Entradas etiquetadas como ‘cultura científica CSIC’

Fibra óptica, implantes médicos o paneles solares: ‘La Edad del Vidrio’ ya está aquí

Por Mar Gulis (CSIC)

Te encuentras atravesando un espeso bosque lleno de secuoyas cuando de repente un sonido familiar se oye a lo lejos, repetitivo, cada vez más elevado, hasta que, ¡ZAS!, te percatas de que se trata de la alarma del móvil. Es la hora de ponerse en pie… Te pones las gafas y miras la pantalla: las 7:00 h, comienza un nuevo día. Te lavas la cara frente al espejo, te cepillas los dientes y te asomas por la ventana. Ves que hace un sol radiante, promete ser un gran día. Mientras abres el tarro de una deliciosa mermelada y pones la cafetera en la vitrocerámica, enciendes el portátil para ver si hay alguna novedad. La jornada comienza bien a pesar de que un mensaje te recuerda que hoy tienes cita para ponerte un implante dental y que además te toca la siguiente dosis de la vacuna.

Esta podría ser una mañana más en la vida de una persona cualquiera, pero en esas primeras horas ya aparecen varios elementos en los que el vidrio juega un papel determinante. Aunque no hayas reparado en ello, la lente de las gafas, la pantalla del móvil, el espejo, el acristalamiento de la ventana, la placa vitrocerámica, la fibra óptica que te permite navegar por Internet y los envases que aseguran la correcta conservación de alimentos y vacunas están hechos de vidrio… Este material está presente en todo tipo objetos, algunos de ellos tan sorprendentes como los implantes de piezas dentales o los dentífricos que emplean nanopartículas de vidrio.

Descubierto por casualidad en Siria hace 5.000 años, cuando unos mercaderes utilizaron natrón para apoyar sus ollas sobre las fogatas en las que iban a cocinar, en la actualidad el vidrio nos rodea, forma parte de nuestras vidas. No es de extrañar, por tanto, que haya sido el primer material en protagonizar una conmemoración internacional, la correspondiente al año 2022, declarado por Naciones Unidas Año internacional del Vidrio.

El vidrio es uno de los materiales más transformadores de la historia de la humanidad. A lo largo de la historia ha desempeñado importantes funciones en la arquitectura, los artículos para el hogar, los envases… Y hoy es un elemento esencial en sectores clave como el de la energía, la biomedicina, la información y las comunicaciones o la óptica y la optoelectrónica.

Una exposición para descubrir las aplicaciones del vidrio

¿Sabías que existen vidrios diseñados para disolverse dentro del cuerpo humano? ¿O que es posible fabricarlos para que emitan luz en la oscuridad? Entre otras muchas aplicaciones, el vidrio resulta indispensable en los paneles solares y las palas de las turbinas eólicas que nos proporcionan energía limpia, la conservación de vacunas como las diseñadas para hacer frente al virus de la COVID-19, la curación de tejidos dañados o la fabricación de implantes.

Precisamente de sus aplicaciones nos habla la exposición itinerante y virtual La Edad del Vidrio, elaborada por el Consejo Superior de Investigaciones Científicas (CSIC) con apoyo de la Fundación Española para la Ciencia y la Tecnología (FECYT). A través de ellas, la muestra invita al público a averiguar todo lo que este material puede hacer para ayudarnos a alcanzar los Objetivos de Desarrollo Sostenible de la ONU: 17 retos globales encaminados a erradicar la pobreza, proteger el planeta y asegurar la prosperidad de sus habitantes.

Exposición La Edad del Vidrio en la Biblioteca Municipal Eugenio Trías (Madrid) / Laura Llera

Por el momento, la muestra podrá visitarse del 4 al 27 de octubre en el parque de El Retiro de Madrid y del 2 de noviembre al 11 de diciembre en la Real Fábrica de Cristales de La Granja (Segovia), aunque después seguirá recorriendo otros lugares. Además, sus contenidos se encuentran también completamente disponibles en la web www.edaddelvidrio.es. En ella, podrás navegar por la exposición en castellano o inglés, descargártela y escuchar sus audioguías, que también puedes encontrar en las principales plataformas de audio (Ivoox, Spotify, Google podcast, Apple podcast o Amazon music), buscando ‘La edad del vidrio’.

Experimentos y propuestas didácticas

Además, si quieres profundizar en la exposición de manera lúdica y didáctica, también encontrarás materiales educativos para ESO y Bachillerato que estimulan la creatividad e invitan al debate. Sus contenidos incluyen un endemoniado juego de Verdadero o falso relacionado con las aplicaciones del vidrio o una Sopa de letras en las que buscar términos relacionados con este material. Crear una tabla periódica vidriera, convertirse en un superhéroe o una superheroína del clima o diseñar una campaña de sensibilización para fomentar el reciclaje del vidrio son otras de las actividades propuestas.

Y para quienes decidan adentrarse en el mundo del vidrio de forma más práctica (y dulce), también hay experimentos. Con ellos se pueden crear cristales de azúcar y  experimentar con algunas de las propiedades del vidrio con poco más que unos caramelos, un martillo y una bandeja de hielos. La actividad te ayudará a comprender el proceso de fabricación del vidrio y a entender por qué, en las películas, el vidrio que se quiebra, estalla o explota, rara vez es vidrio real… De hecho, se trata de vidrio falso hecho a partir de azúcar para que nadie resulte herido.

En cualquier caso, aunque haya vidrios fake, el verdadero vidrio está muy presente en nuestras vidas y juega un papel fundamental en el mundo contemporáneo. Descúbrelo navegando por la exposición y descargando sus unidades didácticas y sus fichas de experimentos de manera gratuita. ¡Que su transparencia no lo haga pasar desapercibido!

El Mar Menor y su trayectoria hacia el colapso

Por Juan Manuel Ruiz Fernández* y Mar Gulis (CSIC)

En primavera de 2016 las concentraciones de clorofila en el Mar Menor multiplicaron por más de 100 los valores medios de las últimas dos décadas, habitualmente inferiores a un microgramo por litro. Este excepcional y explosivo crecimiento de fitoplancton (seres vivos capaces de realizar la fotosíntesis que viven flotando en el agua) lo protagonizaba una cianobacteria del género Symbiodinium sp, un conocido disruptor del funcionamiento de los ecosistemas acuáticos.

La ausencia de luz generada por la acumulación de esta cianobacteria causó en los meses siguientes la pérdida del 85% de las praderas de plantas acuáticas (los denominados macrófitos bentónicos) que tapizaban de forma casi continua los 135 km2 del fondo de la laguna.

Las aguas extremadamente turbias del Mar Menor han causado la desaparición del 85% de las praderas de la planta marina ‘Cymodocea nodosa’, fundamental para el funcionamiento del ecosistema lagunar. / Javier Murcia Requena

Esto supuso la movilización de miles de toneladas de carbono y nutrientes por la descomposición de la biomasa vegetal y del stock almacenado en el sedimento durante décadas; un proceso que, a su vez, retroalimentó el crecimiento del fitoplancton y prolongó la duración de este episodio de aguas turbias sin precedentes. Todo apuntaba que se estaban atravesando los umbrales ecológicos, a partir de los cuales los ecosistemas sometidos a una presión creciente colapsan y se precipitan bruscamente hacia un estado alterado que puede incluso ser tan estable como el estado anterior. Pero, ¿cómo ha llegado este singular ecosistema a una situación tan extrema?

Una laguna hipersalina

En primer lugar, es necesario conocer un poco el marco ambiental. El Mar Menor es una albufera hipersalina conectada a una cuenca vertiente de 1.300 km2. Sin embargo, de acuerdo con el carácter semi-árido del sureste peninsular, no hay ríos que desembocan en él. Las únicas entradas de agua dulce son las aportadas por escorrentía superficial durante unos pocos eventos de lluvias torrenciales cada año, y unas entradas más difusas de aguas subterráneas.

Las escasas entradas de agua dulce y una limitada tasa de intercambio con el Mediterráneo (en promedio, la tasa de renovación del agua del Mar Menor es de 1 año) explican la elevada salinidad de esta laguna costera. Antes de la década de 1970 la salinidad era incluso superior, pero disminuyó debido a la ampliación del canal del Estacio, una de las cinco golas (o conexiones) naturales entre el Mar Menor y el Mediterráneo. Desde entonces, los valores medios se han mantenido entre 42 y 48 gramos de sal por litro.

