BLOGS
Ciencia para llevar Ciencia para llevar

CURIOSIDADES CIENTÍFICAS PARA COMPARTIR

CRISPR: cómo las bacterias nos enseñan a editar los genes

Por Lluís Montoliu (CSIC)*

Frecuentemente pensamos en las bacterias como fuente de problemas. Efectivamente, son las causantes de enfermedades infecciosas tan graves como la tuberculosis, el cólera o la peste, pero también son las que nos proporcionan yogures y otros derivados lácteos. Además, las bacterias llevan miles de millones de años sobre la Tierra, muchísimos más que nosotros. Durante todo este tiempo han desarrollado un sistema de defensa muy eficaz que les permite zafarse de la infección por virus.

El sistema inmune de las bacterias fue descubierto por Francisco Juan Martínez Mojica, microbiólogo de la Universidad de Alicante, que lleva más de 25 años investigando sobre este tema. ¿Qué hace que este mecanismo de defensa sea tan especial? Pues, entre otras cosas, que se transmite genéticamente, de unas bacterias a sus hijas o descendientes. Por ejemplo, cuando nosotros nos vacunamos contra el virus del sarampión adquirimos unas defensas que evitan que desarrollemos esta enfermedad. Ahora bien, nuestros hijos no heredan esta defensa. Si queremos que ellos estén protegidos contra el sarampión, también tenemos que vacunarlos (algo sobre lo que nadie debería albergar hoy en día ninguna duda, por cierto). Las bacterias son más inteligentes que nosotros. Una vez aprenden a defenderse de un virus son capaces de transmitir esta defensa a sus hijas, y éstas a sus nietas, etc., perpetuando esta defensa. Este descubrimiento básico de Mojica, realizado en 2003, sirvió para que otros investigadores se dieran cuenta de que el mecanismo por el cual las bacterias se defienden de los virus también puede usarse, sorprendentemente, para editar los genes con una precisión nunca antes vista.

En 2012 varios científicos, entre ellos las investigadoras Jennifer Doudna y Emmanuelle Charpentier, describieron este sistema de edición basándose en los trabajos de Mojica. El sistema está formado por una proteína, denominada Cas, que actúa como una tijera molecular capaz de cortar el ADN de forma muy precisa dirigida por una guía, una pequeña molécula de ARN que le dice a la tijera Cas dónde tiene que cortar. Este sistema se denomina CRISPR (pronúnciese “crisper”), acrónimo en inglés que describe las características de estas secuencias genéticas que dirigen el corte de la tijera molecular. Éste fue el nombre, hoy en boca de investigadores de todo el mundo, acuñado también por Mojica en 2001.

El mecanismo por el cual las bacterias se defienden de los virus también puede usarse para editar los genes. / geneticliteracyproject.org

¿Qué podemos hacer con las herramientas CRISPR? Igual que cuando nos equivocamos al escribir un texto en el ordenador y podemos volver atrás y corregir, eliminar o sustituir la palabra o letras erróneas, con las herramientas CRISPR podemos editar los genes. Podemos añadir letras si faltan, eliminar letras si sobran, sustituirlas o corregirlas por otras. En definitiva, podemos modificar los genes a voluntad. Esto ha provocado una verdadera revolución en biología, biomedicina y biotecnología.

Ahora podemos desarrollar modelos celulares y animales más adecuados para el estudio de las enfermedades. Por ejemplo, tras diagnosticar a un paciente afectado por alguna de las miles de enfermedades raras de base genética que existen, y detectar el gen y la mutación causantes de esa enfermedad, podemos replicar exactamente esa misma mutación en ratones. A estos ratones que reproducen la misma alteración genética de un paciente los llamamos ‘ratones avatar’ para ilustrar la conexión existente entre ellos. Gracias a ellos podremos validar la seguridad y eficacia de nuevos tratamientos de una forma más efectiva, ya que son portadores del mismo error genético. Si somos capaces de introducir una mutación en ratones, también deberíamos poder usar las mismas herramientas CRISPR para revertir errores genéticos que afectan a los millones de personas con alguna enfermedad rara. No estamos todavía ahí, pero sí en el buen camino.

Ratones avatar modificados genéticamente con CRISPR. / Davide Seruggia

Los resultados preliminares de tratamientos genéticos basados en CRISPR probados en animales son muy esperanzadores, pero todavía no están listos para su aplicación efectiva en pacientes. ¿Por qué no podemos usar las herramientas CRISPR en el hospital? En primer lugar, la precisión que tienen las herramientas de edición genética CRISPR no es absoluta. En determinadas ocasiones pueden cortar en secuencias genéticas muy parecidas, causando alteraciones no deseadas en genes similares que no deberíamos modificar, y cuyos cambios pueden causar problemas mayores de los que queremos solucionar. Esta es una limitación que puede reducirse al mínimo si se diseñan cada vez mejores guías y se seleccionan tijeras moleculares con mayor precisión.

Pero lo más preocupante es la segunda de las limitaciones de las herramientas CRISPR. Toda la precisión que tienen para cortar el genoma en el gen y la secuencia correctas, no la tienen los mecanismos de reparación que entran en juego inmediatamente tras el corte, restaurando la continuidad del cromosoma. Estos sistemas de reparación, que tenemos en nuestras células, progresan de forma un tanto azarosa, añadiendo y quitando letras hasta conseguir enganchar los dos fragmentos del cromosoma cortado. Si bien es cierto que podemos inducir la reparación con secuencias genéticas molde que sirvan como patrón para la reparación, también sucede que no siempre las células usarán el molde y, por ello, al reparar el corte, generarán una nueva modificación genética no deseada. Tenemos que seguir investigando estos mecanismos de reparación, para poder controlarlos y hacerlos más precisos y seguros. Solamente entonces podremos recomendar, siempre con prudencia, el uso de las herramientas CRISPR en el tratamiento de enfermedades de base genética en personas.

