, la caña de azúcar, o el tabaco, necesitan largos e ininterrumpidos periodos de oscuridad para que se produzca la inducción de la floración. Muchos cultivos de día corto como el maíz y el arroz tienen su origen y/o fueron domesticados en regiones tropicales y subtropicales. En dichas regiones, la época seca suele coincidir con el invierno y la selección ha favorecido a aquellas plantas en las que la floración se induce cuando la duración de la noche supera un umbral (en el curso del verano) y granan antes de la estación seca.

Por último, también hay plantas insensibles a la duración del ciclo día/noche o fotoperiodo, como el pepino y el tomate, entre otras. Estas son llamadas plantas neutrales al fotoperiodo y en ellas la floración es inducida por la edad o por estímulos alternativos.

A medida que el ser humano fue extendiendo los cultivos a áreas distintas de los lugares de origen y domesticación (proceso por el cual una planta deja de ser silvestre y adquiere características propias de las plantas cultivadas), en muchos de ellos, a priori sensibles al fotoperiodo, se pudieron seleccionar variedades insensibles que se adaptaban mejor a las nuevas condiciones ambientales. Es el caso del maíz que, en su camino hacia latitudes más altas, fue fijando variantes genéticas que le conferían insensibilidad al fotoperiodo y le permitían adaptarse al cultivo en las zonas templadas del planeta. Como resultado, hoy este recién llegado es un cultivo habitual en Europa y otras regiones muy alejadas de su origen, América Central.

En gran medida la sensibilidad al fotoperiodo es el resultado de interacciones entre un ‘reloj interno’ de la planta llamado reloj circadiano, y las señales luminosas de su entorno que son captadas por diversos fotorreceptores presentes en las hojas. Así, sólo se encenderá la ‘alarma’ que activa la floración cuando la señal externa coincida con un momento concreto del ritmo interno de la planta.

Fases de floración de la amapola (Papaver rhoeas). / Hunda

Por ejemplo, se sabe que en una pequeña planta que se utiliza como modelo en muchos estudios, Arabidopsis, la acumulación de una proteína que pone en marcha el mecanismo de inducción de la floración está controlada por el reloj interno. Cuando  los días son cortos, este pico de acumulación de la proteína coincide con la noche y la oscuridad hace que la proteína se degrade. Sin embargo, cuando la acumulación se produce antes del anochecer, que es lo que sucede cuando se alarga el día, hay varios fotorreceptores sensibles a la luz blanca, azul y roja lejana que estabilizan la proteína. En estas circunstancias, la proteína activa el proceso de inducción de la floración en el que intervienen muchos otros genes.

En resumen podría decirse que los estímulos externos por sí solos no son capaces de marcar el ritmo biológico de las plantas, sino que para ello es necesario que haya sintonía entre dichos estímulos y el reloj interno que poseen las plantas.

 

 

 

*Ana María Butrón Gómez es vicedirectora de la Misión Biológica de Galicia y científica titular del Grupo de Genética y Mejora de Maíz.

Feromonas: cuestión de (algo más que) sexo

Por Laura López Mascaraque (CSIC)* y Mar Gulis (CSIC)

En 1959, un grupo de químicos alemanes, liderado por Adolf Butenandt, reunieron 313.000 mariposas hembras y les cortaron el extremo del abdomen. Como si de una poción de brujería se tratara, trituraron estas porciones y las disolvieron en diferentes sustancias para observar la respuesta que provocaban los brebajes en los machos de esta especie. De este modo, comprobaron que bastaba con una trillonésima parte de un gramo (10-18 gramos) de mezcla para conseguir algún tipo de reacción por parte del macho. Gracias a este experimento identificaron por primera vez una feromona, a la que denominaron bombicol y que es la responsable de que el macho de la mariposa de la seda (Bombyx mori) mueva sus alas al percibirla.

Mariposa de la seda (Bombyx mori)/ Csiro.

Las feromonas son claves para determinadas relaciones sociales, y sobre todo sexuales, entre varias especies animales, ya sean organismos simples, invertebrados o vertebrados. ¿Qué es y cómo funciona esta potente herramienta capaz de favorecer la comunicación entre individuos en unas concentraciones tan bajas?

