Archivo de la categoría ‘Tecnologías’

¿Es posible “oler” una enfermedad?

Por Laura López Mascaraque (CSIC)*

Aunque el olfato es el más desconocido de los sentidos, es bien sabido que los olores pueden provocar reacciones emocionales, físicas y mentales. Así, algunos olores desagradables y penetrantes, denominados hedores, se han asociado históricamente tanto a la muerte como a la transmisión de enfermedades.

Antes de que se comenzaran a perfeccionar los medios de investigación médica a partir del siglo XVIII, el análisis del olor y color de la orina era el recurso más empleado en el diagnóstico. Desde la Edad Media existían ruedas de orina, divididas en 20 colores posibles, con categorías olfativas que marcaban analogías entre estos caracteres y la dolencia. Los pacientes llevaban la orina en frascos de cristal transparente y los médicos, además de observarla, basaban su diagnóstico también en su sabor. En 1764, el inglés Thomas Willis describió como muy dulce, similar a la miel, la orina de una persona diabética, por lo que a esta enfermedad se la denominó Diabetes mellitus, e incluso durante un tiempo se la llamó enfermedad de Willis.

Rueda de orina medieval que se utilizaba para la realización de uroscopias

Rueda de orina medieval que se utilizaba para la realización de uroscopias.

Hay otras anécdotas curiosas, como la “enfermedad del jarabe del arce”, una patología rara de origen metabólico así llamada por el olor dulzón de la orina de los pacientes, similar al de este alimento. En otros casos, la orina puede oler a pescado si se padece trimetilaminuria (o síndrome de olor a pescado), mientras que el olor a levadura o el olor a amoniaco se debe a la presencia de determinadas bacterias.

El cirujano francés Landré-Beauvais (1772-1840) recomendaba a los médicos memorizar los diferentes olores que exhalaban los cuerpos, tanto sanos como enfermos, a fin de crear una tabla olfativa de las enfermedades para elaborar un primer diagnóstico. En concreto, él y sus seguidores entendían que la halitosis es uno de los signos del empacho e intentaban descubrir determinadas enfermedades por las alteraciones del aliento. Pensaban que algunas patologías tenían un determinado olor, es decir, hacían emanar del cuerpo del paciente compuestos orgánicos volátiles específicos. No les faltaba razón, y aunque hoy día el uso del olfato en la práctica médica ha desaparecido, sabemos que el patrón aromático que desprende una persona enferma es distinto al de una sana:

  • Un aliento con olor afrutado se manifiesta a medida que el organismo elimina el exceso de acetona a través de la respiración, lo que puede ocurrir en caso de diabetes.
  • Un aliento que huele a pescado crudo se produce por un trastorno del hígado (insuficiencia hepática).
  • Un aliento con olor a vinagre es desprendido por algunos pacientes con esquizofrenia.
  • El olor similar al amoniaco (parecido a la orina) suele ser signo de insuficiencia renal o infección en la vejiga.

El análisis moderno del aliento empezó en la década de 1970, cuando el doble premio Nobel de Química (1954) y de la Paz (1962) Linus Pauling detectó por cromatografía de gases más de doscientos compuestos orgánicos volátiles, aunque en la actualidad sabemos que por nuestra boca podemos exhalar más de tres mil compuestos. Entre las pruebas de aliento más conocidas actualmente destacan la que se realiza para detectar la presencia de la bacteria Helicobacter pylori, responsable de úlceras e inflamación del estómago y de la gastritis; las pruebas de alcoholemia que identifican la presencia de etanol y acetaldehído; y las que detectan óxido nítrico como predictivo del asma infantil.

Del olfato canino a las narices electrónicas

Existen indicios de que perros bien entrenados pueden detectar tumores cancerígenos a partir del aliento y las heces. Distintos laboratorios intentan descubrir algún elemento común de los diferentes tumores y, dado que estos animales poseen una enorme capacidad de discriminación odorífera, incluso con olores extremadamente parecidos en su composición química, están siendo entrenados para que, oliendo la orina de los pacientes, puedan indicar o predecir la existencia de cáncer de próstata, pulmón y piel. Una vez se conozcan los tipos de compuestos segregados por las células tumorales que identifican los perros, se podrán desarrollar narices electrónicas para complementar la práctica clínica.

Las narices electrónicas utilizan sensores químicos de vapores (gases) para analizar algunos compuestos orgánicos volátiles que se exhalan en el aliento. Esperamos que, en un futuro próximo, esta identificación electrónica de los olores permita establecer biomarcadores que contribuyan al diagnóstico precoz de diferentes tipos de asma, diabetes, cáncer o enfermedades tropicales como hidatidosis, leishmaniasis y dengue.

De hecho, en la actualidad, se está estudiando la posibilidad de desarrollar narices electrónicas para ayudar en el diagnóstico de la enfermedad Covid-19 a través del aliento de una persona, a fin de detectar la presencia o no del SARS-CoV-2. El paso previo imprescindible será identificar los compuestos orgánicos volátiles propios de esta enfermedad. También, varios estudios a nivel internacional han reportado una asociación directa de la pérdida abrupta del olfato y/o gusto (anosmia/ageusia) como un síntoma temprano común de esta enfermedad. Por ello, varias asociaciones médicas, y en distintos países, han apuntado que la anosmia podría ser un buen marcador de presencia en casos asintomáticos. Además, parece que este síntoma también podría indicar que la infección por SARS-CoV-2 no será tan severa.

 

Laura López Mascaraque es investigadora del Instituto Cajal del CSIC y autora, junto con José Ramón Alonso, de la Universidad de Salamanca, del libro El olfato de la colección ¿Qué sabemos de? (CSIC-Catarata).

10 experimentos con luz para hacer en casa: crea un arcoíris en tu habitación, monta un microscopio casero o descubre cómo funciona la fibra óptica

Por Mar Gulis (CSIC)

Estos días de confinamiento muchas personas estamos aprovechando para, al fin, hacer limpieza y poner un poco de orden en casa, ese espacio en el que últimamente pasamos todo el tiempo. Llega el momento de deshacerse de cosas: CDs antiguos que aún conservamos a pesar de no tener dispositivos para ver su contenido, cajas o cartones que acumulábamos esperando darles un nuevo uso o, incluso, algún esmalte de uñas que se ha quedado un poco seco y ya no vamos a utilizar.

Pero, antes de desechar definitivamente estos y otros objetos, ¿por qué no darles una nueva oportunidad y pasar con ellos un rato entretenido? Eso es lo que te proponemos en este post: sacarles partido para descubrir de manera sencilla y amena los espectaculares efectos que tiene la luz.

