Archivo de la categoría ‘Tecnologías’

Descubre las 10 mejores imágenes científicas de 2023 con FOTCIENCIA20

Por Mar Gulis (CSIC)

El corte transversal de una cáscara de huevo, la eclosión de un gecko terrestre malgache fotografiada con un smartphone o un ovillo de gusanos parásitos anisakis son algunas de las imágenes más destacadas del año en la iniciativa FOTCIENCIA, que cumple con esta su 20ª edición recopilando fotografías científicas gracias a la participación ciudadana.

Esta iniciativa del Consejo Superior de Investigaciones Científicas (CSIC) y la Fundación Española para la Ciencia y la Tecnología (FECYT) ha dado a conocer las mejores fotografías del año 2023. El pelo del estambre de una flor (Erodium moschatum), la simetría del brócoli o tres muestras de epidermis de flor de caléndula captadas por estudiantes de secundaria son otros de los fenómenos retratados en las imágenes seleccionadas de entre más de 475 fotografías. Un comité multidisciplinar formado por 13 profesionales de la ciencia, la microscopía, las artes visuales o la divulgación científica, entre otras especialidades, ha sido el encargado de seleccionar estas imágenes que han sido galardonadas por su belleza, impacto y capacidad para reflejar y describir hechos científicos.

De izquierda a derecha: “Cubismo plutónico”, “Polinización y la agricultura”, “Un ovillo de gusanos parásitos Anisakis extraídos de pescado fresco”, “La sal de la muerte (celular)”, “Biomineralización”, “Un triángulo imposible”, “Biosensores”, “Eclosión en laboratorio”, “Recordando a Cajal para tratar la neurodegeneración” y “Revelación simétrica del brócoli”.

De izquierda a derecha: “Cubismo plutónico”, “Polinización y la agricultura”, “Un ovillo de gusanos parásitos Anisakis extraídos de pescado fresco”, “La sal de la muerte (celular)”, “Biomineralización”, “Un triángulo imposible”, “Biosensores”, “Eclosión en laboratorio”, “Recordando a Cajal para tratar la neurodegeneración” y “Revelación simétrica del brócoli”.

Estas 10 mejores imágenes, que puedes ver en el vídeo de más abajo, junto con una selección más amplia de fotografías, conformarán un catálogo y una exposición itinerante, disponible para su préstamo gratuito, que recorrerá museos, centros de investigación, universidades y espacios culturales de todo el país durante el próximo año.

En esta vigésima edición, a las modalidades de participación habituales –Micro, General, Alimentación y nutrición, Agricultura sostenible y La ciencia en el aula– se han sumado las modalidades especiales Año Cajal, Física de partículas y Sinergias (Arte, Ciencia, Tecnología y Sociedad, ACTS). La difícil captura nanométrica de un radical libre captado al microscopio de efecto túnel y la observación al microscopio de una roca ígnea plutónica de La Cabrera (Madrid) han sido las fotografías galardonadas por primera vez en estas dos últimas modalidades, respectivamente.

La modalidad Sinergias (Arte, Ciencia, Tecnología y Sociedad, ACTS) pretende mostrar trabajos conjuntos del ámbito científico y artístico con el objetivo de ampliar nuevos horizontes inter y transdisciplinarios entre las ciencias y las artes. Este año, una madre geóloga y su hijo estudiante de bellas artes han mostrado en una fotografía esta conexión con una imagen que resulta de un proceso de investigación donde ambos comparten microscopio en busca de colores e imágenes inspiradoras para futuros bocetos en otros soportes.

Como en la anterior edición, FOTCIENCIA contempla la modalidad especial Año Cajal para recoger imágenes que tengan que ver con las neurociencias, sumándose así a la celebración del Año Cajal, impulsado a nivel nacional. La inmunofluorescencia de una sección de cerebelo con dos células de Purkinje, que recuerda a los dibujos de Ramón y Cajal, quien ya describió su estructura, ha sido la imagen seleccionada en esta modalidad.

FOTCIENCIA es una iniciativa del CSIC y la FECYT que invita a que cualquier persona, se dedique o no a la investigación, plasme su visión de la ciencia y la tecnología a través de fotografías. Además, FOTCIENCIA20 cuenta con la colaboración de Fundación Jesús Serra, de GCO (Grupo Catalana Occidente) y, por primera vez, de Leica.

Más información, en este enlace.

Imágenes seleccionadas:

  • Modalidad General:
  1. Polinización y la agricultura / Eduardo Cires Rodríguez
  2. Eclosión en laboratorio / Fernando García Moreno
  • Modalidad Micro:
  1. Biosensores / Concepción Hernández Castillo, Lola Molina Fernández, Isabel María Sánchez Almazo
  2. Biomineralización / María Jesús Redrejo Rodríguez, Eberhardt Josué Friedrich Kernahan
  • Modalidad Año Cajal:
  1. Recordando a Cajal para tratar la neurodegeneración / Pablo González Téllez de Meneses
  • Modalidad Alimentación y nutrición:
  1. Un ovillo de gusanos parásitos Anisakis extraídos de pescado fresco / José Ramos Vivas
  • Modalidad Agricultura sostenible:
  1. Revelación simétrica del brócoli /Samuel Valdebenito Pérez, María Villarroel, Patricia Peñaloza
  • Modalidad La ciencia en el aula:
  1. La sal de la muerte (celular) / Hala Lach Hab El Keneksi, Rebeca Jiménez Uvidia, Chaimae El Idrissi Loukili
  • Modalidad Física de partículas:
  1. Un triángulo imposible / Alejandro Berdonces Layunta, Dimas García de Oteyza
  • Modalidad Sinergias (ACTS):
  1. Cubismo plutónico / Bruno Fernández Delvene, Graciela Delvene Ibarrola

Los pros y contras del alumbrado led en exteriores

Por Alicia Pelegrina* y Mar Gulis (CSIC)

Luminarias esféricas tipo balón de playa en las calles, farolas que cuelgan de fachadas de edificios o proyectores que iluminan los monumentos de tu ciudad. Estos son ejemplos de luz artificial en el alumbrado en exteriores, que se ha transformado notablemente en los últimos años debido al uso de lámparas led. Ahora bien, ¿qué han supuesto estos cambios? ¿Han sido todos positivos?

En este artículo comentaremos los pros y contras del alumbrado led, pero antes hagamos algunas precisiones.

La primera es que, aunque comúnmente hablemos de farolas como un todo, hay que diferenciar entre lámparas, es decir, la fuente emisora de luz, y luminarias, la estructura que contiene y soporta la lámpara.

La segunda es que para calibrar los efectos nocivos de combatir la oscuridad (la contaminación lumínica, por ejemplo) es fundamental tener en cuenta el tipo de luz artificial del alumbrado de exteriores y su orientación. Las lámparas menos contaminantes son las que emiten luz del espectro visible al ojo humano con mayores longitudes de onda. Por ejemplo, las lámparas que emiten una luz anaranjada, porque es la que menos se dispersa en la atmósfera. Y las luminarias más respetuosas son aquellas que no emiten luz en el hemisferio superior. De esta forma minimizan su impacto en el aumento del brillo del cielo nocturno.