Tras proponerlas como sistemas de edición genética en 2012, las herramientas CRISPR fueron usadas por vez primera en 2013. Hoy, apenas cuatro años más tarde, ya estamos pensando en maneras de optimizar su uso en terapias para enfermedades, para hacerlas más seguras y efectivas. Cuando estudiaba los microorganismos que habitan las salinas de Santa Pola, Mojica no podía imaginar el camino futuro que iban a tomar sus investigaciones de biología básica. Tratando de entender como esas bacterias se defendían de los virus que las acechaban, llegó hasta un hallazgo revolucionario. Ahí está la belleza y el poder de la ciencia. Un descubrimiento microbiológico, en apariencia menor, que pasa a ser la mayor revolución tecnológica en biología. Así pues, debemos de estar agradecidos a las bacterias, por mostrarnos nuevas formas de luchar contra las enfermedades. Y a Francisco Mojica, por haber descubierto este proceso de la naturaleza y habérnoslo contado, por haber descrito el sistema CRISPR que tantas aplicaciones biomédicas está produciendo.

Vídeo en el que la proteína Cas9 corta una molécula de ADN en tiempo real por microscopía de fuerza atómica. Imágenes de la Universidad de Tokio publicadas en este artículo.

 

* Lluís Montoliu es investigador del Centro Nacional de Biotecnología (CNB) del CSIC.

 

¿Puede un robot pintar un Rembrandt?

Por Mar Gulis (CSIC)

“¿Sería posible revivir a Rembrandt?”. A partir de esta provocadora pregunta, Ramón López de Mántaras, investigador del CSIC, explica uno de los éxitos de la inteligencia artificial aplicada al arte: la creación de un cuadro que, según los expertos consultados, podría pasar por un auténtico Rembrandt. Científicos, ingenieros e historiadores del arte trabajaron durante más de un año para ‘enseñar’ a una computadora a ser ‘el próximo Rembrandt’. The Next Rembrandt, como se denomina este proyecto, ha sido impulsado por varias multinacionales, la Universidad Técnica de Delft y los museos Mauritshuis y Rembrandthuis. ¿El resultado? Este cuadro, una obra que imita a la perfección los trazos y el estilo del gran pintor holandés.

El software ‘pintó’ la obra tras analizar 326 obras del famoso pintor holandés / The Next Rembrandt

Para ello, “el software analiza detalladamente el trazo de las pinturas originales, las proporciones y distancias que se observan en los retratos de Rembrandt y otras muchas variables que se repiten en las obras del pintor: rostros masculinos, con bigote o barba, con sombrero, con la cabeza generalmente ladeada y mirando a la derecha… Después, con una impresora 3D, esta inteligencia artificial ‘pinta’ un Rembrandt”, comentó Mántaras, director del Instituto de Investigación en Inteligencia Artificial del CSIC, durante una charla del ciclo Inteligencia artificial y robótica en la Residencia de Estudiantes de Madrid.

Previamente, los desarrolladores identificaron y clasificaron los patrones más comunes de la obra del pintor, desde su composición hasta las dimensiones de los rasgos faciales de los personajes retratados. Así, la obra resultante se basa en el análisis pormenorizado de miles y miles de fragmentos pictóricos de los 346 cuadros conocidos del autor. El procesamiento estadístico de todos los datos hace que el software ‘fabrique’ un cuadro que integra las variables que más se repiten; en este caso, la pintura resultante debía ser un retrato de un hombre caucásico, de entre 30 y 40 años, con vello facial, ropa oscura, cuello blanco, sombrero y la cara girada hacia la derecha, como muchas de las obras del maestro del barroco.

A lo largo del proceso, la computadora combina un algoritmo de reconocimiento facial con un software de aprendizaje profundo. Después, ‘aprende’ a pintar una nariz, unos ojos o una boca como lo haría Rembrandt. Como resultado, pinta un nuevo cuadro, no una réplica de uno existente.

El proyecto refleja hasta qué punto está perfeccionándose la capacidad de los ordenadores para realizar tareas específicas mejor que las personas. Este no es el único ejemplo: jugar al ajedrez, buscar soluciones a fórmulas lógicas o realizar diagnósticos más rápido que los médicos son actividades que algunas máquinas resuelven con más pericia que los humanos. Ahora bien, ¿es posible construir máquinas con una inteligencia similar a la humana? Esta es una de las preguntas que planteaba Mántaras, también coautor del libro Inteligencia artificial (CSIC-Catarata). En su opinión, “los intentos de crear este tipo de inteligencia artificial se enfrentan a la dificultad de dotar a las máquinas de sentido común”. Este conocimiento es fruto de nuestras vivencias y experiencias, que a su vez son el resultado de una interacción constante con el entorno, algo que no pueden adquirir las computadoras.

“Ese es el gran desafío. No nos acercamos a la inteligencia artificial general porque desarrollamos inteligencias muy específicas. Hay que integrar todo eso”, añadió. Como señala en su libro, “necesitamos nuevos algoritmos que puedan responder a preguntas sobre prácticamente cualquier tema. Y además, estos sistemas deberán ser capaces de aprender nuevos conocimientos a lo largo de toda su existencia”. Eso sí, mientras se avanza hacia esa inteligencia profunda, ya podemos admirar obras maestras realizadas por computadoras; aunque quizá nos hallemos también ante una nueva pérdida del aura de la obra de arte, tal y como advirtió Walter Benjamin.

 

¿Te inspiran la fotografía y la ciencia? Participa en #FOTCIENCIA

Por Mar Gulis (CSIC)

¿Te gusta la fotografía? ¿La ciencia y la tecnología disparan tu creatividad? Pues estamos esperando tus propuestas. FOTCIENCIA es una iniciativa que celebra su 15ª edición y que seleccionará las mejores imágenes de ciencia del año para conformar un catálogo y una exposición itinerante. La muestra resultante recorrerá una veintena de museos y centros culturales de España en 2018. Las fotografías pueden presentarse hasta el próximo 14 de diciembre de 2017 a las 14:00 horas.