Si hace unas semanas te animábamos a realizar experimentos relacionados con el agua y sus propiedades, esta vez te invitamos a jugar y aprender con la luz. Es tan fácil como descargar de manera gratuita diez fichas de experimentos de la web del CSIC y seguir sus sencillas instrucciones e ilustraciones, que te permitirán entender, y también enseñar a los más pequeños de la familia, conceptos y propiedades de la luz.

¿Qué puedes conseguir con estos experimentos? Cosas tan variadas como crear imágenes de tres dimensiones como si de un holograma se tratase, desmentir que el blanco sea un color y argumentarlo sin problemas o construir un espectroscopio casero con el que observar los espectros de colores que se dibujan con diferentes fuentes de luz.

Holograma creado durante una actividad de la Semana de la Ciencia del IOSA Student Chapter en el Instituto de Óptica del CSIC. Juan Aballe/Cultura Científica CSIC

Además, gracias a estos experimentos podrás conocer cómo funcionan tecnologías que nos facilitan mucho la vida –sobre todo en estos días de confinamiento–, como los láseres o la fibra óptica. También tendrás la oportunidad de fabricar un microscopio casero y observar con él una gota de agua ampliada hasta 10.000 veces para ver lo que se mueve en su interior. Seguramente te sorprenda lo que podemos encontrar en una muestra de saliva de nuestra boca y en el agua que beben nuestras mascotas, la que se filtra tras regar las plantas o la que podemos recoger de cualquier charco que se forme tras la lluvia; pero también podrás entender en qué consiste la convergencia de la luz.

Además de sacar ese lado curioso que todos llevamos dentro, estos experimentos te ayudarán también a entender y asimilar conceptos complejos, como la reflexión y refracción de la luz, la dispersión de los rayos de luz o el funcionamiento de las cámaras oscuras, que supusieron uno de los primeros pasos en el mundo de la fotografía.

¿Quién no se ha maravillado al observar un arcoíris o un hermoso atardecer? ¿Quién no se ha quedado hipnotizado viendo el baile de una vela o el crepitar del fuego de una chimenea? ¿Y qué decir cuando una pajita parece partida dentro de un vaso de agua? Si eres de los que siente curiosidad por estas cosas y quieres saber por qué ocurren, ponte manos a la obra y encuentra las respuestas que buscas.

Un universo de luz

Estas fichas de experimentos forman parte de los recursos elaborados por el Consejo Superior de Investigaciones Científicas (CSIC), con ayuda de la Fundación Española para la Ciencia y la Tecnología (FECYT), en el marco del Año internacional de la luz 2015. Si después de hacer los experimentos te quedas con ganas de saber más, siempre puedes descargar otros materiales elaborados durante esta conmemoración, como la exposición Un Universo de luz, que incluye impresionantes imágenes y textos divulgativos, y las unidades didácticas para diferentes niveles educativos que la acompañan.

Para conocer otros materiales que el CSIC pone a tu disposición para aprender ciencia desde casa de una manera divertida, pincha aquí.

Descubre las revoluciones matemáticas que cambiaron el mundo

Por Mar Gulis (CSIC)

Los ordenadores, la energía, la teoría del caos, el número pi… las matemáticas están por todas partes, y esto se debe a las contribuciones de grandes matemáticos y matemáticas que cambiaron el mundo. ¿Te gustaría conocer a algunas de estas figuras? Puedes hacerlo desde tu casa con la serie de animación ‘Revoluciones Matemáticas’, que en su segunda temporada presenta a cuatro personajes clave de esta disciplina: Emmy Noether, creadora del álgebra moderna; Leonhard Euler, precursor de la topología; Ada Lovelace, pionera de la programación; y Henri Poncairé, que sentó las bases de la teoría del caos.

Cada vídeo, de dos a tres minutos de duración, está acompañado por un taller de matemáticas recreativas en el que se abordan con mayor profundidad los conceptos presentados. Con ellos podrás entender las bases de la teoría del caos, fabricar una máquina para sumar o jugar con grafos de gominolas. Todos los materiales han sido elaborados por el Instituto de Ciencias Matemáticas, adscrito al CSIC y varias universidades madrileñas, y Divermates en el marco del proyecto Ciudad Ciencia. Aquí te contamos algunos de sus contenidos.

La “genio” alabada por Einstein

Comencemos por el álgebra moderna y por su creadora, Emmy Noether (1822-1935). Nadie esperaba a principios del siglo XX que esta matemática alemana fuera a convertirse en la artífice de la teoría que permitiría entender la conservación de la energía. Sin embargo, al morir, el mismísimo Albert Einsten llegó a definirla como “la genio creativa de las matemáticas más significativa que ha existido desde que comenzó la educación superior para las mujeres”.

Muchos sostienen que las matemáticas no volvieron a ser lo mismo después de Emmy Noether. Además de realizar grandes aportaciones al álgebra o la física, Noether fue la primera mujer en participar como ponente en un Congreso Internacional de Matemáticas. Lo hizo en 1932, mientras que la segunda, Karen K. Uhlenbeck, no lo haría hasta 1990. Durante el nazismo, Noether tuvo que trabajar en casa con sus estudiantes y finalmente abandonar Alemania para continuar su labor docente. Se refugió en Estados Unidos hasta su temprana muerte.

El ‘cíclope’ de los poliedros

¿Qué sabemos de cubos, prismas u octaedros? El matemático Leonhard Euler (1707-1783) con su fórmula para poliedros introdujo ideas precursoras de la topología. Entre otras cosas, logró establecer un patrón común para los poliedros convexos con independencia del número de caras, vértices o aristas.

A Euler le gustaron las matemáticas desde pequeño y realizó aportaciones fundamentales a la geometría analítica moderna, la trigonometría y la teoría de los números. Desarrolló el concepto de función matemática y, para ello, definió el número e (o número de Euler), la base de la función exponencial. Además, hablando de números, fue quien popularizó el número π (‘pi’ o 3,141592…). Se le conocía como el ‘cíclope matemático’ ya que perdió la visión de un ojo a los 31 años. 17 años antes de morir se quedó totalmente ciego, pero esto tampoco frenó su carrera ni sus innumerables aportaciones en diferentes campos, que llegaron a publicarse hasta cincuenta años después de su muerte.

La primera programadora

El desarrollo de nuestros ordenadores modernos tiene su origen en Ada Lovelace (1815-1852), pionera de la programación y autora del primer programa de ordenador de la historia. Apasionada de las matemáticas desde pequeña, Ada Byron se codeaba con intelectuales y celebridades como Dickens, Faraday o Darwin. En una de esas reuniones conoció a Charle Babbage, inventor de la máquina diferencial (nuestra calculadora), y con quien trabajó en la máquina analítica. En sus notas a los trabajos de Babbage, Lovelace incluyó una serie de instrucciones, consideradas el germen de la programación y los algoritmos. Para ella, “las maquinas podían ir más allá de los simples cálculos numéricos”, cosa que demostró.