El problema de los ledes blancos

Con su aparición en el mercado, se fabricaron muchísimos dispositivos led, que se vendieron como solución frente al despilfarro energético del alumbrado público. Y es cierto: se produjeron ledes blancos que ahorran mucha energía en comparación con las lámparas de vapor de sodio, que eran las que antes inundaban las calles. Sin embargo, no se tuvo en cuenta que la luz blanca es la más contaminante desde el punto de vista de la contaminación lumínica, ya que es la que se dispersa con mayor facilidad en la atmósfera y la que más afecta al equilibrio de los ecosistemas y a nuestra salud.

Por ello, con el paso del tiempo, se vio que esa luz no era la más adecuada. Había que buscar dispositivos led de un color más cálido. El problema es que la eficiencia energética de los ledes ámbar, más anaranjados y cálidos, es prácticamente la misma que la que tenían las lámparas de vapor de sodio de alta y de baja presión anteriores.

Entonces, ¿ha servido para algo este cambio? Desde el punto de vista de la contaminación lumínica, el cambio a lámparas led blancas ha agravado el problema. Y, en cuanto a la eficiencia energética, ha provocado un efecto rebote: el ahorro energético que supone el uso de esta tecnología ha llevado a los responsables del alumbrado público a instalar más puntos de luz o a mantener más tiempo encendidos los que ya existían.

Por tanto, si queremos evitar la contaminación lumínica, debemos utilizar lámparas led ámbar para, al menos, poder beneficiarnos de las ventajas que tiene esta tecnología reciente frente a las lámparas de vapor de sodio que se utilizaban antes.

Las ventajas que sí tiene la tecnología led

Una de estas ventajas es que podemos escoger el color de la luz que emiten las lámparas, lo que permite diseñar espectros a la carta. Por ejemplo, podríamos definir el espectro más adecuado para un espacio natural protegido en el que haya una especie de ave migratoria específica que tenga una sensibilidad especial a una longitud de onda determinada del espectro. Así disminuirían los impactos negativos de la luz en algunas especies.

Una segunda ventaja de las lámparas led es que, al apagarse y encenderse, alcanzan su actividad máxima muy rápido. Existen otro tipo de lámparas que, desde que se encienden hasta que alcanzan un nivel adecuado de iluminación, necesitan un tiempo mayor. Esta particularidad de las lámparas led nos permite utilizar sistemas complementarios como los sensores de presencia o los reguladores de intensidad, que hacen que las luces no tengan que estar permanentemente encendidas pero que, cuando sea necesario, lo estén a su máxima potencia.

Por último, una tercera ventaja de la tecnología led es que podemos regular su intensidad. Esto nos permite adaptar el sistema de iluminación a las diferentes horas del día y a la actividad que estemos haciendo, evitando así que las calles sin transeúntes estén iluminadas como si fueran las doce del mediodía.

Estas ventajas pueden suponer un avance con respecto al uso de las anteriores lámparas, con las que este tipo de adaptaciones o sistemas de control no se podían aplicar. Pero no olvidemos que siempre deben ser lámparas led ámbar y evitar en todo caso las lámparas led blancas.

Se trata, por tanto, de que iluminemos mejor, de una forma más sostenible, evitando la emisión de la luz de forma directa al cielo. Y que la cantidad de luz sea solo la necesaria para lo que necesitamos ver, en los rangos espectrales en los que nuestros ojos pueden percibirla y en un horario adecuado.

 

*Alicia Pelegrina es responsable de la Oficina Técnica Severo Ochoa del Instituto de Astrofísica de Andalucía del CSIC y autora del libro La contaminación lumínica de la colección ¿Qué sabemos de? (CSIC-Catarata).

Catorce científicas e inventoras que quizás no conozcas

Por Mar Gulis

Si piensas en científicas o inventoras, ¿serías capaz de dar varios nombres? Sea cual sea tu respuesta, en este post vamos a descubrir a mujeres que han hecho historia por sus descubrimientos y avances científicos. Sin ellas, puede que no estuviésemos aquí, que no existiesen algunos de los objetos que nos rodean, que no contáramos con la atención sanitaria que recibimos o que no tomáramos ciertos alimentos.

La primera persona que vio un coronavirus al microscopio fue una mujer

Empecemos hablando de mujeres que hicieron grandes aportaciones en el ámbito de la salud. June Dalziel Hart (1930-2007), conocida como June Almeida, fue una viróloga escocesa, pionera en nuevos métodos de identificación y captación de imágenes de virus. Fue la primera persona en ver un coronavirus al microscopio. Con motivo de la pandemia de COVID-19, su nombre volvió a resonar, ya que investigadores chinos utilizaron sus técnicas para identificar el virus. Sin su trabajo, no hubiera sido posible una identificación tan temprana.

Por su parte, la genetista estadounidense Mary-Claire King (1946) identificó los genes responsables del cáncer de mama (BRCA1 y BRCA2) y aplicó la secuenciación de ADN para identificar a víctimas de violaciones de los derechos humanos. Y en su mismo país, la analista de datos de la NASA Valerie Thomas (1943) diseñó el transmisor de ilusión: un dispositivo óptico utilizado para la reproducción de imágenes de forma remota que emplea espejos parabólicos. Hoy, esta técnica se utiliza también en cirugía y en el cine 3D.

Si nos remontamos un poco en la historia, durante la Primera Guerra Mundial encontramos a la física rusa Alexandra Glagoleva-Arkadieva (1884-1945), que diseñó una instalación de rayos X para buscar restos de metal y balas en soldados heridos. Más tarde, su invención sería reutilizada para ayudar en partos.

Y un poco más atrás en el tiempo, tenemos a la médica neerlandesa Aletta Henriëtte Jacobs (1854-1929), que en 1881 realizó el primer estudio sistemático de la anticoncepción. Jacobs defendió los derechos reproductivos y sexuales de la mujer, y llegó a instalar el primer centro de planificación familiar de los Países Bajos para mujeres en situación de vulnerabilidad.

Del estudio de la caña de azúcar al agar-agar

En alimentación, la botánica Janaki Ammal (1897-1984) se centró en el estudio de la berenjena, hortaliza que le dio nombre entre sus colegas -Janaki Brengal-, y de la caña de azúcar. Fue la primera científica en cruzar esta planta con el maíz para conseguir variedades de alto rendimiento que pudieran cultivarse en su país, la India. Por su parte, la bioquímica Kamala Sohonie (1912-1998) investigó los efectos de las vitaminas y los valores nutritivos de las legumbres, el arroz y otros alimentos consumidos por los sectores más pobres del país. Además, fue la primera mujer india en recibir un doctorado en una disciplina científica.

¿Y qué sería la cocina actual sin el agar-agar? La microbiológa estadounidense Fannie Hesse (1850-1934) descubrió esta sustancia como agente gelificante de los medios de cultivo de microorganismos.

Mary Elizabeth Hallock-Greenewalt (1871-1950) ideó el órgano de color

Las máquinas llegaron para quedarse

Si hablamos de máquinas y de sus inventoras, también hay nombres para conservar en la memoria. ¿Has oído hablar del órgano de color? Fue ideado por la estadounidense de origen sirio Mary Elizabeth Hallock-Greenewalt (1871-1950) y lo llamó Sarabet. Este instrumento emitía luces de colores con intensidades y matices sincronizados con la música de un fonógrafo asociado, de un modo similar a cómo hacen ahora muchos dispositivos electrónicos. Hallock-Greenwalt también era pianista e inventó un tipo de música visual, que llamó Nourathar, de las palabras árabes nour (luz) y athar (esencia).