Dragados y vertidos de aguas residuales

El flujo a través de este canal gobierna ahora el régimen hidrodinámico de la albufera. Su dragado es considerado uno de los hitos principales de la transformación del Mar Menor por la acción humana.

Básicamente, se argumenta que favoreció la entrada y dispersión de especies mediterráneas y el declive de algunas especies lagunares de flora y fauna. Por ejemplo, uno de los organismos que vio favorecida su dispersión en los fondos de la laguna fue el alga oreja de liebre (Caulerpa prolifera), una especie oportunista capaz de aprovechar los nutrientes de forma muy eficiente y ocupar grandes extensiones en breves periodos de tiempo. Se considera que la oreja de libre tiene la capacidad de desplazar competitivamente a las especies nativas, como Cymodocea nodosa, que también forma praderas en el fondo de la laguna.

La oreja de liebre es un alga verde que cubre todo el fondo de la laguna, y es capaz de realizar grandes desarrollos en muy poco tiempo. En las praderas marinas del Mar Menor abundaba el bivalvo gigante del Mediterráneo o Nacra, especie ahora en peligro de extinción en todo el Mediterráneo. / Javier Murcia Requena

No obstante, alguno de los efectos negativos achacados al cambio de régimen hidrológico sobre las comunidades biológicas podría haber sido exagerado o carente de suficiente evidencia científica. A modo de ejemplo, se ha obtenido nueva evidencia que apunta a que las praderas de C. nodosa no solo no experimentaron un declive tras la propagación de Caulerpa, sino que ambas especies han coexistido con una elevada abundancia durante al menos las cuatro décadas anteriores al colapso ecosistémico.

Este incremento en la abundancia de organismos fotosintéticos implica la existencia de una elevada disponibilidad de nutrientes, condición que se cumplía con creces en el momento de la propagación del alga debido a los vertidos de aguas residuales sin depurar al Mar Menor. Por tanto, no solo el cambio en el régimen hidrológico es clave para entender este proceso de transformación del ecosistema de la laguna, sino también los excesos de nutrientes procedentes del desarrollo urbano y turístico.

Agricultura intensiva

En la década de los 1990 se completan los sistemas de tratamiento de aguas residuales en la zona, que dejan de ser vertidas al Mar Menor (a costa de ser desviadas al Mediterráneo). Pero con esto no desaparecen los problemas relacionados con el exceso de nutrientes en la albufera, sino que persisten, e incluso se intensifican, por el desarrollo de la agricultura de regadío que se inicia den la década de 1950.

Este modelo de agricultura va progresivamente reemplazando a la tradicional agricultura de secano a expensas de la sobreexplotación de las aguas subterráneas. Para soportar y aumentar este desarrollo, en 1979 se crea el transvase entre las cuencas del Tajo y del Segura, el siguiente hito clave en la transformación y el deterioro del Mar Menor.

Los recursos hídricos trasvasados eran insuficientes para sostener el crecimiento de dicha producción y tuvieron que ser complementados con las aguas subterráneas que, al ser salobres debido a la sobreexplotación previa, debían ser tratadas en plantas desaladoras cuyos vertidos, con hasta 600 miligramos de nitrato por litro, acababan en la laguna. Esta intensa actividad agrícola causó además un aumento en la recarga del acuífero y en sus niveles de contaminación por nitratos (150 mg/l), que se tradujo en un aumento de los flujos de aguas subterráneas altamente cargadas en nitrógeno al Mar Menor.

40 años de resiliencia

¿Cómo es posible que esta entrada masiva de nutrientes durante décadas no se haya visto reflejada en un deterioro aparente del ecosistema? Al menos hasta 2016, la laguna mantuvo unas aguas relativamente transparentes y unos fondos dominados por notables comunidades de plantas marinas. ¿Qué hizo que el crecimiento explosivo del fitoplancton se mantuviera ‘a raya’ y las aguas no se enturbiaran?

Uno de los mecanismos que pueden explicar la resiliencia del ecosistema es la función de filtro de partículas y nutrientes que realiza la vegetación del fondo marino. Otro son los desequilibrios en las proporciones de nitrógeno o fósforo.

Cuando los nutrientes no son limitados, la proporción de estos elementos en el fitoplancton suele ser de 16 unidades de nitrógeno por una de fósforo. Las aguas contaminadas por la actividad agrícola están cargadas de nitrógeno, pero apenas tienen fósforo. Y, aunque el fósforo es abundante en las aguas residuales urbanas, este tipo de vertido ya no se realiza en la laguna, al menos intencionadamente. Por tanto, en la actualidad, la principal vía de entrada del fósforo al Mar Menor son las toneladas de tierra arrastradas por la escorrentía superficial desde las parcelas agrícolas durante episodios de lluvias torrenciales. En la DANA de 2019 se estimó que, junto a los 60 hectómetros cúbicos de agua que llegaron a la laguna, entraron también entre 150 y 190 toneladas de fosfato disuelto.

Por ello, mientras que los aportes de nitrógeno son más continuados en el tiempo, los de fósforo son puntuales y esporádicos, limitados a unos pocos eventos anuales. A esto hay que añadir que, una vez entran en la laguna, estos fosfatos son inmediatamente absorbidos por la vegetación y/o fijados en los sedimentos. Estas diferencias en la dinámica de ambos elementos podría explicar que, aunque ambos entran de forma masiva en la laguna, las ocasiones en que sus proporciones son adecuadas para el desarrollo del fitoplancton son limitadas.

Un ecosistema alterado e inestable

El colapso del ecosistema lagunar en 2016 supuso la pérdida y/o el profundo deterioro de buena parte de los mecanismos de resiliencia y de sus servicios ecosistémicos. Así lo sugieren otros importantes hitos, como la pérdida del 85% de la extensión total de las praderas de plantas en el fondo de la laguna y del 95% de la población de Pinna nobilis, una especie de molusco bivalvo endémica del Mediterráneo. Estas pérdidas, que no muestran apenas síntomas de recuperación hasta la fecha, son claros exponentes del grado de alteración del ecosistema.

Antes del colapso ecosistémico las poblaciones de caballito de mar parecían estar recuperándose, pero el deterioro actual del ecosistema las hace estar próximas a la extinción local. / Javier Murcia Requena

Aunque carecemos de datos para valorar esta alteración de forma más global, se ha observado un régimen mucho más inestable respecto a décadas anteriores, más vulnerable a los cambios del medio, con mayores fluctuaciones de sus condiciones ambientales. La frecuencia de eventos de crecimiento explosivo del fitoplancton como el de 2016 ha aumentado claramente, y ahora los periodos de aguas turbias se alternan con los de aguas más turbias y coloreadas.

A diferencia de épocas pasadas, en estos periodos se pueden producir episodios de déficit de oxígeno hasta niveles que comprometen la vida marina y que han resultado en mortalidades masivas de organismos marinos, como se ha observado en episodios muy recientes.

En agosto de 2021 el agotamiento del oxígeno en el agua alcanzó niveles tóxicos para la vida marina, lo que provocó la mortalidad masiva de peces, moluscos y crustáceos. / Javier Murcia Requena

Se trata de eventos muy extremos y propios de sistemas costeros en etapas muy avanzadas del proceso de eutrofización (presencia excesiva de nutrientes). No obstante, desconocemos todavía los factores y mecanismos por los cuales se desencadenan todos estos eventos, algunos de los cuales se producen incluso sin que vayan precedidos de un incremento de las concentraciones de nutrientes en el agua.

*Juan Manuel Ruiz Fernández es investigador del CSIC en el Instituto Español de Oceanografía

¿Qué pasa en el cerebro cuando morimos?

Por Óscar Herreras* y Mar Gulis (CSIC)

¿Qué actividad cerebral hay en un coma profundo? ¿Y durante un ictus? ¿Qué pasa en el cerebro cuando nos morimos? Para acercarnos a estas delicadas cuestiones solo contamos con los registros de la actividad eléctrica de las neuronas, el electroencefalograma (EEG), una medida de la actividad cerebral que constituye un indicador de cómo de despierto está un paciente al salir de una anestesia, por ejemplo, o para conocer cómo de profundo es un coma.