Se trata de un tipo de estímulos químicos que transmiten información específica entre individuos de la misma especie, generando normalmente una respuesta tipo. En los casos más evidentes provocan un cambio inmediato en el comportamiento del animal receptor o un cambio en su desarrollo: generan movimientos determinados, actúan sobre la fisiología reproductiva o transmiten un estado de salud determinado o un estatus social dentro de una comunidad.

Las feromonas pueden ser compuestos específicos o mezclas de ellos. En cualquier caso, son compuestos con propiedades físicas y químicas concretas. Una vez liberada se podría decir que la feromona tiene vida propia. La duración de su mensaje dependerá de la persistencia de las moléculas en el ambiente, y el alcance dependerá tanto de esa vida media como de la facilidad de ser transportada por el aire o por una corriente de agua.

En general son sustancias pequeñas, volátiles, que se dispersan con facilidad en el ambiente y que generan efectos en cantidades minúsculas. Según sea su función, así serán sus características: estables y poco volátiles cuando el objetivo es marcar los límites de un territorio, o bien de corta vida y rápida difusión cuando lo que se busca es alarmar ante una situación de peligro…En definitiva, el requisito indispensable es que sean capaces de generar una reacción determinada dentro de la misma especie.

Protozoo, lombriz de tierra y ratón doméstico/ EPA, Holger Casselmann y George Shulkin.

Existen feromonas en organismos simples, como ciertos protozoos (Chlamydomonas) que producen esta sustancia en sus flagelos para conseguir que otros protozoos se agreguen a él. También existen estos compuestos en invertebrados, como la lombriz de tierra (Lumbricus terrestres), que bajo situaciones de estrés segrega una feromona que alerta al resto sobre algún peligro inminente. O en algunos vertebrados, como el macho del ratón doméstico (Mus musculus domesticus), que emite una feromona que genera agresividad en el resto de machos a la vez que atrae a las hembras maduras y acelera la pubertad en las más jóvenes. Pero, ¿qué pasa con los humanos? ¿existen feromonas que influyan en nuestro comportamiento?

Parece mentira, pero aún se desconoce la existencia de feromonas en los seres humanos. Hay diversos estudios que pueden relacionar las feromonas con fenómenos como el reconocimiento recíproco entre una madre y su hijo recién nacido, la denominada sincronía menstrual que ocurre entre las mujeres que viven o trabajan juntas o la reacción que puede provocar sobre los que nos rodean el olor corporal que emitimos en situaciones de estrés. Sin embargo, la creencia es que los olores personales están influidos por la dieta, el ambiente, la salud y la genética. Se piensa que tienen demasiadas sustancias para ser descritos como feromonas y, de hecho, no se ha podido identificar una molécula que se haya definido como feromona humana. Eso no ha disuadido a un grupo de emprendedores para montar empresas que venden pociones de amor que supuestamente contienen feromonas, aunque en realidad, en el mejor de los casos, contienen feromonas, sí, pero de cerdo.

* Laura López Mascaraque es investigadora del Instituto Cajal  del CSIC y autora, junto con José Ramón Alonso de la Universidad de Salamanca, del libro El olfato de la colección ¿Qué sabemos de?, disponible en la Editorial CSIC y Los Libros de la Catarata.

 

¿Qué es la marea roja que afecta a algunas playas?

Por Elena Ibáñez y Miguel Herrero (CSIC)*

En La Jolla (San Diego, California), el mar adquiere un tono rojizo debido a las proliferaciones algales / Alejandro Díaz.

A veces, el mar cambia su tonalidad azul hacia el verde, el marrón, el rojo o el blanco. Este episodio, conocido como marea roja, se debe al crecimiento masi­vo de unas algas microscópicas: el fitoplancton. La proliferación masiva de las algas se produce cuando se dan condiciones ambientales favora­bles de luz, temperatura, salinidad y disponibilidad de nu­trientes. Bajo estas circunstancias, algunas algas pueden crecer y alcanzar concentraciones muy elevadas (del orden de miles o millones de células por litro) en comparación a su concentración natural en el ambiente (decenas o centenas de células por litro). A este suceso se le denomina prolife­ración algal y su color (si lo posee) dependerá del tipo de pigmento predominante del alga, así como de su concentración.