A pesar de su muerte prematura a los 36 años y de que se ha tardado más de cien años en reconocer su relevancia, hoy en día es todo un referente femenino en el campo de la tecnología. Incluso cuenta actualmente con un día propio: el segundo martes de octubre se celebra el ‘Ada Lovelace Day’ para impulsar la participación de las mujeres en la ciencia.

El ‘abuelo’ de la teoría del caos

Y, para terminar, volvemos a la topología moderna de la mano de su fundador, Henri Poincaré (1854-1912), precursor de la teoría del caos. En el instituto, el francés destacó en todas las asignaturas, pero especialmente en matemáticas, como también lo hizo a lo largo de su vida. Fue nombrado miembro de la Academia de Ciencias de Francia y llegó a ser presidente de la institución en 1906.

Poincaré basaba sus resultados en principios básicos y supo de buena tinta que de los errores se aprende. Aunque llegó a publicar alrededor de 500 artículos, tuvo que destruir uno cuando ya estaba en imprenta: el artículo contenía una resolución errónea del famoso problema de los tres cuerpos (trayectoria de tres objetos atraídos por la fuerza de la gravedad). Aunque no pudo solucionar el problema, sus observaciones fueron los primeros pasos de la teoría del caos, capaz de dar respuesta a problemas antes intratables en ámbitos como la economía, la biología o la meteorología.

 

Únete a la ciencia ciudadana: pon a tu ordenador a cribar fármacos contra el coronavirus

Por Mar Gulis (CSIC)

Colaborar desde casa en la búsqueda de medicamentos que frenen el coronavirus ya es posible gracias a un nuevo proyecto de ciencia ciudadana impulsado por el CSIC y la Fundación Ibercivis. Basta con tener un ordenador, conexión a internet y unirse, instalando un programa, a la red de computación distribuida de Ibercivis. A partir de ese momento, cada vez que se active el salvapantallas, tu ordenador se pondrá a hacer cálculos que servirán para conocer si fármacos que se están utilizando para tratar otras enfermedades víricas, como el ébola, la infección por VIH (causante del sida), la hepatitis B o la gripe, logran inhibir una proteína clave en la reproducción del virus SARS-CoV-2. Si quieres saber más, aquí te damos algunas claves del proyecto, que responde a las siglas ‘COVID-PHYM’.

Ciencia ciudadana

¿Por qué probar compuestos que ya existen?

Pues para ganar tiempo en el control de la pandemia. Como los medicamentos aprobados ya han demostrado ser suficientemente seguros para nuestra salud, podrían estar disponibles para tratar a pacientes con COVID-19 mucho antes que un fármaco de nueva creación.

En cualquier caso, aunque un medicamento esté aprobado, hay que demostrar que es eficaz contra este coronavirus. Los ensayos clínicos con personas son muy costosos en términos económicos, de tiempo y de esfuerzo para los pacientes y el sistema sanitario. Así que, antes de hacer pruebas de este tipo, conviene utilizar técnicas informáticas para seleccionar buenos candidatos, es decir, fármacos que tengan realmente oportunidades de funcionar.

¿Cuál es la diana terapéutica?

La proteína que se quiere inhibir se conoce como ARN polimerasa dependiente de ARN’ y ha sido escogida porque juega un papel central en la replicación y transcripción del material genético del virus. Si se neutraliza, se puede frenar la propagación del virus en el organismo y ayudar en la curación.

¿Qué pintan los ordenadores personales en todo esto?

Como explica Javier Martínez de Salazar, investigador del CSIC en el Instituto de Estructura de la Materia y líder del grupo que está detrás de esta iniciativa (Biophym), buscar con técnicas informáticas un compuesto capaz de neutralizar una proteína concreta es como probar un enorme número de llaves para abrir una cerradura. “Como en el caso de una llave y una cerradura, hay que encontrar el fármaco que mejor se adapte a la estructura de la zona de la proteína en la que esta realiza su función; el problema es que los modelos basados en la química-física que nos permiten hacerlo implican realizar cientos de miles de cálculos para medir la fuerza de la interacción de cada una de las posibles asociaciones entre el fármaco y la proteína”, advierte Javier Ramos Díaz, uno de los investigadores del grupo.

Un ordenador convencional tardaría varios años en ejecutar los cálculos necesarios para llevar a cabo la investigación. Por eso, el proyecto necesita la colaboración ciudadana: es decir, muchos ordenadores de personas voluntarias que reciban y procesen pequeños paquetes de trabajo. De este modo será posible conseguir una potencia de cálculo similar a la de un supercomputador y realizar todas las tareas previstas.

Coronavirus y proteina diana

Principal: imagen al microscopio electrónico del virus SARS-CoV-2 . Arriba a la derecha: estructura de la ARN-Polimerasa del SARS-CoV-2. / Center for Disease Control/epa/dpa y PDB Id: 6M71.

Realmente, ¿es eficaz distribuir el trabajo en muchos ordenadores?

Sí. Esta forma de trabajar se conoce como computación distribuida, y lleva cerca de 20 años ayudando con éxito a llevar a cabo proyectos científicos que demandan una gran capacidad de procesamiento. Uno de los ejemplos más vistosos es el proyecto SETI, que ha conseguido que millones de voluntarios y voluntarias contribuyan con sus ordenadores a analizar señales de radio procedentes del espacio en busca de indicios de vida extraterrestre. Para facilitar su puesta en marcha, la Universidad de Berkeley desarrolló la plataforma de computación distribuida BOINC, un programa de código abierto que actualmente utilizan numerosos centros de investigación de todo el mundo en áreas tan diversas como la física, las matemáticas, la climatología o la astrofísica.

En España, uno de los principales impulsores de este paradigma de computación ha sido Ibercivis. Aunque actualmente esta fundación se dedica a promover todo tipo de iniciativas de ciencia ciudadana, cuenta con una infraestructura de computación distribuida basada en BOINC con más de 20.000 voluntarios y voluntarias que ceden la potencia de cálculo de sus ordenadores y que ha dado soporte a más de 15 proyectos de investigación.

¿Qué hay que hacer para colaborar?

Solo necesitas descargar el programa BOINC y unirte a ‘Ibercivis BOINC’ en el momento de la instalación. Al hacerlo podrás elegir fácilmente cuándo y cómo participar. Si no quieres que el rendimiento del ordenador se vea afectado mientras lo usas, deja activada la configuración por defecto para que el programa solo se ejecute en los tiempos de pausa, cuando salta el salvapantallas.