La actividad cerebral que se refleja en un EEG durante un coma profundo es nula (EEG plano). Sin embargo, en el momento de la muerte de algunos enfermos que estaban en la UCI se ha podido registrar una actividad eléctrica cerebral que dura entre 20 y 30 segundos y que algunos han querido interpretar como un «despertar antes de la muerte». Profesionales sanitarios comentan que a veces han observado gestos faciales de mirada al vacío y expresión apacible, lo que ha alimentado ciertas especulaciones que unos y otros relacionan con la experiencia vital o religiosa. Sin embargo, esto no ocurre de forma general, ni podemos asegurar que los rasgos faciales reflejen una sensación real de la persona en tránsito. Ni siquiera podemos asegurar que esa actividad eléctrica sea neuronal, podría ser muscular. Porque realmente…  ¿qué ocurre en el cerebro cuando morimos?

La información sobre la muerte cerebral en personas es muy escasa, y los registros del EEG en pacientes solo nos dan un reflejo de lo que ocurre en las capas más externas del cerebro, la corteza cerebral. No obstante, podemos acercarnos mucho a este proceso si nos fijamos en la investigación neurofisiológica que explora formas de disminuir o evitar el daño cerebral que sobreviene tras un ictus o una parada cardiorrespiratoria transitoria.

Actividad eléctrica durante la muerte

Representación del brote de actividad eléctrica cerebral que precede al “apagado” del cerebro durante la onda de despolarización SD (spreading depolarization). / Óscar Herreras

Durante una parada, el cerebro sufre la falta de riego sanguíneo (isquemia), al igual que en un ictus, un aneurisma o un traumatismo craneal severo. En estos últimos el daño se limita a una zona del cerebro y puede tener otros factores agravantes. Entre 1 y 5 minutos después de la parada se genera un potencial eléctrico muy pronunciado en el cerebro, relacionado con la falta de oxígeno en los vasos sanguíneos que irrigan las neuronas. Este potencial se inicia en uno o varios sitios y se propaga como una onda de despolarización SD (del inglés, spreading depolarization), que también aparece en las migrañas y en los ictus. Las neuronas pierden su capacidad de funcionar como pilas eléctricas y dejan de generar los impulsos eléctricos con los que procesan la información, dan órdenes a los músculos o controlan la actividad hormonal.

Ahora bien, justo en el momento en que la onda llega a una zona concreta de la corteza cerebral, esta genera un brote de impulsos eléctricos durante unos segundos. Además, aunque la onda afecta a las neuronas, no inactiva sus fibras, que comienzan a producir por sí solas descargas eléctricas que se transmiten y activan otras zonas que aún no han sido desactivadas. Esto puede explicar las diferentes sensaciones visuales o de otro tipo que se tienen antes (o en el momento) de morir, o los gestos faciales. Algunas personas que han sido recuperadas mediante desfibriladores o reanimación cardiopulmonar (RCP) relatan imágenes del pasado, imágenes de amistades, de familiares fallecidos… que “residen” en los circuitos corticales como parte del conectoma personal, ese mapa de conexiones en el que se graba nuestra experiencia vital y nuestros conocimientos.

Nuestro cerebro se apaga por zonas

¿Por qué es tan frecuente que las personas que han sufrido una parada y son reanimadas padezcan secuelas cognitivas importantes, y que incluso puedan quedar en estado vegetativo permanente? Los numerosos estudios para conocer las causas de la muerte neuronal por isquemia o anoxia han aportado mucha información. Por ejemplo, sabemos que la onda de despolarización no surge en todo el cerebro, sino que hay regiones más susceptibles que otras. El cerebro es un órgano muy heterogéneo, y la falta de oxígeno es más letal para unas zonas que para otras, en concreto, las regiones más “modernas” evolutivamente, como la corteza cerebral, son las más sensibles, junto con el hipocampo, y son las primeras que mueren. Pero el tronco encefálico, en el que residen funciones vegetativas como el control cardiorrespiratorio, y la médula espinal son muy resistentes y soportan hasta horas sin oxígeno. Lo que hace que unas regiones mueran y otras aguanten es el hecho de que las primeras pueden generar la onda eléctrica y las últimas no, o la desarrollan muy tarde y de manera muy atenuada. Podríamos decir que nuestro cerebro muere por partes, no se “desconecta” todo a la vez. A esta “muerte por zonas” la denominamos vulnerabilidad selectiva.

Neuronas que parecen estrellas. En esta imagen, clones de astrocitos en la corteza cerebral. /López-Mascaraque Lab.

Neuronas y estrellas, espacio extracelular y espacio interestelar

Recordemos que las neuronas son las únicas células del cuerpo que, salvo unas pocas excepciones, no se regeneran. En el momento de su muerte, las neuronas de estructuras en las que se genera la onda de potencial despolarizante sufren una entrada masiva de agua a su interior y revientan. Si nos permiten poner un punto de poesía en este lúgubre tema, cuando no les llega más oxígeno, las neuronas explotan al final de su vida, como lo hacen las estrellas, vertiendo su contenido al espacio extracelular, como las estrellas lo hacen al espacio interestelar.

*Óscar Herreras es investigador del CSIC en el Instituto Cajal.

“Cariño, ¿dónde he metido el cerebro de Einstein?”

Por Emilio Tejera (CSIC)*

En 1955 Albert Einstein muere y, mientras el mundo llora su pérdida, un patólogo del Hospital de Princeton le hace la autopsia. El nombre del médico es Thomas Harvey, quien, animado por un súbito impulso, toma una decisión: extraer el cerebro de Einstein de su cráneo sin el consentimiento de la familia. Harvey regala fragmentos de cerebro a médicos del hospital (otras partes de su cabeza, como los ojos, acabarían en manos del oftalmólogo personal del científico) y luego decide meter el órgano del eminente genio en el maletero de su coche. Durante veinte años, nadie sabrá qué ha ocurrido con el cerebro de Einstein.

Fotografía del cerebro de Einstein tomada por el patólogo Thomas Harvey.

Siendo sorprendente, lo que hizo Harvey no era nuevo. El ser humano siente una especial fascinación por partes del cuerpo de celebridades (desde las reliquias de los santos hasta los cráneos de Goya y Haydn, que sufrieron diversos avatares), como si de esta manera pudiéramos acercarnos más a ellos. Lo cierto es que el secuestro del cerebro de Einstein trae a colación una vieja pregunta, ¿podemos averiguar algo de la personalidad de los individuos a partir de la observación a simple vista de sus cerebros? Durante años, se sostuvieron las erróneas teorías de que el peso del cerebro o las proporciones del cráneo eran una buena medida de la inteligencia de los individuos, pero era hora de abordar este tema desde una perspectiva más científica: ¿conseguiría el cerebro de Einstein aportar algo de luz sobre estas cuestiones?

A lo largo de dos décadas, Harvey mantuvo el cerebro de Einstein preservado en alcohol, dentro de unos botes de conservas en su casa, en una caja de sidra debajo de un enfriador de cerveza. Esto fue así hasta que un periodista aireó el asunto. Además de generarse un gran revuelo, unos cuantos investigadores se interesaron por el órgano en cuestión y solicitaron a Harvey pequeñas muestras para estudiarlas. A partir de ellas, se hicieron varias investigaciones para determinar cuál era el secreto de la inteligencia de Einstein.

Albert Einstein en sus días de estudiante. / Lotte Jacobi

No quiero aburrir con los detalles, pero un análisis llevado a cabo por la neurocientífica Marian Diamond (de la Universidad de Berkeley) ilustra muchas de las conclusiones obtenidas. Diamond descubrió que en determinadas zonas del cerebro de Einstein existía una mayor proporción de células de glía (células, por simplificarlo, con una función de “sostén”) alrededor de cada neurona. Esto podría explicar las capacidades de Einstein, pero Diamond también descubrió que esas células de glía pueden aumentar su número con el entrenamiento en matemáticas y otras disciplinas complejas. Es decir, como afirmaba Ramón y Cajal, “todo hombre puede ser escultor de su propio cerebro”. La inteligencia también se entrena, y nos pasa como con el dilema del huevo y la gallina: es difícil concluir si Einstein era muy listo porque su cerebro era así o, en cambio, su cerebro era así porque Einstein trabajó en materias que estimularon su inteligencia.