Muchas proliferaciones algales son beneficio­sas, ya que proporcionan alimento a peces y organismos marinos; sin embargo, algunas algas con características nocivas para otros seres vivos generan proliferaciones algales nocivas (PAN) o algal Bloom. Estas especies perjudiciales pueden impactar negativamente en la salud tanto del ser humano como de animales debido a la producción de potentes toxinas naturales y/o provocar graves pérdidas económicas y ecológicas. De entre las 5.000 especies descritas de fito­plancton marino, unas 300 son susceptibles de provocar proliferaciones capaces de cambiar el color del mar, y solo unas 60 pueden pro­ducir toxinas, algunas de ellas con un elevado potencial tóxico.

Los impactos de las PAN son diversos. Las algal Bloom asociadas a un elevado contenido en bio­masa suelen implicar la reducción del oxígeno disponible en el fondo de las aguas. Cuando la proliferación llega a su fin, las algas se hunden y son las bacterias quienes las descomponen y consumen todo el oxí­geno disponible en el agua, por lo que los peces y otros organismos no pueden respirar. Si las concentraciones de biomasa son tan grandes que las podemos ver a simple vista, la luz no podrá penetrar en la columna de agua, alcanzando solo la su­perficie. Esto provoca que otras plantas, fuente de alimento para muchos peces, no puedan crecer y se altere el hábitat natural.

Las algal bloom, también presentes en agua dulce, pueden ser una amenaza para los seres vivos que habitan en las aguas afectadas / Lamiot.

También existen especies que producen PAN con bajas concentraciones de biomasa y que pueden ser nocivas debido a la producción de biotoxinas paralizantes, diarreicas, amnésicas, etc., que provocan un envenenamiento con efectos sobre el sistema nervioso y digestivo de mejillones, almejas, navajas y otros organismos que se alimentan de fitoplancton. Por tanto, las toxinas pueden llegar a afectar al ser humano por ingesta de marisco contaminado.

Aunque los organismos responsables de las PAN existen desde hace siglos, ahora se observa una mayor actividad de los mismos. Esto puede ser debido, en parte, a que disponemos de mejores métodos de detección e identifica­ción de toxinas y más observadores pendientes de estos sucesos. Al mismo tiempo, la mayor parte de la comuni­dad científica cree que la polución y la actividad humana son responsables del aumento de las PAN. Sin embargo, no siempre existe una relación directa. En muchos casos, la introducción inicial de las especies tó­xicas se ha debido a corrientes oceánicas u otros fenómenos naturales como los huracanes. No obstante, no podemos obviar la relación entre un aumento en los nutrientes de las aguas costeras con la proliferación de algas que pueden originar los blooms. Algunos investigadores argumentan que los nutrientes que llegan a las aguas coste­ras, producto de las actividades humanas, son tan distintos a los que habría de forma natural que solo algunos grupos de algas ven favorecido su crecimiento, por su mejor capacidad de adaptación. Entre estos grupos se encuentran algunas de las especies responsables de las PAN, como el dinoflagelado Pfiesteria, cuya proliferación se ve fa­vorecida en aguas contaminadas.

También las crecientes áreas de recreo cos­teras (playas con espigones o puertos deportivos) dan lugar a zonas donde la tasa de renovación del agua es baja, una de las condiciones para que los blooms se desarrollen. Otro factor importante es la dispersión geográfica de especies tóxicas mediante embarcaciones de recreo, residuos de plásticos flo­tantes, etc. Pero tampoco hay que caer en el alarmismo. Aunque parece que las PAN son cada vez más comunes en nuestras playas, la mayoría de estas proliferaciones no son tóxicas y sólo producen un cambio de coloración en el agua. Esto puede resultar desagradable, pero no peligroso.

 

* Elena Ibáñez y Miguel Herrero trabajan en el Instituto de Investigación en Ciencias de la Alimentación (CSIC) y son autores del libro Las algas que comemos (CSIC-Catarata).

¿Se puede resolver el juego del ajedrez?