Ciencia online: más de 100 conferencias de divulgación del CSIC para ver en casa

Por Mar Gulis (CSIC)

¿Por qué el cambio climático es un problema urgente? ¿De qué está hecho el universo? ¿Cómo se extinguieron los Neandertales? ¿Tiene la vida un origen extraterrestre? Estos días de confinamiento suponen una excelente oportunidad para saciar tu curiosidad científica. Las más de 100 charlas para todos los públicos que el Consejo Superior de Investigaciones Científicas (CSIC) ofrece en sus canales online te ayudarán a buscar respuestas a estas y otras muchas preguntas. Además, te permitirán conocer los últimos avances de la ciencia por boca de investigadores e investigadoras que trabajan en una gran variedad de campos, como la demografía, la biología, la geología o la física teórica.

Fernando Valladares

Fernando Valladares, investigador del Museo Nacional de Ciencias Naturales (MNCN-CSIC), en una de sus charlas sobre cambio climático.

Del universo a las partículas elementales

Si lo que te interesa son los meteoritos, las estrellas o la vida extraterrestre, puedes asomarte al impresionante catálogo de conferencias del Ciclo Lucas Lara, organizado por el Instituto de Astrofísica de Andalucía (IAA-CSIC). En ellas no solo oirás hablar de astronomía, sino también de asuntos como la inteligencia artificial, el dolor o los mosaicos de La Alhambra.

En caso de que te vaya más la física ‘pura y dura’, las conferencias del Instituto de Física Teórica (IFT-CSIC/UAM) no te defraudarán. El bosón de Higgs y el misterio de la masa, el fin del espacio-tiempo o las misteriosas propiedades de los neutrinos son solo algunas de las muchísimas cuestiones tratadas en ellas. De todas formas, la física del CSIC no se agota aquí. En esta misma área del conocimiento, tampoco puedes perderte las charlas del Instituto de Física Fundamental (IFF-CSIC), que se ocupan de temas como la antimateria, los mitos de la física cuántica o la computación cuántica.

La investigadora Laura López-Mascaraque, del Instituto Cajal (IC-CSIC), habla de la ruta de los aromas de la nariz al cerebro en el ciclo ‘¿Qué sabemos de?’.

Para saber de todo

Para quienes no tengan tan definida una temática de interés, el ciclo Jam Science ofrece la oportunidad de ver a investigadores e investigadores de perfil muy diverso hablando de su trabajo en un ambiente muy distendido: nada más y nada menos que un bar. Organizada por la científica del CSIC Carmen Fernández, esta iniciativa ha abordado cuestiones como el enigma de los Neandertales, el posible origen extraterrestre de la vida en nuestro planeta, la exploración antártica o la importancia de las vacunas. Los vídeos de estas charlas están disponibles en los canales de Youtube DC SciCommAgora Mundi Ciencia.

Otro ciclo de contenido científico amplio que te permitirá aumentar tus conocimientos son las Friday Talks. ‘Música y neurociencia’, ‘Un nuevo océano en la era del plástico’ o ‘Gatos y tigres… ¿bajo el mar?’ son títulos de algunas de las intervenciones recogidas por esta propuesta del Instituto de Ciencias del Mar (ICM-CSIC).

Y aún hay más. ¿Qué somos capaces de hacer editando genes? ¿Cómo sabe el cerebro lo que la nariz huele? ¿Se va a convertir la Comunidad Valenciana en un desierto? Estos interrogantes sirven de partida a tres de las conferencias del ciclo ‘¿Qué sabemos de?’ con el que la Delegación del CSIC en Valencia te propone indagar en las claves científicas del bienestar.

Los Neandertales son el eje de esta charla de Antonio Rosas, del MNCN-CSIC, en el ciclo Jam Science.

Cambio climático y geología

Volviendo a temáticas más específicas, el investigador del Museo Nacional de Ciencias Naturales (MNCN-CSIC) Fernando Valladares te invita a reflexionar sobre el cambio climático y los desafíos que plantea en su serie de vídeos La salud de la humanidad, en la que intercala conferencias con varias piezas informativas de elaboración propia. Y en una línea similar, Daniel García-Castellanos, del Instituto de Ciencias de la Tierra Jaume Almera (ICTJA-CSIC), comparte su pasión por la geología en sus charlas sobre megainundaciones, tectónica de placas y erosión del suelo.

Y para terminar, puedes darte una vuelta por los ciclos Demografía hoy y ¿Qué sabemos del arte rupestre?, así como los seminarios de la Estación Biológica de Doñana. Estos vídeos, de contenido algo más especializado que los anteriores, te permitirán profundizar en las cuestiones que tratan.

Como ves, tienes muchas conferencias para elegir. ¿Por cuál quieres empezar?

Si quieres conocer más recursos del CSIC para aprender ciencia desde casa, pincha aquí.

Radio cognitiva, la tecnología que hará más eficientes nuestros móviles

José M. de la Rosa (CSIC)*

Nos encontramos en los albores de la mayor revolución tecnológica que ha conocido la humanidad. Las primeras décadas del siglo XXI serán recordadas por la expansión de las tecnologías de la información y las comunicaciones (TIC) y de dispositivos como los teléfonos móviles, las tablets y los ordenadores personales. Gracias a ellos podemos acceder a la información a través de internet de una forma ubicua y con velocidades de conexión cada vez mayores.

Este desarrollo sin precedentes se debe en gran medida a la microelectrónica y los chips. Estos microingenios han evolucionado en los últimos 50 años de manera exponencial según la ley de Moore, y contienen miles de componentes en unos pocos nanómetros. Una de las consecuencias de este escalado es la integración de la microelectrónica en objetos de uso cotidiano, que ha dado lugar al denominado Internet de las cosas, IoT por sus siglas en inglés.

La computación neuronal artificial ya se ha comenzado a utilizar en algunos dispositivos comerciales

IoT comprende la interconexión de miles de millones de entidades ciberfísicas con una estructura híbrida software/hardware capaces de comunicarse entre ellas sin necesidad de intervención humana. La educación a través de plataformas de enseñanza virtual, la teleasistencia sanitaria personalizada, las operaciones bursátiles automatizadas, las redes energéticas inteligentes, la robotización en procesos industriales y redes de transporte, o los vehículos autónomos, son solo algunos ejemplos del sinfín de aplicaciones de IoT, cada vez más presente en nuestras vidas.