El lavavajillas es un electrodoméstico presente en muchas cocinas que comenzó a popularizarse en los años 50 de siglo XX. Josephine Cochrane (1839-1913), de Estados Unidos, fue la inventora de la primera máquina lavavajillas que resultó exitosa comercialmente. Eso sí, Hay que decir que estos primeros lavavajillas requerían gran cantidad de agua caliente y que las casas adaptaran su fontanería.

Josephine Cochrane (1839-1913) fue la inventora de la primera máquina lavavajillas que resultó exitosa comercialmente

Quienes trabajamos con ordenadores a diario utilizamos algún procesador de texto. Esto es gracias a la ingeniera informática estadounidense Evelyn Berezin (1925-2018), que en 1968 desarrolló la idea de un programa para almacenar y editar textos.

Y siguiendo con el almacenamiento de información, la inventora española Ángela Ruiz Robles (1895-1975) dio lugar a la Enciclopedia Mecánica, que podría considerarse el primer libro electrónico de la historia. Se trataba de un dispositivo en el que mediante pulsadores subían mecánicamente, o por aire comprimido, las diferentes lecciones; además, se podían aumentar de tamaño e incluso iluminar.

Cómo pensamos, nos sentimos o nos comportamos

El estudio de la mente humana también ha recibido importantes contribuciones de mujeres. Por ejemplo, la psicóloga estadounidense Mary Ainsworth (1913-1999) desarrolló la teoría del apego para explicar el vínculo entre niños y niñas y la primera figura, que actúa como cuidadora. La investigadora señaló la importancia de una relación sana para la salud emocional en la infancia por su impacto en la vida adulta.

Por su parte, la neurocientífica y psicóloga rusa Natalia Bekhtereva (1924-2008) desarrolló nuevos enfoques neurofisiológicos, como la medición de la actividad impulsiva de las neuronas humanas. Además, puso en marcha un método complejo para estudiar los mecanismos cerebrales del pensamiento, la memoria, las emociones y la creatividad.

Esta es solo una selección de mujeres que se han dedicado a la ciencia y la tecnología, pero la lista obviamente no termina aquí. A lo largo de la historia, ha habido numerosas científicas e inventoras, aunque sus nombres hayan quedado relegados a un segundo plano. Rescatarlas del olvido no solo contribuye a que las mujeres ocupen el lugar que se merecen en la historia de la ciencia, sino también a que cada vez haya más investigadoras y tecnólogas.

El vacío… o cómo un termo mantiene el café caliente

Por José Ángel Martín Gago y Mar Gulis (CSIC)*

Alguna vez en la vida, quien más quien menos se ha deleitado to­mando un café caliente en un entorno muy frío, remoto o en el que, por ejemplo, hay muy escasas posibilidades de poder encontrar una cafetería. El modo más habitual de conseguirlo es utilizando un simple y económico termo. Pero, ¿te has preguntado alguna vez por el mecanismo que hace posible este ‘milagro’?  Tiene que ver con el vacío. Aquí te lo explicamos.

Un termo consta de dos vasijas: una interior, en contacto con el líquido que queremos mantener a una temperatura dada; y otra exterior, en contacto con el ambiente y que generalmente hace de soporte del termo. La interior se sujeta por el cuello con la exterior a través de una mínima porción de material y dejan­do un pequeño espacio, vacío de aire, entre ambas vasijas. De esta forma, el termo aísla el espacio interior, donde nuestro café se mantiene a 40 °C, del exterior, que puede estar a 4 °C.

Si el recipiente que contiene el café estuviese en contacto directo con el ambiente, en po­cos minutos el café adquiriría la temperatura del entorno y nos lo tomaríamos frío. En cambio, si vaciamos de aire el espacio entre las dos vasijas, conseguimos aislarlas térmi­camente. Esto lo explica la teoría cinética de gases: la transferen­cia de calor se debe básicamente al intercambio de energía entre las moléculas más calientes y las más frías cuando cho­can entre sí. Con esta cámara de vacío intermedia se consigue que la conductividad térmica entre ambos recipientes sea prác­ticamente nula. Es decir, sin moléculas de aire que transfieran el calor, la vasija interior permanecerá aislada y, por tanto, no variará su temperatura.

Curiosamente, este desarrollo no es tan reciente como se podría supo­ner. El primero en realizarlo fue el físico escocés James Dewar en 1892. De ahí que estos recipientes que proporcionan aislamiento térmico se conozcan como Dewar o vasos Dewar.

Un dato muy ilustrativo de la eficacia de este proceso es que, si el vacío estuviese en el rango del ultra alto vacío (con presiones parecidas a las que puede haber en el espacio interplanetario) y el contacto entre ambos recipientes fuese inexis­tente o mínimo, se podría mantener el café caliente más de diez años. Sin embargo, en el caso de un termo di­señado para líquidos o alimentos, el vacío intermedio corres­ponde a lo que llamamos bajo vacío (la presión es poco menor de la atmosférica), lo que ocasiona que las moléculas de aire pongan en contacto ambas superficies, y nuestro café acabe enfriándose.

Criogenia: del termo de café al transporte del nitrógeno líquido

Sin embargo, para muchísimas aplicaciones tecnológicas se utiliza el nitrógeno o el helio líquido, elementos que deben mantenerse a temperaturas muy bajas y se transportan en recipientes metálicos de cientos de litros. La diferencia térmica entre las paredes interiores y ex­teriores en estos casos es muy grande (más de 200 °C). Si utilizáramos un mecanismo como el de un termo normal, el nitrógeno o el helio líquido se sublimarían fácilmente y pasarían de líquido a gas. Para evi­tarlo, es necesario tener alto vacío entre ambas superficies (presiones menores de un millón de veces la presión atmosférica, o menores de 10-6 milibares de presión). Cuando esto se logra, los tanques o recipientes tipo Dewar que transportan estas sustancias pueden conservar y almacenar nitrógeno líquido durante varias semanas a -196 °C.

El uso de temperaturas criogénicas es mucho más extenso de lo que podríamos imaginar. En biología, bioquímica o medicina la criogenia es muy importante para la conservación de célu­las y cultivos, como el esperma y los óvulos; medicamentos, como algunas vacunas; o para tratar algunos alimentos. También en pruebas de diagnóstico, como la resonancia magnética nuclear. Desde el punto de vista de la tecnología, muchos aparatos de inves­tigación, como los detectores de radiación o los imanes supercon­ductores, necesitan nitrógeno o helio líquido para funcionar. Por tanto, de manera indirecta, el vacío ayuda a conservar y transportar estas sustancias criogénicas y hace posible es­tas tecnologías en nuestro día a día.

*José Ángel Martín Gago es investigador del CSIC en el Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) y autor del libro de divulgación ¿Qué Sabemos de? El vacío (CSIC-Catarata).

 

El vidrio: una historia de ida y vuelta

Por Mar Gulis (CSIC)

Según cuenta Plinio el Viejo en su Historia natural, mercaderes de natrón (carbonato sódico natural, un mineral traslúcido que se usa en la fabricación de jabón, vidrio y tintes) descubrieron el vidrio en Siria por casualidad. Un día, en la ruta que realizaban hacia Egipto, utilizaron el natrón para apoyar las ollas sobre las fogatas hechas para cocinar. Al día siguiente, comprobaron que el natrón se había fundido y, en contacto con la arena de la playa, se había convertido en un material brillante y duro. Eran los primeros vidrios.