Por Razvan Iagar (CSIC)*

Cuando la gente me pregunta a qué me dedico, al responder que aparte de investigador en matemáticas soy un jugador activo de ajedrez en competiciones, me hacen preguntas como: “Pero, ¿no está el ajedrez ya resuelto?, ¿no hay ya máquinas que pueden dar la mejor jugada?”. Voy a dar respuesta a estas cuestiones, argumentando por qué el ajedrez no solo no está acabado, sino que goza de muy buena salud y tiene un gran futuro por delante.

Por “resolver el ajedrez” entendemos establecer una estrategia óptima para jugar la partida; es decir, encontrar el camino que contiene las mejores jugadas tanto para las blancas como para las negras, desde el principio, o desde cualquier posición dada, hasta el final. En un sentido más débil, también podemos entender por “resolver el juego” el hecho de predecir el resultado óptimo (con el mejor juego posible) de una partida. Es decir, a partir de la posición inicial, cuál de los tres resultados posibles -victoria de las blancas, victoria de las negras o el resultado de tablas- es el resultado del juego óptimo de un encuentro entre dos jugadores perfectos sin exponer necesariamente la estrategia óptima.

Tan solo a través de fuerza bruta de cálculo, ninguna máquina puede resolver en la actualidad el ajedrez

Se trata de un problema abierto que ha surgido a partir del desarrollo de los programas informáticos de ajedrez. Pero esta cuestión ya se ha intentado solucionar antes. Claude Shannon, ‘el padre de la teoría de la información’, explicó en un artículo en 1950 la tarea de una máquina para analizar todas las variantes posibles de jugadas y concluyó que “una máquina operando con una tasa de una variante por microsegundo necesitaría un tiempo de 1090 años para calcular todas las posibilidades desde la primera jugada”. Shannon argumenta así que, tan solo a través de fuerza bruta de cálculo, ninguna máquina razonable podrá completar esta tarea.

Más recientemente, en 2007, se ha podido resolver el juego de las damas, emparentado con el ajedrez, pero con una complejidad mucho menor, sobre todo porque aquí todas las piezas son idénticas -tienen el mismo valor-, mientras que en el ajedrez las piezas tienen valores y capacidades diferentes. El equipo investigador liderado por el canadiense Jonathan Schaeffer, experto en inteligencia artificial, pudo comprobar que en las damas siempre se acaba en tablas si no se comete ningún error por parte de ninguno de los dos jugadores. El esfuerzo computacional para analizar de forma exhaustiva todas las posiciones ha tomado 18 años, utilizando en algunos periodos incluso 200 ordenadores conectados trabajando en paralelo y sin pausa, para analizar un número de posiciones del orden de 1014. ¡Todo un esfuerzo!

En 2007 se resolvió el juego de las damas.

Sin embargo, se trata un esfuerzo no extrapolable al ajedrez, ni en el aspecto de la capacidad computacional necesaria, ni en cuanto a método de demostración. Si miramos la complejidad del ajedrez desde el punto de vista del número total de partidas posibles que se pueden jugar (lo que en términos de la teoría de juegos recibe el nombre de ‘complejidad del árbol del juego’, game-tree complexity) alcanzamos un número muy grande, del orden de 10123. Esta estimación se deduce usando un cálculo basado en dos aproximaciones: que el número medio de jugadas completas de una partida es de 40 y que, en cada paso, el número medio de jugadas legales disponibles es de 35. El mismo Jonathan Schaeffer opina que solo después del establecimiento de una nueva tecnología de cálculo —ordenadores cuánticos— tendría sentido intentar ponerse a la tarea de resolver este juego milenario.

Por otro lado, el método de demostración que ha funcionado en las damas falla completamente en nuestro caso debido a los valores y capacidades diferentes de las piezas, y también por la existencia de algunas piezas con características especiales como el rey, cuyo mate acaba la partida en cualquier momento, incluso con todas las demás piezas en el tablero; o el peón, cuya coronación hace que reaparezcan en el tablero piezas más fuertes que posiblemente habían desaparecido antes en el transcurso de una partida. Así pues, no se puede establecer una base de finales de partidas con, por ejemplo, un número máximo de 10 piezas, de tal manera que cualquier partida tenga que pasar por una de esas posiciones. En efecto, un jaque mate puede ocurrir mucho antes de haber llegado a una situación de menos de 10 piezas en el tablero. Este razonamiento sencillo demuestra que es necesario tener la capacidad de analizar todas las posiciones posibles, sin simplificaciones.

