Entradas etiquetadas como ‘cambio global’

¿Cómo influyen los bosques en el clima?

Por J. Julio Camarero (CSIC)*

Seguramente has apreciado alguna vez cómo el clima afecta a los bosques cuando, tras una sequía, una nevada, una helada o una fuerte ola de calor, algunas especies de árboles y arbustos pierden vigor, crecen menos o incluso mueren. Quizá vienen a tu memoria las fuertes olas de calor del verano del 2022, la tormenta de nieve Filomena al inicio del 2021 o las sequías de los años 1994-1995, 2005 y 2016-2017. Los árboles toleran unos márgenes limitados de temperatura y humedad del suelo y del aire, por lo que pueden morir si se superan esos umbrales vitales como consecuencia de fenómenos climáticos extremos. Pero podemos darle la vuelta a la pregunta y plantearnos si la interacción clima-bosque sucede en los dos sentidos: ¿pueden los bosques cambiar el clima? Pues bien: la respuesta a este interrogante es afirmativa. Sabemos que los bosques pueden modificar (amortiguar o amplificar) los efectos del clima sobre la biosfera y que esas modificaciones cambian según las escalas espaciales y temporales a las que se observe esta interacción.

Nimbosilva o bosque mesófilo de montaña en la Reserva de la Biosfera El Triunfo, México. / Luis Felipe Rivera Lezama (mynaturephoto.com)

Los árboles almacenan grandes cantidades de agua y de carbono en sus tejidos, sobre todo en la madera, y conducen y transpiran mucha agua hacia la atmósfera. Esto explica que se hayan observado caídas en el caudal de los ríos en respuesta a los aumentos de la cobertura forestal a nivel de cuenca. Existen datos de este proceso en el Pirineo donde, como en el resto de la península, se ha producido un abandono del uso tradicional del territorio (cultivos, pastos, bosques) desde los años 60 del siglo pasado, cuando la mayoría de la población española emigró a núcleos urbanos. Ese abandono ha favorecido la expansión de la vegetación leñosa y propiciado que bosques y matorrales ocupen más territorio y retengan más agua, la llamada ‘agua verde’, a costa de reducir el caudal de los ríos, la llamada ‘agua azul’.

Hayedo y río (Cataluña). / Luis Felipe Rivera Lezama (mynaturephoto.com)

Pero tampoco podemos ignorar que al aumentar las temperaturas la vegetación transpira más y se evapora más agua. Ese aumento de temperaturas incrementa también la demanda de agua por parte de grandes usuarios como la agricultura, a veces centrada en cultivos que requieren mucha agua, y esto contribuye a que los caudales de los ríos y el nivel freático de los acuíferos desciendan. Por tanto, a escalas locales se ha comprobado cómo la reforestación conduce a un menor caudal de los ríos. Sin embargo, la historia cambia bastante a escalas espaciales más grandes.

Según la teoría de la bomba biótica, los bosques condensan la humedad y con ello impulsan los vientos y por tanto la distribución de la humedad en el planeta. (1) Si talamos los bosques tropicales, el mecanismo de la bomba biótica se altera y las precipitaciones se trasladan a la costa y en zonas tropicales (2). Según esta teoría los bosques extensos y diversos permiten captar y generar precipitación tierra adentro, especialmente cerca de la costa (3). / Irene Cuesta (CSIC)

Bomba biótica y bosques tropicales

A escalas regionales y continentales, gracias a un mecanismo llamado bomba biótica, la evapotranspiración de los bosques aumenta los flujos de humedad atrayendo más aire húmedo. Esta teoría defiende que los bosques atraen más precipitaciones desde el océano, tierra adentro, mientras generen suficiente humedad a nivel local. Fueron Anastassia Makarieva y Víctor Gorshkov, del Instituto de Física Nuclear de San Petersburgo (Rusia), quienes propusieron la hipótesis de la bomba biótica en 2006. Además, sugerían reforestar algunas zonas para hacerlas más húmedas aumentando así la precipitación y el caudal de los ríos. La bomba biótica explica en gran medida la existencia de las elevadas precipitaciones y los grandes bosques en las cuencas tropicales más extensas, como las de los ríos Amazonas y Congo. Por tanto, nos alerta sobre la posible relación no lineal entre deforestación y desertificación ya que, según esta teoría, una región o un continente que cruzara un determinado umbral de deforestación podría pasar muy rápidamente de condiciones húmedas a secas.

Bosque nublado en Cundinamarca, Colombia. / Juan Felipe Ramírez (Pexels.com)

También se observan grandes diferencias en la relación clima-bosque entre los distintos biomas forestales. Los bosques tropicales pueden mitigar más el calentamiento climático mediante el enfriamiento por evaporación que los bosques templados o boreales. Además, los bosques templados tienen una gran capacidad de captar dióxido de carbono de la atmósfera, reduciendo en parte el calentamiento climático causado por el efecto invernadero. Sin embargo, si el calentamiento climático favorece la expansión de bosques boreales en las regiones árticas favoreciendo su crecimiento y reproducción, la pérdida de superficie helada disminuirá el albedo (el porcentaje de radiación solar que cualquier superficie refleja), ya que los bosques reflejan menos radiación que la nieve y, en consecuencia, aumentarán las temperaturas en esas regiones frías. Además, gran parte del carbono terrestre se almacena en suelos y turberas de zonas frías, que podrían liberarlo si aumentan las temperaturas, con el consiguiente impacto sobre el efecto invernadero, generando más calentamiento a escala global.

Nubes sobre bosque templado en el Bosque Nacional Tongass, Alaska. / Luis Felipe Rivera Lezama (mynaturephoto.com)

A nivel global, nuestro conocimiento de las interacciones entre atmósfera y biosfera proviene de modelos, pero nos faltan aún muchos datos para mejorar esas simulaciones y saber cómo interaccionan el clima y los bosques con los ciclos del carbono y del agua. Por ejemplo, no sabemos cómo los bosques boreales y tropicales responden a la sequía y al calentamiento climático en términos de crecimiento y retención de carbono. Necesitamos más investigación para mejorar esas predicciones en el contexto actual de calentamiento rápido.

Picogordo amarillo (‘Pheucticus chrysopeplus’) y bromelias bajo la lluvia, nimbosilva o bosque nuboso Reserva de la Biosfera El Triunfo, México. / Luis Felipe Rivera Lezama (mynaturephoto.com)

Todos los papeles que juegan los bosques como reguladores del clima a escalas locales, regionales y continentales, pueden verse comprometidos si la deforestación aumenta en algunas zonas, especialmente los bosques tropicales, o si extremos climáticos como las sequías reducen el crecimiento de los árboles y los hacen más vulnerables causando su muerte, como observamos en la cuenca Mediterránea y en bosques de todos los continentes.

Pinos rodenos o resineros (‘Pinus pinaster’) muertos en un bosque situado cerca de Miedes de Aragón (Zaragoza) tras la sequía de 2016-2017. En primer plano, las encinas (‘Quercus ilex’), árboles más bajos, apenas mostraron daños en sus copas. / Michele Colangelo

* J. Julio Camarero es investigador en el Instituto Pirenaico de Ecología (IPE) del CSIC.

**Ciencia para llevar agradece especialmente al fotógrafo Luis F. Rivera Lezama por su generosa colaboración con las imágenes que acompañan al texto.

¿Qué vemos al contemplar un paisaje?

Por Fernando Valladares* y Mar Gulis (CSIC)

“Verdes montañas” o “campos de cultivo” son expresiones con las que a menudo describimos el paisaje que configura el «campo», un campo que visitamos en nuestros recorridos cotidianos o viajes vacacionales. Apreciamos bosques y plantaciones, pero ¿podemos leer algo más sobre lo que estamos viendo? ¿Qué árboles pueblan esos bosques? ¿Son bosques complejos autóctonos o plantaciones productivas de un solo tipo de árbol? ¿Cuánto tiempo llevan ahí? ¿Qué había antes de las amplias extensiones de regadío? ¿Afectan las redes de autopistas y carreteras a la flora y fauna? Veamos algunos apuntes para entender el paisaje a través de los ojos de la ecología.