Desde entonces, el mundo del vidrio ha sufrido una auténtica revolución. Es, junto con la cerámica, el material más antiguo y más utilizado por el ser humano para la conservación y el almacenamiento de productos, y un magnífico ejemplo de economía circular. Se trata de un material que, además de cumplir a la perfección su función como envase, también es 100% reciclable infinitas veces, sin perder calidad ni cantidad en el proceso. De esta manera, el vidrio reciclado puede volver al ciclo productivo del que partió para sustituir a las materias primas originales y convertirse de nuevo en un envase puro y seguro para contener alimentos y bebidas. Cierra así su recorrido circular, un camino que puede repetir eternamente, ahorrando energía y evitando emisiones.

¿Cuántas veces habremos depositado nuestras botellas y envases de vidrio vacío en el contenedor verde? Desde que, en 1982, el alcalde de Madrid Enrique Tierno Galván inauguró el primer contenedor de vidrio en el barrio de Moratalaz, ha habido grandes avances, y las cifras así lo demuestran. Actualmente en nuestro país se reciclan más de 7 de cada 10 envases de vidrio, y cada día se depositan en estos contenedores más de 8 millones de envases. Con este acto cotidiano estamos contribuyendo a que su vida útil sea infinita, ayudando al aprovechamiento de este material.

Enrique Tierno Galván, alcalde de Madrid entre 1979 y 1986, reciclando en un contenedor de vidrio en 1982 / Agencia EFE

El vidrio, a exhibición

De la relación del vidrio y la economía circular trata la exposición Vidrio: presente y futuro circular, una muestra elaborada por el Consejo Superior de Investigaciones Científicas (CSIC), Ecovidrio y la Asociación Nacional de Fabricantes de Envases de Vidrio (ANFEVI), con apoyo de la Fundación Española para la Ciencia y la Tecnología (FECYT), en el marco del Año Internacional del Vidrio 2022. Esta exposición, que a lo largo de 2022 ha viajado a diferentes espacios y municipios y lo seguirá haciendo durante los próximos años, permite descubrir cómo se fabrican y reciclan los envases de vidrio. También da a conocer otras cuestiones relacionadas con este material, como su origen, cuál es la diferencia entre el vidrio y el cristal o qué artículos podemos tirar al contenedor verde.

Además, sus contenidos también se encuentran disponibles en la web https://vidriocircular.es. Esta página permite navegar por la exposición en castellano o en inglés, descargarla y escuchar sus audioguías, que también se pueden oír desde las principales plataformas de audio (iVoox, Spotify, Google Pódcasts y Amazon Music).

Además, Vidrio: presente y futuro circular es una buena herramienta de aprendizaje, ya que incluye recursos educativos para ESO y Bachillerato que estimulan la creatividad e invitan al debate. Sus contenidos incorporan un Pasapalabra vidriero, juegos de verdadero o falso o una sopa de letras con términos relacionados con el vidrio y la economía circular. Asimismo, el alumnado que trabaje con este material podrá analizar cómo el confinamiento por la crisis sanitaria de la COVID-19 modificó nuestros hábitos de consumo, averiguar de dónde vienen los diferentes colores del vidrio o, incluso, diseñar una campaña de sensibilización que defienda el reciclaje de este material. También es posible construir un polariscopio. Con materiales sencillos y siguiendo unos simples pasos se aprende cómo se utiliza la luz polarizada para detectar tensiones en objetos de vidrio y se puede comprobar si objetos cotidianos como un vaso o unas gafas sufren algún tipo de tensión y podrían romperse más fácilmente.

Esta exposición, junto con la muestra La Edad del Vidrio, es una de las grandes apuestas de divulgación sobre la importancia del vidrio para un futuro más sostenible. Ambas forman parte de un conjunto de recursos que el CSIC, con el apoyo de la FECYT, ha puesto en marcha a lo largo de la conmemoración del Año Internacional del Vidrio, donde se pueden encontrar vídeos, visitas guiadas, conferencias o publicaciones divulgativas.

Descubre más aspectos sobre el vidrio y la economía circular a través de la exposición Vidrio: presente y futuro circular.

Extractos vegetales o aditivos E: ¿cuál es la mejor opción para conservar los productos cárnicos?

Por Mónica Flores (CSIC) * y Mar Gulis (CSIC)

En los últimos 40 años, el consumo de alimentos de origen animal ha aumentado considerablemente, sobre todo en los países asiáticos. Hoy, la demanda de este tipo de alimentos se encuentra al mismo nivel en América y Europa que en China. En paralelo a este proceso, la demanda de productos cárnicos se ha visto afectada por la preocupación por el bienestar animal y por el consumo de alimentos orgánicos. En este sentido, una de las tendencias de mercado más importante está siendo la eliminación de aditivos y, por tanto, de los números E de las etiquetas.

Entre los aditivos más afectados por esta dinámica se encuentran los denominados “agentes de curado”, es decir, el nitrito potásico y sódico (E 249 y E 250) y el nitrato sódico y potásico (E 251 y E 252). Estos agentes se emplean en la elaboración de muchos productos cárnicos -como el jamón serrano y cocido, el chorizo, el salchichón, etc.- para mantener su seguridad y sus características organolépticas (color, aroma y sabor).

De hecho, en el ámbito internacional el término “curado” hace referencia al uso de sales de nitrito y nitrato junto con cloruro de sodio y otros ingredientes como conservantes de la carne. El nitrito es el principio activo que produce el efecto conservante mientras el nitrato actúa como fuente de nitrito en los procesos largos de secado y maduración de los productos.

Pros y contras de los aditivos E

El empleo de este tipo de aditivos en los productos cárnicos ha sido respaldado por la Agencia Europea de Seguridad Alimentaria (EFSA), que en el año 2003 concluyó que son fundamentales para proteger los alimentos frente al bacilo Clostridum botulinum, causante del botulismo. En la misma línea se ha pronunciado la Agencia Francesa de Seguridad y Salud Alimentaria, Ambiental y Ocupacional (ANSES) en su “Evaluación de riesgos relacionados con el consumo de nitratos y nitritos”. El informe, publicado en 2022, indica que los nitritos y nitratos contribuyen eficazmente a limitar el desarrollo de agentes patógenos como Listeria, Salmonella o Clostridium botulinum.

Estos aditivos, por tanto, son excelentes antimicrobianos y antioxidantes que permiten que tengamos unos productos cárnicos seguros y con propiedades sensoriales características. A pesar de ello, nitritos y nitratos se encuentran en el punto de mira debido a que pueden dar lugar a la formación de las denominadas nitrosaminas, agentes cancerígenos formados por la reacción del nitrito residual en los productos cárnicos con aminas secundarias. Por eso, la ESFA recomienda restringir su uso en los productos cárnicos al mínimo posible.

En cualquier caso, conviene no olvidar que la principal fuente de exposición humana a los nitratos es el consumo de verduras y hortalizas, no el de carne: el 80% de la ingesta total de nitratos procede de dichos alimentos. Estos nitratos son resultado del empleo de fertilizantes en los cultivos, aunque el contenido en nitratos de los vegetales varía mucho según la parte anatómica del vegetal que se consuma y de las prácticas agrícolas.