Ocurre algo muy parecido con otros descubrimientos relacionados con la anatomía de Einstein (por ejemplo las alteraciones que se encontraron en la llamada cisura de Silvio): resulta imposible esclarecer si estos cambios tenían una relevancia significativa o consistían en meras casualidades. El cerebro es un órgano muy complejo, del que no entendemos muchas cosas, y observar simplemente los ejemplos de unos cuantos individuos sobresalientes no nos va a revelar cuál era la clave de su singular brillantez. Es necesaria todavía mucha más investigación para dilucidar qué hacía a Einstein ser como era o cuánto podríamos parecernos a él. De hecho, las aproximaciones más avanzadas hoy en día en cuanto a investigación en neurociencia (The Human Brain Project, de la Unión Europea, y The Brain Initiative, de Estados Unidos) se basan sobre todo en las conexiones entre cada una de las neuronas, mucho más difíciles de desentrañar, pero sin duda más importantes que lo que somos capaces de detectar a simple vista.

Con el cerebro del genio en el maletero

El cerebro de Einstein estuvo en manos de Harvey hasta los años 90, cuando un periodista le propuso llevar el macabro “recuerdo” de vuelta a sus legítimos descendientes. Durante un fascinante road trip conocieron a gente famosa, atravesaron Las Vegas y llegaron finalmente a casa de sus herederos, quienes rechazaron el regalo. Así que Harvey devolvió el cerebro al Hospital de Princeton, y los registros que había obtenido (dibujos, fotografías, cortes para el microscopio) acabaron en un museo, no muy lejos de donde pasó sus últimos días un genio que, paradójicamente, nunca quiso que nadie prestara atención a sus restos. De hecho, él solicitó que lo incineraran.

Al final, pese a nuestro comportamiento un poco fetichista respecto a los cerebros de personas famosas, y al intento de la ciencia de comprender mejor sus mentes, la mejor manera de acercarse al cerebro de una persona sigue siendo hablar con ella; y, en casos como el de Einstein (con individuos que ya no están), revisar su trabajo, leer sus escritos y, en definitiva, examinar el legado que nos dejaron en vida, donde desplegaron sus pensamientos y sus alardes de genialidad. No hay mejor mecanismo que la palabra escrita para viajar al pasado; o, al menos, en seis mil años de historia, todavía no lo hemos inventado.

*Emilio Tejera (@EmilioTejera1) trabaja en el Instituto Cajal del CSIC. Una conferencia más detallada acerca de las vicisitudes del cerebro de Einstein y de otros personajes puede encontrarse en este enlace.

Cambia el chip: la leche entera es beneficiosa para la salud

Por Javier Fontecha (CSIC)*

El consumo de leche ha supuesto una ventaja evolutiva para la especie humana. Quienes más se han beneficiado de él han sido las poblaciones que lograron, mediante mutación genética, obtener la capacidad de digerir la lactosa. Pero las poblaciones con distintos niveles de intolerancia a la lactosa también encontraron una ventaja adaptativa en el consumo de lácteos fermentados como el yogurt y el queso, con contenido reducido o nulo de este hidrato de carbono.

En la actualidad, la comunidad científica ha llegado al consenso, en contra de muchas ideas, bulos y mensajes erróneos, de que la leche y los productos lácteos aportan prácticamente todos los nutrientes esenciales para las distintas etapas de la vida, especialmente durante la infancia y la adolescencia, pero también en la edad adulta. La leche sigue siendo considerada el alimento más completo desde el punto de vista nutricional, al aportar proteínas con todos los aminoácidos esenciales y de elevada biodisponibilidad, hidratos de carbono como la lactosa –un disacárido que favorece la absorción de calcio y con actividad probiótica–, grasas complejas con una gran variedad de ácidos grasos de cadena corta y media y pequeñas cantidades de ácidos grasos esenciales (Omega 6 y Omega 3), así como una gran contribución de minerales y vitaminas. Todo ello en un conjunto equilibrado y de bajo poder calórico y, lo que quizá sea lo más importante en los tiempos en que vivimos, a un precio reducido: en algunos casos, el litro de leche puede ser más barato que el litro de agua mineral. Aunque el consumo de leche y productos lácteos no es imprescindible para la vida, desde un punto de vista nutricional no es sencillo poder sustituir el aporte de nutrientes que se obtiene de un simple vaso de leche con otros productos alimentarios en una dieta variada y equilibrada.

El debate sobre la grasa láctea y el colesterol

Pero es alrededor de la grasa láctea donde realmente se ha generado un mayor debate científico y social en las últimas décadas. La grasa láctea, al igual que otras grasas de origen animal, es una grasa denominada ‘saturada’ por contener en su composición un elevado porcentaje de ácidos grasos saturados (AGS) y colesterol, lo que se ha relacionado con el incremento del riesgo de padecer enfermedades cardiovasculares.

La lactosa es un tipo de azúcar que se encuentra en la leche y otros productos lácteos como quesos y yogures.

Esta relación, conocida como el paradigma grasa-salud, fue generada en la década de los 60 por el fisiólogo estadounidense y presidente de la American Heart Association Ancel Keys, quien estableció mediante el famoso estudio de los siete países (hoy en día muy criticado y devaluado) la relación entre la incidencia de la enfermedad coronaria (EC) y la concentración total de colesterol plasmático procedente de la dieta, que luego correlacionó con la energía aportada por los AGS. Esta hipótesis estableció las bases para la “demonización” de las grasas de la dieta (principalmente lácteas) y la aparición de las primeras recomendaciones nutricionales donde se aconsejaba la disminución de la ingesta de grasas de manera indiscriminada a toda la población, que se mantienen hasta nuestros días.

Sin embargo, como es bien sabido, correlación no es causalidad y hoy en día se reconoce la ausencia de efectos negativos derivados del consumo moderado de alimentos ricos en colesterol, como el huevo, y en ácidos grasos saturados de cadena corta y media, presentes en un elevado porcentaje en la leche entera. Además, las conclusiones obtenidas después de más de 50 años de controversia sobre la grasa láctea en estudios epidemiológicos y otros de elevado rigor científico (meta-análisis y revisiones sistemáticas) ponen de manifiesto la ausencia de una evidencia científica clara que relacione el consumo de leche entera y de productos lácteos con un incremento del riesgo de enfermedades cardiovasculares o de la mortalidad. Muy al contrario, estos estudios relacionan el consumo de estos alimentos con un efecto inverso en los biomarcadores asociados con la enfermedad cardiovascular y el riesgo de diabetes.

Información nutricional de un brick de leche entera. / Open Food Facts

A diferencia de otras grasas animales, la grasa láctea es la única grasa alimentaria que contiene ácido butírico (C4:0) y por eso se le llama grasa butírica. Como se ha demostrado, este y otros ácidos grasos de cadena corta y media (aproximadamente el 12-15 % del total de AGS) no tienen efecto sobre los niveles del LDL-colesterol en sangre, ya que son empleados por el organismo principalmente como fuente de energía rápida. De hecho, suelen ser recomendados en programas de control de peso.

Estudios recientes, además, consideran la leche como una de las fuentes más importantes de componentes bioactivos naturales y señalan que sus efectos sobre la promoción de la salud son el resultado de la interacción de todos sus nutrientes. Es decir, que sus efectos van más allá de la simple suma de efectos individuales. Esto es así gracias a su matriz, que incrementa la biodisponibilidad de muchos de sus nutrientes y de sus compuestos bioactivos.

Por último, es importante señalar que toda la corriente que incide en la demonización de las grasas y el colesterol de la dieta, y en particular de la grasa láctea, y su eliminación incluso de las fórmulas infantiles, ha llevado a una entronización de los hidratos de carbono simples que ha generado consecuencias negativas para la salud de la población, como es la creciente incidencia de la diabetes tipo 2 y de la obesidad.

* Javier Fontecha es investigador del CSIC en el Instituto de Investigación en Ciencias de la Alimentación .

Azúcar, miel, edulcorantes… ¿existe una forma sana de endulzar?