Paisaje en Alcubilla de las Peñas, Soria, España (2015). / Diego Delso

El paisaje, como la vida, no es estático: ha ido cambiando a medida que se han modificado la demografía, los hábitos y nuestra interacción con el medio. Claro, que no todas las civilizaciones se han relacionado de la misma manera con su entorno. Algunas culturas en diferentes regiones del globo aún conviven de manera más o menos sostenible con sus territorios. A pesar de ello, se puede decir que, a día de hoy, existen muy pocos ecosistemas sobre la superficie terrestre que no hayan sido modificados. La extensión de un modelo social y económico basado en la extracción desmedida y concentrada de recursos naturales, sumada al alto crecimiento de la población humana, han hecho que hoy podamos afirmar que más del 45% de la superficie terrestre ya está profundamente alterada por el ser humano.

Granja solar. / Anonim Zero, Pexels

Un poco de historia: mucho más que domesticación de especies

Año 7.000 antes de Cristo. En el Levante mediterráneo ya se cosechan los ocho cultivos neolíticos fundadores: farro, trigo escanda, cebada, guisantes, lentejas, yero, garbanzos y lino. Hacia el este, en el interior, entre los ríos Tigris y Éufrates, los pueblos de la antigua Mesopotamia crían cerdos para obtener alimento y pastorean ovejas y cabras en la estación húmeda de invierno. El arroz está domesticado en China. En la actual Nueva Guinea se cultivan la caña de azúcar y verduras de raíz, y en los Andes la papa, los frijoles y la coca, mientras se cría ganado de llamas, alpacas y cuyes. Se trata de la revolución neolítica, que comenzó hace unos 13.000 años: la sedentarización y el surgimiento de las ciudades hecho posible por la agricultura y la ganadería, la domesticación de animales y plantas. Fue el inicio de lo que hoy se conoce como Antropoceno. Desde entonces hasta ahora, el impacto de los seres humanos en el planeta no ha hecho más que aumentar y extenderse a ritmo creciente.

Los paisajes primigenios, los que había antes de la revolución neolítica, se transformaron en ‘paisajes históricos’. En ellos, remanentes muy simplificados de vegetación natural se mantuvieron como manchas forestales de poblaciones de árboles con estructuras muy alteradas, como consecuencia de la explotación de la madera y otros recursos que ofrecen estos hábitats.

Restos del sistema de terrazas agrícolas circulares incas en Moray, Perú, siglos XV-XVI. / McKay Savage (Worldhistory.org)

El caso de la península ibérica

En el territorio peninsular, esos remanentes de vegetación natural coexistían con ecosistemas seminaturales, como los prados de siega. En el interior, se intercalaban zonas en las que la acumulación de agua permitía hábitats con mayores recursos para el ganado con hábitats más degradados, como los campos de cultivo extensivos de secano. La pérdida de especies y el colapso de muchos ecosistemas debió de ser algo generalizado. Los grandes herbívoros y carnívoros fueron los primeros en extinguirse, pero de la mano debieron perderse muchas especies de todo tipo de grupos biológicos que no han dejado su rastro en el registro fósil. Emergieron nuevos paisajes que poco tenían que ver con los que existían durante nuestra época nómada de cazadores recolectores.

‘Cosechadores’, óleo de Pieter Bruegel ‘el viejo’, 1565 / Google Art Project

Afortunadamente, algunos procesos funcionales y evolutivos de aquellos hábitats primigenios se mantuvieron gracias a que los cambios introducidos podían mimetizar procesos que habían existido hasta entonces. Por ejemplo: el pastoreo recordaba la presión de los grandes herbívoros; el manejo del fuego mantenía cierta estructura y dinámica ecológica a la que las especies y sus interacciones se fueron adaptando; el arado de tierras podía recordar a ciertas perturbaciones naturales que dejaban los suelos expuestos para ser nuevamente colonizados por la vida. Todo ello permitió mantener, pese a todo, tasas elevadas de diversidad y buena parte de la funcionalidad ecosistémica de estos paisajes y hábitats; es decir, los procesos biológicos, geoquímicos y físicos que tienen lugar los ecosistemas y que producen un servicio al conjunto. La potencia de la naturaleza para sobreponerse a los impactos es siempre asombrosa.

Con el tiempo y la expansión del modelo mercantilista, surgieron las minas y explotaciones industriales con sus huellas físicas, químicas y biológicas en el paisaje y en los ciclos de la materia y de la energía. Estos ciclos son como una suerte de metabolismo planetario que se apoya en equilibrios dinámicos, donde todo se transforma, pero el conjunto permanece estable. En esta movilización juega un papel vital la biosfera.

Imagen: Pxhere.com

De la superproducción a la escasez

El impacto mayor sobre la biosfera y la alteración de estos ciclos llegó con la agricultura intensiva. Se pasó de una agricultura que eliminaba hábitats, pero mantenía buena parte de las funciones ecosistémicas, a otra que conlleva altos niveles de contaminación, agotamiento de recursos y graves problemas para nuestra salud y la de los ecosistemas.

Y es que pocas cosas son menos sostenibles que la agricultura actual. No sólo por su elevada huella ambiental en forma de ecosistemas eutrofizados, es decir, con un exceso de nutrientes que provoca su colapso, y de emisiones colosales de gases de efecto invernadero, sino también por su necesidad de recursos que ya son limitantes como el fósforo, esencial para los fertilizantes y cuya provisión no se puede asegurar, o el agua de riego, cada día más escasa en cada vez más regiones del planeta. Además, se calcula que sin la ruptura metabólica global que supuso la agricultura del siglo XX, en lugar de ser actualmente casi ocho mil millones de personas en el planeta, apenas llegaríamos a cuatro, es decir, la mitad.

Imagen satélite de El Ejido y sus alrededores (Almería), con capturas de 2015. / Google Earth

Por otra parte, durante estos últimos 100 años el territorio no solo ha visto crecer exponencialmente y a ritmo vertiginoso la población mundial y el consumo de recursos naturales, también las ciudades, las carreteras y las autopistas, y por ende la reducción a mínimos nunca antes conocidos del espacio disponible para la vida silvestre.

Pero este ritmo no se da de la misma manera en todas las partes del globo. En los países desarrollados vivimos sobrecargando los ecosistemas, pero externalizamos las consecuencias a los países sin recursos. Es decir, utilizamos los recursos de otros para mantener nuestras demandas de recursos naturales.

Pocas veces nos paramos a ver todos estos procesos en el paisaje que visitamos o vemos a través de la ventanilla del coche. Vivimos tiempos que requieren reflexión y recuperar otros modos de relacionarnos con las demás especies y con el entorno. Si lo hacemos, seremos los primeros en beneficiarnos.

* Fernando Valladares es investigador del CSIC en el Museo Nacional de Ciencias Naturales (MNCN-CSIC) y autor, entre otros muchos títulos, del libro La salud planetaria, de la colección ¿Qué sabemos de? (CSIC-Catarata).

Insectos y otros artrópodos: más de un millón de especies imprescindibles para los ecosistemas

Por Jairo Robla Suárez (CSIC)*

A pesar de recibir el apodo de ‘bichos’, en ocasiones con cierto desprecio, la importancia y la repercusión que tienen los insectos y otros artrópodos para la vida en nuestro planeta son desconocidas para muchas personas. Estos organismos con exoesqueleto externo y apéndices articulados suponen más del 50% de toda la biomasa animal actual de nuestro planeta. Aunque actualmente su diversidad dista mucho de ser bien conocida, suman más de un millón las especies de artrópodos que podemos encontrar campando a sus anchas en absolutamente todos los ecosistemas que atesora nuestro cuerpo celeste. Son capaces de vivir en regiones desérticas que parecen propias de un relato sobre el infierno, en paisajes blancos helados por las temperaturas más frías, en las cortinas de intenso color verde de bosques, selvas o praderas, en cursos de agua y volcanes; pero también habitan en ambientes ruderales (muy alterados por el ser humano) y en nuestras propias casas, pueblan las zonas más altas del planeta y hasta ocupan el gran fondo azul. En todos estos ecosistemas hay artrópodos y en todos ellos realizan una función tremendamente importante y vital, aunque esta nos pase desapercibida.