Las imágenes deben estar relacionadas con la investigación científica o sus aplicaciones, y pueden reflejar aspectos como el objeto de estudio de la investigación, las personas que la realizan, su instrumentación e instalaciones, los resultados del avance científico, etc. Para participar es necesario presentar las fotografías en formato digital a través de un formulario disponible en la página web www.fotciencia.es, junto con un texto que permita interpretarlas. El jurado valorará tanto la imagen –su calidad técnica, originalidad y valor estético– como la claridad de la explicación aportada por el autor o autora.

En esta iniciativa puede participar cualquier persona mayor de edad que presente fotografías propias que no hayan sido seleccionadas en procesos similares. Pero también hay una modalidad, ‘La ciencia en el aula’, dirigida al alumnado de centros educativos y de formación profesional, que pueden participar a través de sus profesores y profesoras.

 

Vídeo con las imágenes seleccionadas en la pasada edición de FOTCIENCIA (2016).

 

Las propuestas se pueden presentar a una de las siguientes modalidades:

  • Micro, cuando la dimensión real del objeto fotografiado sea menor o igual a 1 milímetro o la imagen haya sido obtenida mediante un instrumento de micrografía (óptica o electrónica) o técnicas de difracción.
  • General, cuando la dimensión real del objeto fotografiado sea mayor de 1 milímetro.

Además, los autores y autoras también pueden adscribir su imagen a otras modalidades específicas, como ‘Agricultura sostenible’ ‘Alimentación y nutrición’, que cuentan con el apoyo de dos centros del CSIC: el Instituto de Agricultura Sostenible (IAS) y el Instituto de Agroquímica y Tecnología de Alimentos (IATA).

Las dos mejores imágenes de la categoría General y las dos mejores imágenes de la categoría Micro, según los criterios mencionados anteriormente, serán remuneradas con una cantidad de 1.500€ cada una. En las demás modalidades, se seleccionará una foto que recibirá 600€.

La organización hará una selección adicional de fotografías para incluirlas en el catálogo y en la exposición itinerante, que se prestará gratuitamente a las entidades que la soliciten. Todas las fotos presentadas pasarán a formar parte de la galería de imágenes de la web de FOTCIENCIA.

FOTCIENCIA es una iniciativa organizada por el Consejo Superior de Investigaciones Científicas (CSIC) y la Fundación Española para la Ciencia y la Tecnología (FECYT), con la colaboración de la Fundación Jesús Serra.

Toda la información y normas de participación están disponibles en www.fotciencia.es

 

Cuando el arsénico se usaba para decorar los hogares

Por M. Teresa Telleria (CSIC)*

En el siglo XIX se puso de moda el color verde intenso que proporcionaban algunos pigmentos elaborados a base de arsénico y cobre. Primero fue el verde Scheele (arsenito cúprico), sintetizado por el químico sueco Karl W. Scheele en 1775, y después, en 1814, el verde Scheweinfurt (acetoarsenito de cobre), también conocido como verde París, verde Veronese, verde Viena y, sobre todo, como verde esmeralda. Su fabricación, sencilla y barata, lo hizo asequible a todos los bolsillos y su uso trascendió al del mundo del arte. Pasó así de los paisajes de Joseph Turner y la obra de Edouard Manet a la manufactura de papeles pintados, envoltorios, tapicerías, cortinas, vestidos, juguetes e incluso a los alimentos. Todo se vistió de verde esmeralda, un verde que en su fórmula llevaba más de un 40% de arsénico. Tal fue la magnitud de su uso, que llegó a estimarse en varios millones de km2 la superficie de pared en los hogares británicos que, allá por 1860, estaba recubierta por papeles pintados con verde Scheweinfurt.

Detalle de papel pintado, según diseño de William Morris, hacia 1880. Denisbin/Flickr.

El arsénico nunca ha gozado, y con razón, de buena fama y, poco a poco, diferentes casos de indisposición, enfermedad y alguna que otra muerte comenzaron a ser atribuidos a las paredes empapeladas con trazos de este temible elemento; el peligro se había filtrado en los hogares europeos de la mano de su decoración. No tardó el químico alemán Leopold Gmelin en percatarse de que las habitaciones así decoradas, máxime si eran húmedas y mal ventiladas, despedían un olor desagradable que definió como “olor a ratón”. Gmelin atribuyó este tufo a un componente volátil del arsénico, que llamó “alkorsin”. En noviembre de 1839, el científico remitió una carta al Karlsruher Zeitung dando cuenta del hecho. No fue casual el medio utilizado para hacer circular la noticia, ya que lejos de elegir una publicación científica optó por un periódico y, además, en su edición dominical.

Los hongos hacen su entrada en esta historia de la mano de Bartolomeo Gosio, médico y microbiólogo italiano que entre 1899 y 1944, fue director de los laboratorios científicos de la Direzione di Sanità en Roma. Conocía Gosio algunas teorías previas sobre el posible origen de los gases volátiles del arsénico; teorías que postulaban la capacidad de determinados microorganismos para volatilizar los compuestos de arsénico. Sobre esta base, Gosio propuso la siguiente hipótesis: la humedad y temperatura de las estancias favorecían el crecimiento de hongos y bacterias en las paredes forradas con papeles pintados; en su crecimiento, estos organismos producían hidrógeno que, al reaccionar con el arsénico del pigmento, lo transformaban en trihidruro de arsénico (AsH3), también conocido como arsano o arsina, un gas incoloro, inflamable, reductor y altamente tóxico que despide un ligero olor a ajo.

Hongo Scopulariopsis brevicaulis. J. Scott/EOL.