Por todas estas razones, aunque el reto de resolver -o no- el ajedrez queda abierto (no hay una demostración matemática o lógica formal de que este hecho sea imposible), la mayoría de los especialistas consideran que no hay nada que indique una posibilidad práctica de llegar a una solución. Ni siquiera en el sentido débil, es decir, predecir el resultado sin decir las jugadas, a corto o medio plazo. Así pues, los maestros y aficionados pueden estar tranquilos: ¡el juego tiene todavía mucho futuro!

*Razvan Iagar es investigador del CSIC en el Instituto de Ciencias Matemáticas (ICMAT) de Madrid y autor del libro Matemáticas y ajedrez, de la colección ¿Qué sabemos de?, disponible en la Editorial CSIC y Los Libros de la Catarata.

Cinco falsos mitos sobre la leche

Por Ascensión Marcos (CSIC)*

Durante los últimos años, la leche de vaca se ha convertido en uno de los alimentos más controvertidos en materia de salud. Aunque se considera uno de los alimentos más nutritivos y completos, también se asegura que es dañina para la salud, debido a su composición particular. En el momento actual ha descendido el consumo de leche de vaca y sus derivados, e incluso algunas personas han dejado de consumirla, sustituyendo estos productos por las mal denominadas ‘leches vegetales’ de almendras, soja, tofu, etc. Antes de tomar una decisión de este tipo, es importante informarse sobre los mitos y realidades alrededor del consumo de leche de vaca y sus derivados.

La leche de vaca tiene mayor valor nutritivo que las conocidas como ‘leches vegetales’. / Patty Jansen

Por este motivo, la Fundación Iberoamericana de Nutrición (FINUT) y la Fundación Española de la Nutrición (FEN) elaboraron un informe que la Federación Española de Sociedades de Nutrición, Alimentación y Dietética (FESNAD) apoyó científicamente.

Veamos algunos falsos mitos en torno a la leche:

  • La leche debería consumirse solo en la niñez porque el ser humano no está hecho para tomarla. La evolución del ser humano le ha permitido tomar leche más allá de la infancia. En un principio, la leche era sinónimo de veneno, ya que el ser humano precisaba de la enzima lactasa para tolerar y digerir la lactosa, el azúcar de la leche. En el Neolítico, hace unos 11.000 años, comenzó la domesticación de los animales y con ello la obtención de leche y elaboración de productos lácteos en el norte de Europa y en el Medio Oriente. Poco a poco el ser humano comenzó a producir esta enzima y pudo digerir la leche y con ello aprovechar un alimento muy rico en nutrientes.
  • La leche sin lactosa es mejor. La intolerancia a la lactosa es un trastorno de metabolización del organismo que impide digerir este azúcar. No hay ninguna necesidad de tomar la leche sin lactosa si no sufrimos de intolerancia, ya que no hay estudios que confirmen que este producto sea mejor para la digestión, tal y como se nos quiere hacer creer. Incluso se está investigando si podría crearse una intolerancia a la lactosa por dejar de consumir leche y derivados lácteos. De hecho, el mayor riesgo de intolerancia aparece en África y Asia (65-100%), mientras que en España es mucho menor la incidencia (10-15%) y los niveles más bajos se dan en los países nórdicos (5%).
  • Las ‘leches vegetales’ son buenos sustitutos de la leche de vaca. Las bebidas vegetales no tienen las mismas propiedades que las leches de origen animal. Los lácteos contienen proteínas de un elevado valor biológico, muchas más vitaminas, calcio y otros micronutrientes, además de una mejor biodisponibilidad (son fácilmente asimilables por el organismo). Incluso UNICEF elaboró un informe en el que solicitó la eliminación de este término (leche) para las bebidas vegetales, y la Autoridad Europea de Seguridad Alimentaria (EFSA) se ha pronunciado recientemente sobre este asunto, ya que puede confundir al consumidor.