Insecto de la subfamilia phaneropterinae / Luis F. Rivera Lezama ©RiveraLezama

Insecto ‘hoja’, de la subfamilia Phaneropterinae. / Luis F. Rivera Lezama ©RiveraLezama

Mucho más que polinizadores

La polinización es, sin duda, la misión estrella que se ha atribuido a una gran variedad de insectos voladores. No en vano, más del 90% de las plantas con flor que encontramos en todo el planeta necesitan de un agente animal, concretamente un insecto, para fructificar. Quizá nos acordemos más de ellos cuando compramos esas opulentas y brillantes frutas en nuestro mercado de confianza. Abejas, moscas, escarabajos, mariposas, avispas y un sinfín de pequeños organismos más trabajan día a día por transferir el polen entre las flores para continuar con el milagro de la vida vegetal. Todos ellos nos dan mucho sin pedir nada a cambio.

‘Mosca abejorro’, familia Bombyliidae. Sus larvas son predadoras de los huevos y larvas de otros insectos, tales como orugas, abejas y escarabajos. / Luis F. Rivera Lezama ©RiveraLezama

Pero, más allá de la polinización, podríamos decir que los artrópodos son sustento de todos los hábitats y que son muchas más las funciones que desempeñan. Por encima de las plantas, en las cadenas tróficas, están ellos. Sirven de recurso nutricional para todos aquellos animales que nos llaman más la atención, que nos parecen más bonitos o a los que, desde luego, nunca osaríamos llamar ‘bichos’ con tanto recelo. Si los insectos decidieran hoy ponerse en huelga y viajar a un planeta ignoto más allá de nuestro sistema solar, todas las especies animales, incluyendo los seres humanos, no tardaríamos en extinguirnos. Por lo tanto, es innegable pensar que el mundo actual está dominado por los artrópodos y que estos cargan sobre sus hombros el peso de la vida en nuestro planeta.

Hormiga transportando un pétalo. Género ‘Acromyrmex’. / Luis F. Rivera Lezama ©RiveraLezama

Existen muchos insectos y otros artrópodos que participan en la dispersión de semillas. El hecho de que este bosque que hoy llega hasta aquí mañana llegue un poco más allá puede ser obra de pequeños artrópodos que ayudan a otros dispersores más clásicamente estudiados, como las aves. Conocidos son, por ejemplo, los casos de las hormigas, que, en su incesante colecta de semillas para alimentarse, acaban moviendo estos gérmenes de vida más allá de su planta madre, contribuyendo a que la vegetación se extienda cada vez más.

Detalle de escarabajo joya gema (México), género ‘Chrysina’. / Luis F. Rivera Lezama ©RiveraLezama

También realizan una función esencial por debajo del suelo que pisamos: junto a otros muchos organismos, son los principales aireadores, fertilizadores y preparadores del sustrato. Su actividad genera un suelo con unas condiciones óptimas para el crecimiento de los organismos vegetales. Mientras paseamos por un prado cualquiera en el que aparentemente no vemos nada más que hierbas, bajo nuestros pies se encuentra toda una comunidad subterránea que trabaja día y noche para que todo esté en equilibrio: milpiés, bichos bola, escarabajos, larvas de diferentes organismos y muchos más. Los artrópodos son artífices de este equilibrio gracias a que son los mayores expertos en reciclaje: ayudan en la transformación de los excrementos, cadáveres y restos de otros organismos, devuelven los nutrientes al sistema y los ponen a disposición del resto de organismos.

‘Chrysina quetzalcoatli’ (México). Como en el caso del escarabajo joya gema, sus larvas viven en troncos en descomposición. / Luis F. Rivera Lezama ©RiveraLezama

Además, controlan las poblaciones de otros artrópodos, plantas y de grandes vertebrados al evitar que se establezcan como plagas. Son incontables los artrópodos que viven como parásitos sobre la piel de otros animales o sobre los tejidos de otros vegetales. De esta manera son capaces de extraer de los ecosistemas a aquellos organismos peor adaptados y de evitar que las poblaciones de otros organismos se desmadren. Son como los jinetes del apocalipsis, buscando que todo aquello que les rodea funcione a la perfección.

Araña trampera, altos de Chiapas (México). / Luis F. Rivera Lezama ©RiveraLezama

Grandes benefactores para el equilibrio, amenazados 

Los artrópodos son unos de los organismos más importantes de nuestro mundo y, sin embargo, gran parte de lo que hacemos consigue afectarles. Hemos esquilmado la vegetación natural, tan necesaria para que obtengan refugio y alimento; les hemos bombardeado con pesticidas y otros químicos para alejarlos de nuestras tierras, aun cuando nos proporcionan más beneficios que perjuicios; hemos hecho lo posible por convertir nuestros campos en terrenos baldíos para los artrópodos, en los que encontrarse una mariposa es como buscar una aguja en un pajar; hemos desecado lagunas, urbanizado todas las zonas posibles, contaminado aguas e incluso llevado basura a cuevas y hasta las cimas más altas del Himalaya; hemos provocado la llegada de especies invasoras a prácticamente todos los puntos del planeta. Con todo ello, hoy muchos artrópodos tratan de sobrevivir a duras penas. Parece que les hemos declarado la guerra a estos organismos tan importantes para nuestro planeta y para nuestra propia supervivencia, a pesar de que guardan muchas de las claves que nos permitirían solucionar gran parte de los desafíos actuales. Y, sin embargo, durante todo el tiempo que llevan en la Tierra, estos animales de pequeño tamaño no han hecho más que dar beneficios sin pedir nada a cambio.

Conservar, proteger, cuidar y educar sobre los artrópodos es educar en el equilibrio de los ecosistemas, en el perfecto funcionamiento de las cosas. Y es que, ¿cómo no van a ser importantes más de un millón de especies para la vida en la Tierra y para nuestros ecosistemas?

Insecto ‘palo’, orden Phasmida o Phasmatodea. Entre los fásmidos se encuentran los insectos más pesados y los más grandes. / Luis F. Rivera Lezama ©RiveraLezama

*Jairo Robla Suárez es investigador en la Estación Biológica de Doñana (EBD-CSIC), donde estudia la restauración de comunidades vegetales sometidas a degradación en el entorno del Guadiamar, afectado por el desastre de Aznalcóllar en 1998. Es autor de La astucia de los insectos y otros artrópodos (ed. Guadalmazán).

**Ciencia para llevar agradece especialmente al fotógrafo Luis F. Rivera Lezama por su generosa colaboración con las imágenes que acompañan al texto.

Plancton: un mundo en una cucharadita de agua de mar

Por Albert Calbet (CSIC)*

En una pequeña cantidad de agua de mar como la que podemos recoger en la playa con una simple cuchara de café, podemos encontrar unos 50 millones de virus, 5 millones de bacterias, cientos de miles de pequeños flagelados unicelulares, ya sean fotosintéticos, consumidores, o una combinación de ambos, miles de algas microscópicas, unos cinco ciliados o dinoflagelados heterótrofos, y, con mucha suerte, algún pequeño crustáceo, como por ejemplo un copépodo. El plancton, conformado por este vasto acervo de seres diminutos, es fundamental para el funcionamiento de los ecosistemas marinos. Es el responsable de que haya vida en la Tierra, nos ha proporcionado, a escalas geológicas, una buena parte del oxígeno de nuestro planeta y sin él seguro que no comeríamos pescadito frito.

Calanus minor, especie de copépodo del mar Mediterráneo, sobre fondo negro.

Calanus minor. Especie de copépodo del mar Mediterráneo. Si bien en el Mediterráneo el género Calanus no es dominante, en mares más fríos y productivos, como el Mar del Norte o el Océano Ártico representan la mayoría de la biomasa de zooplancton y son claves para el mantenimiento de las pesquerías de la zona. / Imagen capturada al microscopio por Albert Calbet

Plancton: el motor de la vida marina

Todos estos seres que podemos encontrar en cualquier agua de mar están interconectados en una imbricada red trófica (el conjunto de cadenas alimentarias interconectadas) en la que no solo un organismo se come a otro, sino que, al hacerlo, ayuda a que se liberen los nutrientes acumulados en la materia viva y vuelvan a estar disponibles para que empiece de nuevo el ciclo de la vida. La red trófica marina también ayuda a reducir el CO2 atmosférico gracias a un proceso denominado bomba biológica marina. Mediante este proceso las algas absorben CO2 que ha penetrado en el mar desde la atmósfera y lo incorporan en forma de carbono orgánico en su materia viva. Al ser consumidas por el zooplancton, el carbono contenido en las algas pasa a formar parte de este, o acaba en paquetes fecales que son expulsados y sedimentan hacia las profundidades del océano. Allí, este carbono será reciclado o acabará secuestrado en los sedimentos por cientos o miles de años.