Por Jara Pérez Jiménez (CSIC)*

Cada vez más gente reduce su consumo de azúcares porque ha escuchado que estos componentes tienen múltiples efectos negativos en la salud. Al mismo tiempo, aparecen otros edulcorantes que son promocionados como saludables: la panela, la miel, el azúcar de coco, la estevia… ¿Cuál de todos ellos elegir? ¿Qué edulcorante es más saludable? Vamos a verlo en detalle.

En primer lugar, hay que señalar que no todos los azúcares de los alimentos son iguales. Por un lado, existen los denominados azúcares intrínsecos: son azúcares que, como en el caso de la fruta o la leche, están incluidos dentro del alimento. Esto hace que el cuerpo necesite realizar múltiples reacciones químicas para poder liberarlos y que pasen a la sangre, lo que hacen lentamente junto con los otros nutrientes y compuestos beneficiosos que están en estos alimentos. Por el contrario, en el caso de los azúcares libres la estructura original del alimento se rompe y el compuesto pasa rápidamente a la sangre, sin ser acompañado de otros componentes beneficiosos. Los azúcares libres son los que se añaden al alimento, ya sea por el consumidor en casa o por la industria alimentaria, y también los que se encuentran en mieles, siropes y zumos. Sí, por muy natural y casero que sea un zumo, en él  se ha roto la estructura del alimento y por tanto ya no tenemos azúcares intrínsecos, sino azúcares libres.

La Organización Mundial de la Salud (OMS) ha establecido un consumo diario responsable de azúcares libres en torno al 5% de las calorías consumidas en un día  (ojo, que este valor podría ser del 0% si consumimos fuentes de carbohidratos complejos) y de un máximo, en cualquier caso, del 10%. Esto se traslada, para un adulto, a un valor de 25 a 50 gramos de azúcares libres al día, cantidad que superan muchas personas en España. Además, la evidencia científica ha demostrado que la ingesta excesiva de azúcares libres está asociada no solo con aquellas enfermedades con las que la relacionamos más inmediatamente, como la diabetes tipo 2, sino también con enfermedades cardiovasculares , el hígado graso no alcóholico  (una situación en la que el hígado aparece tan dañado como en el alcoholismo pero por causa del consumo excesivo de ciertos azúcares libres) o algunos tipos de cáncer.

Por tanto, debemos reducir el consumo de azúcares libres en nuestra alimentación. Pero, ¿qué ocurre con productos como el azúcar moreno o la panela? Pues que, frente al 100% de azúcar contenido en el azúcar blanco, tienen un 95-98%, lo cual no implica diferencias nutricionales en la práctica. Sí, aunque hayas escuchado que tienen más vitaminas o minerales que el azúcar blanco, lo cual es cierto, debemos tener en cuenta que, por ejemplo, para consumir el mismo magnesio que está contenido en 30 gramos de almendras tendríamos que tomar 100 gramos de panela, lo que son 95 gramos de azúcares libres. De manera que los efectos perjudiciales superarían ampliamente a los beneficios que pudiéramos obtener. Lo mismo ocurre con la miel: a pesar de las múltiples propiedades que se le han atribuido, contiene un 70-80% de azúcares libres.

¿Son los edulcorantes artificiales una alternativa?

Últimamente se está promocionando mucho la estevia como un edulcorante natural. Debemos aclarar que, al comprar un producto que se anuncia como endulzado con estevia, en realidad lo que lleva es el E-960: un conjunto de compuestos con poder edulcorante llamados glucósidos de esteviol que son extraídos a partir de la planta de estevia mediante un proceso similar al utilizado para extraer el azúcar de la remolacha o la caña azucarera. En este caso, efectivamente, estos compuestos dan sabor dulce sin tener calorías, lo que ocurre también con edulcorantes artificiales como el aspartamo o el ciclamato.

Sin embargo, el consumo frecuente de estos edulcorantes también presenta problemas, que no tienen nada que ver con riesgos de toxicidad o con que sean cancerígenos, como se suele pensar. Lo que ocurre es que, con estos edulcorantes, por un lado, se produce el denominado ‘efecto halo’: como pensamos que estamos tomando algo saludable, acabamos añadiendo más de lo que tomaríamos de un producto que percibimos como insano, como el azúcar blanco. Por ejemplo, en un estudio se vio que las personas que usaban mermelada para endulzar el yogur acababan añadiendo más azúcar que el que llevaba un yogur azucarado. Por otro lado, estos compuestos tienden a alterar nuestro umbral del dulce: es decir, los receptores que tenemos para detectar el sabor dulce se están saturando y necesitamos cada vez más dulce para identificarlo. Por ejemplo, si acompañamos la comida con un refresco edulcorado, aunque sea sin calorías, estamos recibiendo constantemente ese sabor dulce y en el postre necesitaremos un producto con grandes cantidades de azúcar para reconocerlo como dulce.

Por tanto, la mala noticia es que no existe realmente un edulcorante saludable, sino que deberíamos limitar el consumo de estos productos a algo esporádico. Y cuando, puntualmente (lo que no significa varias veces por semana), vayamos a consumir un producto de repostería, sea industrial o casera, podemos escoger simplemente el que prefiramos por sus características sensoriales, pero sin pensar que nutricionalmente está aportando algo diferente. La buena noticia, por el contrario, es que podemos consumir piezas de frutas (sin procesar) sin preocuparnos, ya que la OMS no ha establecido ninguna recomendación para reducir su consumo porque contienen azúcares intrínsecos y no libres. De hecho, se ha asociado claramente un consumo escaso de frutas con múltiples efectos adversos para la salud, incluido un aumento en el riesgo global de mortalidad. Y esto incluye todas esas frutas que siguen “malditas” en muchas listas, como el higo, el plátano o la uva. La otra buena noticia es que, si vamos reduciendo la cantidad de azúcares libres en nuestra dieta, poco a poco nuestro umbral del dulce se irá rebajando, y aprenderemos a disfrutar cada vez más de los sabores originales de los alimentos.

* Jara Pérez Jiménez es investigadora del Instituto de Ciencia y Tecnología de los Alimentos y Nutrición (ICTAN) del CSIC.

Computación neuromórfica: el salto de la inteligencia artificial a la inteligencia natural de las máquinas

Por Óscar Herreras (CSIC)*

Todos hemos oído hablar de la inteligencia artificial (IA) y de cómo poco a poco se expande a todos los sectores sociales, desde el control de calidad en cadenas de montaje o la regulación del tráfico en una gran ciudad, hasta el diagnóstico de patologías médicas o la producción de obras artístico-culturales, por muy estrafalarias que nos puedan parecer. No se nos escapa que el término “artificial” implica que las capacidades de una IA están construidas a partir de elementos manufacturados por el ser humano. Pero, ¿y el término “inteligencia”? Sin entrar en el inacabable (y divertido) debate de qué es o qué entendemos por inteligencia, es curiosa la sucesión de manifestaciones desde muchos ámbitos que niegan a las máquinas y dispositivos con IA, incluso futuras, una identidad equivalente a la de una persona. Conste que, como animal limitado que soy, comparto algunos de los temores y reservas detrás de esta actitud negacionista.

No obstante, ¿y si pudiéramos diseñar y construir dispositivos que ‘funcionen’ con una inteligencia inequívocamente natural? ¿Nos atreveríamos a decir entonces que estos dispositivos solo emulan las capacidades del intelecto humano? ¿Es posible replicar en un dispositivo artificial la intricada estructura de los circuitos cerebrales que hacen posible las capacidades cognitivas de los animales? Repasemos las claves que la neurociencia ha encontrado en las últimas décadas para explicar esto.

En primer lugar, al contrario que en un cerebro electrónico estándar, en el que la información se almacena en unidades independientes del procesador (discos, ‘la nube’, etc), los animales guardamos la información relevante obtenida en nuestra experiencia diaria alterando los circuitos cerebrales. A este proceso lo denominamos plasticidad neuronal, como detallábamos en esta otra entrada del blog. Así, las conexiones entre los miles de millones de neuronas que forman los circuitos corticales no son permanentes, pues se modifican cuando ocurren determinados patrones de actividad eléctrica generados por la experiencia sensorial o cognitiva. No tenemos unidades separadas de almacén y procesamiento, los circuitos en sí mismos son ambas cosas a la vez. Circuito diferente, persona diferente.

