Entradas etiquetadas como ‘divulgación científica’

Agroecología, la agricultura de la biodiversidad

Por Mar Gulis (CSIC)

¿Sabías que los suelos acogen una cuarta parte de la biodiversidad de nuestro planeta? El suelo es uno de los ecosistemas más complejos de la naturaleza y uno de los hábitats más diversos de la Tierra. Cobija infinidad de organismos diferentes que interactúan entre sí y contribuyen a los procesos y ciclos globales que hacen posible la vida.

Sin embargo, el uso que hacemos de él se encuentra entre las actividades humanas que más inciden en el cambio global y climático. Los modelos agrícolas dominantes durante los últimos cien años, junto con el sobrepastoreo y la deforestación, son responsables de un deterioro del suelo que implica la desertificación y la transferencia de grandes cantidades de carbono desde la materia orgánica que se encuentra bajo nuestros pies hacia la atmósfera, lo que contribuye al calentamiento global y, por ende, afecta a la salud de los seres vivos.

¿Es posible un modelo agroalimentario que ayude a regenerar los ecosistemas y que, a su vez, asegure los alimentos y la salud en un planeta con más de 7.700 millones de seres humanos y en pleno cambio climático? De ello se ocupa la agroecología, una disciplina que integra los conocimientos de la ecología, la biología, las ciencias agrarias y las ciencias sociales.

Primeros brotes en la huerta del proyecto agroecológico L’Ortiga, en el Parque Natural de Collserola, provincia de Barcelona.

La agroecología establece las bases científicas para una gestión de los sistemas agrarios en armonía con la salud de los ecosistemas y de las personas. Y esto lo hace estudiando las relaciones entre los organismos biológicos (cultivos, ganado, especies del entorno y, por supuesto, organismos del suelo), los elementos abióticos (minerales, clima, etc.) y los organismos sociales implicados en el proceso (desde las comunidades agrícolas y los hogares hasta las políticas agrarias y alimentarias globales).

También lo hace fomentando la capacidad de los agroecosistemas para autorregularse. Esta capacidad es muy importante, pues tanto las plagas como otras enfermedades son menos frecuentes en los sistemas biológicos equilibrados y este equilibrio es el que asegura la rentabilidad y la estabilidad en la producción. Para ello, la agroecología se preocupa por el mantenimiento de la mayor diversidad posible en el ecosistema, especialmente la diversidad funcional: cuando lo que importa no es tanto el número de especies como su función dentro del agrosistema y lo que cada una aporta al conjunto. Esto es algo que difícilmente se da en la agricultura convencional, ya que, como explican los investigadores Antonio Bello, Concepción Jordá y Julio César Tello en Agroecología y producción ecológica (CISC-Catarata), con el uso generalizado de agroquímicos la biodiversidad queda muy reducida o prácticamente eliminada.

Vegetales agroecológicos. Cooperativa Germinando Iniciativas Socioambientales, Madrid.

Para preservar esta biodiversidad se emplean prácticas agrarias que regulan de forma orgánica tanto las poblaciones de patógenos como de organismos que naturalmente son mejoradores del suelo. Un ejemplo de esto es la extendida tradición de introducir leguminosas en los cultivos. Las plantas de la familia leguminosae, de las que forman parte las legumbres, establecen naturalmente simbiosis con rizobios, bacterias del suelo con el potencial de fijar el nitrógeno atmosférico. Esta unión aporta cerca del 80% del total del nitrógeno atmosférico fijado de forma biológica y proporciona a las plantas el segundo nutriente más necesario, después del agua, para su crecimiento.

La milpa tradicional mesoamericana es un cultivo de origen precolombino que incluye maíz (Zea mays L.), calabaza (Cucurbita spp.) y frijol (Phaseolus vulgaris L.). Como explican en el diplomado ‘Alimentación, comunidad y aprendizaje’ del grupo Laboratorios para la Vida (LabVida) de ECOSUR Chiapas (México), la milpa se caracteriza por una sinergia entre estos tres cultivos que favorece su rendimiento en conjunto y genera resiliencia ante perturbaciones externas, además de ofrecer proteínas completas al combinar estos alimentos.

Suelos vivos versus suelos degradados

Con este planteamiento incluso los organismos eventualmente patógenos tienen su función en los cultivos. Al haber una diversidad mucho mayor, estos organismos patógenos no llegan a ser tan invasivos ni a causar grandes daños, y el ecosistema se puede autorregular fácilmente con solo introducir especies adecuadas. Un ejemplo de esto son las mariquitas (coccinélidos) y otros insectos que depredan a los pulgones. Otro ejemplo es el de los nematodos, un grupo de animales mayormente microscópicos y potencialmente patógenos que ocupa el cuarto filo más numeroso del reino animal en cuanto al número de especies. Los nematodos son los principales herbívoros del suelo y, junto con los hongos, son uno de los principales grupos descomponedores de la materia orgánica. La actividad de estos invertebrados es fundamental para la renovación de las raíces, pues permite optimizar su capacidad de absorber agua y nutrientes para el correcto desarrollo de las plantas. Según la agroecología, los nematodos causan problemas solo en los sistemas desequilibrados y hay maneras de controlar su población y los problemas de plagas desde un manejo ecológico, como por ejemplo introduciendo especies con propiedades repelentes o nematicidas.

Huerta agroecológica de Ruth Labad, quien produce para el grupo de consumo Xurumelxs en Ourense, Galicia.

La recuperación ecológica de suelos degradados, cuando es posible, se produce con prácticas que ayudan a la salud de todo el ecosistema agrario: abonando con materia orgánica libre de tóxicos, mediante la gestión de cultivos y utilizando las características funcionales de las plantas, principalmente. Para ello se emplean los policultivos (rotativos e intercalados), así como una mayor variedad de semillas y especies vegetales. También se alternan los pequeños invernaderos dentro del cultivo y las plantas que ejercen de barreras ecológicas naturales frente a posibles agentes patógenos, como algunas hierbas aromáticas. Además, se usan coberturas vegetales, que ayudan en la conservación del agua y del suelo y regulan la temperatura del terreno, así como la presencia de malas hierbas. Con estas y otras estrategias se favorece la salud de la microbiota del suelo y de todos los organismos de los que depende el ciclo de nutrientes y la buena respiración del suelo.

El Concello de Allariz, en Galicia, es pionero en la gestión de residuos orgánicos: recogen y compostan los residuos de los restaurantes para ofrecer abono orgánico a los agricultores de la zona.

Frente a la agricultura industrial, orientada de manera lineal a los insumos y productos, que rompe con los ciclos del agua, los elementos y los nutrientes de la naturaleza, que depende de los insumos fósiles para mantener la producción y que contribuye al cambio climático, la agroecología comprende la complejidad de la naturaleza y la interdependencia entre los organismos. Además, la agroecología considera los sistemas agrarios como ecosistemas que han llegado a ser equilibrados tras años de experiencia y conocimiento campesino, y se enriquece de toda la diversidad de saberes propios de cada región, clima y ecosistema. Por eso, la mayoría de las veces pone en práctica programas de investigación multidisciplinares en los que se integra y armoniza el conocimiento científico con el saber tradicional de las comunidades agricultoras y ganaderas locales.