Copépodo marino del género Labidocera sobre fondo negro

Copépodo marino del género Labidocera. Este género habita aguas superficiales y posee tonalidades azules que le confieren sus pigmentos fotoprotectores. / Imagen capturada al microscopio por Albert Calbet

La mayor migración de la Tierra

Este proceso de transporte vertical de carbono está estrechamente relacionado con las migraciones de zooplancton. Estos desplazamientos diarios son considerados las mayores migraciones que existen en el planeta. Al migrar hacia capas superficiales para alimentarse durante la noche, el zooplancton evita que sus depredadores, los peces, lo puedan ver y devorar. Todo encaja en un orden y un equilibrio marcados por millones y millones de años de evolución conjunta de depredadores y presas.

Ilustración de la red trófica oceánica

Ilustración de Albert Calbet

El plancton no solo muestra ritmos diarios, también los hay anuales y plurianuales. Los ritmos anuales están marcados por las estaciones. En invierno, el fitoplancton, a pesar de tener plenitud de nutrientes, está limitado por la escasa luz y la baja temperatura. Hacia finales del invierno y principios de la primavera la luz es más intensa y la temperatura comienza a subir, lo que favorece la floración explosiva o bloom del fitoplancton, el cual irá acompañado por un crecimiento de las poblaciones de protozoos primero y de zooplancton de mayor tamaño después.

Ciliado tintínido del género Favella. Los ciliados son protozoos y forman parte del microzooplancton, el mayor grupo de herbívoros del mar. / Imagen capturada al microscopio por Albert Calbet

Cuando el verano está en su máximo esplendor, la ya bien formada termoclina, la capa de separación entre dos masas de agua a temperatura diferente, separa claramente dos zonas: una capa superficial, caliente y pobre en nutrientes, y una más profunda, fría y repleta de nutrientes. El consumo de las algas va agotando lentamente los nutrientes en la capa de mezcla superficial y con la falta de sustento estas van perdiendo empuje. Las algas veraniegas son o bien de pequeño tamaño o bien grandes, pero con capacidad de locomoción (como los dinoflagelados), y esto les permite explorar las micromanchas de nutrientes que puedan quedar. Son estas algas de gran tamaño las que, en condiciones propicias (por ejemplo, dentro de zonas confinadas como bahías, puertos y espigones), pueden multiplicarse hasta formar proliferaciones nocivas. En esta época es cuando aparecen también las medusas y otros tipos de plancton gelatinoso.

Las primeras tormentas del otoño llegan acompañadas de un aumento en la intensidad del viento, lo cual acaba deteriorando la termoclina, que al final se rompe y permite que las aguas ricas en nutrientes lleguen de nuevo a la superficie. En ocasiones, si las condiciones climáticas del año lo permiten, puede haber otro pequeño crecimiento de algas, pero muchas veces las pobres intensidades lumínicas y bajas temperaturas hacen que el fitoplancton no consiga aprovechar la abundancia de nutrientes. Vuelve el invierno y el ciclo comienza de nuevo.

Imagen de alga diatomea al microscopio

Diatomea del género Coscinodiscus. Las diatomeas son algas unicelulares planctónicas o bentónicas que tienen su cuerpo recubierto por dos valvas de sílice, a modo de cajita. / Imagen capturada al microscopio por Albert Calbet

Ritmos alterados por el cambio climático

Este ciclo se repite año tras año en las zonas templadas, sin embargo, la duración de las estaciones y la magnitud de los parámetros físicos (temperatura, densidad, luz) que se alcanzan en ellas es variable. Debido al cambio climático, el plancton se enfrenta a grandes retos y a fenómenos extremos que están provocando cambios en las comunidades. Estas alteraciones en el plancton se transmiten a través de la red trófica al resto de seres vivos y llegan hasta las pesquerías, de las que tanto dependen algunas zonas del planeta. Desincronización entre el período de aparición de depredadores y presas, desplazamiento y sustitución de especies por otras invasoras, aumento de las proliferaciones algales nocivas (antes conocidas como mareas rojas), incremento en la abundancia de medusas, etc., son algunos de los ejemplos de los retos a los que nos enfrentamos. La red trófica planctónica es compleja y nuestra actividad puede dañarla. Por eso es necesario que se apliquen medidas de contención del cambio climático y de la actividad antropogénica en general, y debemos seguir estudiando cómo evolucionarán las comunidades marinas, pues la incertidumbre ante el futuro no había sido nunca tan grande desde nuestra historia reciente.

Sapphirina sp. o zafiro de mar sobre fondo negro

Sapphirina sp. o zafiro de mar. Esta especie de copépodo de forma deprimida posee cristales de guanina que le confieren iridiscencias que reflejan la luz con diferentes tonalidades. / Imagen capturada al microscopio por Albert Calbet

* Albert Calbet es investigador del CSIC en el Instituto de Ciencias del Mar (ICM-CSIC) y autor del libro El plancton y las redes tróficas marinas (2022), una de las últimas novedades de la colección ¿Qué sabemos de? (Editorial CSIC-Catarata). El libro ofrece una visión clara y amena sobre el plancton y su importancia, desarrolla estos y otros temas en detalle y presenta curiosidades sobre el plancton que difícilmente se encuentran en los libros de texto.

 

El viento, el elemento olvidado del cambio climático

Por César Azorín-Molina*

El viento es aire en movimiento. Esta definición implica que la expresión “hace aire” –tan común entre el público general y los medios de comunicación– es incorrecta: lo apropiado es decir “hace viento”. Este movimiento de aire se origina por las diferencias de presión atmosférica entre las superficies de la Tierra y los distintos niveles de la atmósfera; y ha sido utilizado por la humanidad desde el pasado hasta nuestros días como fuente de energía para la navegación a vela, el molido del grano o la extracción de agua de pozos subterráneos. La relevancia social, económica y ambiental del viento es múltiple, y tiene una doble vertiente, ya que el viento supone tanto un recurso como un riesgo climático.

El molino de viento convierte la energía eólica en energía rotacional con el fin principal de moler granos. Es un tipo particular de molino que opera por medio de paletas llamadas aspas.​

En un contexto como el actual, en el que nos enfrentamos a las consecuencias del cambio climático, el viento constituye la segunda fuente más importante en la generación de electricidad y la principal fuente de energía limpia. Su comportamiento altera la capacidad de producción de la industria eólica, pero es también clave en procesos muy dispares: la agricultura y la hidrología, pues incide sobre la evaporación y la disponibilidad de recursos hídricos; la calidad del aire, ya que dispersa la contaminación atmosférica; o las catástrofes naturales, por las pérdidas económicas y humanas que producen los temporales. Otros fenómenos afectados por el viento son la ordenación y el planeamiento urbano, las operaciones aeroportuarias, el tráfico por carretera, la propagación de incendios forestales, el turismo, los deportes de viento e incluso la dispersión de semillas, las rutas migratorias de las aves o la erosión del suelo.

Un aerogenerador es un dispositivo que convierte la energía cinética del viento en energía eléctrica.

¿El viento se detiene o se acelera?

La veleta para conocer la dirección del viento fue inventada en el año 48 a. C por el astrónomo Andronicus y el anemómetro que mide la velocidad a la que viaja el aire en movimiento, en 1846 por el astrónomo y físico irlandés John Thomas Romney Robinson. Sin embargo, el estudio de los cambios del viento en escalas temporales largas (periodos de más de 30 años) no despertó el interés de la comunidad científica hasta hace apenas un par de décadas.

La veleta es una pieza de metal, ordinariamente en forma de saeta, que se coloca en lo alto de un edificio, de modo que pueda girar alrededor de un eje vertical impulsada por el viento, y que sirve para señalar la dirección de este.