Esta es la teoría. Pero, ¿cómo la llevamos a la práctica en una máquina? Aquí viene otra clave fundamental. En los animales, la modificación de circuitos consiste en establecer nuevos contactos (nuevas sinapsis) o cambiar la fuerza de los ya existentes. Esto nos permite incorporar nuevos datos a, por ejemplo, asociaciones de objetos o conceptos (ideas) que ya tuviéramos, o establecer otras nuevas. La neurociencia ha confirmado estas propiedades repetidamente y ya se pueden replicar en el laboratorio. Muchos ya pensamos que estas claves son suficientes para explicar todas las capacidades cognitivas del cerebro de los mamíferos: la memoria, la imaginación, la lógica, la planificación, etc. Ahora bien, ¿están presentes estas características en los dispositivos actuales de IA?

A lo largo de la historia de la cibernética, los ingenieros sagazmente han puesto un ojo en los descubrimientos neurocientíficos, hasta el punto de que sus principales hitos han surgido tras replicar algún nuevo hallazgo sobre la estructura o el funcionamiento del sistema nervioso: no es mala idea tratar de emular la “máquina” pensante más compleja y potente. Lo cierto es que, al menos en el plano conceptual, existe un fuerte paralelismo entre la manera en la que un cerebro y un dispositivo IA aprenden: ambos cambian algunos de sus elementos para almacenar información o resolver un problema. La diferencia, como esbozaba antes, estriba en que en una IA los circuitos electrónicos impresos que unen sus partes no varían, la información no está en sus conexiones, se guardan en una lista (software) de una unidad separada. Vemos que la solución biológica es mucho más eficiente, la propia estructura cambiante de los circuitos nerviosos contiene tanto nuestra historia vital como nuestras capacidades.

Para emular esta extraordinaria solución biológica, en el programa Europeo de Investigación Human Brain Project (HBP), en el que participan decenas de grupos experimentales y teóricos de diferentes países, existen varios subproyectos que desarrollan lo que se denomina computación neuromórfica. En pocas palabras, están desarrollando ordenadores con una arquitectura de circuitos mutable. Los datos nuevos o las capacidades nuevas no se guardan en forma de unos y ceros en una unidad separada, sino en el propio mapa de conexiones. Estos ordenadores cambian la conectividad de sus circuitos a medida que aprenden a ejecutar eficientemente una tarea, y lo curioso es que el número de cambios puede ser tal que averiguar cuál es su mapa de conexiones después del aprendizaje plantea ya los mismos problemas a un investigador que un cerebro real. Esos cambios en el aprendizaje son tantos y tan complejos que mantener un listado de las nuevas conexiones sería ineficiente a medida que aumente el tamaño y las tareas de estos computadores neuromórficos.

Materiales con memoria

La capacidad de aprender que nos proporciona la plasticidad de las sinapsis no ha sido fácil de emular en los contactos eléctricos de un circuito impreso. Hemos tenido que esperar a la aparición en la década pasada de materiales con propiedades eléctricas extraordinarias para dar solución al último gran problema. Estos materiales, como el dióxido de titanio, pueden variar su resistencia eléctrica dependiendo de la corriente que ha pasado por ellos anteriormente. Se les denomina memristores (resistencias con memoria), y regulan la cantidad de corriente que dejan pasar dependiendo de su historia previa, esto es, de la corriente que ya circuló por ellos en el pasado, replicando fielmente el papel y funcionamiento de las sinapsis cambiantes entre neuronas. Ya no es necesario mantener los cambios (la experiencia) en una unidad separada. Recuerden, no se pierde la unidad de almacén de información, el circuito es la información.

La prueba de concepto ya ha sido publicada recientemente en la revista Scientific Reports En este artículo, el equipo investigador ha sido capaz de realizar conexiones entre una neurona electrónica y una neurona real utilizando dos de estas sinapsis de dióxido de titanio capaces de aprender. Ya no es necesario guardar los cambios en ninguna parte, todo es estructura cambiante, como en un cerebro real. En ordenadores neuromórficos con sinapsis variables todo es artificial menos, quizá, su funcionamiento. ¿Podemos decir que este tipo de ordenadores ha dado el salto de una IA a una inteligencia natural (IN)? Las diferencias entre la tecnología y la biología ciertamente se estrechan. A estas alturas, yo no sabría decir si el cerebro ‘piensa’ como una máquina o la máquina lo hace como un cerebro

* Óscar Herreras es investigador del Instituto Cajal del CSIC.

 

Sombreros de plumas: el lado oscuro de la moda

Por Carmen Martínez (CSIC)*

La industria de la moda es una de las más dañinas para la conservación del entorno natural. Promueve el consumo insostenible de prendas y sus procesos productivos son, en general, muy contaminantes. Existen zonas del planeta donde cada año los ríos se tiñen del color que marca la tendencia en occidente. Esta realidad ya era palpable en el siglo XIX, cuando el consumo de ingentes cantidades de plumas para decorar vestidos y sombreros condujo a la extinción de numerosas especies. Durante el período conocido como Plume Boom, el auge de la pluma, se pagaban auténticas fortunas por los sombreros con plumas de aves, lo que llevó al exterminio de millones de ellas.

Mujer con sombrero de plumas. / National Audubon Society

Londres era el centro internacional para el comercio de plumas. En las salas de venta londinenses se realizaban periódicamente subastas, en las que los comerciantes ofertaban pieles y plumas de las aves más bellas del mundo. No resulta extraño que el zoólogo americano, William Temple Hornaday, pionero en el movimiento de conservación de la vida silvestre en los Estados Unidos y primer director de la Sociedad Zoológica de Nueva York, fundada en 1895, denominase Londres como «la meca de los asesinos de aves del mundo”.

En el último tercio del siglo XIX, los sombreros femeninos eran cada vez más elaborados y vistosos. Para decorarlos, se utilizaban partes de las aves como las alas, las cabezas, los penachos o el animal completo. Los pájaros disecados se fijaban en armazones para dar la impresión de movimiento; en ocasiones, se colocaban sobre nidos, o bien con las alas extendidas para aumentar su naturalidad.

Decenas de especies afectadas

Eran muchas las especies perjudicadas por esta próspera industria: avestruces, faisanes, pavos reales, patos, garzas, palomas, aves del paraíso, etc. Se ha calculado que entre 1905 y 1920 se habrían exportado cada año entre 30.000 y 80.000 pieles de aves del paraíso con destino a las subastas de plumas de Londres, París y Nueva York. Solo en 1911, 41.000 pieles de colibrí se vendieron en Londres y es posible que otras tantas en París. Y en el invierno de 1886-1887, 40.000 charranes fueron abatidos en Cape Cod (Massachusetts) para satisfacer la demanda de un único comerciante de sombreros.

Fábrica de plumas, ca 1907-1933. / NYPL Digital Collection

En la industria de la sombrerería las avestruces también eran muy solicitadas y su comercio se convirtió en un negocio muy rentable. A mediados del siglo XIX se estaban extinguiendo debido a una caza desmesurada, de modo que se fomentó su cría en cautividad. En 1863 se domesticó la primera avestruz en el Cabo (Sudáfrica) y un año después se patentó la primera incubadora. Después del oro, los diamantes y la lana, era el producto más valioso que se exportaba desde Sudáfrica.

Otras aves muy demandadas eran algunas especies de garzas que, en la estación reproductiva, exhibían unas largas plumas blancas muy bellas. Lo más cruel es que, no sólo se las mataba, sino que su caza se realizaba cuando estaban nidificando, con lo que se condenaba a las crías a morir de hambre. Un detalle que da idea de la magnitud de la masacre proviene de una casa de subastas londinense que en 1902 vendió 48.240 onzas (1.368 kilos) de plumas de garza, lo que suponía el exterminio de casi 200.000 ejemplares, sin contar los pollos y los huevos sacrificados. Otro registro contabiliza más de un millón de pieles de garcillas bueyeras vendidas en Londres entre 1897 y 1911.