    Surtido de bebidas vegetales./Amodo

  • La leche engorda. La grasa de la leche no es la responsable de la obesidad. Como todo lo que ingerimos, los excesos aumentan el riesgo de subir de peso. Lo recomendable es consumir entre 2 y 4 lácteos al día, y que la mayor ingesta se produzca en la infancia y adolescencia, así como en el embarazo, durante la lactancia y en personas mayores para compensar algún déficit nutricional.
  • La leche sube el colesterol. Aunque la leche entera y los productos lácteos con elevado contenido graso podrían aumentar los niveles de colesterol total, su consumo tiene un efecto muy pequeño sobre el aumento del colesterol malo. De hecho, se ha demostrado que el riesgo de contraer una enfermedad cardiovascular es menor en individuos que consumen leche, debido al aumento del colesterol bueno favorecido por el tipo de ácidos grasos de la leche, y por la presencia de derivados de sus proteínas, que tienen incluso un efecto hipotensor.

La población española está disminuyendo de forma preocupante la ingesta de calcio y vitamina D. La leche tiene un alto contenido de estos nutrientes y su bajo consumo puede contribuir a un mayor riesgo de osteoporosis en la edad adulta. Actualmente el 40-60% de la población española no alcanza las ingestas diarias recomendadas de calcio, mientras que en el caso de la vitamina D esa cifra se eleva al 80%.

Se sugiere consumir entre 2 y 4 lácteos al día. / Pezibear

La leche es la principal y mejor fuente dietética de calcio, tanto por los altos niveles de este mineral en su composición, como por su elevada biodisponibilidad, que facilita la absorción de este micronutriente.

En ciertos colectivos especialmente vulnerables (niños, adolescentes, adultos mayores inactivos, mujeres embarazadas y postmenopáusicas, deportistas o fumadores), la mejor opción es consumir leches enriquecidas en calcio y vitamina D para mejorar su perfil nutricional.

* Ascensión Marcos es Directora del Grupo de Inmunonutrición del Dpto. de Metabolismo y Nutrición en el Instituto de Ciencia y Tecnología de los Alimentos y Nutrición (ICTAN) y Presidenta de la Federación Española de Sociedades de Nutrición, Alimentación y Dietética (FESNAD).

El Sarmiento de Gamboa rescata de 1804 al ‘Nuestra Señora de las Mercedes’

Por Mar Gulis (CSIC)

El buque Sarmiento de Gamboa puede que no se parezca al DeLorean de ‘Doc’ y ‘Marty McFly’, pero este 17 de agosto ha zarpado desde Cádiz para realizar un auténtico viaje en el tiempo: una campaña de arqueología subacuática que transportará a su personal científico, técnico y tripulantes al 5 de octubre de 1804, día del hundimiento de la fragata de la armada española Nuestra Señora de las Mercedes. Con sus 70 metros de eslora y 16 metros de manga, el buque oceanográfico del CSIC surcará las aguas del golfo gaditano, pero en esta ocasión su misión no será la circulación oceánica global o evaluar la biodiversidad, sino recuperar piezas patrimoniales de este pecio histórico.

Buque Sarmiento de Gamboa. / CSIC

Hace doscientos años…

Trescientas personas zarparon el 9 de agosto de 1804 desde Montevideo rumbo a Cádiz a bordo de la fragata Nuestra Señora de las Mercedes. Su misión era llevar a la malograda y necesitada Hacienda de Carlos IV miles de monedas de plata y oro recaudadas en las colonias. La ‘Mercedes’, junto a otras tres fragatas, ‘Medea’, ‘Fama’ y ‘Santa Clara’, conformaba la flota comandada por José de Bustamante y Guerra, reconocido marino que incluso había ocupado el cargo de gobernador de Montevideo y que había colaborado con el célebre Alejandro Malaspina en su expedición científica.

La fragata ‘Mercedes’, capitaneada por José Manuel de Goicoa y Labart, transportaba en sus bodegas cerca de dos millones de pesos entre monedas y pasta de plata y oro (según datos del Ministerio de Educación, Cultura y Deporte). A estos valores hay que añadir barras de bronce, lana de vicuña, cubertería de plata e incluso un cargamento de plantas medicinales muy apreciadas en la época. Cuando apenas faltaba un día de navegación para llegar a Cádiz, pasando justo frente al cabo Santa María en el Algarve portugués, la flota fue atacada por navíos de la armada británica. En medio de la batalla fue alcanzada la ‘santabárbara’, o recámara de custodia de la pólvora, de la fragata ‘Mercedes’, saltando por los aires la embarcación y yendo a parar al fondo del mar todo su valioso cargamento. Este hecho tuvo como consecuencia el final del acuerdo de paz de Inglaterra y España, y fue el preludio de la batalla de Trafalgar.