Fue en Australia, donde el profesor emérito de la Australian National University Michael Roderick, en su afán de cuantificar el efecto del viento en la evaporación, observó un debilitamiento de los vientos superficiales durante las últimas décadas. En 2007, para denominar este fenómeno, acuñó el término anglosajón de ‘stilling’. Pocos años más tarde, en 2012, el también australiano Tim McVicar, de la Commonwealth Scientific and Industrial Research Organisation, concluyó que este descenso de la velocidad de los vientos estaba ocurriendo sobre superficies continentales de latitudes medias, preferentemente del hemisferio norte, desde la década de 1980. En cambio, otras investigaciones detectaron un reforzamiento de los vientos sobre las superficies de los océanos y, en la última década, un cese del fenómeno ‘stilling’ y un nuevo ciclo de ascenso de la velocidad de los vientos o ‘reversal’.

Falta de evidencias

La causa principal que explica ambos fenómenos se ha atribuido a los cambios en la circulación atmosférica-oceánica. Estos cambios se producen tanto por la propia variabilidad natural del clima como por efecto de la acción humana sobre el clima: el calentamiento global consecuencia de las emisiones de gases de efecto invernadero y también los cambios en los usos del suelo, entre los que destaca la rugosidad del terreno provocada por la masa forestal y la urbanización. En cualquier caso, tampoco hay que descartar la posibilidad de errores instrumentales en la medición del viento por el desgaste de los anemómetros, entre otros.

En la actualidad, la ciencia del clima se afana por descifrar el comportamiento del viento y elaborar proyecciones para los próximos 100 años. En un escenario de aumento de emisiones de gases de efecto invernadero y de calentamiento global, es previsible que una nueva fase de ‘stilling’ domine el siglo XXI.

El último informe del Panel Intergubernamental del Cambio Climático (IPCC) concluyó que el viento es una de las partes olvidadas del sistema climático dadas las escasas evidencias sobre sus cambios pasados y futuros. Un nuevo ‘stilling’ obligaría a desarrollar nuevas estrategias a medio-largo plazo en el sector de la energía eólica, un motor clave en la descarbonización de la economía establecida en el Acuerdo de París y el Pacto Verde Europeo. El estudio del viento debe ser prioritario para impulsar las energías renovables en la transición hacia una economía global con bajas emisiones de gases de efecto invernadero.

* César Azorín-Molina es investigador del CSIC en el Centro de Investigaciones sobre Desertificación (CSIC-UV-GVA) y pertenece a la Red Leonardo de la Fundación BBVA

 

Las aves de alta mar ‘alertan’ sobre el estado crítico de los océanos

José Manuel Igual (CSIC)*

El cambio global es un hecho. Es una realidad la rápida alteración del clima terrestre a causa del calentamiento por gases de efecto invernadero, y también lo es la pérdida de biodiversidad debida a factores como la explotación no sostenible de recursos, la contaminación de las aguas, la mala gestión del suelo o las invasiones biológicas. Todos ellos constituyen aspectos de este cambio antropogénico. Paradójicamente, en ocasiones pareciera que nos aferramos a pensar que las fronteras pueden contener estos problemas, creando una falsa sensación de seguridad. Pero las fronteras nacionales no sirven para contener las graves consecuencias del cambio global en la naturaleza. La pandemia de COVID-19 es un ejemplo de ello.

Las aves, que no conocen fronteras, son excelentes indicadoras del estado de los ecosistemas; especialmente las más viajeras de todas: los procelariformes, aves de alta mar. Debido a este comportamiento de largo alcance se han convertido en uno de los grupos animales más amenazados del planeta.

Pardela cenicienta del Mediterráneo (Calonectris diomedea) junto a su zona de distribución geográfica. / Ilustración: Irene Cuesta Mayor (CSIC)

Este grupo incluye los grandes albatros, así como los petreles, las pardelas y los pequeños paíños. Hasta hace unos pocos años, este era un grupo bastante desconocido salvo para marinos o pescadores, ya que estas aves solo tocan tierra para reproducirse, en general de forma discreta, en islotes y acantilados poco accesibles.

Para especialistas en ecología de campo, como las investigadoras y los investigadores del Instituto Mediterráneo de Estudios Avanzados (IMEDEA, CSIC-UIB), los procelariformes son objeto de estudio. Al ser aves depredadoras (comen sobre todo peces pelágicos y cefalópodos), están en la parte superior de la pirámide y, por tanto, son receptoras de lo que acontece en los océanos. Gracias al marcaje y la recaptura a largo plazo mediante el anillamiento científico y la utilización de dispositivos portátiles GPS miniaturizados, el estado de sus poblaciones y sus movimientos se conoce cada vez más.

Anillado de ejemplar de pardela cenicienta del Mediterráneo por especialistas del IMEDEA (CSIC-UIB).

Por ejemplo, la pardela cenicienta del Mediterráneo (Calonectris diomedea) es una especie de ave con la que este instituto de CSIC lleva trabajando más de 20 años en sus zonas de reproducción en Baleares. En invierno se desplaza del mar Mediterráneo al océano Atlántico, el cual puede cruzar de Norte a Sur, ida y vuelta, alimentándose en aguas internacionales de ambos hemisferios, acercándose a las costas de África o América y permaneciendo principalmente en áreas marinas de varios países africanos, desde Mauritania a Namibia-Sudáfrica. Por tanto, su seguimiento nos dice muchas cosas de lo que pasa en el Mediterráneo en primavera y verano, o en el Atlántico en invierno.

Esto hace necesaria la colaboración internacional en investigación. Uno de estos estudios en los que han colaborado compartiendo datos varias universidades e instituciones de investigación, entre ellos la Universidad de Barcelona y el CSIC, así como algunas ONG de conservación como SEO-Birdlife, han desvelado que las aves marinas no han conseguido ajustar sus calendarios de reproducción al ritmo al que se están calentando globalmente los mares. Es decir, tienen poca flexibilidad para poder adelantar o retrasar sus fechas de reproducción en relación al cambio climático, que está produciendo un cambio temporal en los picos de abundancia de presas.

Pardela Cenicienta del Mediterráneo en su nido. / Imagen: IMEDEA (CSIC-UIB)

Otra colaboración entre grupos de investigación de varios países ha permitido saber que los grandes petreles pasan casi el 40% de su tiempo en mares donde ningún país tiene jurisdicción, aguas internacionales que suponen un tercio de la superficie terrestre. En estas “aguas de nadie” se pueden producir más interacciones negativas con la pesca, porque hay menos control sobre el cumplimiento de las regulaciones y no existe un marco legal global de conservación de la biodiversidad. Una de las mayores amenazas para este grupo de especies, junto con la sobrepesca que esquilma recursos o las invasiones de mamíferos introducidos (ratas, gatos) en sus zonas terrestres de reproducción, es precisamente la pesca accidental. El problema es grave no solo porque mueren decenas de miles de aves cada año sin ser objetivo de captura, sino que además supone un coste económico para los mismos pescadores.

En general, el grupo de las procelariformes sufre una mortalidad anual muy alta por esta causa. Se ha podido cuantificar que alrededor de un 13% de los adultos reproductores de Pardela Cenicienta Mediterránea se pierden cada año, y de estos al menos la mitad mueren por pesca accidental en palangre (líneas de anzuelos). Gracias a la combinación de las áreas de ‘campeo’ o home range, cuyos datos son proporcionados por el marcaje con GPS, y las áreas de máxima actividad pesquera, se han podido elaborar mapas de riesgo en la costa mediterránea occidental para los planes de gestión y conservación.

Pardela balear (Puffinus mauretanicus), especie endémica de las Islas Baleares en peligro crítico de extinción. / Imagen: Víctor París

Por otro lado, en todos estos años de estudio se ha podido constatar que, en esta especie, como ocurre en otras especies de grandes viajeras, la supervivencia y el éxito reproductor anual varían en relación a los cambios oceánicos y climáticos a gran escala. Estos cambios pueden reflejarse a través de índices que cuantifican las diferencias de presiones entre zonas polares y templadas del Norte del Atlántico o del Sur del Pacífico, como la NAO (Oscilación del Atlántico Norte) y el SOI (Índice de Oscilación del Sur). Este último mide la intensidad de fenómenos como el Niño y la Niña. Estos índices son importantes porque resumen mensual o estacionalmente el clima en grandes áreas y, con ello, ofrecen una idea general de las precipitaciones, los aportes fluviales al mar, la temperatura del mar, la productividad marina o la frecuencia de fenómenos extremos como los huracanes. Por tanto, la relación de la dinámica de las poblaciones de estas aves con la variación de estos índices nos puede ayudar a predecir qué les ocurrirá con el cambio climático.