Por su parte, la fuente más importante de nitrito en la dieta es el consumo de alimentos y agua que contienen nitrato, el cual se convierte en nitrito en la saliva por acción de las bacterias orales. Un informe de la EFSA de 2017 señala que la contribución de los nitritos por su uso como aditivos alimentarios (principalmente en productos cárnicos) representa aproximadamente un 17% de la exposición total a los nitritos.

El auge de los productos ‘etiqueta limpia’

Aun así, en los últimos años se ha acentuado la búsqueda de alternativas a los nitrificantes para crear productos ‘etiqueta limpia’ (clean label). A principios del siglo XXI, en Estados Unidos se propuso el empleo de extractos vegetales con altos contenidos de nitratos para la fabricación de productos cárnicos. Los extractos vegetales, fermentados o no, que se han comercializado en el país anglosajón con estos fines proceden del apio y, en menor medida, de la remolacha, la lechuga, la espinaca, la acelga o la zanahoria, todos ellos ricos en nitrato, así como de la acerola y las cerezas, que aportan ascorbato.

Sin embargo, esta estrategia de sustitución plantea limitaciones, como las debidas al posible aporte de aromas vegetales y pigmentos procedentes del extracto. Además, en estos extractos la concentración de nitrato y nitrito es variable y requiere la adición de bacterias que permitan la formación del nitrito. Al ser el nitrito el verdadero agente antimicrobiano en los productos, el desconocer la dosis real de nitrito empleada conlleva riesgos de seguridad alimentaria y requiere el empleo de otras sustancias antimicrobianas.

Además, esta estrategia no impide que en el caso de que exista nitrito residual se formen nitrosaminas, por lo que el riesgo de formación de las sustancias cancerígenas sigue existiendo. Incluso otros contaminantes presentes en los extractos vegetales, como micotoxinas, metales pesados y contaminantes orgánicos, pueden ser transferidos al producto cárnico.

Por último, una de las principales limitaciones en el uso de extractos vegetales es su posible potencial alergénico. De hecho, el apio está incluido en el listado de alérgenos identificables en la Unión Europea.

Autorizados en EEUU y Canadá, pero no en Europa

En Estados Unidos y Canadá esta práctica está autorizada, pero ha creado cierta polémica por el empleo de mensajes como “no curado” en el etiquetado de los productos cárnicos procesados con extractos vegetales, ya que pueden confundir a los consumidores, que no entienden las prácticas realizadas. Por ello, se exige que el etiquetado sea preciso y no engañoso.

En Europa, la EFSA realiza la evaluación de la seguridad de los aditivos. Sus criterios de seguridad establecen que los aditivos no deben contener residuos que puedan presentar algún riesgo de tipo toxicológico. En este sentido, los extractos vegetales no presentan los mismos criterios de pureza que los aditivos agentes de curado e impiden una correcta evaluación de su seguridad. Este aspecto es muy importante, pero desconocido para los consumidores, que perciben más naturalidad en un extracto vegetal que en un aditivo, lo que conlleva falsas apreciaciones.

* Mónica Flores es investigadora del CSIC en el Instituto de Agroquímica y Tecnología de Alimentos.

Fibra óptica, implantes médicos o paneles solares: ‘La Edad del Vidrio’ ya está aquí

Por Mar Gulis (CSIC)

Te encuentras atravesando un espeso bosque lleno de secuoyas cuando de repente un sonido familiar se oye a lo lejos, repetitivo, cada vez más elevado, hasta que, ¡ZAS!, te percatas de que se trata de la alarma del móvil. Es la hora de ponerse en pie… Te pones las gafas y miras la pantalla: las 7:00 h, comienza un nuevo día. Te lavas la cara frente al espejo, te cepillas los dientes y te asomas por la ventana. Ves que hace un sol radiante, promete ser un gran día. Mientras abres el tarro de una deliciosa mermelada y pones la cafetera en la vitrocerámica, enciendes el portátil para ver si hay alguna novedad. La jornada comienza bien a pesar de que un mensaje te recuerda que hoy tienes cita para ponerte un implante dental y que además te toca la siguiente dosis de la vacuna.

Esta podría ser una mañana más en la vida de una persona cualquiera, pero en esas primeras horas ya aparecen varios elementos en los que el vidrio juega un papel determinante. Aunque no hayas reparado en ello, la lente de las gafas, la pantalla del móvil, el espejo, el acristalamiento de la ventana, la placa vitrocerámica, la fibra óptica que te permite navegar por Internet y los envases que aseguran la correcta conservación de alimentos y vacunas están hechos de vidrio… Este material está presente en todo tipo objetos, algunos de ellos tan sorprendentes como los implantes de piezas dentales o los dentífricos que emplean nanopartículas de vidrio.

Descubierto por casualidad en Siria hace 5.000 años, cuando unos mercaderes utilizaron natrón para apoyar sus ollas sobre las fogatas en las que iban a cocinar, en la actualidad el vidrio nos rodea, forma parte de nuestras vidas. No es de extrañar, por tanto, que haya sido el primer material en protagonizar una conmemoración internacional, la correspondiente al año 2022, declarado por Naciones Unidas Año internacional del Vidrio.

El vidrio es uno de los materiales más transformadores de la historia de la humanidad. A lo largo de la historia ha desempeñado importantes funciones en la arquitectura, los artículos para el hogar, los envases… Y hoy es un elemento esencial en sectores clave como el de la energía, la biomedicina, la información y las comunicaciones o la óptica y la optoelectrónica.

Una exposición para descubrir las aplicaciones del vidrio

¿Sabías que existen vidrios diseñados para disolverse dentro del cuerpo humano? ¿O que es posible fabricarlos para que emitan luz en la oscuridad? Entre otras muchas aplicaciones, el vidrio resulta indispensable en los paneles solares y las palas de las turbinas eólicas que nos proporcionan energía limpia, la conservación de vacunas como las diseñadas para hacer frente al virus de la COVID-19, la curación de tejidos dañados o la fabricación de implantes.

Precisamente de sus aplicaciones nos habla la exposición itinerante y virtual La Edad del Vidrio, elaborada por el Consejo Superior de Investigaciones Científicas (CSIC) con apoyo de la Fundación Española para la Ciencia y la Tecnología (FECYT). A través de ellas, la muestra invita al público a averiguar todo lo que este material puede hacer para ayudarnos a alcanzar los Objetivos de Desarrollo Sostenible de la ONU: 17 retos globales encaminados a erradicar la pobreza, proteger el planeta y asegurar la prosperidad de sus habitantes.

Exposición La Edad del Vidrio en la Biblioteca Municipal Eugenio Trías (Madrid) / Laura Llera

Por el momento, la muestra podrá visitarse del 4 al 27 de octubre en el parque de El Retiro de Madrid y del 2 de noviembre al 11 de diciembre en la Real Fábrica de Cristales de La Granja (Segovia), aunque después seguirá recorriendo otros lugares. Además, sus contenidos se encuentran también completamente disponibles en la web www.edaddelvidrio.es. En ella, podrás navegar por la exposición en castellano o inglés, descargártela y escuchar sus audioguías, que también puedes encontrar en las principales plataformas de audio (Ivoox, Spotify, Google podcast, Apple podcast o Amazon music), buscando ‘La edad del vidrio’.