Para una implementación adecuada del Internet de las cosas se requiere el desarrollo de dispositivos electrónicos seguros y eficientes, tanto en coste como en consumo de energía. Tales dispositivos deben estar dotados de una cierta inteligencia y autonomía para poder tomar decisiones en tiempo real y ser robustos frente a las condiciones del medio en que se van a desenvolver. Y para que esto ocurra es necesario desarrollar tecnologías que hagan viable la construcción de un puente sólido entre el medio físico (real) y su versión virtualizada (digital).

Del 1G al 5G

Microfotografía de un chip del Instituto de Microelectrónica de Sevilla/ IMSE (CSIC-US)

Una de esas tecnologías para ‘construir puentes’ son las comunicaciones móviles. Hace poco más de un par de décadas, los terminales móviles eran simplemente teléfonos inalámbricos, cuya única funcionalidad era la transmisión de voz (primera generación o 1G), a la que se añadió posteriormente la transmisión de SMS en la segunda generación (2G), con velocidades de transmisión de unos pocos de kilobits por segundo. Con el desarrollo del 3G, los móviles pasaron a ofrecer servicios multimedia y conexión a internet de banda ancha con velocidades de acceso de varios Megabits/s (Mb/s). En la actualidad, la mayoría de las redes operan con terminales móviles de cuarta generación (4G), que permiten alcanzar velocidades de hasta centenares de Mb/s, y ya se empieza a implantar la red 5G, con velocidades de Gigabits/s (Gb/s).

Sin embargo, las comunicaciones móviles tienen un problema: las bandas del espectro electromagnético por donde se propagan las ondas radioeléctricas con la información transmitida por muchos aparatos electrónicos se pueden saturar y convertirse en un cuello de botella para la implementación práctica de IoT. Esto ha motivado la investigación y desarrollo de tecnologías para hacer un uso más eficiente y sostenible del espectro electromagnético. Una de ellas es la denominada radio cognitiva o CR por sus siglas en inglés.

En esencia, la radio cognitiva se basa en la convergencia de tecnologías de comunicación y de computación que permiten ajustar de forma autónoma y transparente para el usuario los parámetros de transmisión y recepción de los dispositivos electrónicos en función de la información que detectan del entorno radioeléctrico donde se utilizan. Para ello, dichos dispositivos han de incluir sistemas de comunicaciones en los que la digitalización (transformación digital de las señales que portan la información) se realice lo más cerca posible de la antena (tanto en el receptor como en el transmisor). Así, el procesamiento de la información se hace mediante software y puede ejecutarse en un microprocesador digital. Esto aumenta significativamente el grado de programabilidad y adaptabilidad de los terminales móviles a diferentes modos o estándares de comunicación.

Inteligencia artificial en nuestros móviles

Además de un sistema de comunicación basado en software, la radio cognitiva requiere del uso de algoritmos de inteligencia artificial (IA) para identificar de forma automática la banda óptima del espectro electromagnético en la que se pueda transmitir mejor la información. Con la inteligencia artificial se maximiza la cobertura, se minimiza el efecto de las interferencias y se incrementa la durabilidad y la vida útil de la batería, entre otras muchas ventajas.

Sin embargo, los microprocesadores empleados en dispositivos convencionales resultan ineficientes para realizar las tareas de inteligencia artificial requeridas en sistemas de radio cognitiva. Al llevarlas a cabo, estos dispositivos consumen mucha energía y reducen la durabilidad de la batería. Esto ha motivado la investigación de alternativas como los procesadores neuromórficos, los cuales realizan el tratamiento de la información inspirándose en el cerebro humano.

Esquema de funcionamiento de un procesador neuromórfico/ José M. de la Rosa

Hay tareas computacionales, como el cálculo, en las que los procesadores convencionales son más eficientes que el cerebro, pero otras, como el reconocimiento de patrones, son ejecutadas mejor por los sistemas neuronales. Es lo que ocurre, por ejemplo, en el reconocimiento facial, que el ojo y el cerebro humanos realizan de forma mucho más eficaz en términos de velocidad, precisión y consumo energético. En el caso de la radio cognitiva, los procesadores neuromórficos deben encargarse de reconocer patrones de señales radioeléctricas, que son las que transmiten la información en la telefonía móvil.

De hecho, la computación neuronal artificial ya se ha comenzado a utilizar en algunos dispositivos comerciales. Por ejemplo, la compañía Apple incorpora módulos neuronales de aprendizaje automático (o Machine learning) en sus procesadores más recientes incluidos en los últimos modelos de iPhone. Estos dispositivos contienen 8.500 millones de transistores integrados en una tecnología de 7 nanómetros. Otras compañías como Intel y Qualcom han desarrollado procesadores neuromórficos fabricados también en tecnologías nanométricas.

Aunque aún se está lejos de desarrollar ordenadores completamente basados en procesamiento neuronal, hay un interés creciente por integrar la inteligencia artificial en el hardware de los dispositivos. Esta es una de las líneas de investigación en las que se trabaja en el Instituto de Microelectrónica de Sevilla (CSIC-US). En un futuro, se espera poder incorporar procesamiento neuromórfico en chips de comunicaciones que hagan posible la realización de dispositivos IoT/5G más eficientes gracias al uso de la radio cognitiva.

*José M. de la Rosa es investigador del Instituto de Microelectrónica de Sevilla, centro mixto del CSIC y la Universidad de Sevilla.

¿Sabías que la herrumbre (si es muy pequeña) tiene muchos usos médicos?

Por Fernando Herranz (CSIC)*

El tamaño sí que importa y lo cierto es que la herrumbre, el hierro oxidado que puede terminar apareciendo en piezas metálicas al estar tiempo sometidas a las condiciones atmosféricas, deja de ser una molestia si la empleamos a escala nanométrica. No solo eso, sino que cuando su tamaño es muy pequeño –justo antes de llegar al mundo de los átomos y las moléculas– algunos compuestos de la herrumbre –hidróxidos y óxidos de hierro– pueden utilizarse para diagnosticar enfermedades o tratar el cáncer.

Herrumbre

No hay duda de que a escala macroscópica la herrumbre constituye un serio problema, tanto a nivel estético –cuando afecta a superficies pintadas– como estructural ­–ya que, si penetra en profundidad, el metal presenta una resistencia mecánica mucho menor–. Esto explica la variedad de productos que se venden para evitar la formación de herrumbre o facilitar su eliminación.

Sin embargo, compuestos como la magnetita, uno de los óxidos más presentes en la herrumbre, tienen numerosas aplicaciones en el ámbito de la nanotecnología. Esta rama de la ciencia consiste en la producción y manipulación de materiales a escala nanométrica, es decir, que tienen al menos una dimensión de alrededor de 100 nanómetros (nm). A esta diminuta escala, empezamos a ver cosas muy curiosas que hacen que el óxido de hierro presente nuevas propiedades.