También hay otros grandes peligros que acechan a esta y otras especies de aves marinas. Este es el caso de la contaminación lumínica, que hace perderse a los animales en tierra durante la dispersión al ser atraídos y confundidos, o la ingestión de plásticos, cada vez más frecuente.

Las proyecciones de la dinámica de la población para las aves marinas pelágicas son poco halagüeñas y predicen la extinción de algunas de estas especies en pocas décadas. Algunas de las colonias de estudio de pardela cenicienta se mantienen todavía, porque reciben inmigración que cubre las pérdidas, lo que conocemos como ‘efecto rescate’, pero esto parece solo un remedio temporal a su estatus de especie en peligro. Otras están todavía más amenazadas, en peligro crítico, como la pardela balear (Puffinus mauretanicus), que es endémica del archipiélago y una gran desconocida para la mayoría.

No nos queda mucho tiempo para evitar su debacle y comprender que su futuro y el nuestro van de la mano.

 

*José Manuel Igual trabaja en el Servicio de Ecología de Campo del Instituto Mediterráneo de Estudios Avanzados (IMEDEA, CSIC-UIB). Este artículo resume alguna de sus colaboraciones con el Animal Demography and Ecology Unit (GEDA), en el Grupo de Ecología y Evolución del mismo instituto.

 

Almacenamiento geológico de carbono: el patito feo de la descarbonización

Por Víctor Vilarrasa (CSIC)*

Ahora que aprieta el calor, no puedo dejar de pensar en el cambio climático. Los registros nos indican que aumenta el número de olas de calor, de noches tropicales y de episodios de gota fría o DANAs –depresiones aisladas en los niveles altos de la atmósfera que provocan fuertes tormentas–. Para mitigar estos y otros efectos del cambio climático, debemos conseguir un balance neto de emisiones de dióxido de carbono (CO2) igual o menor que cero en un futuro cercano. Es decir, la cantidad de CO2 que emitamos a la atmósfera tendrá que ser igual o inferior al CO2 que extraigamos de ella. En España, con unas emisiones de gases de efecto invernadero de 334 millones de toneladas equivalentes de CO2 en 2018, todavía nos queda un largo camino para conseguirlo. Aunque las hemos disminuido un 25% con respecto a 2005, siguen siendo un 15% mayores que las de 1990, año que se toma como referencia para cuantificar las reducciones en las emisiones.

Planta de almacenamiento de carbono. / Pexels

Planta de almacenamiento de carbono. / Pexels

Descarbonizar la economía

El primer paso para la neutralidad de carbono consiste en descarbonizar todos los sectores de la economía. El sector que emite más CO2 es el energético, ya que en la actualidad el 85% de la energía que consumimos se genera a partir de hidrocarburos. Las grandes petroleras y empresas energéticas se están comprometiendo a lograr el balance neto de emisiones de CO2 igual a cero en 2050. Esta transición implica basar la producción de energía en fuentes renovables; mayoritariamente las energías solar, eólica e hidroeléctrica, pero complementadas por la geotérmica, la mareomotriz (que aprovecha las mareas) y la undimotriz (que se obtiene del movimiento de las olas). También se plantea sustituir los hidrocarburos por biomasa en la producción de electricidad, dado que el carbono que se emitiría al quemarla sería el mismo que habrían capturado previamente las plantas. Igualmente, la energía nuclear, que no tiene emisiones de CO2 asociadas, seguirá formando parte del mix energético con gran probabilidad.

Esta transformación es más compleja que instalar una capacidad de producción igual a la demanda, dado que las fluctuaciones que se producen en la mayoría de las fuentes de energías renovables (luz solar, viento, caudal hidrológico, etc.) requieren la capacidad de almacenar cantidades ingentes de energía para compensar los déficits de producción con los excedentes. Cómo almacenar esta energía no es trivial, dado que las baterías no tienen suficiente capacidad y la producción de combustibles sin carbono para su uso posterior, como el hidrógeno, conlleva una eficiencia bastante baja. A pesar de estos retos, se considera que la descarbonización del sector energético es viable.

Al sector energético le siguen en emisiones de CO2 los sectores del transporte e industrial. Para reducir sus emisiones, estos sectores se tendrán que electrificar, lo que aumentará la demanda del sector energético. No obstante, al contrario que el sector de la energía, estos sectores difícilmente se podrán descarbonizar por completo. En el sector del transporte, el transporte marítimo y, sobre todo, el aéreo no cuentan, por el momento, con combustibles alternativos a los actuales. Por otra parte, aunque el sector industrial se abastezca de energías renovables, seguirá emitiendo millones de toneladas de CO2, porque la fabricación de ciertos productos, como el cemento, el acero y el etanol, conlleva la emisión de CO2 por las reacciones químicas que tienen lugar en su proceso de producción. En algunos casos, la investigación, desarrollo e innovación (I+D+i) podrá permitir la descarbonización de alguno de estos procesos mediante procedimientos alternativos, como en el caso del acero, que en la actualidad es responsable del 8% de las emisiones de CO2 a escala global. Sin embargo, otros procesos industriales solo se podrán descarbonizar mediante la captura del CO2 antes de ser emitido a la atmósfera y su posterior almacenamiento geológico. En España, 16 millones de toneladas de CO2 al año (Mt/a) son emitidas por 23 industrias que, a largo plazo, solo se podrán descarbonizar con la captura y almacenamiento de CO2 (CCS, por sus siglas en inglés); y 53 Mt/a, por 38 plantas de producción de energía, en las que se podría aplicar CCS a corto plazo para acelerar la transición hacia la neutralidad de carbono.

Devolver el carbono al subsuelo

El almacenamiento geológico de carbono tiene como objetivo devolverlo a su lugar de origen: bajo tierra. Tecnológicamente, este procedimiento está probado con éxito con caudales de inyección de 1 Mt/a. El Panel Intergubernamental de Expertos sobre el Cambio Climático (IPCC, por sus siglas en inglés) estima que la cantidad de CO2 almacenado en formaciones geológicas profundas debe aumentar de los 40 Mt/a actuales a 8.000 Mt/a en 2050. Esto implicaría tener unos 8.000 pozos inyectando 1 Mt/a de CO2. Puede parecer un número muy grande, pero es pequeño en comparación con los 8 millones de pozos que se han perforado para extraer gas y petróleo. No obstante, multiplicar por 200 el almacenamiento de CO2 en 30 años es sin duda un gran reto que implica un aumento del CO2 almacenado del 6% anual.

Víctor Vilarrasa

Víctor Vilarrasa

El almacenamiento se realiza a profundidades mayores de 800 metros en acuíferos salinos o en yacimientos agotados de gas o petróleo. A medida que aumenta la profundidad, como el subsuelo está saturado, es decir, los poros de las rocas están llenos de agua, la presión del agua que llena estos poros aumenta de forma equivalente al peso de la columna de agua que hay por encima. De manera similar, la temperatura también aumenta con la profundidad una media de 30°C por kilómetro. A profundidades mayores de 800 metros, la presión y la temperatura son suficientemente elevadas para que el CO2 se encuentre en su estado supercrítico. A pesar de lo extraño que pueda parecer el nombre de este estado, lo que nos indica es que el CO2 tiene propiedades tanto de un gas como de un líquido. Por un lado, su viscosidad es como la de un gas, es decir, muy baja, por lo que va a poder fluir con facilidad. Por otro, su densidad es como la de un líquido, es decir, elevada, y, por lo tanto, su almacenamiento va a ser eficiente porque ocupará un volumen relativamente pequeño. A pesar de presentar una densidad elevada, el CO2 es más ligero que el agua, por lo que tiende a flotar. Por este motivo, se necesita la presencia de una roca impermeable ubicada encima de la formación almacén, que se conoce como roca sello y que impide que el CO2 vuelva a la superficie. La formación almacén, al contrario que la roca sello, se caracteriza por una alta permeabilidad y porosidad, para albergar grandes cantidades de CO2 sin generar sobrepresiones elevadas.