Gosio se encargó de demostrar que, en estos menesteres, era particularmente activo un hongo que identificó, en principio, como Penicillium brevicaule y que hoy conocemos como Scopulariopsis brevicaulis. Para llegar a esta conclusión diseñó el siguiente experimento: en un sótano colocó distintos medios de cultivo expuestos al aire que contenían patata y diferentes compuestos de arsénico, incluidos los pigmentos; hizo crecer en ellos las especies de hongos y bacterias que pretendía testar y quedó a la espera de que estas prosperaran y produjeran el buscado material volátil. Él lo detectaría gracias a su característico olor a ajo. El ensayo resultó un éxito; el cultivo de Scopulariopsis brevicaulis emanaba este particular olor, lo que claramente demostraba, en opinión de Gosio, la presencia del arsénico volatilizado.

En 1901, Gosio y su colega, el químico Pietro Biginelli, lo identificaron como dietilarsina. Treinta años después, Frederick Challenger y colaboradores lo identificaron definitivamente como trimetilarsina. Así quedó ya desvelada definitivamente la naturaleza química de este arsénico volatilizado que se conoce como “gas Gosio”, en honor a su descubridor. Bartolomeo Gosio siempre estuvo convencido de la toxicidad del gas que lleva su nombre y, aunque las pruebas realizadas para demostrarlo nunca fueron del todo concluyentes, la balanza acabó decantándose de su lado.

Las paredes de las estancias decoradas con llamativos tintes esmeralda y, por tanto, cargadas de acetoarsenito de cobre, un ambiente húmedo que favorecía el crecimiento de S. brevicaulis y el proceso de biometilación que este hongo era capaz de generar eran los elementos y circunstancias necesarios para que el gas hiciera acto de presencia. Los culpables de los envenenamientos ya estaban identificados: el verde Scheweinfurt y S. brevicaulis.

XYZ Buildings en la 6th Avenida de
Nueva York. Wally Gobetz/Flickr.

Pero en el relato de la funesta conjunción del verde esmeralda y S. brevicaulis quedaban aún algunos cabos sueltos. En un trabajo publicado en 1914 se plasmaban los resultados de un detallado estudio sobre varios microorganismos que volatilizaban el arsénico utilizando para ello diferentes sustratos. Su autor R. Huss, del Pharmaceutical Institute de Estocolmo, realizó además una serie de pruebas clínicas sobre el posible efecto que estos gases producían en ratones, conejos y cobayas. Tras el estudio, demostró la falta de efecto nocivo que tenían los gases sobre los animales e incluso sobre él mismo, que durante medio año había estado expuesto diariamente en el laboratorio a los nocivos vapores. Gracias a las conclusiones de este y otros estudios contemporáneos, la hipótesis del gas tóxico comenzó a desinflarse por la evidencia de los hechos. Que muchos de los compuestos de arsénico sean altamente tóxicos no quiere decir, necesariamente, que lo sean todas sus formas gaseosas. Hoy se sabe que la trimetilarsina es un genotóxico, pero también se sabe que su tasa de letalidad por inhalación es relativamente baja.

Casi un siglo después, una publicación de William R. Cullen y Ronald Bentley (2005) desmontó lo que ellos consideraron una leyenda urbana, la toxicidad del gas Gosio y la relación entre el verde esmeralda (acetatoarsenito de cobre), los hongos y las muertes por envenenamiento. En su opinión, estas bien pudieron estar más relacionadas con los desórdenes que origina lo que hoy se conoce como “síndrome del edificio enfermo”, un conjunto de afecciones de etiología desconocida como ronquera, erupciones cutáneas, náuseas o vértigos, que afecta a ocupantes de edificios no industriales, siendo los síntomas difícilmente objetivables mediante pruebas diagnósticas. De nuevo la mezcla de un mal sistema de ventilación, humedad y  la consecuente proliferación de hongos y bacterias podría ser un cóctel nocivo para la salud. En este caso también se quiso establecer, no sin controversia, una relación directa entre Stachybotrys chartarum y el mencionado síndrome. Un hongo volvía a ser el culpable, ahora sin el arsénico, y como en otro tiempo, también sin pruebas concluyentes.

María Teresa Telleria es investigadora del CSIC en el Real Jardín Botánico y autora del libro Donde habitan los dragones y de Los hongos, disponibles en la Editorial CSIC Los Libros de la Catarata.

Semana de la Ciencia del CSIC: viajar al pasado, hacer catas científicas y más

Por Mar Gulis (CSIC)

Viajar al pasado a través de los restos orgánicos de un yacimiento navarro (Instituto de Ciencias de la Vid y el Vino), aprender sobre los caballitos de mar (Instituto de Investigaciones Marinas) o realizar catas catas de queso para conocer sus propiedades nutricionales (Instituto de Productos Lácteos de Asturias) son tres de las 331 actividades con las que el CSIC abre este año la Semana de la Ciencia. A través de los más de 81 centros de investigación participantes, esta iniciativa, organizada con apoyo de la Fundación Española para la Ciencia y la Tecnología (FECYT), ofrecerá propuestas para todos los públicos en torno a diversas áreas del conocimiento.

Muchas de las actividades de la Semana de la Ciencia del CSIC han sido diseñadas para que el público asuma un papel activo e interactúe con el personal investigador.

Las actividades, gratuitas y dirigidas al público general, se presentan en formatos clásicos, como exposiciones, rutas científicas o conferencias, y en otros más novedosos, como degustaciones, cafés científicos, concursos o los innumerables talleres diseñados para que el público interactúe con la ciencia. Así, ‘Convierte tu móvil en un microscopio’, organizada por el Instituto de Recursos Naturales y Agrobiología de Sevilla, el taller ‘Experimenta con partículas’, del Centro Nacional de Aceleradores, o ‘Iluminación estroboscópica’, una iniciativa del Laboratorio de Investigación en Fluidodinámica y Tecnologías de la Combustión, reflejan la vertiente práctica de la Semana de la Ciencia.