Experimentos y propuestas didácticas

Además, si quieres profundizar en la exposición de manera lúdica y didáctica, también encontrarás materiales educativos para ESO y Bachillerato que estimulan la creatividad e invitan al debate. Sus contenidos incluyen un endemoniado juego de Verdadero o falso relacionado con las aplicaciones del vidrio o una Sopa de letras en las que buscar términos relacionados con este material. Crear una tabla periódica vidriera, convertirse en un superhéroe o una superheroína del clima o diseñar una campaña de sensibilización para fomentar el reciclaje del vidrio son otras de las actividades propuestas.

Y para quienes decidan adentrarse en el mundo del vidrio de forma más práctica (y dulce), también hay experimentos. Con ellos se pueden crear cristales de azúcar y  experimentar con algunas de las propiedades del vidrio con poco más que unos caramelos, un martillo y una bandeja de hielos. La actividad te ayudará a comprender el proceso de fabricación del vidrio y a entender por qué, en las películas, el vidrio que se quiebra, estalla o explota, rara vez es vidrio real… De hecho, se trata de vidrio falso hecho a partir de azúcar para que nadie resulte herido.

En cualquier caso, aunque haya vidrios fake, el verdadero vidrio está muy presente en nuestras vidas y juega un papel fundamental en el mundo contemporáneo. Descúbrelo navegando por la exposición y descargando sus unidades didácticas y sus fichas de experimentos de manera gratuita. ¡Que su transparencia no lo haga pasar desapercibido!

De los móviles a las renovables: las baterías ya no son lo que eran

Por Pedro Gómez-Romero (ICN2-CSIC) *

De las pilas de simpáticos conejitos a las baterías de iones de litio encerradas en nuestros móviles, pasando por las pesadas baterías de plomo de los coches, las baterías del siglo XX nunca fueron actores principales de nuestras tecnologías. Parecían los parientes pobres de los móviles o de los coches, y, además, solo nos acordábamos de ellas cuando se gastaban, siempre en el peor momento, claro. Pero eso está a punto de cambiar.

El crecimiento de las renovables solo es posible de la mano de un crecimiento simultáneo del almacenamiento estacionario de energía.

Tomemos como ejemplo las baterías de iones de litio, bendecidas por Sony en 1991 para alimentar nuestros móviles. Ante todo, se les exigía (y se les sigue exigiendo) ligereza y compacidad, para ocupar poco espacio en la obra maestra de ingeniería y arquitectura que es nuestro móvil. El coste era secundario ante los desorbitados precios que el consumidor estaba dispuesto a pagar por la última versión del objeto de deseo. Y de su vida útil ya ni hablemos, puesto que las estadísticas confirman que cambiamos de móvil a mayor velocidad que lo que tarda en jubilarse su batería.

Pero las cosas están cambiando. De entrada, la consolidación de la tecnología de litio ha hecho que sus nichos de aplicación se extiendan a campos en tremenda expansión, como el vehículo eléctrico. Y entonces, de repente, la cosa cambia: tanto el precio de las baterías como su vida útil adquieren una importancia vital.

Además, la misma tecnología de litio se aplica ya en otros campos estratégicos como el almacenamiento estacionario de electricidad. Os cuento un caso real que conozco bien: el de mi propia casa. Vivo en una casa pasiva, que produce toda la energía que necesita y más, y que está aislada de la red eléctrica. De noche mi casa vive alimentada por un par de módulos de baterías de litio, que son esencialmente las mismas que se usan en móviles y en coches eléctricos. Todas descansan sobre el uso de iones de litio. Pues bien, el fabricante de mi sistema ya ha informado a todos sus clientes que sube los precios debido al encarecimiento de las materias primas. No es un caso aislado, las baterías de iones de litio están subiendo de precio este año 2022 después de décadas de continuos abaratamientos debidos a la economía de escala.

La excusa es la guerra de Putin, pero el rápido aumento de la demanda y los límites de producción de litio permiten predecir que los precios del litio seguirán altos después de la guerra. La crisis de materias primas (especialmente las más escasas) está aquí para quedarse.

batería

Las baterías de litio también se utilizan en ordenadores.

Más allá de litio

Así, ha llegado el momento para el que la comunidad científica llevaba preparándose desde hace tiempo. Es la hora de sacar nuestras nuevas baterías del laboratorio y lanzarlas al mercado. Las conocemos como baterías “post-lithium” y las hay de sodio (Na), potasio (K), magnesio (Mg), calcio (Ca), cinc (Zn)… e incluso de aluminio (Al) o de hierro (Fe), que habrían sido impensables hasta hace poco tiempo. Todos estos elementos son mucho más abundantes que el litio (Li), aunque también más pesados, y algunos de ellos son capaces de producir dos y hasta tres electrones por átomo, mientras que cada átomo de litio solo es capaz de producir uno.

Pero además de estas baterías, de iones diferentes al litio, las baterías de un futuro más cercano de lo que creemos se basarán en químicas y formatos completamente diferentes. Por ejemplo, las baterías de tipo Metal-Aire (O2) o Metal-Azufre que han sido obstinadamente impracticables durante décadas y que ahora, con nuevos conocimientos, nanomateriales y herramientas científicas, están más cerca del éxito comercial. Estas baterías aportarían de hecho una gran mejora en la densidad de energía de las baterías: es decir, en la cantidad de energía que pueden almacenar en una unidad de volumen.

Aunque no todo depende de la densidad de energía de una batería. También es importante el tiempo de carga. Los supercondensadores, permiten cargas ultrarrápidas, con altas densidades de potencia y son capaces de brindar del orden de cientos de miles de ciclos de carga y descarga.

Además, los nuevos dispositivos híbridos que integran componentes o materiales de baterías con otros típicos de supercondensadores aspiran a brindar prestaciones similares a las de los supercondensadores, pero con mayor densidad de energía. Esta es la especialidad de mi grupo de investigación, NEO-Energy, en el Instituto Catalán de Nanociencia y Nanotecnología (ICN2, CSIC-BIST).

Aparte de baterías de todo tipo, supercondensadores y dispositivos híbridos, también tenemos en nuestro catálogo nuevos formatos de tecnologías de almacenamiento de energía. Por ejemplo, las baterías de Flujo Redox en las que los elementos activos fluyen en lugar de estar encerrados en una celda electroquímica, como ocurre en las baterías convencionales. Este tipo de baterías es muy prometedor para el almacenamiento estacionario de electricidad renovable a gran escala, aunque es necesario seguir mejorando su densidad de energía.

Un futuro renovable

El almacenamiento de electricidad renovable no es la única nueva aplicación de las baterías, pero sí una de las más importantes entre las que hacen que las baterías ya no sean lo que fueron. La contribución de las energías renovables a la producción de electricidad en España roza el 50%. Hasta ahora, la variabilidad de la producción solar y eólica se compensaba con las energías de plantas nucleares de fisión o plantas de ciclo combinado (es decir, quemando gas natural). Sin embargo, en el futuro esta variabilidad se tendrá que compensar con una combinación de mayores interconexiones en la red eléctrica, almacenamiento masivo y gestión de la demanda. Cuando se alcance el 60% de electricidad renovable, habremos llegado a un punto crítico para el que tendremos que haber puesto en marcha cambios estructurales.

Panel solar y batería

Instalación solar con batería incorporada.