Las posibilidades del CO2 almacenado

Socialmente, el almacenamiento geológico de carbono no acaba de estar bien aceptado, al menos en algunos países. Existe el efecto NIMBY (no en mi jardín trasero, por sus siglas en inglés), por el que se puede llegar a rechazar el desarrollo de proyectos de este tipo en ciertas zonas. Una posible solución es el almacenamiento en alta mar, como sucede en Noruega, donde llevan 25 años inyectando CO2 con éxito en acuíferos marinos, lo que convierte al país nórdico en líder mundial en almacenamiento de este gas. La manera en que esta tecnología es vista por la sociedad también puede mejorar cuando se aplica al CO2 que se genera en la combustión de biomasa para producir electricidad, ya que de esta forma conseguimos extraer CO2 de la atmósfera, en lo que se conoce como BECCS (por sus siglas en inglés).

Otra estrategia que puede ayudar a mejorar la imagen del almacenamiento geológico de carbono es utilizar el CO2 inyectado de alguna forma, para darle valor y que el proceso no se limite a deshacerse de un residuo. La opción más viable consiste en utilizar el CO2 inyectado para producir energía geotérmica, dado que, por sus propiedades, es un fluido mucho más eficiente que el agua en la extracción del calor de las profundidades de la Tierra. El CO2 inyectado se calienta cuando entra en contacto con la roca almacén, por lo que, si se extrae, se puede aprovechar la alta temperatura que ha adquirido para producir electricidad. Este ciclo es muy eficiente porque apenas se requiere energía para bombear el CO2: como tiende a flotar, sube hasta la superficie por sí solo. El CO2, una vez enfriado después de aprovechar la energía geotérmica, puede reinyectarse junto con más CO2 para su almacenamiento geológico. De esta forma, se reduciría la cantidad de CO2 en la atmósfera y se generaría energía limpia.

El tratamiento del CO2 debe seguir una evolución similar a la que ha tenido la gestión de nuestros residuos domésticos. Antiguamente se desechaban en cualquier parte, que es lo que hacemos ahora con el CO2. Posteriormente se recogían y se llevaban a vertederos, que es lo que se está empezando a hacer con el almacenamiento geológico de carbono. En la actualidad, reciclamos la mayoría de nuestros residuos y solo una fracción pequeña va a parar a los vertederos. En un futuro próximo deberemos hacer lo mismo con el CO2: almacenarlo y utilizarlo para conseguir que el balance neto de emisiones sea cero y así podamos mitigar los efectos del cambio climático.

 

* Víctor Vilarrasa es investigador del Instituto de Diagnóstico Ambiental y Estudios del Agua (IDAEA-CSIC) y del Instituto Mediterráneo de Estudios Avanzados (IMEDEA, CSIC-UIB). Actualmente dirige un proyecto del European Research Council (ERC) para conseguir que los recursos de la Tierra contribuyan a la descarbonización.

Incendios forestales: la geometría del fuego

Por Serafín J. González Prieto (CSIC)*

Tradicionalmente se ha considerado que tanto el inicio como la propagación del fuego son una cuestión de triángulos. Para que se inicie un fuego son necesarios tres factores: combustible, comburente y fuente de ignición. Los dos primeros son casi omnipresentes en condiciones naturales, en forma de vegetación y oxígeno de la atmósfera, y el tercero surge con frecuencia variable a partir de rayos o erupciones volcánicas, por ejemplo. La propagación del fuego también está controlada por tres factores: el combustible disponible, la topografía y las condiciones meteorológicas (humedad, viento, temperatura).

Sin embargo, con demasiada frecuencia se olvida que desde hace miles de años a los triángulos anteriores les ha crecido un ‘cuarto vértice’, que condiciona decisivamente a los otros tres vértices en la mayor parte del planeta: las actividades humanas. Con el dominio del fuego los humanos pasamos a ser la principal ‘fuente de ignición’ en la naturaleza. Con la extinción de los mega-herbívoros silvestres en amplísimas zonas (en parte sustituidos por ganado), la agricultura y ciertas plantaciones forestales masivas –con especies pirófitas de interés económico, como eucaliptos y pinos– pasamos a controlar la cantidad y continuidad del combustible, es decir, las posibilidades de inicio y propagación del fuego. Sobre estas posibilidades de inicio y propagación inciden también el cambio climático que estamos provocando y las labores de extinción de los incendios cuando y donde nos interesa, incluso cuando estos son naturales. Por último, con la imparable expansión, a menudo caótica, de las áreas urbanizadas y las infraestructuras, nos hemos metido, literalmente, en la ‘boca del fuego’ que nosotros mismos atizamos. Así, además de la sexta extinción masiva de especies, la actividad humana está generando lo que ya se denomina mega-incendios de sexta generación: humanamente imposibles de apagar; humana y ecológicamente devastadores.

Ilustración: Irene Cuesta (CSIC)

Los riesgos de las quemas controladas o ‘pastorear’ el fuego

Llegados a este punto, ¿qué podemos hacer? Pensando solamente en el primero de los triángulos mencionados, algunos aseguran que únicamente podemos gestionar el ‘combustible’ y propugnan realizar quemas controladas o prescritas, ‘pastorear’ el fuego. Antes de optar por esta alternativa, conviene recordar que la sabiduría popular nos advierte que, si jugamos con fuego, es probable que acabemos quemándonos. Debemos tener presente que tanto las quemas prescritas como los incendios tienen efectos sobre la salud humana, la economía, la atmósfera, el agua, el suelo, la vegetación, la fauna e, incluso, el patrimonio cultural. Estos efectos pocas veces, o nunca, son tenidos en cuenta adecuadamente y en su conjunto.

Como realizar quemas prescritas con las necesarias garantías es laborioso y costoso, con relativa frecuencia se hacen mal y afectan a más superficie de la prevista, llegando incluso a convertirse en grandes incendios forestales. Pero, aún siendo técnicamente bien realizadas y de baja severidad, las quemas controladas o prescritas provocan pérdidas elevadas de nutrientes y organismos del suelo (lo que disminuye su fertilidad) y reducen su capacidad para actuar como una gigantesca ‘esponja’ que se empapa cuando llueve. Gracias a esta función de ‘esponja’, un suelo sano y rico en biodiversidad reduce las inundaciones y libera lentamente el agua después, lo que reduce las sequías.

Pérdida de áreas forestales por la erosión del terreno tras incendio (Ourense, Galicia)

Además, ya sea en un incendio forestal o en una quema prescrita, la combustión incompleta de materia orgánica de los suelos y vegetación genera inevitablemente hidrocarburos aromáticos policíclicos (HAPs) tóxicos, que la erosión arrastra a embalses y zonas costeras y que afectan a la potabilidad del agua, la riqueza pesquera y marisquera, y, una vez más, a la biodiversidad. Las cenizas suelen también contener concentraciones demasiado elevadas de algunos micronutrientes y metales pesados, con riesgos aún no evaluados para los lugares donde se sedimentan.

Sedimentos de cenizas en costas gallegas

Pastoreo sí, pero de ganado extensivo y sostenible

Entonces, ¿qué otras cosas podemos hacer? En primer lugar, convencernos de que actualmente la figura geométrica del fuego, más que a un triángulo, se parece a un rombo, en cuyo vértice superior está la actividad humana influyendo decisivamente sobre el inicio y la propagación de los incendios. Los datos oficiales indican que el 78% de los incendios en España son de origen antrópico (quemas deliberadas, accidentes y descuidos). Por tanto, nada conseguiremos si no actuamos sobre la principal ‘fuente de ignición’ en los incendios forestales, grandes y pequeños: la actividad humana.

Salamandra calcinada por un incendio (Galicia)

Para dificultar la propagación y facilitar la extinción de los incendios debemos actuar sobre la biomasa vegetal, mal llamada combustible: aunque arde, nadie en su sano juicio llama combustible a una biblioteca, a un retablo barroco o a los tejados de Notre Dame. Una superficie continua de hierba seca, matorral, eucaliptos, pinos o acacias puede facilitar mucho la propagación de un incendio. Para reducirla, debemos generar discontinuidades y crear un mosaico de hábitats diferentes que, además, es muy beneficioso para la biodiversidad. Para eso disponemos básicamente de tres herramientas: diente, hierro y fuego; pastorear, rozar y quemar. Más allá de unos puestos de trabajo coyunturales, las quemas prescritas y el ‘pastoreo de incendios’ no producen bienes o riqueza y tienen en contra los mayores efectos ambientales. En circunstancias parecidas están las rozas, pero con menor impacto ambiental. Y luego está el pastoreo real, trashumante o con ganado en régimen extensivo o semi-extensivo, es decir, en el que este pasa la mayor parte de su vida en libertad. Al suplir a los grandes herbívoros salvajes que hemos diezmado o extinguido, el ganado en semi-libertad controla el crecimiento de la biomasa vegetal, contribuye a conservar un mosaico diverso de hábitats, genera puestos de trabajo estructurales, ayuda a mantener la población rural y produce alimentos.