En esta edición, el CSIC también ha incorporado la ciencia ciudadana a su programación, a través de iniciativas como ‘Plásticos 0 en la playa’, un taller del Instituto Mediterráneo de Estudios Avanzados. El objetivo en este caso es que la propia sociedad recabe datos valiosos para evaluar los efectos de los residuos marinos sobre los ecosistemas costeros.

El pasado 2 de noviembre arrancó la cita anual con la divulgación científica en muchas comunidades autónomas. En la mayoría de ellas, la Semana de la Ciencia se prolongará hasta finales de mes. ¡Consulta la programación y participa!

¿Por qué se quema antes una sabana que un bosque? Cinco cuestiones sobre inflamabilidad e incendios

Por Juli G. Pausas (CSIC)*

La inflamabilidad de las especies vegetales es relevante en los incendios, aunque su papel depende de diversas condiciones. Vamos a intentar aclarar algunas cuestiones al respecto:

  • La inflamabilidad es la capacidad de prender y propagar una llama

La inflamabilidad no se debe confundir con la cantidad de biomasa, que es la carga de combustible. Es decir, una planta, una comunidad vegetal o una plantación es más inflamable que otra si, teniendo aproximadamente una misma biomasa, prende y propaga mejor el fuego.

  • Hay especies de plantas más inflamables que otras

Todas las plantas son inflamables, pero unas más que otras. Una aliaga o un brezo arde mejor que un lentisco o un alcornoque. Entre las características que incrementan la inflamabilidad nos encontramos, por ejemplo, tener hojas y ramas finas, madera ligera, retener ramas secas o tener elevado contenido en compuestos volátiles. En cambio, tener hojas gruesas y pocas ramas, gruesas y bien separadas, reduce la inflamabilidad. Árboles con abundantes ramas basales son más inflamables que árboles con las primeras ramas elevadas y con espacio entre el sotobosque y la copa.

Aliaga_incendios

La aliaga (Ulex parviflorus) es una planta muy inflamable porque casi toda la biomasa es muy fina y acumula ramas secas. / Juli G. Pausas

No obstante,  todas estas características no tienen por qué estar correlacionadas entre sí; las plantas pueden tener diferente grado de inflamabilidad según la escala en que se mire. Por ejemplo, hay algunas especies de pino que tienen una alta inflamabilidad a escala de hojas pero baja inflamabilidad en la estructura del árbol, por tener la copa elevada. Por lo tanto, en incendios poco intensos el fuego se propagará superficialmente pero no alcanzará la copa, como en el caso de incendios de sotobosque.

  • Hay comunidades vegetales más inflamables que otras

En algunas comunidades pueden dominar especies más inflamables que en otras, lo que condiciona la inflamabilidad de toda la comunidad vegetal, ya sea natural o una plantación.

Además, hay otras características que incrementan o reducen la inflamabilidad a escala de comunidad. Entre ellas podemos mencionar:

    • la continuidad y distribución de las especies muy o muy poco inflamables
    • el número de plantas muertas por sequía, por ejemplo
    • las condiciones microclimáticas que se generan dentro de la comunidad. En bosques densos dichas condiciones pueden inhibir la probabilidad de fuego
    • las condiciones topográficas. Una mayor humedad en depresiones topográficas reduce la inflamabilidad de las plantas.

Así, se quema más fácilmente un aulagar o un brezal mediterráneo que un bosque denso y sombrio; o una sabana que un bosque. Los sistemas sabana-bosque tropicales son claros ejemplos de mosaicos determinados por diferente inflamabilidad.

Pinar de pino carrasco (Pinus halepensis). No solo las hojas son bastante inflamables sino que la continuidad entre el suelo y las copas hace que todo el árbol y el pinar sea muy inflamable, y genere incendios intensos de copa. / Juli G. Pausas

  • La gestión forestal puede modificar la inflamabilidad

La gestión forestal puede modificar la estructura de los árboles, de la comunidad, y del paisaje. Reduce la cantidad de biomasa, el combustible, pero también la continuidad, y por lo tanto, la probabilidad de que se propague el fuego. Por ejemplo, tanto en bosques como en plantaciones forestales, a menudo se realizan cortas del sotobosque y de ramas inferiores de los árboles, se introduce pastoreo o se realizan quemas prescritas, todo con el objetivo de estimular el crecimiento en altura de los árboles y generar una discontinuidad vertical entre el sotobosque y la copa. De esta manera, el fuego se propaga sólo por el sotobosque, los incendios son menos intensos, y la mayoría de árboles sobrevive.

Pinar de pino_incendios

Pinar de pino laricio (Pinus nigra) con árboles que tienen baja inflamabilidad, ya que hay una discontinuidad entre el sotobosque y la copa, de manera que el fuego se propaga por la superficie y no llega a alcanzar las copas (incendios de sotobosque). / Juli G. Pausas

En matorrales, la gestión puede reducir la biomasa, pero no es fácil reducir la inflamabilidad. Las plantaciones forestales a menudo son masas densas y homogéneas de árboles, muchas veces de especies muy inflamables como eucaliptos, y por lo tanto propensas a propagar incendios. Por lo tanto, la gestión forestal es clave para reducir la cantidad de combustible y la inflamabilidad de estas plantaciones. Además, a escala de paisaje, se puede disminuir la capacidad de propagación de un incendio mediante cortafuegos y generando paisajes en mosaicos.

 

  • El tamaño de los incendios puede estar  determinado por la inflamabilidad de las especies

En general, el tamaño de un incendio está condicionado por la cantidad, continuidad, y homogeneidad de la vegetación, sea natural o plantaciones, el grado de humedad de esta, y por el viento. La inflamabilidad de las especies también es relevante en el comportamiento del fuego y el tamaño de los incendios, pero su papel relativo depende de las condiciones. En incendios poco intensos, diferencias en la inflamabilidad (ya sea por cambios en la estructura forestal debidos a la gestión, o por diferencias naturales de las especies), pueden condicionar que una zona arda o no, y por lo tanto, el tamaño del incendio. En condiciones extremas de sequía y fuertes vientos, las diferencias en inflamabilidad serán poco relevantes. Igualmente, dependiendo de las condiciones, un cortafuegos puede o no frenar un incendio.