Pero, ¿qué ocurre cuando un material como la magnetita se forma a escala nanométrica para que sea tan distinto a cuando nos lo encontramos en el día a día? La magnetita macroscópica es fuertemente magnética, un imán, para entendernos. Cuando ese material se tiene en, por ejemplo, una esfera (una nanopartícula) de un diámetro de 10 nm, pasa a mostrar una propiedad llamada superparamagnetismo. De forma muy simple; todos los ‘pequeños imanes’ que constituyen el material están orientados en el mismo sentido dentro de la esfera. Debido a su tamaño, a temperatura ambiente, estas nanopartículas en agua no presentan magnetismo ya que cada esfera está dando vueltas al azar, sin una orientación definida. Sin embargo, cuando se acerca un imán, todas las nanopartículas se orientan y producen una respuesta magnética muy intensa. Esta propiedad de poder ‘enceder y apagar’ su magnetismo tiene múltiples aplicaciones.

Cabeza resonancia magnética

Imagen de una cabeza humana obtenida por resonancia magnética.

Por ejemplo, en medicina. Las nanopartículas basadas en magnetita, o materiales relacionados como la maghemita, se usan en imagen médica, en técnicas como la imagen por resonancia magnética o la imagen de partículas magnéticas. En esta aplicación las nanopartículas se dirigen, una vez inyectadas, a la enfermedad que se quiere diagnosticar y, una vez allí, es posible detectarlas por la señal que producen. En la imagen por resonancia magnética lo que hacen las nanopartículas es modificar el comportamiento magnético de las moléculas de agua de nuestros tejidos. Los dos hidrógenos de la molécula de agua (H2O) son los responsables de la señal en esa técnica de imagen. Las nanopartículas de magnetita modifican la señal que se obtiene de esos hidrógenos; de esa forma permiten saber dónde se han acumulado las nanopartículas y, por tanto, dónde se encuentra la enfermedad. Otra ventaja de las nanopartículas para imagen por resonancia es que, según las condiciones en las que se produzcan, pueden hacer que la señal sea más brillante o más oscura, lo que ayuda al diagnóstico de distintas enfermedades.

Brújulas vivientes

El comportamiento magnético de estas nanopartículas también explica otra de sus aplicaciones más interesantes en el tratamiento del cáncer. La técnica se llama ‘hipertermia magnética’ y consiste en acumular las nanopartículas en el tumor para, una vez allí, aplicar un campo magnético desde el exterior y producir un calentamiento de las células tumorales que acabe con ellas. Dicho calentamiento es posible gracias a las propiedades magnéticas de este nanomaterial.

Cadena de magnetosomas en el interior de la bacteria

Cadena de magnetosomas en el interior de la bacteria. / Alicia Muela; Estibaliz Etxebarria (UPV/EHU).

No solo el ser humano se ha dado cuenta de la utilidad de las nanopartículas de magnetita: ¡las bacterias también lo saben! Algunos de estos microorganismos producen en su interior pequeñas nanopartículas de magnetita (y también algunos otros compuestos relacionados) que se disponen de forma alineada a lo largo de la bacteria; son los llamados magnetosomas. Pero, ¿qué ganan con esto las bacterias? La respuesta es la magnetorrecepción: la capacidad de detectar las líneas del campo magnético terrestre y, de esa manera, orientarse. De hecho, los microorganismos que producen magnetosomas en el hemisferio norte se ven atraídos por el sur magnético, mientras que aquellos en el hemisferio sur se ven atraídos por el norte magnético (es decir, se sienten atraídos por el imán más potente que ‘sientan’). Las bacterias se convierten en minúsculas brújulas vivientes gracias a la nanotecnología.

En resumen, en nanotecnología, el tamaño importa, y mucho. Un mismo material que a escala macroscópica presenta pocas propiedades interesantes, cambia completamente cuando se presenta en la escala de los nanómetros.

 

* Fernando Herranz dirige el Grupo de Nanomedicina del Instituto de Química Médica del CSIC y colaborador habitual del blog DCIENCIA.

¿Qué es la nanomedicina?

Por Fernando Herranz (CSIC)*

La nanomedicina consiste nada más (y nada menos) que en la aplicación de la nanotecnología para el diagnóstico y tratamiento de distintas enfermedades. Se trata de una rama de la medicina cuyo uso se está extendiendo a prácticamente todos los ámbitos de la salud, como la lucha contra el cáncer, las patologías cardiovasculares y las enfermedades raras; el desarrollo de nuevos antibióticos; o, como veremos, la mayoría de los test de embarazo que se realizan en la actualidad.

Spaghetti celulares

Células de tejido conectivo sobre material biomédico. / Álvaro A. González y Salvador D. Aznar (FOTCIENCIA12)

Pero, empecemos por el principio: ¿qué es la nanotecnología? Esta se puede definir como la producción, manipulación y estudio de la materia con, al menos, un tamaño en el rango de los 100 nanómetros (nm). Para hacernos una idea, el diámetro medio de un cabello humano es de unos 70.000 nanómetros. Estamos hablando por tanto de lo muy muy pequeño: la escala más pequeña antes de entrar en el mundo de las moléculas y los átomos.

¿Qué tiene de especial esa escala? ¿Por qué no hablamos simplemente de “micromedicina”? La clave está en que cuando confinamos la materia en la escala nanométrica los objetos se comportan de forma muy diferente a cómo lo hacen a escalas de tamaño mayores, debido a que en el nanomundo las propiedades fisicoquímicas de los materiales varían según su tamaño. Lo que podemos hacer con una partícula de dos nanómetros de un material es totalmente distinto a lo que podemos hacer con una partícula de 10 nanómetros del mismo material.

Estamos habituados a pensar que los compuestos químicos, como los principios activos de los medicamentos, muestran propiedades distintas cuando cambian su composición. Para explicarlo con un ejemplo muy simple: en el mundo macroscópico, si los compuestos químicos fueran fruta y quisiéramos obtener distintos sabores, lo haríamos utilizando distintas frutas: naranja para el sabor naranja, manzana para el sabor manzana, etc. De igual manera, el paracetamol sirve para el dolor, pero el antibiótico para la infección bacteriana. Sin embargo, en la escala nanométrica, el sabor no solo depende de la composición de un compuesto, sino también de su tamaño: una naranja de tres nanómetros de radio sabría completamente diferente a una naranja de ocho nanómetros de radio.

 

Nanopartículas de oro en los test de embarazo

Fijémonos por ejemplo en las nanopartículas de oro, uno de los materiales más empleados en nanomedicina. Cuando hablamos de nanomedicina, una de las herramientas más empleadas son precisamente las nanopartículas; esferas con un tamaño nanométrico.