Huerto escolar del CEIP Venezuela, en Madrid, dinamizado por Germinando Iniciativas Socioambientales.

Por otro lado, como señalan Bello, Jordá y Tello, establece que los ‘problemas del campo’ no son solo asunto de las personas que se dedican a la agricultura y la ganadería, sino que, por sus repercusiones, requieren de la participación y el compromiso del conjunto de la sociedad. Este compromiso debe estar fundamentado en la soberanía alimentaria (entendida como el derecho de la ciudadanía a elegir qué quiere o no quiere comer) y orientado a desarrollar un modelo alimentario justo, responsable y solidario, que se pregunte cómo se producen los alimentos y cuáles son sus implicaciones tanto sociales como ambientales. Por todo ello, se prefieren los pequeños mercados locales y la venta directa por parte de los grupos productores agrarios, lo cual ayuda a reducir las emisiones de gases de efecto invernadero y los costes asociados al transporte internacional de alimentos y a las grandes superficies de producción y venta.

Venta directa de productos de la iniciativa Barazkilo Agroecologiko, en Bizkaia.

Para saber más:

Vitamina D: cómo obtenerla y qué hacer ante los confinamientos

Por Alexandra Alcorta y Pilar Vaquero (CSIC)*

En estos tiempos de coronavirus, es recomendable salir lo menos posible para evitar contagios, sobre todo en el caso de personas de alto riesgo como las de tercera edad. Sin embargo, no salir a la calle también conlleva un riesgo, ya que no sintetizamos suficiente vitamina D en nuestro cuerpo por falta de exposición solar.

¿Por qué es tan importante la vitamina D?

La forma activa de la vitamina D ejerce diversas funciones en el cuerpo, como el mantenimiento de la salud ósea, el crecimiento celular o la regulación del sistema inmune y cardiovascular.

Siempre se ha dicho que el calcio fortalece los huesos. Sin embargo, esto no sería posible sin los superpoderes de la vitamina D, que es la que se encarga de absorber el calcio y fijarlo a huesos y dientes. Por ello, cuando hablamos de salud ósea, la vitamina D es un nutriente esencial para nuestro organismo.

Además, aunque es menos conocido, la falta de vitamina D se asocia con una mayor susceptibilidad a tener infecciones y enfermedades autoinmunes. A nivel celular, también estimula levemente la eritropoyesis, es decir, la formación de glóbulos rojos.

El salmón, un alimento rico en vitamina D.

Y respecto a la salud cardiovascular, en otras investigaciones la deficiencia de vitamina D se ha asociado con la activación de mecanismos proinflamatorios que promueven el depósito de grasas y triglicéridos en las arterias, lo que conduce a la arteriosclerosis. Además, la vitamina D juega un papel importante en la regulación de la presión arterial y en la función cardíaca, lo que significa que una deficiencia podría afectar negativamente a la salud cardiovascular.

¿Y cómo ocurren estos procesos en nuestro organismo?

Existe un precursor de vitamina D en nuestra piel que es activado mediante la radiación solar ultravioleta y se transforma en vitamina D3, una de las formas en las que se puede obtener esta vitamina. También se puede obtener mediante la dieta en dos formas: D2 y D3. Estas dos formas son conducidas por un transportador específico de vitamina D al hígado y luego al riñón, donde se transforman en sus formas activas, que son las responsables de todas las funciones biológicas como la absorción de calcio y la mineralización ósea.

¿De dónde podemos obtener la vitamina D?

Luz solar

La mayor parte de la vitamina D que circula en nuestro organismo se obtiene a través de la exposición de la piel al sol. Generalmente, la producción máxima de vitamina D se alcanza después de 10-15 minutos de exposición solar, lo que supone una dosis de vitamina D3 más que suficiente, 500 µg, ya que la ingesta diaria recomendada es de unos 10-20 µg.

Dieta y suplementos

La vitamina D también se puede obtener a través de la dieta. La vitamina D2 se encuentra principalmente en alimentos de origen vegetal y la D3 lo hace prioritariamente en fuentes animales, como el aceite de pescado, los huevos y los lácteos. Además, los alimentos enriquecidos, como los cereales de desayuno y lácteos, pueden proporcionar vitamina D2 o D3.

En cuanto a los suplementos (comprimidos, cápsulas, etc.) para personas vegetarianas o veganas, se pueden obtener a partir de lana de oveja (lanolina) o de líquenes.

A partir de líquenes se pueden producir suplementos de vitamina D aptos para personas veganas.

¿Cabe la posibilidad de estar en riesgo de deficiencia de vitamina D?

A veces no es tan fácil obtener la vitamina D mediante la exposición solar, puesto que la producción de vitamina D en la piel es modulada por la estación, la latitud, la hora del día, la pigmentación de la piel, la edad y el uso de protectores solares.

Paradójicamente, en los países del norte de Europa con latitudes superiores a 40oN, los niveles de vitamina D en la población son más altos que en los países de la cuenca mediterránea, como Italia y España. Esto se explica por el mayor consumo de alimentos enriquecidos con vitamina D y suplementos.

Poblaciones que viven en latitudes por encima de 40º N presentan un mayor riesgo de deficiencia de vitamina D.

¿Y qué pasa con las personas veganas-vegetarianas?

Hoy en día, el número de personas que siguen una dieta vegetariana o vegana está en aumento, ya sea por motivos de salud, razones éticas o medioambientales. Sin embargo, estas dietas pueden conllevar un incremento en el riesgo de deficiencia de vitamina D, ya que los alimentos de origen vegetal proporcionan únicamente vitamina D2, que es más difícil de absorber para el organismo que la D3

Según varios estudios, se han encontrado niveles más bajos de vitamina D en personas vegetarianas y veganas, sobre todo después del invierno y en regiones geográficas donde la radiación solar es escasa. Si sigues este tipo de dieta, o si además de hacerlo tienes otros factores de riesgo, es importante que consideres tomar vitamina D, mediante alimentos fortificados o suplementos de D3 aptos para personas vegetarianas.

Confinamientos y otras situaciones de riesgo. ¿Cómo podemos evitar la deficiencia de esta vitamina?

Normalmente, a comienzos de primavera es cuando tenemos las reservas de vitamina D en sus niveles más bajos. Sin embargo, también suben un poco las temperaturas, lo que hace que nos apetezca salir a tomar el sol.