 

Juli G. Pausas  es investigador del CSIC en el Centro de Investigaciones sobre Desertificación Incendios Forestales (CIDE), y autor del libro Incendios forestales (CSIC-La Catarata) perteneciente a la colección ¿Qué sabemos de?, disponible en la Editorial CSIC Los Libros de la Catarata.

 

Sarah Mather, la desconocida inventora del periscopio

Por Mar Gulis (CSIC)

 Dibujo que aportó Mather para registrar su  patente en 1845 / Oficina de Patentes de EEUU

Hace 172 años, una estadounidense de la que apenas sabemos nada escribía lo siguiente: “La naturaleza de mi invención consiste en la construcción de un tubo con una lámpara unida a un extremo del mismo que puede ser hundido en el agua para iluminar objetos con el mismo, y un telescopio para ver dichos objetos y hacer exámenes bajo el agua…”. Así comenzaba la presentación de su patente Sarah Mather. Era el 16 de abril de 1845 y esta mujer había inventado el periscopio submarino.

Este instrumento óptico con forma de tubo permite, gracias a la utilización de prismas o espejos y basándose en la ley de la reflexión de la luz, la observación de una zona inaccesible a la visión directa. A través de su particular diseño, el periscopio posibilita que alguien que está oculto en una trinchera, un submarino u otro espacio diferente, vea sin ponerse al descubierto. Generalmente, mediante un volante en su extremo inferior el periscopio puede girar y así ampliar la observación a un campo de 360º. Si además se le añaden lentes con aumento, es posible observar a gran distancia. De ahí que su utilización sea frecuente en los submarinos, con el fin de ver sobre la superficie del agua mientras el vehículo se desplaza subacuáticamente.

Así, el periscopio ideado por Mather posibilitó a los buques de navegación marítima, ya en el siglo XIX, inspeccionar las profundidades del océano o saber a qué distancia y posición se encontraban determinados objetos sin que el observador fuera visto. Pero, “aunque su patente fue clave en la historia de la navegación submarina, apenas conocemos datos de la biografía de Mather”, cuenta Sara El Aissati, del Instituto de Óptica del CSIC y miembro del IO-CSIC OSA student chapter (IOSA).

En el Diccionario Biográfico de la Mujer en la Ciencia, una vasta obra que recoge la biografía de cerca de 3.000 mujeres científicas, “se sugiere que Mather se casó y que tuvo al menos una hija”, señala la investigadora. Pero no se conoce su fecha de nacimiento, ni cuándo murió, ni aparecen registradas otras patentes suyas. Tampoco parece existir ninguna imagen de esta inventora olvidada.

Una mujer observa a través de un periscopio a bordo de un submarino estadounidense / US Navy.

En el registro de su invención, la propia Mather explicaba la utilidad del artilugio: “La lámpara y el telescopio se pueden usar para diversos fines, tales como el examen de los cascos de los buques, para examinar o descubrir los objetos bajo el agua, para la pesca, la voladura de rocas para despejar los canales y otros usos”. De estas líneas puede deducirse que la inventora seguramente no se imaginaba el grado de sofisticación que alcanzaría su ingenio, pieza clave en la investigación marítima y en el desarrollo de la industria naval. Como recuerda El Aissati, “la primera noticia que se tiene de la utilización de un periscopio data de 1864, fecha en la que Thomas Doughty, ingeniero de la Armada de los EE UU, usó un tubo de hierro y unos espejos a bordo de un barco fluvial en la expedición al río Rojo”.

Hoy varios son los usos que se le dan a este invento. Más allá del ámbito militar, los periscopios siguen siendo utilizados para observar buques y aviones y así facilitar la navegación marítima y aérea; para realizar investigaciones e incluso en el ámbito de la publicidad, cuando se quieren conseguir determinadas imágenes en actos multitudinarios o simplemente difíciles de obtener.

Paradójicamente, “hasta 2011 a las mujeres estadounidenses no se les permitió servir en submarinos, a pesar de que fue una de ellas la que contribuyó a la modernización de los mismos con este invento”, afirma El Aissati.

Los biocombustibles pueden ser más nocivos que el petróleo

Por Joaquín Pérez Pariente (CSIC)*

Bajo las etiquetas ‘combustible ecológico’ y ‘diésel verde’ circulan por las ciudades del mundo occidental vehículos que utilizan como combustible sustancias obtenidas a partir de productos agrícolas. Son los denominados biocombustibles, en los que el prefijo ‘bio’ pretende resaltar sus bondades medioambientales. Sin embargo, la realidad es que los biocombustibles pueden llegar a ser incluso más nocivos que el petróleo por su emisión de gases de efecto invernadero, responsables del cambio climático que está experimentando nuestro planeta. La causa de ese daño medioambiental estriba en la forma en la que se obtienen.

Si somos rigurosos, recibe el nombre de biocombustible todo combustible de origen biológico. El más común es la madera, pero también son biocombustibles las grasas animales y los aceites vegetales que han servido para iluminar durante siglos nuestros hogares. Pero los que nos interesan son los que se utilizan hoy en día en vehículos de transporte, que son de dos tipos. Uno es el alcohol denominado etanol, el mismo que se encuentra en el vino o la cerveza, que se obtiene mediante fermentación de azúcares como los de la caña de azúcar, o los de los cereales, entre los cuales destaca el maíz. El segundo es el biodiesel, que se produce mediante una reacción química entre el alcohol denominado metanol y aceites vegetales. Aunque se pueden utilizar diferentes aceites como materia prima para fabricar el biodiesel, en la práctica en todo el mundo se elabora a partir de aceites de soja y palma y, en mucha menor medida, de colza, sobre todo en Europa.