A diferencia del oro que estamos acostumbrados a ver en el día a día, las nanopartículas de oro presentan una gama amplia de colores muy vivos que varían del rojo al morado según su tamaño. En esta variedad de colores radica la clave de una de sus aplicaciones: su uso como sensores. Un sensor se puede definir, de forma muy resumida, como un compuesto que da una señal y que, en presencia de aquello que queremos detectar, cambia dicha señal.

En el caso de las nanopartículas de oro, lo importante es que cuando se unen al compuesto que se trata de detectar, su superficie se modifica, cambian de tamaño y, por tanto, de color. Ese cambio puede ser observado a simple vista, lo que permite la identificación del compuesto en cuestión.

Nanopartículas de oro de tamaños diferentes dispersas en agua.

Nanopartículas de oro de tamaños diferentes dispersas en agua.

Hay multitud de usos médicos de las nanotpartículas de oro basados en su capacidad de cambiar de color, pero quizás el test de embarazo es el más conocido. En ese caso, la típica banda que aparece si el resultado es positivo, se debe al cambio de tamaño de las nanopartículas de oro que se produce solo si se unen a la hormona gonadotropina coriónica humana, cuya presencia determina si hay un embarazo.

Como en toda nueva tecnología, el tiempo dirá cuáles de los nuevos desarrollos se convierten en nuevas terapias al alcance de todos y cuáles se quedarán por el camino. Al menos, por el momento, podemos olvidarnos de las típicas imágenes de ciencia ficción donde pequeños robots circulan por la sangre haciendo distintas labores. Lo que está claro es que la nanomedicina ha venido para quedarse y que su uso abre un campo inmenso de posibles y revolucionarias aplicaciones destinadas a mejorar el diagnóstico y tratamiento de algunas de las enfermedades más difíciles de diagnosticar y tratar en la actualidad.

 

* Fernando Herranz dirige el Grupo de Nanomedicina del Instituto de Química Médica del CSIC y colaborador habitual del blog DCIENCIA.

¿Para qué sirve un láser?

Por José Vicente García Ramos (CSIC)*

Cuando se inventó, en 1960, el láser no servía para nada. De hecho, en aquellos tiempos algunos científicos se referían a él como “una solución en busca de problema”. Entonces, ¿para qué lo inventaron? Parece que querían probar, experimentalmente, que el mecanismo de amplificación de la luz por emisión estimulada, predicho por Einstein en 1917 y demostrado con microondas en 1954, podía extenderse a la luz visible.

Hoy, sin embargo, la situación es muy diferente y el láser ha encontrado tantas aplicaciones que nos resulta casi imposible enumerarlas. Las tres características que diferencian la luz de un láser de la luz del Sol o de la generada por una bombilla son que, en el caso del láser, se trata de un haz de luz monodireccional, monocromático y coherente.

Hoy día los láseres tienen numerosas y variadas aplicaciones. / Wikimedia Commons

Hoy día los láseres tienen numerosas y variadas aplicaciones. / Wikimedia Commons

Cualquier láser contiene al menos tres elementos fundamentales: un medio activo, un sistema de bombeo y una cavidad resonante. El medio activo es el material (sólido, líquido o gaseoso) que emite la luz. Para que este medio activo emita luz hay que excitarlo de alguna manera, del mismo modo que el filamento de una bombilla necesita una corriente eléctrica que pase por él. En el caso de un láser se trata del sistema de bombeo, que puede consistir en otro láser, una lámpara convencional o una corriente o descarga eléctrica. El medio activo se coloca entre dos espejos que forman una cavidad resonante donde la luz rebota entre ellos y ayuda a la amplificación, como lo que ocurre en la caja de resonancia de una guitarra que amplifica las ondas acústicas. Uno de los espejos es semirreflectante, por lo que parte de la luz amplificada sale de la cavidad resonante en forma de haz.

El volumen de información que transmite una onda electromagnética depende de su frecuencia; en este sentido, la luz de un rayo láser resulta idónea para la transmisión de señales. Por eso, entre sus aplicaciones más usadas está la lectura de discos compactos, la fabricación de circuitos integrados y la lectura de códigos de barras. En el ámbito de la medicina, la tecnología láser se aplica a los bisturís cauterizantes, ya que permite realizar cortes muy finos de gran precisión, evitar cualquier riesgo de contagio y cauterizar de manera inmediata, alejando el peligro de hemorragias.

Fibra óptica, impresoras o espionaje

Sin embargo, muchas de las aplicaciones del láser no dependen tanto de su capacidad para generar un rayo de luz como del hecho de que representa una concentración extremadamente intensa de energía. Basándonos en esta propiedad, podemos enumerar tres aplicaciones sumamente importantes en el terreno de la óptica. Una de ellas son las telecomunicaciones mediante fibra óptica. En este caso, las señales eléctricas que hasta hace poco tiempo se desplazaban a través de conductores metálicos han sido reemplazadas por pulsos ópticos que se transmiten a través de fibra de vidrio del grosor de un cabello. Como potente fuente de luz, el láser confiere a estas fibras una elevada capacidad de transmisión.

Espectáculo de luces con láseres. / kpr2 - Pixabay

Espectáculo de luces con láseres. / kpr2 – Pixabay

La segunda aplicación óptica importante está en la holografía, que es una técnica para crear imágenes tridimensionales, inventada en 1947 por el ingeniero eléctrico húngaro Dennis Gabor (1900-1979), que obtuvo por ello el Premio Nobel en 1971. Esta técnica se basa en la interferencia entre dos rayos de luz. Uno de los aspectos básicos del sistema es la necesidad de utilizar luz coherente, y cuando se inventó solo se disponía de fuentes relativamente débiles de este tipo de luz. La llegada del láser transformó la situación, porque la generación de una poderosa fuente de luz coherente es su esencia. Con el tiempo, la holografía llegó a hacerse muy familiar en una variedad de formas, como en la marca de seguridad de las tarjetas de crédito y en publicidad.

La tercera aplicación importante está en las impresoras de los ordenadores, donde, controlando un haz láser, se dibujan las palabras que se quieren imprimir.

También podemos destacar las aplicaciones que dependen de su capacidad para concentrar una gran cantidad de energía sobre una superficie muy pequeña (alrededor de un millón de vatios por centímetro cuadrado) durante un periodo de tiempo extremadamente breve. Algunas de las más importantes aplicaciones industriales de los láseres son fruto de esta capacidad: la perforación, la soldadura y el corte de distintos materiales.