La penetración de las renovables en nuestro mix energético deberá seguir creciendo, sin duda. Pero eso sólo será posible de la mano de un crecimiento simultaneo del almacenamiento estacionario de energía, que permita compensar la variabilidad solar y eólica. Además, dicho almacenamiento tendrá que desarrollarse sobre diversas tecnologías, que se adapten a los cortos, medios y largos periodos de almacenamiento en respuesta a la variabilidad a corto, medio y largo plazo de nuestras tecnologías de generación.

No es una transición fácil, pero sí absolutamente necesaria. Debemos acelerar para sacar del laboratorio todas esas tecnologías de almacenamiento y ponerlas a trabajar para lograr un nuevo modelo de energía verdaderamente sostenible. Porque es ahora cuando estamos creando la historia de nuestro futuro.

* Pedro Gómez-Romero es profesor de investigación, divulgador científico del CSIC y responsable del canal de youtube de divulgación científica Tecnosfera.

Tres pasos para protegerse frente a la desinformación

Por Sara Degli-Esposti y David Arroyo (CSIC)*

Desinformación, manipulación informativa, propaganda, noticias falsas o verificación de noticias son algunos de los términos que resultaban de interés en el ámbito de la comunicación de la ciencia antes de enero de 2020. Con la irrupción de la pandemia de COVID-19, ese interés se extiende a todos los ámbitos de los medios de comunicación, en especial al de las redes sociales.

Ilustración: Kurzgesagt – In a Nutshell, para el proyecto TRESCA

¿Cómo afrontar la desinformación? Jaron Lanier, pionero de la realidad virtual, lo tiene claro: habría que abandonar por completo las redes sociales. Así lo expuso en Ten arguments for deleting your social media accounts right now (diez razones para borrar tus redes sociales ahora mismo), ya que estas solo sirven para hacer que las personas estén más enfadadas, tengan más miedo, sean menos empáticas, estén más aisladas y reaccionen de modo más irracional. Pero, ¿qué pasa si no queremos perderlas y si queremos usarlas, por ejemplo, para que la comunicación científica llegue a más personas? Para reducir los riesgos de exposición a la manipulación informativa, desde el proyecto TRESCA** proponemos una metodología acompañada de un conjunto de herramientas que denominamos ‘Ms.W’ (Misinformation Widget) que nos ayuda a detectar información errónea o, incluso, campañas de desinformación.

Aquí resumimos brevemente esta metodología centrándonos en tres temáticas: la fiabilidad de las fuentes, la veracidad del mensaje y los sesgos del usuario, haciendo hincapié en las emociones que genera cada noticia. Se puede encontrar más información sobre esta metodología en el módulo 5 del curso online gratuito Communicating trustworthy information in the digital world (cómo comunicar información fiable en el mundo digital) y en la Guía LADA Cómo protegerse de la desinformación dentro de la serie ‘Cómo hacer…’ de La aventura de aprender, que se publicará a final de 2022.

Primer paso: verifica la fiabilidad de la fuente de información

  • No confíes en una noticia simplemente porque quien la comparte pertenezca a tu círculo de confianza. Si no confías en la fuente, realiza algunas búsquedas para ver otra información que haya publicado anteriormente.
  • Comprueba que la noticia realmente fue escrita por una persona o una organización que realmente existen, y no por un bot o una cuenta falsa. Fíjate que no existan organizaciones o personas con nombres similares o que compartan la imagen de perfil, y que la cuenta haya sido creado recientemente. Además, puedes hacer uso de herramientas para la detección de bots.
  • Verifica que lo que te ha llegado no ha sido manipulado o generado utilizando imágenes sacadas de contexto. Confirma que la fuente no se corresponde con un sitio de noticias desactualizado o creado ad hoc para dar difusión a una noticia. Si la fuente es un vídeo o tiene imágenes, se pueden usar herramientas de búsqueda inversa.
  • Ten en cuenta la objetividad y la intención del autor y/o de la fuente de la información y su ideología o agenda política. Puedes utilizar el detector de sesgo Media bias para hacerte una idea del sesgo ideológico de la fuente. Además, puedes hacer uso de nuestra metodología para realizar identificación de autores mediante el análisis de estilo de escritura.

Imagen: Marco Verch / Flickr

Segundo paso: determina la veracidad del mensaje

  • Revisa el contenido de la noticia para determinar si toda la información apoya la historia comprobando los enlaces. Comprueba que las citas sean reales y se ajusten al significado original.
  • Verifica si hay otras fuentes que se hayan hecho eco de los que se declara, denuncia o notifica en el mensaje. Comprueba si el contenido se ha hecho con intención de entretener en vez de informar, y si su mensaje es irónico o sarcástico.
  • En el fenómeno conocido como clickbait o ‘señuelo para que hagas click’, se suelen usar titulares que enganchan y no corresponden con su contenido. Antes de compartir, comprueba que esto no sea así. Puedes usar nuestra herramienta de detección de clickbait.
  • Comprueba que el contenido no ha sido identificado anteriormente como bulo, y que no haya habido noticias similares ya denunciadas como caso de desinformación por servicios acreditados de verificación de información.
  • Haz copias de todo el contenido por si en el proceso de comprobación ‘desaparece’ o los archivos se estropean. En el caso de que ‘desaparezca’ contenido, puedes hacer uso de The Internet Archive.

Ilustración: Irene Cuesta (CSIC)

Tercer paso: observa o controla las emociones y analiza la noticia desde distintos puntos de vista

  • Si sientes que tus emociones ‘se disparan’, ponte en alerta. Tus creencias o prejuicios pueden afectar tu capacidad de juzgar justamente la veracidad de la noticia. Muchas campañas de desinformación tratan de provocar tu respuesta emocional para aumentar su difusión.
  • Si el contenido busca provocar una reacción emocional en uno u otro sentido, es probable que sea desinformación. La desinformación intenta aumentar la polarización y la desconfianza entre personas o grupos animándolos al enfrentamiento.
  • Sospecha de cualquier contenido que intente atentar contra la integridad de sistemas electorales, o que promueva discursos de odio o mensajes que apoyen la misoginia, el racismo, el antisemitismo, la islamofobia, la homofobia o la LGTBIfobia, o que promuevan conspiraciones sobre redes globales de poder.
  • Tanto si el contenido está patrocinado como si no, ten en cuenta que pueden utilizar tu actividad previa en una plataforma para identificarte como posible objetivo de una campaña de desinformación, y usar esa información para identificar tus puntos débiles. Por ello, la protección de la privacidad es un elemento crítico para combatir de forma efectiva la desinformación.

 

* Sara Degli-Esposti es investigadora del CSIC en el Instituto de Filosofía (IFS-CSIC) y ha sido la directora científica del proyecto TRESCA; su trabajo de investigación se centra en la ética de la inteligencia artificial. David Arroyo es científico del CSIC en el Instituto de Tecnologías Físicas y de la Información Leonardo Torres Quevedo (ITEFI-CSIC) y experto en ingeniería criptográfica, privacidad y seguridad de la información; ha sido investigador principal (IP) de TRESCA y actualmente es IP del proyecto XAI-DisInfodemics – eXplainable AI for disinformation and conspiracy detection during infodemics (IA eXplicable para la detección de desinformación y conspiración durante la infodemia).