Sociedades conservacionistas: el freno a la masacre animal

La situación llegó a ser tan dramática que finalmente las mujeres conservacionistas de ambos lados del Atlántico se unieron para luchar contra esta lacra. Así surgieron los primeros movimientos de conservación, que darían lugar a dos de las sociedades conservacionistas más importantes del mundo: la británica Royal Society for the Protection of Birds y la americana National Audubon Society.

Manguito y esclavina confeccionados con gaviotas argentinas. / Metropolitan Museum of Art, Nueva York

En 1889 se creó en el Reino Unido la Society for the Protection of Birds como grupo de presión contra el comercio mundial de plumas para la confección de sombreros, gracias al coraje y la determinación de dos mujeres victorianas: Emily Williamson y Eliza Phillips. En 1904 el rey Eduardo VII otorgó a la sociedad el título “Real”, convirtiéndose así en la Royal Society for the Protection of Birds (RSPB). La lucha sin tregua de la RSPB consiguió que en 1921 se aprobase una ley que prohibía la importación de plumaje en Gran Bretaña.

Mientras tanto, en Estados Unidos, también fueron dos mujeres las que impulsaron el movimiento para proteger a las aves de este ominoso comercio. En 1896, Harriet Hemenway y su prima Minna B. Hall decidieron organizar una serie de reuniones de té para convencer a las damas de la sociedad de Boston de que no llevasen sombreros con plumas de aves. Estas reuniones culminaron con la fundación de la Sociedad Audubon de Massachusetts en 1896, que, en apenas dos años, consiguieron que el estado aprobase un proyecto de ley que prohibía el comercio de plumas de aves silvestres. En 1905, conforme fueron surgiendo secciones locales en todo el país, pasó a llamarse National Audubon Society, cuyo nombre hace honor al dibujante y naturalista John James Audubon, pionero de la ornitología norteamericana.

Catálogo de plumas y alas./ T. Eaton Co, Toronto

En 1918 el congreso de Estados Unidos aprobó la Ley del Tratado de Aves Migratorias que ilegalizó la persecución, caza, captura o venta de cualquier ave migratoria o cualquiera de sus partes, incluidos los nidos, los huevos y las plumas. Esta ley puso fin al comercio de sombreros de plumas, y salvó con ello a cientos de millones de aves.

Paso a paso, las conservacionistas fueron ganando terreno y, a partir de la Primera Guerra Mundial, esta moda se convirtió en algo del pasado. Con la guerra, las plumas, al igual que los alimentos y la ropa, eran un bien escaso. También había cambiado la vida cotidiana, y las ocasiones de lucir sombreros de gran tamaño había disminuido. Por ejemplo, el automóvil se había vuelto popular, pero los asientos difícilmente eran compatibles con aquellos sombreros tan grandes y extravagantes. Además, en Gran Bretaña se consideraba antipatriótico adornarse con plumas, ya que éstas ocupaban un valioso espacio de carga en un tiempo tan difícil… y solo por vanidad.

Había llegado el final de lo que se describió como “Era del exterminio” y el triunfo de los primeros grandes movimientos de conservación gracias al impulso de cuatro mujeres.

 

* Carmen Martínez es investigadora del Museo Nacional de Ciencias Naturales (MNCN) del CSIC. Este texto es un extracto del artículo ‘Sombreros de plumas, el lado oscuro de la moda’ publicado en la revista Naturalmente.

 

 

La asimetría, una propiedad esencial para la vida

Por Luis Gómez-Hortigüela y Mar Gulis (CSIC)*

Los documentos del caso es una novela epistolar de misterio escrita por Dorothy Sayers en 1930. En la trama —atención, spoiler—, Harrison, un marido engañado aficionado a buscar setas, aparece muerto, aparentemente tras haber consumido una seta venenosa por error. Sospechando que podría haber sido asesinado por el amante de su madre, el hijo del fallecido, Paul, decide investigar su muerte. Descubre que la muscarina, el veneno que acabó con la vida de Harrison, es un producto natural procedente del hongo Amanita muscaria, pero también puede ser preparado artificialmente en el laboratorio. Entonces, ¿falleció el padre de Paul por comerse la seta equivocada o alguien acabó con su vida deliberadamente?

La respuesta a esta cuestión está en la quiralidad, una propiedad que compartimos seres vivos, objetos cotidianos como un tornillo o un sacacorchos y compuestos químicos como la muscarina. Un objeto es quiral cuando no es superponible con su imagen especular. El ejemplo clásico son nuestras manos. Si ponemos la mano izquierda frente a un espejo, se convierte en la derecha. Y si hacemos lo mismo con un tornillo, veremos que la rosca parece girar en sentido contrario. A escala humana, se manifiesta entre otros rasgos en que tenemos el corazón desviado a la izquierda y un cerebro que compartimenta las funciones de forma asimétrica en sus dos hemisferios, así como en la mayor habilidad en nuestra mano diestra (o zurda). La quiralidad está pues estrechamente asociada a la asimetría, es decir, a la falta de simetría. Las dos formas especulares no superponibles entre sí de un objeto o de una molécula quiral se denominan enantiómeros. Si retomamos el ejemplo de nuestras manos, la derecha y la izquierda serían los dos enantiómeros. Lo mismo sucede a nivel molecular, donde muchos compuestos son quirales y poseen dos enantiómeros, ambos imágenes especulares que no son superponibles entre sí, constituyendo por tanto diferentes entidades.

Ejemplar de cangrejo violinista (Uca tangeri) con una de sus pinzas claramente mayor que la otra. / Esmeralda Ramos-García Neto. Fundación Aquae

Pero lo que en el mundo macroscópico es fácil de comprobar —podemos observar a simple vista las diferencias entre nuestras manos o pies derechos e izquierdos— ¿cómo se manifiesta en el microscópico? Uno de los principales rasgos de los compuestos quirales es que poseen actividad óptica, es decir, cuando son expuestos a la luz polarizada tienen la propiedad de rotar el plano de luz un cierto ángulo en uno u otro sentido, según el enantiómero de que se trate.

Volvamos a nuestro protagonista fallecido y su hijo con sed de verdad. A estas alturas ya intuirán que la asimetría algo tiene que ver con la resolución del misterio de la muerte de Harrison. Pues sí. La muscarina es un compuesto quiral. Tanto la muscarina natural como la sintética comparten la misma composición y propiedades, salvo una sutil diferencia: la de procedencia natural tiene actividad óptica, mientras que la sintética es ópticamente inactiva, no produce ningún cambio en el plano de la luz. Al analizar la muscarina ingerida por su difunto progenitor con un polarímetro, Paul observa que esta no posee actividad óptica, lo que no deja lugar a dudas sobre su origen artificial. Descartada la procedencia natural de la muscarina que tomó su padre, Paul consigue demostrar que, efectivamente, Harrison había sido deliberadamente envenenado. Fue Louis Pasteur quien descubrió la quiralidad molecular a mediados del siglo XIX en un experimento que ha sido calificado como el más hermoso de la historia de la química, y constituye la clave para explicar qué le ocurrió a Harrison.

‘Homoquiralidad’: la naturaleza es asimétrica

La investigación del asesinato que plantea Sayers pone de manifiesto una diferencia crucial entre los compuestos quirales de origen sintético, preparados en el laboratorio, y los de origen natural, extraídos a partir de algún componente de un ser vivo. Los primeros, al ser preparados a partir de reacciones químicas que implican movimientos de electrones —sometidos a fuerzas electromagnéticas que no distinguen entre derecha e izquierda— se obtienen como mezclas al 50% de ambos enantiómeros, siendo ópticamente inactivos –la rotación de la luz polarizada en un sentido propiciada por un enantiómero se cancela por la rotación en sentido inverso del otro enantiómero. Por el contrario, los de origen natural, que se obtienen a partir de rutas metabólicas reguladas por diversas entidades bioquímicas presentes en todos los seres vivos, constan de un solo enantiómero, siendo por tanto ópticamente activos. Así, en palabras de Pasteur, la actividad óptica es una firma de la vida.

Moléculas quirales que conforman las macromoléculas funcionales de los seres vivos. En la imagen aparece a la izquierda un L-aminoácido y a la derecha un D-aminoácido. Solo los primeros se encuentran en las proteínas de la materia viva. / Wikipedia

La materia inanimada o inerte está asociada a la existencia de simetría, bien por estar constituida por elementos no quirales o por la existencia de ambas formas especulares en igual proporción de elementos quirales, mientras que la materia animada está invariablemente asociada a la quiralidad en su forma enantioméricamente pura. Podríamos decir que la naturaleza en su conjunto es un sistema quiral.