La misión

Los trabajos de arqueología se llevarán a cabo a más de mil metros profundidad, utilizando un equipamiento considerado como el más moderno de la flota oceanográfica financiada por el Ministerio de Economía, Industria y Competitividad.  Entre estos equipos de vanguardia se encuentra un ROV (Remote Operated Vehicle) de altas profundidades del Instituto Español de Oceanografía (IEO) y un AUV (Autonomous Underwater Vehicle). Estos sofisticados artilugios servirán para bajar en busca de tesoros como los cañones de la fragata, que podrían estar en riesgo de desaparición, bien por la fragilidad debida al paso del tiempo o por su difícil ubicación, a más de mil metros de profundidad.

Con esta campaña también se busca seguir documentando el estado actual de los restos del pecio y las condiciones en las que se encuentra toda la extensión del sitio arqueológico, especialmente tras el sonado altercado en mayo de 2007 a causa del expolio de la empresa de ‘cazatesoros’ norteamericana Odyssey Marine Exploration. Tras la comprobación de que el cargamento fue extraído de la fragata Mercedes, las autoridades españolas determinaron que se trataba de patrimonio español. Después del litigio, finalizado en septiembre de 2011, el Tribunal de Apelaciones de Atlanta ordenó que la empresa entregara el tesoro a España. Las 17 toneladas de monedas y otros objetos viajaron desde Florida hasta su actual destino, el Museo Nacional de Arqueología Subacuática de Cartagena.

Historia del Sarmiento de Gamboa

El buque oceanográfico Sarmiento de Gamboa ya ha cumplido diez años dedicados a la ciencia, realizado más de 70 misiones en diferentes proyectos de investigación marina y recorrido más de 250.000 millas náuticas, equivalente a dar la vuelta al mundo por el ecuador diez veces. Construido y botado en los Astilleros Freire de Vigo en 2006, la variedad de misiones en las que se emplea este buque ha incluido desde monitorizar la sismicidad de la región en la falla de Al-Idrissi, en el Mar de Alborán, hasta el salvamento de 194 refugiados sirios en diciembre de 2014 cerca de las aguas de Sicilia.

El buque realizó su primera campaña de investigación oficial en 2007 y desde esa fecha ha conseguido hitos como el despliegue del primer laboratorio submarino (GEOSTAR) para alertas de tsunamis en el Golfo de Cádiz; la instalación del primer laboratorio submarino cableado de España (OBSEA) en la costa catalana; la participación en la expedición de circunnavegación Malaspina, o la primera obtención de imágenes de la corteza terrestre de la zona de colisión de Eurasia/África.

El capitán del Sarmiento de Gamboa, Pablo Fernández (izda.). / Miguel A. Jiménez

Bajo el mando de su actual capitán, Pablo Fernández (Argovejo, León, 1982), sus últimas misiones fueron las actividades de apoyo logístico al proyecto de remodelación de la Base Antártica Española (BAE) Juan Carlos I, empleando un total de 323 días fuera de su puerto base. La campaña de 2017 cubrirá un amplio espectro de investigaciones marinas, como el estudio de procesos ecológicos y demográficos de la merluza, el impacto antrópico en las zonas de pesca o la dinámica de las masas de aguas oceánicas.

El Sarmiento de Gamboa es una de las cuatro embarcaciones dedicadas a la investigación científica en las que participa el CSIC. A la lista de buques oceanográficos que gestiona el Consejo hay que sumar el Hespérides (propiedad de la Armada española), el García del Cid y el Mytilus. Todos ellos prestan servicios tanto a equipos científicos de diferentes centros del CSIC, como a otras instituciones nacionales e internacionales, pero además tanto el Hespérides como el Sarmiento de Gamboa, por sus particulares dimensiones, características y costes, son considerados ‘Infraestructuras Científicas y Tecnológicas Singulares (ICTS)’, instalaciones únicas y excepcionales con un alto coste de inversión y gracias a las cuales es posible la materialización de proyectos de vanguardia.