Desafortunadamente, este año empezó el confinamiento justo en esa época, lo que ha dificultado recargar nuestros niveles de vitamina D. Si además se ha reducido la actividad física, la salud ósea se ha podido ver afectada. Esta situación pone a la población en riesgo de deficiencia de esta vitamina tan esencial para el organismo. Por ello, en el caso de sufrir un nuevo confinamiento, os damos una serie de pautas:

  • En primer lugar, intentad exponer vuestra piel al sol durante 15-20 minutos en la ventana o terraza.
  • Si lleváis una dieta vegetariana, es recomendable consumir alimentos fortificados y suplementos de vitamina D3, por su mayor biodisponibilidad.
  • Por último, en la medida de vuestras posibilidades, mantened una actividad física frecuente, para mantener la fortaleza de vuestros huesos.

En conclusión…

Ya hemos visto que las ingestas de vitamina D dependen de muchos factores como la estación del año, la latitud del país, la hora del día, la pigmentación de la piel, la edad, el uso de protectores solares y el estilo de vida. En el CSIC, en colaboración con otros centros de investigación, trabajamos para definir mejor las ingestas recomendadas de vitamina D, teniendo en cuenta todos los condicionantes que se pueden dar en la población.

*Alexandra Alcorta y Pilar Vaquero son investigadoras en el Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN) del CSIC. Este artículo forma parte del proyecto europeo V-PLACE, financiado por el European Institute of Innovation and Technology (EIT Food). La participación española está liderada por el CSIC, y cuenta con personal investigador perteneciente al Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN) y al Instituto de Agroquímica y Tecnología de Alimentos (IATA).

 

 

 

Ojos en el cielo: los drones que cuidan nuestras cosechas

Por Alicia Boto (CSIC)*

Cuando era pequeña, recuerdo que la gente se empezó a ir del campo a las ciudades. Los motivos, sin duda, eran variados, pero uno de ellos era que el campo daba mucho trabajo, el agua era cara y, por si fuera poco, los intermediarios entre los que cultivaban la tierra y los consumidores finales se llevaban muchas de las ganancias, por lo que mantener la agricultura acababa por compensar poco. Además, la tecnología comenzó a posibilitar que una sola persona cultivara mucho terreno, así que la desbandada fue general.

Hoy día, de algún modo, las cosas están cambiando en ese sentido. Ahora el agricultor puede llegar directamente a sus clientes y, además, gracias a los avances que sigue habiendo en la tecnología, es posible cultivar tierras sin que esto implique una atadura constante y presencial. En un futuro no muy lejano, tendrá desde drones para monitorizar, tratar las cosechas o controlar las malas hierbas, a robots que le ayuden en las faenas del campo. Con un click en un programa de ordenador, sin salir de casa, los campos podrán ser vigilados, regados o fumigados. Y lo mejor: gracias a ‘ojos’ que ven con más tipos de luz que los humanos, los nuevos drones podrán detectar un problema antes de que aparezca a simple vista.

Dron vigilando viñedos en Canarias. / Proyecto Apogeo

Vamos a verlo en el caso real en un viñedo y un dron equipado con dos tipos de cámaras: una normal, que solo capta la luz visible, y otra multiespectral, que capta también la luz ultravioleta y la infrarroja. Tras ser envidas por un ordenador para que las interpretase y ‘pintase’, las imágenes recogidas por este dispositivo indicaron que algunas plantas no estaban sanas. Mientras que el suelo y la tierra aparecían en color azul y las vides más sanas en rojo y naranja, las que estaban en peor forma se mostraban en amarillo y verde-azulado.

Cuando el técnico del dron vio la imagen, avisó a la directora de las bodegas. Una vez en el terreno, las plantas parecían todas iguales a simple vista, pero pronto se detectó que el sistema de riego de la zona norte se había taponado parcialmente. Las plantas no estaban recibiendo suficiente agua. Sin embargo, sus hojas no parecían aún secas porque, para ahorrar líquido, las vides dejaron de producir muchas uvas. Si el problema no se hubiera localizado, la cosecha de esa zona habría bajado mucho. Por suerte, una vez corregido el problema, las vides aumentaron su producción de fruta.

Imagen que muestra la cámara normal de un dron que sobrevuela el viñedo. / Proyecto Apogeo

La cámara multiespectral del dron detecta un problema en la zona del recuadro blanco. / Proyecto Apogeo

Las imágenes del dron también permiten detectar en una etapa temprana otros problemas. Los colores de la imagen cambian rápidamente si al suelo le faltan nutrientes, si las plantas se han infectado con patógenos, o si son atacadas por una plaga. Como el problema se descubre de forma precoz, solo hay que tratar unas pocas plantas, y así se ahorran muchos productos, como fertilizantes, pesticidas o fitosanitarios. Esto hace que los gastos sean menores, tanto para quien cultiva como para quien acaba finalmente consumiendo los productos. Además, los residuos que quedan en las plantas después de un tratamiento disminuyen mucho.

Con esta estrategia, el proyecto de investigación MAC-INTERREG APOGEO desarrolla drones con cámaras multi e hiperespectrales, programas de ordenador que interpretan los datos para dar al agricultor un informe rápido de la situación de sus cultivos y nuevos fitosanitarios más selectivos y respetuosos con el medio ambiente. Aunque el proyecto se centra en viñedos, los resultados pueden extrapolarse a muchos tipos de cosechas, desde frutales a hortalizas. La iniciativa, que cuenta con la participación de varias universidades de Canarias y Madeira, el CSIC, la Dirección General de Agricultura del Gobierno de Canarias, cabildos insulares y asociaciones de viticultores, supone también la realización de cursos de formación para jóvenes agricultores. Con ello, se busca contribuir a que la gente se anime a volver al campo, pueda obtener buenas ganancias y de pie a una economía local y sostenible.

*Alicia Boto es investigadora en el Instituto de Productos Naturales y Agrobiología (IPNA) del CSIC.

APOGEO es un proyecto de investigación coordinado INTERREG-MAC en el que participa el Instituto de Productos Naturales y Agrobiología del CSIC, La Laguna, Tenerife, Canarias, y que lidera el Instituto Universitario de Microlectrónica Aplicada de la Universidad de Las Palmas de Gran Canaria. También participa la Dirección General de Agricultura del Gobierno de Canarias, la Universidad de Madeira, Cabildos, y empresas.

Dibujos animados, series, títeres… Más de 10 propuestas del CSIC para estos días sin cole

Por Mar Gulis (CSIC)

Faltan meses para que niñas y niños vuelvan al cole y recuperen sus rutinas. Mientras tanto, ¿qué hacer? ¿Cómo rellenar tantas horas de ocio? Muchos padres y madres llevan semanas haciéndose estas preguntas. Desde este blog os hemos contado los recursos y canales virtuales a los que podéis acceder para satisfacer vuestra curiosidad científica. Pero también queremos acercar la ciencia al público infantil. Aquí os damos algunas ideas para que la chavalada pueda entretenerse y aprender al mismo tiempo.