La mayoría de las moléculas que constituyen los organismos vivos son quirales y, en todos los casos, existe una clara preferencia por uno de los dos enantiómeros, lo que se conoce como ‘homoquiralidad’. Esto es lo que ocurre con los ‘ladrillos’ de los que estamos formados todos los seres vivos: los aminoácidos que componen las proteínas y los azúcares que conforman los ácidos nucleicos, el ADN, con sus hélices retorciéndose invariablemente hacia la derecha, y el ARN.

Así, a través de mecanismos aún desconocidos quiso la vida comenzar su andadura usando exclusivamente la forma L de los aminoácidos y exclusivamente la forma D de los azúcares. A su vez, quiso la evolución imprimir esta caprichosa selección quiral en todos y cada uno de los seres vivos existentes, al menos en lo que a nuestro planeta concierne, haciendo de la asimetría una propiedad esencial asociada intrínsecamente a la vida.

Luis Gómez-Hortigüela es investigador del Instituto de Catálisis y Petroleoquímica del CSIC y autor del libro ‘La quiralidad’ (CSIC-Catarata) de la colección ¿Qué sabemos de?

El negocio de los datos personales en internet: cuando el producto eres tú

Por David Gómez-Ullate Oteiza (CSIC)*

En la era de internet nos hemos acostumbrado a que muchas cosas sean gratis: la información de los diarios, los navegadores GPS, los gestores de correo… Nadie puede resistirse a la atracción de lo gratuito. Uno se pregunta, sin embargo, dónde está el producto detrás de tanta gratuidad: ¿cómo ganan dinero estas grandes compañías? Y aquí viene a la cabeza la frase del mítico jugador de póquer Amarillo Slim: “Mira a tu alrededor, si no sabes identificar al pardillo en la mesa, entonces el pardillo eres tú”. En internet, cuando no sabes cuál es el producto, entonces el producto eres tú. Para Google, Facebook y el resto de gigantes de internet no somos usuarios, sino productos: los destinatarios de sus campañas de publicidad.

Así pues, el modelo de negocio es un intercambio en el que nos ofrecen un gestor de correo electrónico con grandes capacidades, una plataforma para conversar con amigos o para encontrar a antiguos compañeros de clase, un navegador GPS para no perdernos en la ciudad, una carpeta en la nube para almacenar nuestros ficheros… Todo ello a cambio de recopilar una cantidad de datos tan inmensa que probablemente hace que Google nos conozca mejor que nosotros mismos: qué coche te quieres comprar, dónde vas a ir de vacaciones, cuántos hijos tienes, qué camino tomas para ir a trabajar, a quién vas a votar, cómo te sientes hoy, esa pasión oculta que no has confesado a nadie pero has buscado en internet, a qué hora te acuestas y con quién, etc.

Big data

/Wikimedia Commons

Con esta ingente cantidad de datos, la publicidad digital presume de su precisión, al impactar a la persona escogida en el lugar idóneo y el momento adecuado, frente a los anuncios tradicionales en televisión, por ejemplo, que solo permiten segmentar el público objetivo por franja horaria o asociado a ciertos programas. De hecho, cada vez que cargamos la página de nuestro diario favorito para leer las noticias del día, el correspondiente banner publicitario que vemos depende de una compleja subasta (RTB, Real Time Bidding) en la que distintos algoritmos pujan por mostrarnos su anuncio en función de cuánto piensen que nuestro perfil se adapta al producto que desean vender. Todo esto ocurre en la fracción de segundo que tarda el navegador en cargar la página; obviamente, estos algoritmos emplean toda la información que puedan adquirir sobre quién está al otro lado del ordenador para afinar los modelos: más información implica modelos más precisos y, típicamente, mayor rendimiento de la inversión en publicidad.

Así, Google es la mayor agencia de publicidad del mundo. Facebook o Twitter también siguen el mismo modelo de negocio: nos ofrecen una plataforma para que voluntariamente les entreguemos una cantidad inimaginable de datos personales gracias a los cuales pueden afinar campañas de publicidad muy orientadas a su público objetivo.

En la economía digital nadie da duros a cuatro pesetas o, como nos recordaba el Nobel de Economía Milton Friedman: “There ain’t no such a thing as a free lunch (no existen los almuerzos gratis)”. Las principales empresas hoteleras son Airbnb y Booking; no tienen uno solo alojamiento en propiedad. La empresa líder de movilidad es Uber; no posee un solo vehículo. La primera empresa del sector de venta al por menor es Alibaba; no dispone de inventario. La mayor empresa de contenidos digitales es Facebook; no genera su contenido. Todas son empresas de datos. Recopilan, limpian, analizan y desarrollan aplicaciones para poner en contacto productores de servicios con consumidores.

Pero entonces, ¿cuánto deberían valer nuestros datos personales? La pregunta es muy relativa y probablemente tenga dos respuestas bien diferenciadas para la persona que cede los datos y para la que los adquiere. Para el ciudadano o ciudadana media, a tenor del comportamiento observado durante los últimos años, el valor que concedemos a nuestros propios datos es más bien pequeño, pues prácticamente los hemos regalado a cambio de nada a las grandes compañías. Para los gigantes de internet podemos hacer un cálculo sencillo basado en dividir el beneficio del sector publicitario digital en EE UU durante 2016 (83.000 millones de dólares) entre el número de usuarios en el país (280 millones), lo que arrojaría una cifra media de 296 dólares per cápita. Prácticamente nadie en el entorno empresarial duda ya del inmenso valor que tiene la adquisición de datos, aunque la sociedad en su conjunto no sea aún muy consciente de ello.

Privacidad en tiempos de pandemia

Entre 1950 y 1989, la policía política de la RDA articuló métodos de vigilancia que implicaron a 250.000 personas entre empleados e informantes. Para una población de 17 millones suponía un espía por cada 70 habitantes. Con los métodos de supervisión existentes en la actualidad, empleando técnicas de Inteligencia Artificial, tratamiento de imágenes y procesamiento del lenguaje natural, se puede vigilar a miles de millones de ciudadanos con apenas varios miles de empleados.

Big data

/Wikimedia Commons

Aunque cuando una empresa conecta el micrófono de mi móvil no está interesada en lo que digo, solo quiere saber qué canal de televisión estoy mirando o qué estoy pensando en adquirir. Porque una parte importante de la industria publicitaria se basa en pagar por los anuncios en función de la contribución que cada uno haya tenido en conseguir que adquieras el producto. En su jerga, ellos usan el término “conversión”, pero no una conversión a los principios socialistas de la República Democrática de Alemania, sino una conversión para ganar personas adeptas al último coche, tableta o viaje.

En los últimos meses se está produciendo un intenso debate sobre la pertinencia del uso de datos personales para luchar contra la pandemia, lo cual ha puesto en el ojo público muchas de las cuestiones mencionadas arriba. Los datos de geolocalización o los contactos con otras personas se pueden usar para diseñar sistemas más eficientes y dirigidos de contención de la epidemia, aislando sólo personas infectadas y sus contactos, o lanzando alertas en los lugares con mayor probabilidad de infección. Compartir datos clínicos de pacientes permite ampliar la base estadística de los estudios sobre COVID y conocer mejor la enfermedad para mejorar el tratamiento de enfermos o las políticas de salud pública.

Todas estas cuestiones requieren un debate sobre el alcance de dichas medidas, que en cualquier caso debe de ser limitado en el tiempo y no ser usado con fines distintos a los mencionados. Este debate contrasta con la noticia publicada recientemente sobre las denuncias de un empleado de Apple que trabajaba en el programa de transcripción de textos grabados por sus dispositivos, sin ningún consentimiento por parte de los usuarios. Es fundamental que la sociedad sea más consciente del uso y abuso de los datos personales por parte de las grandes corporaciones y participe de manera activa en el debate abierto sobre la gestión de los mismos.

* David Gómez-Ullate Oteiza es investigador en la Universidad de Cádiz y coautor del libro Big data de la colección ¿Qué sabemos de? (CSIC-Catarata).