Los defensores del empleo de biocombustibles líquidos como sustitutos de la gasolina y gasoil derivados del petróleo argumentan sus efectos beneficiosos de la siguiente manera. Las plantas de las que se extraen las materias primas necesarias para su elaboración absorben dióxido de carbono, el principal gas de efecto invernadero, durante su crecimiento. Cuando los biocombustibles se queman en un vehículo, se emite dióxido de carbono a la atmósfera. Pero eso no supone un problema, porque las plantas volverán a asimilarlo cuando crezcan de nuevo. Tendríamos así un ciclo cerrado de captura-emisión de ese gas, que por lo tanto no produciría ningún aumento de su concentración en la atmósfera.

 

Producción mundial de bioetanol y biodiesel en miles de barriles por día. En el caso del etanol, 100.000 barriles por día equivalen a 3 millones de toneladas de petróleo anuales, mientras que para el biodiesel equivalen a 4,9 millones. La cantidad total de biocombustibles producidos en 2016 equivalió a 86 millones de toneladas de petróleo.

Sin embargo, esa explicación tan simple oculta un conejo en la chistera, que salta fuera de ella en cuanto nos asomamos a su interior. Esas plantas productoras de biocombustibles no crecen precisamente en el desierto, sino que se cultivan en terrenos fértiles que previamente estaban cubiertos por selvas y sabanas. Esos grandes bosques tropicales y subtropicales se destruyen simplemente quemándolos, para sustituirlos por los cultivos destinados a la producción masiva de biocombustibles, como la soja y la palma. Esos gigantescos incendios, visibles desde los satélites que orbitan el planeta y en ocasiones objeto por ello de atención televisiva, liberan a la atmósfera enormes cantidades de dióxido de carbono: entre 200 y 300 toneladas por hectárea, entre 20.000 y 30.000 toneladas por cada kilómetro cuadrado. Así se deforestan cada año decenas de miles de kilómetros cuadrados, hasta tal punto que provocan unas emisiones de gases de efecto invernadero casi iguales a las provenientes de los vehículos que utilizan combustibles derivados del petróleo. Aunque los biocombustibles contribuyen todavía relativamente poco a esa deforestación global, su amenaza es tan grave que el Parlamento Europeo aprobó en el mes de abril de este año una resolución para eliminar el aceite de palma como fuente de biocombustibles para el año 2020.

Por si fuera poco, los agrocombustibles, como en realidad deberían denominarse los biocombustibles, compiten con la producción de alimentos porque, al igual que estos, necesitan terrenos fértiles donde cultivarse. Y se trata de una competencia desleal, porque si se quisiera sustituir con ellos solo una parte de los que provienen del petróleo, habría que producirlos en tal cantidad que toda la superficie de nuestro planeta no bastaría para ello. Ahí radica el verdadero problema, en que los terrenos cultivables ya escasean y no podemos permitirnos el lujo de malgastarlos en un mundo que no es capaz de alimentar decentemente a toda su población.

No hay ninguna duda de que es necesario buscar alternativas al uso del petróleo, pero los biocombustibles no son la respuesta.

 

Joaquín Pérez Pariente es investigador del Instituto de Catálisis y Petroleoquímica del CSIC y es autor del libro Biocombustibles. Sus implicaciones energéticas, ambientales y sociales, editado por Fondo de Cultura Económica. La obra se presentará el día 19 en la librería Juan Rulfo (Madrid) a las 19:00 horas.

Las legumbres, aliadas en la lucha contra el cambio climático

Por Mar Gulis

Las legumbres son un alimento muy popular en nuestro país por su alto valor nutricional (pese a que su consumo está decayendo en los últimos años). Quizás menos conocido es que con ellas se producen harinas como sustituto del cacao, como el algarrobo, o que sus raíces se utilizan como especias (por ejemplo, el regaliz). Muchas legumbres se emplean además como alimento para animales (alfalfa, veza y trébol) o para la producción de principios activos medicinales, aceites, tinturas y fibras, entre otros productos. Como consecuencia, las leguminosas se encuentran entre los cultivos más importantes a nivel mundial, solo detrás de los cereales. Pero además las legumbres pueden ser aliadas en la lucha contra el cambio climático. Tal y como cuentan los autores del libro de divulgación Las legumbres (CSIC-Catarata), la clave está en que ayudan a fijar el nitrógeno orgánico, uno de los nutrientes, después del agua, más necesarios para el crecimiento de las plantas.

Cartel de la FAO realizado con motivo del Año Internacional de las Legumbres 2016.

En agricultura es muy habitual el uso de abonos nitrogenados. Sin embargo, además de su elevado coste, estos abonos tienen consecuencias medioambientales, ya que una cantidad significativa de ellos son emitidos al aire como óxido de nitrógeno, uno de los gases causantes del efecto invernadero y que, mezclado con el vapor de agua, produce la lluvia ácida. Su sustitución no es baladí si recordamos que, según el Panel Intergubernamental de Expertos sobre el Cambio Climático de la ONU, la agricultura es responsable de cerca del 14% de las emisiones globales de gases de efecto invernadero, un volumen similar al originado por el transporte.

El nitrógeno atmosférico es la forma más abundante de nitrógeno. Los únicos organismos capaces de transformarlo en nitrógeno orgánico son aquellos que poseen la enzima nitrogenasa. Estos organismos pueden realizar la transformación en solitario o en asociación con otros organismos, principalmente con plantas. En este sentido, la asociación simbiótica más importante se da entre unas bacterias del suelo denominadas rizobios y plantas de la familia leguminosae, de las que forman parte las legumbres. Su unión aporta cerca del 80% del total del nitrógeno atmosférico fijado de forma biológica.

La interacción leguminosa-bacteria y el establecimiento de la simbiosis son procesos de gran complejidad en los que intervienen numerosos factores estructurales, bioquímicos y genéticos. El establecimiento de la simbiosis comienza con el reconocimiento entre un rizobio determinado y su planta hospedadora, que consiste en un intercambio de señales químicas que activan recíprocamente programas genéticos específicos. El resultado exitoso de esta interacción es la formación de un órgano nuevo en la planta, el nódulo, donde se lleva a cabo la fijación biológica del nitrógeno atmosférico. La Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO) calcula que las leguminosas pueden llegar a fijar entre 72 y 350 kilos de nitrógeno por hectárea y año.

Este proceso, además de ayudar al crecimiento de la planta, mejora la calidad nutricional de los suelos. Ese suelo queda ‘abonado’ y sigue siendo útil para cultivos posteriores, lo que permitirá a su vez reducir el uso de fertilizantes nitrogenados.

Además de enriquecer los suelos, incluir legumbres en los cultivos reduce el riesgo de erosión y aumenta su potencial de absorción de carbono. Igualmente, las leguminosas soportan mejor los climas extremos y son más resistentes que otros cultivos. Por su amplia diversidad genética permiten obtener variedades mejoradas capaces de adaptarse mejor a condiciones climáticas adversas. ¿Se les puede pedir más?

Mucho más sobre estas plantas en el libro Las legumbres  (CSIC – Catarata), coordinado por Alfonso Clemente y Antonio M. de Ron, de la Estación Experimental del Zaidín del CSIC y la Misión Biológica de Galicia del CSIC, respectivamente.

Matrix acústico: una habitación donde el sonido nunca vuelve

Mar Gulis (CSIC)

Quizá recordéis la mítica escena de Matrix (1999) en la que Morfeo (Laurence Fishburne) y Neo (Keanu Reeves) aparecen en una habitación en blanco, que resulta ser un programa en el que pueden simular la realidad. “¿Esto no es real?”, pregunta Neo tocando un sillón. “¿Qué es real? ¿Cómo defines real?… Si hablas de lo que puedes sentir, de lo que puedes oler, probar y ver… lo real son impulsos eléctricos que tu cerebro interpreta”, le contesta el Guía al Elegido. Bien, en esta ocasión vamos a hablar de lo que puedes oír y de una habitación como la de Matrix, pero ubicada en el Instituto de Tecnologías Físicas y de la Información Leonardo Torres Quevedo (ITEFI) del CSIC, en Madrid.

Al cruzar la puerta, una tiene la impresión de entrar en un espacio muy peculiar. La sensación acústica es “la de estar colgado de un globo a 1.000 metros de altura”, explica el físico del CSIC del Grupo de Acústica Ambiental Francisco Simón. Y es así, todo sonido emitido en esta habitación nunca vuelve, queda absorbido por unas paredes, suelo y techo de grandes cuñas de lana de vidrio.

Cámara anecoica del Instituto Leonardo Torres Quevedo / CSIC Divulga.

Esta cámara anecoica (sin eco ni reverberación) de 220 metros cúbicos sirve para crear campos acústicos virtuales que, como en la habitación de Matrix, simulen una realidad sonora. Esto es muy útil para el diseño de salas de música, dado que pueden reproducir cómo sonaría un violín, por ejemplo, en un espacio antes de construir el recinto, para simuladores de juego, que intentan que te des la vuelta con el sonido de un libro que se cae detrás de ti, para el cine… Los primeros en usar este tipo de tecnología fueron los militares con simuladores de vuelo y la industria del automóvil, que tiene muy en cuenta cuál es el sonido que quiere que emitan sus vehículos.

Cuando se construyeron estas cámaras, en los ’70, esta instalación era absolutamente pionera. Ahora empresas como Google, Microsoft o Telefónica tienen sus cámaras anecoicas. En ellas, las compañías prueban las características acústicas de sus dispositivos, como la potencia o cantidad del sonido que emite cualquiera de sus aparatos, y la directividad, es decir, en qué dirección lo hacen.

Y aquí, ¿podríamos escuchar el silencio total? “Tendríamos que congelarnos del todo para hacerlo”, bromea Simón. “Aquí está nuestro cuerpo, escuchamos el aire salir y entrar de los pulmones, nuestras tripas; si nos calláramos, escucharíamos nuestro corazón”, concreta.

Cámara reverberante del Instituto Leonardo Torres Quevedo / CSIC Divulga.

Cerca de esta cámara encontramos su opuesta: la habitación reverberante, un espacio en el que se busca que el sonido se expanda por todo el espacio y reverbere en todas direcciones. Para ello, hay colgados unos grandes paneles de metacrilato que producen el máximo número posible de reflexiones del sonido. Este espacio de 210 metros cúbicos se usa para sumergir en él materiales de construcción y caracterizarlos. Así, cuando un sonido llega a un material para edificación podemos ver si “rebota”, entra dentro y se disipa o lo traspasa y llega al otro lado. Por eso, aquí se realizan mediciones de absorción acústica de materiales y objetos de mobiliario.

En esta sala, solo escuchamos reverberación, no eco. La diferencia entre el eco y la reverberación es cuestión solo de tiempo: si el sonido tarda en volver menos de 50 milisegundos, lo percibimos como un sonido continuado, si tarda más, escuchamos dos sonidos; se produce el eco.

De hecho, ya en los años 60 y 70 se realizaron en este centro muchos estudios sobre aislamiento en la edificación: aislamiento al ruido aéreo de puertas, ventanas, barreras acústicas, suelos, techo, etc. No se trata de una cuestión baladí: una diferencia de 3 decibelios supone el doble de energía en el sonido que estábamos escuchando.

Por cierto, este mismo mes de octubre se cumplen diez años de la publicación de las condiciones acústicas exigidas en el Código Técnico de Edificación con las que se endurecieron las prestaciones acústicas que deben satisfacer los edificios, ofreciendo a constructores, administración y usuarios herramientas para que las viviendas que se construyen hoy día planteen menos problemas a sus habitantes y proporcionen un nivel de confort adecuado.