Distintos institutos del CSIC ponen a vuestra disposición materiales que combinan contenidos científicos con formatos atractivos para la gente menuda. Dibujos animados, todo tipo de audiovisuales con música e ilustraciones, marionetas, cortometrajes y hasta juegos online os esperan en varias webs vinculadas al CSIC y sus centros de investigación.

Si disponéis de ordenador u otro dispositivo y conexión a internet en casa, accederéis a un abanico de recursos para para que vuestros familiares más jóvenes aprendan de forma divertida sobre cambio climático, galaxias, arqueología o electromagnetismo, entre otros muchos temas. En este post os detallamos algunas opciones que encontraréis a golpe de click. Empezamos por las edades más tempranas:

Fragmento de 'Una aventura en la Prehistoria', de Kids.CSIC

Fragmento de ‘Una aventura en la Prehistoria’, de Kids.CSIC.

Dibujos, marionetas y medio marino (a partir de 3 años)

Para los más pequeños, el Instituto de Investigaciones Marinas cuenta con sus Kaleid@labs, una serie de vídeos cortos sonorizados solo con música donde se alternan ilustraciones, títeres realizados por estudiantes de Infantil y Primaria e imágenes de investigación del medio marino. De forma fluida y amena, y sin pasar por alto cuestiones duras de pelar como la contaminación o el calentamiento global, acercan a este público el complejo mundo de la práctica científica.

El mismo instituto también os lleva de paseo subacuático a recorrer la biodiversidad oceánica con su Safari submarino por aguas gallegas y aguas del mundo, igualmente conformado por música e imágenes. Además, en su página web #quedaNaCasa encontraréis muchos otros recursos y materiales didácticos.

Kaleid@labs

Portada de la serie Kaleid@labs, del IIM.

¡Que vivan los dibujos animados! (a partir de 4 años)

El CSIC dispone de un buen repertorio de dibujos animados con abundante contenido didáctico. Preparad las palomitas porque aquí os damos unas cuantas pistas:

Si queréis acercaros a las ciencias del cosmos, echad un vistazo a los dibujos animados del Instituto de Astrofísica de Andalucía (IAA), uno de los centros de CSIC dedicados a estudiar el universo. Sus cortometrajes animados contienen grandes dosis de ciencia y humor. Con ellos descubriréis cómo se originaron el Sol y las estrellas, aprenderéis más sobre las galaxias, entenderéis cómo empezó la vida en la Tierra y de qué está hecho el aire que respiramos. También podréis saber más sobre partículas y elementos químicos. La chavalada se familiarizará con conceptos como “zona de habitabilidad” o “contaminación lumínica”, y alucinará con el viaje que hace un fotón desde que sale del Sol hasta que alcanza la superficie de una planta.

Si os atrevéis con la física solar, no os perdáis la serie The QuEST de este mismo instituto, integrante del proyecto del Telescopio Solar Europeo (EST, en sus siglas en inglés). La serie explica los objetos de estudio de este nuevo telescopio solar a través de los astrónomos que los estudiaron por primera vez: Galileo Galilei, George Ellery Hale, Angelo Secchi o John and Mary Evershed. Podéis ver sus episodios online y descargarlos en distintos idiomas.

Imagen the The QuEST

Fragmento del capítulo ‘John and Mary Evershed de la serie The QuEST.

Seguimos con más dibujos animados. El CSIC en la Escuela, un programa orientado a impulsar la ciencia en las primeras etapas del aprendizaje, os ofrece cortometrajes que están acompañados de una guía para el docente y se enmarcan en diferentes itinerarios didácticos: ‘El mundo de las moléculas’, ‘La naturaleza de la luz’, ‘Electromagnetismo’, introducciones a la genética y a la arqueología, o la importancia de la transmisión del conocimiento para el avance de las sociedades. En sus historias remiten a nombres y anécdotas que confeccionan la historia de la ciencia, y en su página web Kids.CSIC cuentan con un apartado especial para biografías, además de incluir juegos y tests interactivos.

Fragmento de Los guisantes informan, de Kids.CSIC

Fragmento de ‘Los guisantes informan’, de Kids.CSIC.

También para pequeñas mentes inquietas, el Instituto de Agroquímicos y Tecnología de Alimentos (IATA) ha realizado una serie de animaciones con las que podéis aprender sobre las bacterias que viven en nuestro intestino, los virus o el gran problema de la contaminación por microplásticos.

Imagen de Los virus entéricos, de la serie de animaciones del IATA

Fragmento de ‘Los virus entéricos, de la serie de animaciones del IATA.

Para un poco más mayores (a partir de 7 años)

En la Unidad de Cultura Científica (UCC) del CSIC en Galicia, con la llegada de la cuarentena se pusieron manos a la obra para alimentar la curiosidad científica en estos días de confinamiento. Hablaron con el actor gallego Rony Flamingo y decidieron elaborar esta serie de Píldoras CSIC de conocimiento. De la mano de una divertida ristra de personajes y con referencias locales, estas píldoras os llevarán a los distintos ámbitos de investigación de los centros del CSIC en esta comunidad.

Imagen de Píldoras CSIC de conocimiento

Fragmento de ‘Palmira, domadora profesional (la domesticación vegetal), de la serie Píldoras CSIC de conocimiento de la UCC del CSIC en Galicia.

Si ha llegado el momento de dar un paso más, otra propuesta animada que no os podéis perder es Revoluciones matemáticas. La serie, que cuenta ya con dos temporadas de cuatro capítulos cada una, presenta la vida y obra de grandes matemáticos como Emmy Noether, Isaac Newton, Ada Lovelace, Henri Poincaré o Leonhard Euler, y explica algunos de los problemas que decidieron resolver a través de este lenguaje numérico y universal.

Imagen de Revoluciones matemáticas

Fragmento del capítulo ‘Ada Lovelace’, de la serie Revoluciones matemáticas.

También podéis ver los vídeos del grupo InDi de investigación y divulgación inclusiva de la Institución Milá y Fontanals (IMF), y conocer la iniciativa ‘La Prehistoria contada con marionetas’, o descubrir ‘Hechos y mitos de la Prehistoria’, que apuesta por una ciencia que también sea hecha por personas con discapacidad intelectual.

Si os gustan los espectáculos científicos, asomaos a la iniciativa Ciencia en Navidad, donde, entre otras cosas, podréis disfrutar de la obra de teatro ‘La radiante vida de Marie Curie’.

Portada de la obra de teatro La radiante vida de Marie Curie, dentro de los vídeos del programa Ciencia en Navidad

Portada de la obra de teatro ‘La radiante vida de Marie Curie, dentro de los vídeos del programa Ciencia en Navidad.

Y para mayores de 9 años que sientan atracción por la astrofísica y el universo, el Instituto de Astrofísica de Andalucía ofrece más alternativas: la serie de vídeos divulgativos Deconstruyendo la luz y, con un plus de creatividad, los videoblogs didácticos El diario secreto de Henrietta S. LeavittEl consultorio de Erasmus Cefeido y el Teslablog.

Finalmente, Climate Change. The FAQs, pensado para público a partir de 12 años, es un vídeo en el que científicas y científicos responden a diversas preguntas de estudiantes de Secundaria sobre las causas, las consecuencias y las posibles soluciones del cambio climático.

Si os quedáis con ganas de más, no os perdáis el amplio repertorio de videojuegos y juegos interactivos, recursos didácticos, convocatorias y experimentos creados por el CSIC para el público infantil y juvenil. Podéis encontrar una buena parte de ellos aquí.

¿Qué animal aparece en esta imagen? Una pista: no es ni una lombriz, ni una serpiente

Por Diego San Mauro (UCM) y Rafael Zardoya (CSIC)*

Si echas un vistazo a esta imagen probablemente pensarás que en ella aparece una lombriz, una serpiente pequeñita, o incluso una anguila. En ese caso sentimos decirte que te has confundido de bicho, porque se trata de una cecilia. Estos animales ‘saborean’ su entorno para orientarse, son capaces de detectar cantidades ínfimas de luz y algunas de sus especies alimentan a sus crías con su propia piel. Os invitamos a saber más sobre las características y curiosos comportamientos de estos anfibios.

Cecilia de la especie Ichthyophis cf. longicephalus de la India./ Ramachandran Kotharambath

Comencemos por su nombre científico. Pertenecen al orden Gymnophiona, que en griego significa serpiente desnuda. Las cecilias se llaman así porque se asemejan a estos reptiles, pero se distinguen fácilmente porque carecen de escamas aparentes como ellas. Constituyen uno de los tres órdenes de anfibios vivos junto a ranas y salamandras.

Todas viven en regiones tropicales húmedas de África, India, Sudeste Asiático, Seychelles y América Central y del Sur. La mayor parte son de hábitos subterráneos o habitan bajo la hojarasca y solo salen a la superficie durante la noche, pero también hay una familia acuática que vive en ríos y pantanos. Actualmente existen 214 especies reconocidas.

Algunas especies miden apenas unos centímetros y otras pueden superar el metro y medio de longitud. En la imagen, la Ichthyophis tricolor de la India que puede legar a medir más de 30 centímetros./ Ramachandran Kotharambath

Si atendemos al tamaño, algunas especies son relativamente pequeñas, como Idiocranium russeli de Camerún, de unos 10 centímetros de largo, mientras que otras, como Caecilia thompsoni de Sudamérica, pueden superar el metro y medio de longitud. Las cecilias son carnívoras y depredadoras fundamentalmente de lombrices, termitas y otros pequeños invertebrados del suelo o el agua en el caso de las especies acuáticas. Las especies de mayor tamaño pueden alimentarse en ocasiones de pequeños vertebrados como ranas, peces, lagartijas y serpientes.

Como todos los anfibios, tienen una piel lisa y húmeda con multitud de glándulas que la humedecen y lubrican, así como otras que secretan sustancias defensivas. En el caso de las cecilias, estas sustancias pueden ser tóxicas y antimicrobianas y tienen un gran potencial para la industria farmacéutica.

Vivir bajo tierra ha producido ciertos cambios adaptativos en su cráneo, muy osificado y reforzado, y en su visión. Sus ojos son muy pequeños y muchas veces están cubiertos por piel e incluso hueso. Están adaptados para detectar intensidades de luz ínfimas, tal y como ocurre en otros vertebrados de hábitos cavernícolas o en peces abisales. Las cecilias no pueden ver en color, pero esta falta de visión se ve compensada por un órgano formado por dos tentáculos extensibles situados entre el ojo y la apertura nasal, a ambos lados de la cabeza. Esta estructura sensorial les permite ‘saborear’ el entorno y detectar las sustancias químicas del medio.

Cecilia de la especie Scolecomorphus kirkii de Malawi mostrando los tentáculos que tiene a ambos lados del hocico./ Hendrik Müller

Comedoras de piel materna

A la hora de reproducirse también son bastante diversas. A diferencia de otros anfibios (excepto algunas salamandras), los machos poseen un órgano copulador y la fecundación es siempre interna. Hay especies ovíparas que ponen huevos de los que salen larvas de vida acuática y que sufrirán la metamorfosis para convertirse en adultos terrestres. Otras especies ovíparas son de desarrollo directo, es decir, los juveniles salen del huevo como individuos ya formados. Finalmente, hay especies vivíparas en las que la madre da a luz individuos juveniles ya formados.

Las especies ovíparas normalmente ponen los huevos en nidos subterráneos cerca del agua y las madres suelen protegerlos enrollándose alrededor. Grandisonia sechellensis de las Islas Seychelles./David J. Gower

Y cuando algunas de esas crías nacen, tienen un menú un tanto peculiar. En algunas especies ovíparas de desarrollo directo, la piel de la madre se llena de lípidos para servir de alimento a los juveniles. Las ‘cecilias juveniles’ poseen unos dientes especializados que usan para desgarrar la piel de la madre y alimentarse de ella. En las especies vivíparas, los fetos también poseen estos dientes especializados que les permiten raspar la pared del oviducto materno, revestido de lípidos para proporcionarles comida. Estudios recientes han sugerido que la dermatofagia materna, que es como se llama a este comportamiento, podría haber servido como precursor del viviparismo en las cecilias.

Juveniles de Boulengerula taitanus comiendo la piel de su madre./ Alexander Kupfer

Su registro fósil es escaso y las relaciones evolutivas entre las especies actuales, así como de estas con los otros grupos de anfibios y vertebrados, se han deducido recientemente mediante la comparación de su ADN. Estos estudios han permitido establecer las relaciones de parentesco entre las diez familias actualmente reconocidas, así como entre la práctica totalidad de géneros de cecilias. Sin embargo, aún queda por esclarecer una buena parte de las relaciones a nivel de especie, lo que hace que la investigación en este campo sea especialmente interesante y activa. De hecho, al ser el linaje hermano del grupo que contiene las ranas y las salamandras, las cecilias constituyen una importante clave para inferir las características que pudo tener el antepasado de los anfibios actuales, así como para comprender la colonización del medio terrestre por los vertebrados y los cambios y adaptaciones que ocurrieron hace 360 millones de años.

 

*Diego San Mauro y Rafael Zardoya son investigadores de la Universidad Complutense de Madrid y del Museo Nacional de Ciencias Naturales (MNCN-CSIC), respectivamente. Este texto es un extracto del artículo ‘Las cecilias, los anfibios desconocidos’ publicado en la revista Naturalmente.

¿Cuándo empezamos a sentir? Electricidad en los circuitos cerebrales

Por Óscar Herreras (CSIC)*

¿Sentimos lo mismo ante una misma situación? Es evidente que no. Cada objeto, emoción o concepto se graba en circuitos neuronales por la propia experiencia de cada individuo, y para esto no hay manuales, no hay genes. Pero, ¿qué entendemos por sentir? Como casi todos los conceptos que empleamos para definir el comportamiento humano, este también tiene su origen en la era precientífica, de ahí sus mil significados.

Etimológicamente, sentir significa dirigirse hacia donde nos indican los sentidos. Implica, por tanto, percepción y movimiento. ¡Casi nada! Las dos principales propiedades de la vida animal. Afortunadamente, hay una disciplina que estudia las funciones del sistema nervioso y nos las explica con el lenguaje común de la física: la neurofisiología. De ella aprendimos hace ya más de un siglo que todo lo que se percibe –sonidos, imágenes, olores– se traduce y se transmite en los circuitos nerviosos como actividad eléctrica. Desde el instante en que vemos un anuncio de chocolate hasta el momento en el que los músculos nos llevan a la tienda, todo es actividad eléctrica fluyendo por los circuitos neuronales. Esta puede ser la definición mínima de sentir. Y no es para menos: la electricidad es la clave de la vida.

Todas las células, no solo las neuronas, son bolitas de grasa que contienen electrolitos en su interior, como si fueran la batería de un coche. Buena parte de estas células son excitables, lo que les permite generar corriente. Las neuronas evolucionaron dominando este juego de una forma espectacular: pueden codificar en forma de impulsos eléctricos lo que percibimos del mundo exterior e interaccionar con él enviando órdenes a los músculos. Sin flujo eléctrico a través de los circuitos nerviosos no hay sensación, no hay movimiento. La electricidad es lo que diferencia a los circuitos vivos de los muertos, así de simple.

Circuitos de la corteza cerebral

Diversos tipos neuronales forman los complejos circuitos en la corteza cuya actividad eléctrica y funciones madurarán lentamente en la infancia. /López-Mascaraque, Instituto Cajal, CSIC

No obstante, ¿es esta la única función de la electricidad en el sistema nervioso? No, ni mucho menos. Recientemente, nuestro grupo ha mostrado que la actividad eléctrica de la corteza cerebral sensorial en roedores jóvenes, aunque es similar a la de los adultos, está generada por circuitos diferentes. Este hallazgo, publicado en Journal of Neuroscience, es relevante porque previamente sabíamos que los circuitos ya estaban formados a esa edad, y ahora podemos concluir que aún no están plenamente operativos. En este caso, se trataba de los circuitos que controlan las patas, y sabemos que en unos pocos días más, cuando el animal entrene un poco, la electricidad fluirá por sus circuitos como en un adulto. Esta maduración tardía de los circuitos corticales a medida que se usan revela un patrón de economía biológica.

Lejos de ser canales fijos de comunicación, los circuitos son extremadamente mutables, y es nuestra actividad diaria la principal promotora de sus adaptaciones. El entrenamiento es esencial. Los recién nacidos entrenan días, meses y años para adquirir nuevas funciones y capacidades, tiempo en el que la electricidad irá produciendo los cambios necesarios para que todos los segmentos del circuito sean activos y engranen perfectamente.

Corteza cerebral rata adolescente

Los circuitos de la corteza cerebral están organizados en estratos de neuronas diferentes. /Silvia Tapia, Instituto Cajal, CSIC

Suele decirse que hay un mapa genéticamente determinado de nuestros circuitos, y esto es correcto, pero solo en parte. Sin la electricidad, los circuitos no se forman o lo hacen de manera aberrante, como mostraron hace más de medio siglo los Nobeles Hubel y Wiesel al observar que, impidiendo la visión de un ojo unos pocos días tras el parto, los circuitos de la corteza visual eran aberrantes. Hallazgos más recientes muestran que la actividad eléctrica es imprescindible para activar los genes necesarios en la construcción de los circuitos. Así, en esta época en la que todo parece consecuencia de un plan genético determinado para cada especie y cada individuo, resulta que la energía eléctrica determina cuándo, cuánto y cómo se va a ejecutar ese plan. La electricidad no es solo la energía que permite a un organismo complejo ejecutar sus funciones, sino que además controla sus propios cambios estructurales para adaptarse al medio con el que tiene que interaccionar, y permite que este interactúe con nosotros generando electricidad en nuestros órganos sensoriales y cambios en nuestro sistema nervioso.

Medicina sin fármacos

Estudiar y catalogar la electricidad en el cerebro no es fácil; hay demasiados núcleos activos a la vez realizando gran cantidad de funciones. Sus cambios son tan rápidos que es muy difícil clasificarlos para interpretar qué información llevan, que función realizan y si es normal o patológica. Si hoy la ciencia pone el énfasis en las alteraciones moleculares y génicas como responsables de las patologías, algunos investigadores vemos la electricidad como la causa última, y ya vislumbramos el día en que un conocimiento exhaustivo de la actividad eléctrica en los circuitos nos permita interactuar con ellos para reconducir las anomalías estructurales que causan las deficiencias. Aquí está una de las posibles claves de la investigación futura. Medicina sin fármacos. Sabemos que la actividad eléctrica debe seguir un patrón preciso para generar cambios en la estructura, tanto a nivel celular como en los circuitos. Ya hace décadas que se está empleando estimulación eléctrica con patrones temporales muy precisos para tratar la epilepsia y la enfermedad de Parkinson, y ahora se están desarrollando tecnologías para muchas otras patologías, como el alzhéimer o la migraña, o para restablecer funciones perdidas tras un ictus cerebral.

En definitiva, sentimos de manera diferente porque la actividad eléctrica fluye por distintas partes de nuestros circuitos, bien porque seamos un reptil o un primate, un embrión o un adulto, o bien porque usemos la parte reptiliana de nuestro cerebro o dejemos llegar la corriente eléctrica hasta la corteza. Así, si queremos comprendernos a nosotros mismos y nuestras patologías, seamos primates y estudiemos la actividad eléctrica del cerebro.

* Óscar Herreras es investigador del Instituto Cajal del CSIC.

Blockchain, tierras raras, aceleradores de partículas… El CSIC lleva la actualidad científica a la Feria del Libro

Por Mar Gulis (CSIC)

¿Sabes cómo funcionan el bitcoin y otras criptomonedas? Si quieres algunas pistas, el martes 11 de junio en la Feria del Libro de Madrid David Arroyo, Jesús Díaz y Luis Hernández presentarán su libro Blockchain. Los autores explicarán al público los entresijos de esta tecnología y sus aplicaciones en la denominada criptoeconomía.

Como cada año, investigadores e investigadoras del CSIC acudirán a esta emblemática cita para dar a conocer los últimos libros publicados en las colecciones ‘¿Qué sabemos de?’ y ‘Divulgación’ (CSIC-Catarata), que acercan la ciencia al público general. El mismo día 11, además de criptoeconomía, se hablará del futuro de la óptica; el LHC, el mayor acelerador de partículas del mundo; y las tierras raras, 17 elementos químicos omnipresentes en las sociedades tecnológicamente avanzadas y, sin embargo, poco conocidos.

El 12 de junio, la investigadora Pilar Ruiz Lapuente se ocupará de la energía oscura, del posible final “frío y estéril” del cosmos y de otras cuestiones relacionadas con la astrofísica que aborda en su libro La aceleración del universo. En la misma jornada tendrán cabida temas como la tabla periódica de los elementos químicos, el albinismo y otras mutaciones genéticas o el papel de las áreas protegidas en la sostenibilidad ambiental.

En total, el CSIC y la editorial Los Libros de la Catarata, presentarán ocho obras de divulgación a través de las intervenciones de sus propios autores.

Estas son las coordenadas

Las presentaciones se realizarán los días 11 y 12 de junio, a partir de las 12:30 horas, en el Pabellón Bankia de Actividades Culturales, situado en las proximidades de los jardines de Cecilio Rodríguez del parque de El Retiro. De acceso libre, estas citas son una oportunidad para escuchar y plantear preguntas a los protagonistas de la ciencia.

Quienes busquen actividades para público más joven, el sábado 8 de junio tienen además una cita en el Pabellón infantil. Allí, investigadores del CSIC que han participado en la obra Descubriendo la luz. Experimentos divertidos de óptica realizarán demostraciones para niños y niñas. Las sesiones, de entrada libre y una duración de 15 minutos, se prolongarán desde las 12:30 hasta las 15:00 horas.

Y si la prioridad es llevarte tu libro con dedicatoria incluida, pásate por la caseta del CSIC (número 19) o la de Los Libros de la Catarata (número 336). Durante toda la feria, los autores de las novedades editoriales estarán en firmando ejemplares.

La información de las firmas se puede consultar aquí.

La feria Ciencia en el Barrio reúne a 500 adolescentes para divulgar la ciencia

Por Mar Gulis (CSIC)

Abderrahim y Anás salen a explicar una estratigrafía arqueológica que acaban de realizar en su instituto para entender las huellas del tiempo en el paisaje. Una investigadora del CSIC, María Ruiz del Árbol, les ha explicado cómo hacerlo previamente. Estamos en el Instituto de Educación Secundaria (IES) María Rodrigo, en el Ensanche de Vallecas, y es la primera vez que reciben una visita de este tipo. Sus profesores y el director del IES no salen de su asombro; estos chicos no se implican en actividades académicas y menos científicas. Hasta que cambia su contexto de aprendizaje.

Motivar y generar curiosidad es uno de los objetivos de Ciencia en el Barrio, un proyecto del CSIC que, con el apoyo de la FECYT, trata de llevar actividades de divulgación científica a distritos de Madrid que no contaban con esta oferta. Este viernes, 16 de marzo, estudiantes procedentes de Usera, Carabanchel, Villaverde, Puente de Vallecas, Hortaleza y San Blas-Canillejas replican los talleres realizados previamente con personal investigador del CSIC en sus Institutos de Educación Secundaria (IES) en la Feria Ciencia en el Barrio, en el IES Arcipreste de Hita, en Entrevías, convirtiéndose así en divulgadoras y divulgadores por un día.

A las 10.00 de la mañana, el salón de actos del Arcipreste era un hervidero. Cerca de 500 adolescentes procedentes de nueve institutos madrileños deambulaban de un lado a otro buscando un stand, probando microscopios, preparando el material para hacer una extracción de ADN, ordenando los utensilios para hacer una cata de chocolate…La oferta de la feria es sumamente variada: hasta las 14.00, sus protagonistas van a acercarse a la ciencia a través de experimentos sobre los orígenes de la vida en el universo, la microelectrónica o la nanotecnología; y también mediante  talleres para aprender matemáticas con la vida de las abejas, ‘cocinar’ con polímeros, realizar catas de chocolates, pruebas olfativas o aplicar conocimientos arqueológicos al barrio.

Desde 2016, el Área de Cultura Científica del CSIC ha organizado en cada uno de los institutos participantes talleres experimentales, conferencias, clubes de lectura, y exposiciones sobre temas de actualidad científica, además de visitas guiadas a centros de investigación punteros. El programa está dirigido a estudiantes de 4º de la ESO, pero el resto del alumnado y la comunidad educativa y vecinal también pueden participar en algunas de las actividades.

Ciencia en el Barrio constituye una iniciativa pionera en la ciudad. Hasta el momento más de 2.500 personas han participado en un centenar de actividades que han permitido desmontar ideas falsas sobre las y los científicos, favorecer el contacto directo entre los jóvenes y el personal investigador, así como reforzar vocaciones científicas e inspirar otras nuevas.

Matrix acústico: una habitación donde el sonido nunca vuelve

Mar Gulis (CSIC)

Quizá recordéis la mítica escena de Matrix (1999) en la que Morfeo (Laurence Fishburne) y Neo (Keanu Reeves) aparecen en una habitación en blanco, que resulta ser un programa en el que pueden simular la realidad. “¿Esto no es real?”, pregunta Neo tocando un sillón. “¿Qué es real? ¿Cómo defines real?… Si hablas de lo que puedes sentir, de lo que puedes oler, probar y ver… lo real son impulsos eléctricos que tu cerebro interpreta”, le contesta el Guía al Elegido. Bien, en esta ocasión vamos a hablar de lo que puedes oír y de una habitación como la de Matrix, pero ubicada en el Instituto de Tecnologías Físicas y de la Información Leonardo Torres Quevedo (ITEFI) del CSIC, en Madrid.

Al cruzar la puerta, una tiene la impresión de entrar en un espacio muy peculiar. La sensación acústica es “la de estar colgado de un globo a 1.000 metros de altura”, explica el físico del CSIC del Grupo de Acústica Ambiental Francisco Simón. Y es así, todo sonido emitido en esta habitación nunca vuelve, queda absorbido por unas paredes, suelo y techo de grandes cuñas de lana de vidrio.

Cámara anecoica del Instituto Leonardo Torres Quevedo / CSIC Divulga.

Esta cámara anecoica (sin eco ni reverberación) de 220 metros cúbicos sirve para crear campos acústicos virtuales que, como en la habitación de Matrix, simulen una realidad sonora. Esto es muy útil para el diseño de salas de música, dado que pueden reproducir cómo sonaría un violín, por ejemplo, en un espacio antes de construir el recinto, para simuladores de juego, que intentan que te des la vuelta con el sonido de un libro que se cae detrás de ti, para el cine… Los primeros en usar este tipo de tecnología fueron los militares con simuladores de vuelo y la industria del automóvil, que tiene muy en cuenta cuál es el sonido que quiere que emitan sus vehículos.

Cuando se construyeron estas cámaras, en los ’70, esta instalación era absolutamente pionera. Ahora empresas como Google, Microsoft o Telefónica tienen sus cámaras anecoicas. En ellas, las compañías prueban las características acústicas de sus dispositivos, como la potencia o cantidad del sonido que emite cualquiera de sus aparatos, y la directividad, es decir, en qué dirección lo hacen.

Y aquí, ¿podríamos escuchar el silencio total? “Tendríamos que congelarnos del todo para hacerlo”, bromea Simón. “Aquí está nuestro cuerpo, escuchamos el aire salir y entrar de los pulmones, nuestras tripas; si nos calláramos, escucharíamos nuestro corazón”, concreta.

Cámara reverberante del Instituto Leonardo Torres Quevedo / CSIC Divulga.

Cerca de esta cámara encontramos su opuesta: la habitación reverberante, un espacio en el que se busca que el sonido se expanda por todo el espacio y reverbere en todas direcciones. Para ello, hay colgados unos grandes paneles de metacrilato que producen el máximo número posible de reflexiones del sonido. Este espacio de 210 metros cúbicos se usa para sumergir en él materiales de construcción y caracterizarlos. Así, cuando un sonido llega a un material para edificación podemos ver si “rebota”, entra dentro y se disipa o lo traspasa y llega al otro lado. Por eso, aquí se realizan mediciones de absorción acústica de materiales y objetos de mobiliario.

En esta sala, solo escuchamos reverberación, no eco. La diferencia entre el eco y la reverberación es cuestión solo de tiempo: si el sonido tarda en volver menos de 50 milisegundos, lo percibimos como un sonido continuado, si tarda más, escuchamos dos sonidos; se produce el eco.

De hecho, ya en los años 60 y 70 se realizaron en este centro muchos estudios sobre aislamiento en la edificación: aislamiento al ruido aéreo de puertas, ventanas, barreras acústicas, suelos, techo, etc. No se trata de una cuestión baladí: una diferencia de 3 decibelios supone el doble de energía en el sonido que estábamos escuchando.

Por cierto, este mismo mes de octubre se cumplen diez años de la publicación de las condiciones acústicas exigidas en el Código Técnico de Edificación con las que se endurecieron las prestaciones acústicas que deben satisfacer los edificios, ofreciendo a constructores, administración y usuarios herramientas para que las viviendas que se construyen hoy día planteen menos problemas a sus habitantes y proporcionen un nivel de confort adecuado.

 

Feromonas: cuestión de (algo más que) sexo

Por Laura López Mascaraque (CSIC)* y Mar Gulis (CSIC)

En 1959, un grupo de químicos alemanes, liderado por Adolf Butenandt, reunieron 313.000 mariposas hembras y les cortaron el extremo del abdomen. Como si de una poción de brujería se tratara, trituraron estas porciones y las disolvieron en diferentes sustancias para observar la respuesta que provocaban los brebajes en los machos de esta especie. De este modo, comprobaron que bastaba con una trillonésima parte de un gramo (10-18 gramos) de mezcla para conseguir algún tipo de reacción por parte del macho. Gracias a este experimento identificaron por primera vez una feromona, a la que denominaron bombicol y que es la responsable de que el macho de la mariposa de la seda (Bombyx mori) mueva sus alas al percibirla.

Mariposa de la seda (Bombyx mori)/ Csiro.

Las feromonas son claves para determinadas relaciones sociales, y sobre todo sexuales, entre varias especies animales, ya sean organismos simples, invertebrados o vertebrados. ¿Qué es y cómo funciona esta potente herramienta capaz de favorecer la comunicación entre individuos en unas concentraciones tan bajas?

Se trata de un tipo de estímulos químicos que transmiten información específica entre individuos de la misma especie, generando normalmente una respuesta tipo. En los casos más evidentes provocan un cambio inmediato en el comportamiento del animal receptor o un cambio en su desarrollo: generan movimientos determinados, actúan sobre la fisiología reproductiva o transmiten un estado de salud determinado o un estatus social dentro de una comunidad.

Las feromonas pueden ser compuestos específicos o mezclas de ellos. En cualquier caso, son compuestos con propiedades físicas y químicas concretas. Una vez liberada se podría decir que la feromona tiene vida propia. La duración de su mensaje dependerá de la persistencia de las moléculas en el ambiente, y el alcance dependerá tanto de esa vida media como de la facilidad de ser transportada por el aire o por una corriente de agua.

En general son sustancias pequeñas, volátiles, que se dispersan con facilidad en el ambiente y que generan efectos en cantidades minúsculas. Según sea su función, así serán sus características: estables y poco volátiles cuando el objetivo es marcar los límites de un territorio, o bien de corta vida y rápida difusión cuando lo que se busca es alarmar ante una situación de peligro…En definitiva, el requisito indispensable es que sean capaces de generar una reacción determinada dentro de la misma especie.

Protozoo, lombriz de tierra y ratón doméstico/ EPA, Holger Casselmann y George Shulkin.

Existen feromonas en organismos simples, como ciertos protozoos (Chlamydomonas) que producen esta sustancia en sus flagelos para conseguir que otros protozoos se agreguen a él. También existen estos compuestos en invertebrados, como la lombriz de tierra (Lumbricus terrestres), que bajo situaciones de estrés segrega una feromona que alerta al resto sobre algún peligro inminente. O en algunos vertebrados, como el macho del ratón doméstico (Mus musculus domesticus), que emite una feromona que genera agresividad en el resto de machos a la vez que atrae a las hembras maduras y acelera la pubertad en las más jóvenes. Pero, ¿qué pasa con los humanos? ¿existen feromonas que influyan en nuestro comportamiento?

Parece mentira, pero aún se desconoce la existencia de feromonas en los seres humanos. Hay diversos estudios que pueden relacionar las feromonas con fenómenos como el reconocimiento recíproco entre una madre y su hijo recién nacido, la denominada sincronía menstrual que ocurre entre las mujeres que viven o trabajan juntas o la reacción que puede provocar sobre los que nos rodean el olor corporal que emitimos en situaciones de estrés. Sin embargo, la creencia es que los olores personales están influidos por la dieta, el ambiente, la salud y la genética. Se piensa que tienen demasiadas sustancias para ser descritos como feromonas y, de hecho, no se ha podido identificar una molécula que se haya definido como feromona humana. Eso no ha disuadido a un grupo de emprendedores para montar empresas que venden pociones de amor que supuestamente contienen feromonas, aunque en realidad, en el mejor de los casos, contienen feromonas, sí, pero de cerdo.

* Laura López Mascaraque es investigadora del Instituto Cajal  del CSIC y autora, junto con José Ramón Alonso de la Universidad de Salamanca, del libro El olfato de la colección ¿Qué sabemos de?, disponible en la Editorial CSIC y Los Libros de la Catarata.