Además, puesto que un rayo láser es muy fino y prácticamente no sufre divergencias, se puede usar para medir largas distancias con gran precisión. La técnica (semejante a la del radar) consiste en captar el rayo reflejado por el objeto distante y medir el tiempo transcurrido desde el envío de la señal hasta la recepción de su reflejo. Conociendo la velocidad de la luz, resulta fácil calcular la distancia. En los años setenta, este método se empleó para determinar con precisión la distancia de la Luna, utilizando los reflectores que habían instalado allí los astronautas norteamericanos.

Pero eso no es todo, también se han empleado láseres hasta para temas relacionados con el espionaje. En 1968 se descubrió que un láser puede detectar perfectamente desde el exterior las vibraciones del cristal de las ventanas producidas por las conversaciones en el interior de una casa. Vemos cómo el láser, que en un principio era como “un invento en busca de un empleo”, tiene en la actualidad un sinfín de variadas aplicaciones.

 

* José Vicente García Ramos es Vocal del Comité de Ética del CSIC y autor del libro Las moléculas: cuando la luz te ayuda a vibrar (Editorial CSIC-Los Libros de la Catarata). Hasta su jubilación en 2016 fue investigador en el Instituto de Estructura de la Materia del CSIC.

Cómo nos puede ayudar la ciencia frente al despilfarro de alimentos

Por Ana Mª Veses (CSIC)*

El otro día fui a un restaurante con mi familia. En la mesa de al lado, un niño se puso a protestar porque no le gustaba la comida que le habían servido; inmediatamente, un camarero acudió para retirarle el plato.

Esta anécdota contrasta con la realidad que nos muestra la Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO): mientras cerca de 800 millones de personas sufren desnutrición en el mundo, según datos de 2017, aproximadamente un tercio de la producción mundial de alimentos se pierde o se desperdicia.

Además, este despilfarro produce graves consecuencias para el medioambiente. Tirar comida supone una notable pérdida de recursos naturales (tierra, agua y energía) y un incremento de emisiones de gases de efecto invernadero, para producir unos alimentos que finalmente nadie consumirá. Si ‘dilapidar comida’ fuera un país, sería el tercero con más emisiones de dióxido de carbono, detrás de China y EEUU. Asimismo, los alimentos que producimos pero luego no comemos consumen un volumen de agua equivalente al caudal anual del río Volga.

¿Por qué pasa esto? ¿Alguien se ha planteado hacer algo al respecto?

En los países industrializados principalmente se desperdician tantos alimentos porque la producción excede a la demanda, porque los supermercados imponen altos estándares estéticos a los productos frescos y descartan aquellos que son más feos, y porque se piensa que tirar es más cómodo que reutilizar.

En cambio, en países en vías de desarrollo, según indican estudios de la FAO, el desperdicio de alimentos por parte de los consumidores es mínimo. En estos países, sin embargo, son los inadecuados sistemas comerciales y las escasas y deficientes instalaciones de almacenamiento y procesamiento los que provocan grandes pérdidas de alimentos.

Desde las instituciones públicas se están desarrollando diversas estrategias y planes de actuación, a distintos niveles, para controlar y reducir estos desperdicios. Se han puesto en marcha planes de sensibilización cuya finalidad es modificar hábitos y modelos de consumo en las comunidades, como la difusión de buenas prácticas de conservación de productos en los hogares a través de los medios de comunicación o aplicaciones móviles para la sensibilización e innovación social o para la redistribución de excedentes.

Ciencia y tecnología para desperdiciar menos

Por otro lado, la ciencia y la tecnología contribuyen a generar herramientas que puedan disminuir el desperdicio de alimentos a lo largo de toda la cadena alimentaria. La creación de nuevas técnicas de conservación de alimentos, diseños de envases más resistentes, así como el uso de tecnologías limpias y la identificación de dónde se producen las pérdidas de producto son algunas de las alternativas que se investigan. Por ejemplo, ya se está trabajando en el desarrollo de envases más resistentes al transporte, que puedan volver a cerrarse fácilmente o divididos en porciones que aumenten la vida útil de los alimentos.

El catálogo de iniciativas nacionales e internacionales sobre el desperdicio alimentario realizado por la Agencia Española de Seguridad Alimentaria y Nutrición (AESAN) reúne iniciativas como un papel diseñado en 2010 (por la empresa Fenugreen) que consigue duplicar el tiempo de conservación de frutas y verduras frescas. Está impregnado con distintas especias que inhiben el crecimiento de hongos y bacterias y, además, contiene un determinado aroma que informa de si el sistema sigue siendo efectivo. Este papel, utilizado tanto en la agricultura como en hogares de todo el mundo, tiene una vida de tres semanas y después se puede aprovechar como abono.

Otras iniciativas aseguran la integridad del sellado en los envases mediante la selección de materiales de difícil perforación o desarrollan envases activos que evitan la entrada de sustancias indeseables al tiempo que liberan otras beneficiosas para la conservación del producto, como biocidas, antioxidantes o compuestos que absorben el oxígeno y la humedad.

Algunas líneas de investigación se basan en la reutilización y el reciclaje de subproductos industriales para evitar la disposición en vertedero, de manera que se puedan desarrollar nuevos productos a partir de los materiales excedentarios, recuperar compuestos de interés para utilizarlos como aditivos o ingredientes en otras industrias, así como obtener nuevos productos más saludables.

En el Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN) del CSIC, diversos grupos de investigación trabajan con residuos alimentarios procedentes de las industrias que usan productos vegetales y animales, con el objetivo de revalorizarlos. Uno de ellos es la okara, un subproducto de la soja que se obtiene tras extraer la fracción soluble para la producción de bebida de soja o tofu, y que antes era eliminado en las industrias de procesamiento. Al tratarla con altas presiones hidrostáticas y enzimas específicas, se consigue por un lado aumentar los carbohidratos solubles al doble de los valores iniciales y, por otro, incrementar sus capacidades prebióticas, favoreciendo el crecimiento de bacterias beneficiosas (Bifidobacterium y Lactobacillus) y la inhibición de otras potencialmente perjudiciales. Se ha comprobado que la okara tratada, suministrada a ratas que habían seguido una dieta grasa, frena la ganancia de peso, reduce los niveles de triglicéridos en plasma y aumenta la absorción mineral y la producción de ácidos grasos de cadena corta.

Estos ejemplos reflejan que se están empleando muchos recursos para frenar este problema y buscar soluciones. Pero no hay que olvidar el importante papel que tenemos los consumidores. Cada uno desde su posición, el personal investigador en sus laboratorios, los gobiernos en sus políticas y los consumidores en sus hogares, debemos colaborar para evitar que comida y productos válidos para el consumo sean desaprovechados, mientras en otra parte del mundo se pasa hambre.

* Ana Mª Veses es investigadora del Instituto de Ciencia y Tecnología de Alimentos y Nutrición del CSIC.