Por todo ello, la solución del grave problema de los incendios forestales en nuestro país pasa por actuar cuanto antes sobre las causas de origen humano, promocionar un pastoreo semi-extensivo bien gestionado y recurrir a desbroces mecánicos donde sea necesario. Y solo cuando el número, extensión, severidad y frecuencia de los incendios sea más o menos natural podremos plantearnos no extinguir o ‘pastorear’ los incendios naturales.

* Serafín J. González Prieto es experto en restauración de suelos tras incendio e investigador del CSIC en el Instituto de Investigaciones Agrobiológicas de Galicia (IIAG-CSIC).

Cinco pinturas contemporáneas que hablan mucho de ciencia

Por Mar Gulis (CSIC)

Este próximo jueves, 25 de marzo, el Museo Nacional de Ciencias Naturales (MNCN-CSIC) inaugura la exposición Arte y ciencia del siglo XXI. La muestra reúne obras de 35 artistas contemporáneos que trabajan en España: 66 cuadros y 11 esculturas figurativas que el Museo ha puesto a dialogar con la ciencia de hoy. ¿Cómo? Conectando el tema de cada obra con una línea de investigación del Consejo Superior de Investigaciones Científicas, como la alimentación, el envejecimiento, el calentamiento global, la evolución humana o la desigualdad de género. Si quieres ir abriendo boca, aquí tienes algunos de los cuadros que encontrarás en la exposición.

Egg IV

En la muestra, este óleo hiperrealista de Pedro Campos sirve para introducir la investigación en alimentos funcionales de Marta Miguel. Los compuestos bioactivos presentes en alimentos como el huevo son utilizados por esta especialista del Instituto de Investigación en Ciencias de la Alimentación (CSIC-UAM) para elaborar productos que mejoren nuestro metabolismo y prevengan enfermedades relacionadas con nuestro estilo de vida o la malnutrición.

Juanito

La nitidez y definición de esta obra son abrumadoras. Se trata de una pintura al óleo en la que José Luis Corella retrata a un hombre con alzhéimer. Esta enfermedad, cada vez más común entre nuestros mayores, impide generar nuevas neuronas a quienes la padecen. En la exposición, el cuadro nos conduce hasta el Centro de Biología Molecular Severo Ochoa (CSIC-UAM), donde María Llorens estudia la neurogénesis adulta en humanos y modelos animales para diseñar terapias que permitan retrasar o disminuir los síntomas del alzhéimer.

El escondite

¿Qué nos distingue verdaderamente de los simios? Este óleo de Arantzazu Martínez suscita una pregunta fundamental a la que tratan de responder investigadores como Antonio Rosas, del MNCN-CSIC. La respuesta está relacionada con el bipedismo, que libera las manos y las convierte en herramientas de precisión, y con el posterior incremento de la capacidad cerebral. Sin embargo, aún nos queda mucho por saber sobre cómo, cuándo y por qué nuestros ancestros modificaron su anatomía y sus modos de vida. Eso nos permitirá entender mejor de dónde venimos, pero también a dónde vamos como especie.

Patio

La subida del nivel del mar provocada por el calentamiento global es evocada en esta imagen onírica, pintada al óleo por Santos Hu. La obra da pie al investigador del MNCN-CSIC David Vieites, comisario de la exposición, a hablar del impacto del cambio global en el modo de vida de millones de personas o de la pérdida de biodiversidad. De este modo, el cuadro nos lleva hasta los centros del CSIC que estudian estos fenómenos y las medidas que hacen falta para prevenirlos y remediarlos.

La labor invisible

La pintora Carmen Mansilla denuncia en este óleo elaborado ex profeso para la exposición que las artes y las ciencias han compartido a lo largo de los siglos la exclusión de las mujeres. Científicas y artistas quedaron ocultas y sus nombres empiezan a conocerse y valorarse en su justa medida con los estudios de género. El Museo destaca que investigadoras como la física Pilar López Sancho –impulsora de la Comisión Mujeres y Ciencia del CSIC– lideran el cambio hacia una mayor participación de las mujeres en ciencia y tecnología.

¿Nos encaminamos hacia la sexta extinción?

Por Mar Gulis (CSIC)

“El 25% de las especies de la Tierra desaparecerá en las próximas décadas si el cambio climático persiste. Es decir, en función de las emisiones y del grado de calentamiento global, perderemos de 500.000 a un millón de especies de animales y plantas”. Esta es la respuesta de la bióloga evolutiva Isabel Sanmartín, investigadora en el Real Jardín Botánico (RJB-CSIC), a la pregunta de si hay evidencias científicas suficientes para predecir el impacto del aumento de las temperaturas sobre la biodiversidad.

Invernadero del Real Jardín Botánico del CSIC / Irene Lapuerta

A partir del análisis de fósiles y de reconstrucciones de ADN, Sanmartín investiga cómo se adaptaron las plantas en el pasado a las variaciones climatológicas. Esas indagaciones le dan pistas para entender lo que sucede en el presente y vislumbrar qué sucederá en el futuro. Y las evidencias se acumulan: “El calentamiento global se está produciendo tan rápido que es muy difícil que las especies consigan adaptarse”, señala. Ahí están los datos: “Por ejemplo, en los bosques tropicales, donde vive el 50% de los organismos de la Tierra, calculamos que desaparecerá el 45% de las plantas”.

El aumento de la temperatura y la destrucción de hábitat, en gran medida provocados por la actividad humana, son las principales causas de esta pérdida de biodiversidad que ya se denomina “sexta extinción masiva”, afirma la bióloga.

Las variaciones del clima no son algo nuevo. A lo largo de la historia de la Tierra, factores geológicos como la tectónica de placas han generado cambios climáticos. Las reconstrucciones paleoclimáticas realizadas permiten afirmar que “cuando los continentes estaban juntos, en Pangea, el clima era árido y frío; en cambio, cuando se separaron el clima se hizo tropical. Eso se ve a lo largo de los últimos 600 millones de años”, explica Sanmartin.

¿Qué es entonces lo que hace que el actual calentamiento global dispare las alarmas en la comunidad científica? Básicamente, la velocidad a la que se producen estos cambios y lo que ello implica. “Quizá lo más relevante de esta era del Antropoceno es precisamente lo distinta que es de otras extinciones masivas que se han producido antes. En los cambios climáticos producidos por el movimiento de los continentes, los tiempos son geológicos; estamos hablando de varios de millones de años. El Antropoceno son [como mucho] 10.000 años, desde la aparición de la agricultura, y sin embargo la tasa de extinción de fondo –el número de extinciones por millón de especies por año (background extinction)– ha aumentado entre 100 y 10.000 veces”, detalla Sanmartin.

Más allá del impacto ambiental, la desaparición de tantas especies afectará directamente a la agricultura y por tanto a la obtención de alimentos para el sustento humano, pero también a la economía o incluso a la aparición de conflictos entre comunidades. La Plataforma Intergubernamental de Ciencia y Política sobre Biodiversidad y Servicios de los Ecosistemas (IPBES) de la ONU advierte que estamos ante la primera gran extinción causada por el ser humano, y desde distintos foros científicos, personal investigador de todo el mundo acumula conocimiento y plantea soluciones a este problema.

La pérdida de biodiversidad es uno de los grandes desafíos asociados al cambio global, entendido este como el conjunto de impactos medioambientales provocados por la actividad humana. En el CSIC queremos divulgar lo que dice la ciencia respecto a esta cuestión. Con ese objetivo hemos creado el espacio ‘Científicas y Cambio Global’, donde entrevistamos a Isabel Sanmartin y otras investigadoras que, desde muy diversas disciplinas, tratan de comprender el alcance de este fenómeno, sus causas, sus efectos y qué podemos hacer para afrontarlo.

Científicas y Cambio Global cuenta con la colaboración de la Fundación Española para la Ciencia y la Tecnología – Ministerio de Ciencia, Innovación y Universidades.