** El proyecto TRESCA, cuyas siglas responden a Trustworthy, Reliable And Engaging Scientific Communication Approaches (enfoques de comunicación científica dignos de confianza, fiables y atractivos), ha recibido financiación del Programa de Investigación e Innovación Horizonte 2020 de la Unión Europea. Los resultados del proyecto, terminado en abril de este año, están disponibles en la web oficial: https://trescaproject.eu.

Claves para entender la escasez de los chips en Europa

Por Luis Fonseca (CSIC)*

Vivimos rodeados de chips. No solo están en productos como los móviles o los ordenadores, sino también en la automoción, la producción industrial de ropa o alimentos y en sectores críticos como el de la instrumentación médica, la seguridad o la defensa. Por eso cuando escasean estos semiconductores, como ocurre en la actualidad, saltan las alarmas. Pero, ¿por qué faltan chips? Aunque en los últimos meses se haya hablado mucho de ello, desde el Instituto de Microelectrónica del CSIC en Barcelona trataremos de aportar nuestro punto de vista.

Antes, apuntalemos algunos conceptos previos

El primero es el de la electrónica, que es la rama de la física que estudia los movimientos de los electrones libres y la acción de las fuerzas electromagnéticas y cómo utilizarlos para controlar la propia electricidad y gestionar todo tipo de procesos de información. No es poca cosa, porque, como predijo Michael Faraday en una difundida aunque oficiosa anécdota en la que señalaba que se acabarían pagando impuestos por la electricidad, hemos hecho de la electricidad y de la información uno de los vectores principales de nuestra sociedad en general y de nuestro sistema productivo y económico en particular. La primera revolución industrial se fraguó en torno al vapor, pero las protagonistas de las posteriores revoluciones han sido la electricidad, la electrónica y la información.

Ilustración del experimento de M. Faraday en 1831 donde muestra la inducción electromagnética entre dos bobinas. /Grabado de J. Lambert (1892)

El transistor, por su parte, es el componente electrónico fundamental que nos puso en el disparadero de la modernidad y de la transición hacia la sociedad de la información. Este abuelo de los microchips cumple 75 años en 2022. Se trata de un dispositivo que actúa como interruptor dejando pasar corriente a través de sí en función de si se le activa una señal de control. Unos y ceros (señal de entrada) generando unos y ceros (señal de salida) son la encarnación del bit y la magia de la lógica binaria que nos lleva desde el modesto transistor hasta un superordenador. La microelectrónica y la nanoelectrónica han permitido hacer esos transistores más pequeños y más rápidos hasta poder integrar en el mismo chip millares, decenas de millares, millones, miles de millones, millones de millones de transistores… Por ello ahora hablamos de memorias de terabytes y de procesadores que ejecutan billones de instrucciones por segundo.

Chip diseñado en el IMB-CNM que permite el registro neuronal de 1024 canales uECoG para aplicaciones de rehabilitación del habla (proyecto Europeo BrainCom FETPROACT-2016-732032).

La micro y nanoelectrónica son, por tanto, la orfebrería extrema que nos permite llegar hasta el “infinito informático” y más allá. Las memorias y los procesadores se hacen en fábricas de semiconductores (foundries) que son, a día de hoy, la sublimación de la complejidad tecnológica y el máximo exponente de la eficiencia y la productividad. Para producirlos se orquestan con precisión centenares de procesos en grandes espacios (clean rooms o ‘salas blancas’) que se mantienen bajo condiciones cuidadosamente controladas: temperatura y humedad estables, ausencia de vibraciones y un aire más limpio que el de un quirófano.

Una crisis de sistema productivo

Aunque la fabricación de chips tiene sus propios retos tecnológicos, ligados a los límites de la miniaturización continua, la crisis de los chips no es tecnológica, sino económica y de sistema productivo. Y no se debe a una única razón, sino a una serie de “catastróficas desdichas”. Esta crisis ha puesto de manifiesto que nuestro sistema hiperespecializado y ultraconectado no se defiende bien ante grandes perturbaciones. Parece evidente que la deslocalización de la producción y los esquemas de just in time en aras de la eficiencia económica suponen un importante riesgo cuando el transporte global no está asegurado y supone un costo elevado, y aquí el coste de la energía juega un gran papel.

Imagen de chip diseñado y fabricado en el IMB-CNM que contiene un sensor electroquímico inteligente para aplicaciones de salud y control de calidad (proyecto Europeo Pasteur CATRENE CT204).

Las grandes perturbaciones que sacuden al sistema productivo han sido la pandemia y, en cierta medida, el cambio climático, que se han aliado con la localización extrema en la producción de chips: aproximadamente el 85% de ellos se fabrican en Asia y hasta dos terceras partes solo en Taiwán, una isla del tamaño de Cataluña con una relación particular con la China continental. Precisamente, Taiwán vio afectada su producción de chips por un episodio severo de sequía, ya que el agua es un recurso importante en su fabricación.

La pandemia, por su parte, alteró notablemente el equilibrio entre la oferta y la demanda de semiconductores, que ya estaba tensionado por el impulso global y sostenido hacia una mayor digitalización. Una de sus principales consecuencias ha sido el aumento espectacular en la demanda de ocio electrónico y de herramientas de teletrabajo, así como la necesidad de dimensionar al alza toda la mega-infraestructura de interconexión asociada.

Relocalizar (en parte) la producción de chips

Consideremos algunos datos poco conocidos: construir una fábrica avanzada de semiconductores cuesta alguna decena de miles de millones de euros y ponerla en pie requiere mínimo dos años; el tiempo para conseguir un chip-en-mano no es muy diferente de los nueve meses de un embarazo; y, en un escenario de baja oferta, no toda la demanda es igualmente apreciada. En este sentido, los móviles y los ordenadores usan chips de mayor valor añadido, y más caros, que los que se usan en los vehículos. Móviles y ordenadores vieron aumentar sus pedidos durante la pandemia, y los vehículos redujeron y suspendieron los suyos a la espera de que se recuperara su propia demanda… pero, ahora que esta demanda ha aumentado, los productores de chips no tienen tanto aliciente en proporcionarlos cuando aún pasan apuros para cumplir con los pedidos de los primeros. La generación de millennials entiende que un problema en la interconexión digital global puede resolverse en minutos u horas, pero las personas boomers saben que reparar la interconexión física global (léase producir y transportar mercancías) requiere semanas o meses.

De la misma manera que es muy posible que la pandemia haga cambiar ciertos comportamientos para siempre, la crisis de los semiconductores puede alentar cambios duraderos. Tanto Estados Unidos como Europa tienen planes para aumentar su producción de chips. En el caso europeo, ese aumento de producción pasa por atraer empresas americanas o taiwanesas, pues no hay grandes productores locales de memorias y procesadores, y, por supuesto, no hay fabricas públicas de semiconductores ni se las espera. Conviene también no olvidar que los procesadores y las memorias son el rey y la reina en el tablero de los componentes electrónicos, pero hay otras piezas, todas necesarias, cuyo juego debe asegurarse también. Si los chips de los coches son alfiles o caballos, aún hay mucho peón que la crisis de los semiconductores amenaza con dejar atrás. Son chips de menor complejidad, pero igualmente necesarios, que podrían fabricarse en redes de salas blancas más pequeñas, de menor coste, y distribuidas geográficamente de forma que estén sometidas a menores vaivenes político-económicos.

*Luis Fonseca es investigador del CSIC y director en el Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC).