Las dos caras del ozono: ¿cuándo es beneficioso y cuándo perjudicial?

Por Pedro Trechera Ruiz * y Mar Gulis (CSIC)

El ozono es un gas incoloro formado por tres átomos de oxígeno (O3). Tiene un gran poder oxidante, por lo que resulta útil para desinfectar superficies o espacios interiores. Pero, ¿qué ocurre cuando los seres humanos respiramos este oxidante? ¿Y qué les sucede a las plantas?

En la troposfera, el ozono (O3) es un gas que se forma a partir de la reacción entre otros contaminantes y la radiación solar. / Pixabay

En la troposfera, el ozono (O3) es un gas que se forma a partir de la reacción entre otros contaminantes y la radiación solar. / Pixabay

Ozono ‘bueno’ y ozono ‘malo’

En la estratosfera (la capa de la atmósfera situada entre los 10 y los 50 km de altura), el ozono es esencial, ya que absorbe la radiación ultravioleta del sol, la que comúnmente entendemos como dañina. Gracias a esta capa estratosférica de ozono, la vida, tal como la conocemos, pudo evolucionar fuera de los océanos. Sin esta capa, la superficie terrestre sería arrasada por la radiación solar. Es lo que se conoce como ‘ozono bueno’.

El ‘ozono malo’ es el que se encuentra en la troposfera, la capa que va desde la superficie hasta los 10 km de altura. En este caso, el ozono se forma a partir de otros gases contaminantes, principalmente óxidos de nitrógeno y compuestos orgánicos volátiles, que provienen en gran parte de actividades humanas como el tráfico y las emisiones industriales. La radiación ultravioleta hace que estos gases sufran reacciones con el oxígeno, que dan lugar al ozono.

Estas reacciones tienen un cierto impacto positivo, ya que eliminan estos gases contaminantes. Sin embargo, generan el ozono troposférico, que tiene un impacto negativo sobre la salud humana y de los ecosistemas.

Según la Agencia Europea de Medio Ambiente, la exposición a O3 puede causar problemas de salud, como tos, dificultad para respirar o daños pulmonares por oxidación. Además, el ozono hace que los pulmones sean más susceptibles a las infecciones respiratorias, puede agravar enfermedades pulmonares, aumentar la frecuencia de los ataques de asma y aumentar el riesgo de muerte prematura por enfermedades cardíacas o pulmonares. El último informe de Calidad del Aire en Europa 2022 de la Agencia Europea de Medio Ambiente estima que, en 2020, los niveles de contaminación por O3 causaron 29.000 muertes prematuras en la Unión Europea.

El ozono en España

La velocidad y el grado de formación de ozono se ven muy incrementados con el aumento de la radiación solar y las emisiones de sus agentes precursores. Por ello sus niveles son más elevados en el sur de Europa y en primavera y verano.

Durante los últimos años, gracias a las políticas ambientales, se ha reducido la concentración de los contaminantes atmosféricos precursores del ozono. Sin embargo, esto no se ha traducido en una reducción proporcional del ozono, debido a la complejidad de su generación (su relación con los precursores no es lineal) y el transporte atmosférico de este compuesto a través de largas distancias.

Promedio anual del máximo diario concentración de ozono en las estaciones de calidad del aire españolas entre 2017 y 2020. Adaptación de los mapas del Plan de Ozono / Bases Científicas para un Plan Nacional de Ozono, MITECO

Promedio anual del máximo diario de concentración de ozono en las estaciones de calidad del aire españolas entre 2017 y 2020. Adaptación de los mapas del Plan de Ozono / Bases Científicas para un Plan Nacional de Ozono, MITECO

En 2021, el 10% de la población europea estuvo expuesta a niveles de ozono superiores al valor objetivo de protección a la salud establecido por la legislación europea (120 µg/m3). Sin embargo, si tenemos en cuenta el valor guía recomendado por la Organización Mundial de la Salud (OMS), que es de 100 µg/m3, más restrictivo que el de la norma europea, entonces el 94% de la población europea respira niveles de ozono superiores a los considerados como seguros.

En España, el 45% de las estaciones de calidad del aire superan el nivel crítico de exposición a la población, y eso que solo el 39% de estas estaciones están situadas en zonas urbanas y suburbanas. No obstante, en 2020 y 2021 por primera vez no se superaron los valores objetivos del ozono en la costa mediterránea. Probablemente esto se debe a condiciones meteorológicas favorables y a la disminución drástica de los contaminantes precursores asociada a la pandemia, que supuso una reducción del tráfico automovilístico y aeroportuario y la ausencia de cruceros.

¿Cómo afecta el ozono a la vegetación?

Además de la salud humana, el ozono troposférico puede dañar a los cultivos, los bosques y la vegetación en general.

Este gas es absorbido por las plantas a través de los estomas, que son unos pequeños poros de las hojas donde se produce el intercambio gaseoso. La planta los abre para absorber el dióxido de carbono (CO2) que necesita para hacer la fotosíntesis, pero también absorbe otras moléculas como el ozono.

Una vez que el ozono está dentro de la planta, se producen una serie de reacciones que oxidan las propias células vegetales, lo que altera su funcionamiento. Para evitar estos efectos negativos, las plantas tienen sistemas de protección celular antioxidantes. Sin embargo, cuando los niveles de ozono superan la capacidad de protección de las células vegetales, se produce una disminución de su crecimiento y productividad, y una aceleración del envejecimiento celular.

En última instancia, esto aumenta la sensibilidad de la planta hacia otros condicionantes como las sequías, las altas temperaturas o las plagas. Incluso es posible que los daños producidos por el ozono puedan llegar a observarse visualmente como pigmentaciones características en hojas de tonos amarronados o rojizos.

Diferentes hojas afectadas por el ozono. Pigmentaciones amarronadas o rojizas en hojas de judía (a) y tomate (c) y necrosis más avanzada en hojas de sandía (b). / CIEMAT-MARM

Diferentes hojas afectadas por el ozono. Pigmentaciones amarronadas o rojizas en hojas de judía (a) y tomate (c) y necrosis más avanzada en hojas de sandía (b). / CIEMAT-MARM

Además, los cultivos pueden sufrir una reducción de la producción y/o la calidad de la cosecha, al igual que adquirir mayor sensibilidad frente al ataque de patógenos. En la Península Ibérica, las cosechas que más se ven alteradas son las que se encuentran en el área mediterránea, debido a las altas concentraciones de ozono y su alta producción agrícola.

Los elevados y prolongados niveles de ozono pueden llegar a disminuir significativamente las cosechas. Cuando sucede un aumento de 60 a 120 µg m-3 de ozono, esa disminución es de un 20-30% en guisantes, judías verdes, boniatos, naranjas, cebollas, nabos y ciruelas; de un 10-19% en lechugas, ciruelas, trigo, cebada, soja, alfalfa, sandía, tomates, oliva y maíz; y entre de un 5-9% en arroz, patatas y uvas. Se estima que las pérdidas económicas globales en 2030 provocadas por el ozono oscilarán entre 15 y 30 mil millones de euros al año.

Plantas como biosensores de la contaminación por ozono

En este contexto de contaminación, el proyecto europeo WatchPlant está desarrollando una nueva tecnología para monitorizar diversas condiciones atmosféricas, como el exceso de ozono. Se trata de un sistema bio-híbrido inteligente basado en sensores que se integrarán con las plantas para detectar las condiciones ambientales adversas a partir de la respuesta temprana de las propias plantas. Capaces de transmitir datos en directo, estos sensores permitirán la monitorización ambiental in situ, sobre todo en áreas urbanas, para establecer una relación entre la contaminación y la salud humana.

Biosensores instalados en plantas de tomate. / WatchPlant

Biosensores instalados en plantas de tomate. / WatchPlant

Resultados preliminares del proyecto muestran que sí hay una relación entre la respuesta fisiológica de plantas como el almendro, el olivo, el limonero o el naranjo y la contaminación atmosférica. Ahora el objetivo es producir un sensor bio-híbrido que mida parámetros de la savia de estas plantas que reflejen los niveles de contaminantes como el ozono (O3). Los datos recabados podrán ser utilizados como complemento a las redes de monitoreo de calidad del aire y por la propia ciudadanía.

Más información sobre WatchPlant: https://watchplantproject.eu/ Twitter: @WatchplantP

 

* Pedro Trechera Ruiz es investigador postdoctoral del Instituto de Diagnóstico Ambiental y Estudios del Agua (IDAEA) del CSIC.

2 comentarios

  1. Dice ser Mascota

    sí hay una relación entre la respuesta fisiológica de plantas como el almendro, el olivo, el limonero o el naranjo y la contaminación atmosférica

    09 febrero 2024 | 15:16

  2. Dice ser Juan

    Excelente artículo sobre un tema del que pienso que debería informarse mucho más. Creo que el ozono ocasiona muchos perjuicios en la salud humana y en las plantas. Aunque al parecer no hay manera de parar este problema.
    Pero también he indagado sobre los múltiples usos benéficos de los equipos generadores de ozono, tanto en el ámbito fitosanitario, para combatir algunas plagas, a través de la irrigación con agua ozonizada, como en la desinfección de hospitales, locales, centros sociales…

    10 febrero 2024 | 17:13

Los comentarios están cerrados.